Activity Analysis Using Topic Models

Xiaogang Wang
Department of Electronic Engineering
The Chinese University of Hong Kong

November 07, 2011
Outline

• Introduction
• Topic Models
• Activity analysis in sparse scenes
 • Based on trajectories
 • Single camera view
 • Multiple camera views
• Activity analysis in crowded scenes
 • Based on tracklets
 • Based on local motions
• Activity analysis in near fields
Activity analysis under different scenarios

- Number of camera views
 - Single camera view
 - Multiple camera views

- Crowdedness
 - Crowded scenes
 - Sparse scenes

- Camera view distance
 - Near field
 - Far field

- Activity analysis under different scenarios

3
Sparse scenes in a single camera view

- Objects can be detected and tracked
- Trajectories of objects are used for activity analysis
- Cluster trajectories into different activity categories
- Detect abnormal trajectories
Sparse scenes in multiple camera views

✓ Objects can be detected and tracked in each of the camera views
✓ It is challenging to track objects across camera views
✓ The topology of camera views may be arbitrary and unknown
✓ Cluster trajectories observed in different camera views without tracking objects across camera views and without knowing the topology of camera views
Crowded Scenes

- It is challenging to detect and track objects in crowded environments
- Many different types of activities happen simultaneously in crowded scenes
- Learn the models of activities from **tracklets** (highly fragmented trajectories) or **local motions** (optical flows)
Near Fields

✓ In far fields, objects are small in size and their activities are mainly distinguished by their positions and velocities
✓ In near fields, objects are in larger sizes, and more features such as shape, appearance and motions can be used for activity analysis
✓ Use space-time interest points as features for activity analysis
Why topic models?

- Unsupervised
 - Save labeling effort
 - Suitable for processing large scale datasets
 - Easy to transfer across different scenes
- Topic models are hierarchical Bayesian models
 - Model complex activities in a principled way
 - Jointly model simple activities and complex activities at different hierarchical levels
 - Add priors to hierarchical Bayesian models
 - Dynamically update the models of activities over time
 - Learn the models of activities across camera views
Why topic models?

- Can be extended to nonparametric Bayesian models
 - Automatically learn the number of activity categories driven by data
- Model the co-occurrence of motion features
 - Co-occurrence of motion features widely exists in many types of activities
 - No other strong constraints on the distributions of activity models
 - Can be well applied to different scenes and different types of activities
Outline

• Introduction

• **Topic Models**
 • Activity analysis in sparse scenes
 • Based on trajectories
 • Single camera view
 • Multiple camera views
 • Activity analysis in crowded scenes
 • Based on tracklets
 • Based on local motions
 • Activity analysis in near fields
Topic models

<table>
<thead>
<tr>
<th>“Arts”</th>
<th>“Budgets”</th>
<th>“Children”</th>
<th>“Education”</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW</td>
<td>MILLION</td>
<td>CHILDREN</td>
<td>SCHOOL</td>
</tr>
<tr>
<td>FILM</td>
<td>TAX</td>
<td>WOMEN</td>
<td>STUDENTS</td>
</tr>
<tr>
<td>SHOW</td>
<td>PROGRAM</td>
<td>PEOPLE</td>
<td>SCHOOLS</td>
</tr>
<tr>
<td>MUSIC</td>
<td>BUDGET</td>
<td>CHILD</td>
<td>EDUCATION</td>
</tr>
<tr>
<td>MOVIE</td>
<td>BILLION</td>
<td>YEARS</td>
<td>TEACHERS</td>
</tr>
<tr>
<td>PLAY</td>
<td>FEDERAL</td>
<td>FAMILIES</td>
<td>HIGH</td>
</tr>
<tr>
<td>MUSICAL</td>
<td>YEAR</td>
<td>WORK</td>
<td>PUBLIC</td>
</tr>
<tr>
<td>BEST</td>
<td>SPENDING</td>
<td>PARENTS</td>
<td>TEACHER</td>
</tr>
<tr>
<td>ACTOR</td>
<td>NEW</td>
<td>SAYS</td>
<td>BENNETT</td>
</tr>
<tr>
<td>FIRST</td>
<td>STATE</td>
<td>FAMILY</td>
<td>MANIGAT</td>
</tr>
<tr>
<td>YORK</td>
<td>PLAN</td>
<td>WELFARE</td>
<td>NAMPHY</td>
</tr>
<tr>
<td>OPERA</td>
<td>MONEY</td>
<td>MEN</td>
<td>STATE</td>
</tr>
<tr>
<td>THEATER</td>
<td>PROGRAMS</td>
<td>PERCENT</td>
<td>PRESIDENT</td>
</tr>
<tr>
<td>ACTRESS</td>
<td>GOVERNMENT</td>
<td>CARE</td>
<td>ELEMENTARY</td>
</tr>
<tr>
<td>LOVE</td>
<td>CONGRESS</td>
<td>LIFE</td>
<td>HAITI</td>
</tr>
</tbody>
</table>

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive $400,000 each. The Juilliard School, where music and the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000 donation, too.

Figure 8: An example article from the AP corpus. Each color codes a different factor from which the word is putatively generated.

Latent Dirichlet Allocation

Distribution of document j over topics

Topic label of word i

Words

Models of topics

π_j

β

ϕ_k

π_j

\mathbb{K}

N_j

M

\mathbb{H}

\mathbb{W}_{ji}

\mathbb{Z}_{ji}

π_j

\mathbb{H}

ϕ_k

\mathbb{K}

N_j

M

\mathbb{H}

ϕ_k

\mathbb{K}

N_j

M

\mathbb{H}

ϕ_k

\mathbb{K}

N_j

M

\mathbb{H}

ϕ_k

\mathbb{K}

N_j

M
Applying topic models to activity analysis

- Features = ?
- Words = ?
- Documents = ?
- Topics = ?
- How to extend the models by adding priors which capture the spatial and temporal information?
Outline

- Introduction
- Topic Models
- Activity analysis in sparse scenes
 - Based on trajectories
 - Single camera view
 - Multiple camera views
- Activity analysis in crowded scenes
 - Based on tracklets
 - Based on local motions
- Activity analysis in near fields
Activity analysis in sparse scenes

- Features = positions and velocities of points on trajectories
- Words = points on trajectories
- Documents = trajectories
- Topics = semantic regions (intersections of paths commonly taken by objects)
- Identity co-occurrence: two feature values are observed on the same trajectory and they are related to the same object

X. Wang, K. Ma, G. Ng, and E. Grimson, “Trajectory Analysis and Semantic Region Modeling Using A Nonparametric Bayesian Model,” CVPR’08
Two-level parametric topic model

\[\mu \rightarrow \eta \]

\[\beta_0 \rightarrow \beta_c \rightarrow \pi_j \]

Models of paths

\[H \rightarrow \phi_k \rightarrow x_{ji} \rightarrow \pi_j \]

Models of semantic regions

Observations on trajectories

Models of paths

Models of semantic regions

Trajectory \(j \)
Dual Hierarchical Dirichlet Processes (Dual-HDP)

Parametric hierarchical Bayesian model

Global behavior models

Atomic activity models

Related to the nested HDP [Rodriguez et al. 2006], Transformed HDP [Sudderth et al. IJCV’07], HDP [Teh JASA’04]
Cluster trajectories and learn models of paths

40,453 trajectories for our experiments
Models of semantic regions
Clusters of trajectories
Outlier trajectories

Top 1-20
Top 21-40
Top 41-60
Top 61-80
Top 81-100
Dynamic Dual-HDP

- Models are dynamically updated
- The information of data before t is included in ϕ_{t-1}^{i} and β_{0}^{t-1}

X. Wang, K. Ma, G. Ng, and E. Grimson, “Trajectory Analysis and Semantic Region Modeling Using Nonparametric Bayesian Models,” IJCV’11
Dynamic models of semantic regions in a parking lot

2am-3am May 15
7am-8am May 15
1pm-2pm May 15
7pm-8pm May 15

2am-3am May 16
7am-8am May 16
1pm-2pm May 16
7pm-8pm May 16

2am-3am May 15
7am-8am May 15
1pm-2pm May 15
7pm-8pm May 15

2am-3am May 16
7am-8am May 16
1pm-2pm May 16
7pm-8pm May 16
Cluster trajectories in multiple camera views

- Correspondence free: doesn’t track object across camera views
- No camera calibration
- Unsupervised
- The topology of camera views is unknown and arbitrary (overlapping or non-overlapping)
- **Add smoothness prior according to the temporal co-occurrence of trajectories observed in different camera views**
Build a Trajectory Network

Identity co-occurrence + temporal co-occurrence

(a) Trajectories in three camera views
(b) Temporal extents of trajectories
(c) The network connecting trajectories

X. Wang, K. Tieu, and E. Grimson, “Correspondence-Free Activity Analysis and Scene Modeling in Multiple Camera Views,” TPAMI’10.

Model

- Codebook is the concatenation of the local codebooks of all the camera views. Feature value is \((\text{camera}_\text{id}, \text{location}, \text{moving}\text{ direction})\).
- A semantic region has a joint distribution in all camera views.
- If two trajectories are connected by an edge on the network, there is a smoothness constraint on their distribution over semantic regions.

An example to describe the high level picture of our model
Models of paths and clusters of trajectories
Outline

• Introduction
• Topic Models
• Activity analysis in sparse scenes
 • Based on trajectories
 • Single camera view
 • Multiple camera view
• Activity analysis in crowded scenes
 • Based on tracklets
 • Based on local motions
• Activity analysis in near fields
Learning the models of activities from tracklets

- Tracklets: fragments of trajectories obtained by weak trackers. They are short and very noisy.
- Trajectories extracted from the videos of the New York Grand Central Station: 95% trajectories are highly fragmented
Clustering results using topic models
Random field topic model

- MRF models the dependency between tracklets based on their spatial and temporal consistency and velocity similarity
- Model the sources and sinks

Learned Models of Paths
Learned Models of Paths
Activity Analysis Based on Moving Pixels

Activity Analysis Based on Moving Pixels

- Features = positions and velocities of moving pixels
- Words = moving pixels
- Documents = short video clips
- Topics = atomic activities
- Temporal co-occurrence: if two feature values are related to the same atomic activities, they often co-occur in the same video clips and have strong temporal correlation
High level picture of our approach

Motion Features
(a)

Atomic activities
modeled as
distributions over
the feature codebook
(b)

Global behaviors
modeled as
distributions over
atomic activities
(c)
Parametric hierarchical Bayesian model

Global behavior models ($L = 2$)

Atomic activity models ($K = 4$)

Observed feature values of moving pixels

Video clip j ($j = 1 \ldots M$)
Learned atomic activities from a traffic scene
Global behavior I: green light for south/north traffic

index of atomic activities

prior

vehicles northbound
vehicles northbound
vehicles southbound
vehicles incoming northbound
vehicles incoming southbound
vehicles outgoing eastbound
Global behavior II: green light for east/west traffic

Index of atomic activities:

- Vehicles incoming westbound
- Vehicles outgoing westbound
- Vehicles outgoing southbound
- Vehicles incoming eastbound
- Vehicles outgoing eastbound
- Pedestrians westbound
Global behavior III: left turn signal for east/west traffic

index of atomic activities

prior

vehicles turning left eastbound
vehicles outgoing northbound
vehicles outgoing northbound
vehicles incoming eastbound
vehicles outgoing eastbound
vehicles stopping southbound
Global behavior IV: walk sign

prior

index of atomic activities

pedestrians incoming eastbound
pedestrians outgoing eastbound
pedestrians westbound
vehicles stopping
vehicles stopping

pedestrians westbound
Global behavior V: northbound right turns

index of atomic activities

prior

vehicles incoming northbound

vehicles outgoing eastbound
Temporal video segmentation

- Green light for east/west traffic
- Green light for south/north traffic
- Left turn signal for east/west traffic
- Walk sign
- Northbound right turns
Abnormality detection results

Top four abnormal video clips
Interaction query

- **Vehicles approaching**
- **Pedestrians crossing the street**

Query distribution
Top four retrieved jay-walking examples
More works

- Modeling the temporal dependencies of global behaviors and atomic activities (Hospedales et al. ICCV’09)
- Modeling the temporal duration of atomic activities (Varadarajan et al. BMVC’10, Emonet et al. ECCV’11)
- Modeling the temporal variations of the atomic activities and global behaviors over time (Faruquie, BMVC’09)
- Weakly supervised topic model for rare (abnormal) and subtle behavior detection (Hospedales, et al. TPAMI’11)
Outline

• Introduction

• Topic Models

• Activity analysis in sparse scenes
 • Based on trajectories
 • Single camera view
 • Multiple camera view

• Activity analysis in crowded scenes
 • Based on tracklets
 • Based on local motions

• Activity analysis in near fields
Activity analysis in near fields

- **Features** = visual descriptors of space-time interest points
- **Words** = space-time interest points
- **Documents** = video sequences
- **Topics** = actions

Conclusions and Discussions

- Topic models capture the co-occurrence of features and can be applied activity analysis under different contexts.
- They are extendable by adding different types of priors:
 - Dynamically update the models of activities
 - Activity analysis across multiple camera views
- How to better capture the spatial and temporal relationships of “words” and “documents”?
- How to apply topic models to very large camera networks?
- How to jointly solve low-level object detection/tracking and high-level activity modeling under the hierarchical Bayesian model?
Thank you!