This course aims to provide basic training and hands-on experience on electronic product design and development. Topics to be learnt include information search; project planning; design methodology; selection of components; prototyping; testing procedures; trouble shooting; and documentation. The course will consist of lectures (basic training) and laboratory practice relating to the development of electronic products with pre-defined specifications.
This is an introductory course on electric power systems and electrical to mechanical energy conversion. Electric power systems have become increasingly important as a way of transmitting and transforming energy in industrial, military and transportation uses. They are also at the heart of alternative energy systems, including wind and solar electric, geothermal and small-scale hydroelectric generation. This course covers fundamentals of energy-handling electric circuits, power electronic circuits such as inverters, and electromechanical apparatus; modeling of magnetic field devices and description of their behavior using appropriate models; analysis of power electric circuits, magnetic circuits, and elements of linear and rotating electric machinery; models of synchronous, induction, and DC machinery; the interconnection of electric power apparatus and operation of power systems.(Pre-requisite: (ELEG2202 or BMEG2300) and ENGG2520, or with consent of the instructor.)
Development of fiber communications. Optical fibers and their properties. LED and Laser sources. Power launching and Coupling. Optical detectors and receivers. Repeaters, Regenerators, and Optical amplifiers. Introduction to Optical Communication Systems. Time-division-multiplexing (TDM) and Wavelength-division-multiplexing (WDM) communications. Optical networks. Ultrafast and nonlinear fiber optics. Recent developments in optical communication technology. (Not for students who have taken ELEG3320 or ESTR3206.)
DTFT and DFT. Z-transform and inverse Z-transform. Stability and causality of DT systems. Inverse systems. Impulse response and frequency response. Transient-state response and steady-state response. Design and realization of FIR filters. Students are advised to take ENGG2030 before taking this course. (Not for students who have taken ELEG3410. Prerequisite: ENGG2030 or ESTR2206 or consent of the instructor.)
Review of ray optics. Wave and beam optics. Fourier optics: optical image formation, holography and holographic storage. Polarization optics and liquid crystal display technology. Light emitting diodes. Optical resonators and lasers. Optical interconnects and switches. Applications: optical fiber communications and fiber sensors, optical consumer products. (Not for students who have taken ELEG3010.)