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ABSTRACT
We propose a deep learning architecture to solve the prob-
lem of multimodal fusion of multi-timescale temporal data,
using music and video parts extracted from Music Videos
(MVs) in particular. We capture the correlations between
music and video at multiple levels by learning shared fea-
ture representations with Deep Belief Networks (DBN). The
shared representations combine information from multiple
modalities for decision making tasks, and are used to eval-
uate matching degrees between modalities and to retrieve
matched modalities using single or multiple modalities as
input. Moreover, we propose a novel deep architecture to
handle temporal data at multiple timescales. When pro-
cessing long sequences with varying length, we propose to
extract hierarchical shared representations by concatenating
deep representations at different levels, and to perform deci-
sion fusion with a feed forward neural network, which takes
input from predictions of local and global classifiers trained
with shared representations at each level. The effectiveness
of our method is demonstrated through MV classification
and retrieval.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models
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1. INTRODUCTION
Music and videos, as two popular types of media, cause d-

ifferent human perceptions with music in auditory and video
in vision. However, psychology and cognition studies have
shown that the information processing procedures of audio
and visual signals by human brains are closely related and
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Figure 1: Deep learning multi-timescale shared rep-
resentations. (a) Raw data of a MV segment. (b) 6
sec long base-1 segments. Deep representations for
music and video are extracted separately. Shared
representations are extracted by concatenating deep
representations and input them to another layer. (c)
Concatenation of 2 base-1 segments gives 1 base-2
segment. (d) Concatenation of 4 base-1 segments
gives 1 base-4 segment. (e) To make a prediction
on a 24 sec long time interval, we fuse predictions
from 4 adjacent base-1 predictors, 2 adjacent base-2
predictors and 1 base-4 predictor.

integrated [2]. In music videos (MVs), music and videos ap-
pear in parallel and complement each other. MV expresses
the song by using stories and rhythmic dances to comple-
ment music. In this work, we try to explore the correlation-
s between musical and visual parts of MVs, and use deep
learning to capture such correlations with extracted shared
representation across two modalities.

One of the commonly recognized matches in MV is mu-
sic semantics with video content. For example, sad music is
paired with sad faces or girls weeping in videos, and exciting
party music is paired with dancing scenes and flashing light-
s. There is existing work on semantically matching music
and images with content [10]. The authors built a database
with a large number of music-image pairs extracted from
MVs, and used Canonical Correlation Analysis (CCA) to
capture the relationship between music and image features.
However they did not consider any temporal information of
music or videos. Since music and images have complex and
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distinct structures, they simplified the problem by grouping
music-image pairs into five clusters and projected them to
the music-attribute space.
In our work, deep learning is used to directly model rela-

tionships across modalities instead of simplifying the prob-
lem through clustering data pairs as in [10]. And we treat
music and videos as temporal data and characterize their
dynamic temporal and spacial features. In multimodal da-
ta analysis, there have been advances using deep learning
approaches [9] [8] [11] [6]. Various kinds of modalities have
already been covered by these literatures, including text, au-
dio, music, and image. However, none of the existing work
focus on fusing temporal multi-modality data. Temporal
data are data that represent states in time, such as music
and video. Multimodal problems on temporal data usual-
ly concern alignment or synchronization among modalities
along time axis, and need to deal with multi-timescale prob-
lem, i.e., data sequence may have varying length. Our work
provides novel solutions to these issues, demonstrating suc-
cessful fusion of music and video on multiple level.
Our work makes two key contributions. First, we propose

a deep learning framework taking well-crafted inter-frame
and intra-frame music and video features as input and fuse
them at both semantic and temporal level. This essentially
makes sure the model captures semantic matches and takes
care of data alignment problem. Second, we propose a novel
multi-timescale temporal data fusion approach to deal with
variable time length, such that our model can fuse modal-
ities both locally and globally on the time axis. The effec-
tiveness of the proposal multi-modality deep learning fusion
approach is demonstrated through two experiments, MV re-
trieval and classification.

2. DATASET AND FEATURE DESIGN

2.1 Dataset preparation
We obtained 2,000 MVs from YouTube with top rated

view counts and acquired 40,000 music-video pairs from them.
Most of these MVs were published in 2010 to 2014. The
MVs are of diversified styles and were performed by more
than 600 singers from different countries.
To speed up feature extraction, all the MVs’ video parts

are down-sampled to a frame rate of 12fps and resolution
is scaled to 320 × 240 pixels. Audio is downgraded to one
channel with a sample rate of 44 kHz.

2.2 Video and music features
We cut music and videos in parallel into small segments

of 6 seconds without overlapping or skipping, and extract
both local and global features for each segment.
We extract image features within each frame as intra-

frame features for videos. They include Histograms of Ori-
ented Gradient (HOG), color histograms, and Local Binary
Patterns (LBP). We also design inter-frame features that can
capture temporal variation of frames, including histogram-
s of Oriented Optical Flow, distances of HOG, color his-
tograms, and LBP for adjacent frames. We calculate statis-
tics of individual feature sets over all the frames in a segmen-
t, namely mean and standard deviation, to capture global
characteristics for an entire segment. The final feature di-
mension for a video segment is 7443.
We use a rich set of mid-level musical features [5], in-

cluding tempo, attack time, attack slope, spectral charac-

teristics (such as brightness, spread, and roughness), timbre
features (such as zero crossing, spectral flux), and tonal fea-
tures (such as chromagram, key clarity). A pooling step is
performed on the raw feature vector with a sliding window
along the time axis to average the signal. It computes the
mean, median, maximum, and minimum within the window
to replace the raw features. Similar as in videos, we calcu-
late statistical values for individual types of musical features
over the entire segment, including the mean, standard devi-
ation, slope, period frequency, period amplitude, and period
entropy. The final feature dimension for an audio segment
is 1052.

3. MULTIMODAL FUSION

3.1 Deep model on single modality
Given a single modality data x with its initial feature rep-

resentation vx, we build a multilayer generative deep belief
network [4]. A Gaussian-Bernoulli Restricted Boltzmann
Machine (RBM) [3] with one layer of latent variables h1

x is
trained using real-valued vx as input. Then we treat the
activations of h1

x as input to train another RBM on top of
it, obtaining latent variables h2

x. More layers of RBM can
be further trained in this manner to make the model deep.
The whole network can be fine tuned after pre-training steps.
Such configuration gives a Deep Belief Network model tak-
ing vx as input and giving deep representation hn

x as output,
where n is the number of hidden layers. Deep representa-
tions are less modality-specific than raw data representation-
s, and modeling correlations among deep representations of
different modalities is much easier [9] [8]. In our experi-
ments we use two layers of stacked RBMs. And input vx are
normalized to have 0 mean and standard deviation of 1.

3.2 Shared representation for multi-modality
Suppose there are m modalities for data fusion. After

obtaining deep representations hn1
x1

, hn2
x2

, ..., hnm
xm

for each
modality x1, x2, ..., xm respectively, where ni is the depth
of DBN for modality xi, all the deep representations are
concatenated into one single vector. Using the merged rep-
resentation as input, we build another RBM on top of it,
which gives hidden layer h as our final shared representa-
tion. This is equivalent to learning a joint distribution of all
the modalities, and representations of different modalities
are fused to one. An graphical illustration of this architec-
ture is shown in Figure 2.

3.2.1 Multi-modality decision making
The process of extracting shared representation for multi-

ple modalities can be treated as preprocessing step. Shared
representations capture information from all modalities. Us-
ing shared representations in decision making problems such
as classification, regression gives better result than directly
using single modality data or concatenated multimodality
initial feature. Any existing classifiers or regressors can be
applied on top of them. We will show the application and
experimental result in Section 4.

3.2.2 Multi-modality retrieval
All the layers in our model are undirected. Therefore it

is possible to use one or more modalities to reconstruct oth-
er modalities. Given only vp as query, we can search for
matched vq from a database. The hidden representation
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Figure 2: General architecture for extracting multi-timescale shared representation

hp is first computed from vp. In the shared RBM, we per-
form Gibbs sampling by using the conditional distribution
P (h|hp, hq) to obtain h, and then sample P (hq|h) to obtain
hq iteratively. Once convergence is reached, hq can be esti-
mated and easily be backpropagated through its DBN to get
vq(recon). We evaluate the distances between vq(recon) and
all the vq in the database, and return those with smallest
distances as retrieved results.

3.3 Multi-timescale fusion
Decision level fusion is a common strategy in multimodal

fusion problems. To deal with long time-scale temporal da-
ta, the traditional approach is to fuse modalities on local
short segments and average predictions over all short seg-
ments in the time interval [1] [7]. However this approach
ignores valuable global information that may provide better
matching.
Our multi-timescale fusion strategy works in the follow-

ing way: merging adjacent deep representations within each
modality to form hierarchical deep representations (Figure 2),
and learning shared representations at different level of hi-
erarchy. It aims at fusing modalities at varying time scales
and is much easier to construct than building scale-varying
models from bottom up. This approach has several advan-
tages. First, the same set of initial features on the shortest
time interval can be reused at different time scales. There-
fore, the deep representations for each modality only need
to be computed once and the computation is efficient. Sec-
ond, shared representations at different levels of the hierar-
chy captures different ranges of cross-modality correlations
ranging from local to global, which are complementary to
one another. Some long-range characteristics can only be
captured by shared representations at higher hierarchy lev-
els.
In a long range matching scenario, one classifier is trained

for the shared representation at each hierarchy level . Clas-
sifiers from different levels will give decisions on different
range (local to global). A final step of decision fusion is
performed by using a simple Feed-forward Neural Network
(FFNN) to combine the predictions of classifiers at multiple
levels.
An exemplar illustration and the architecture of learning

multi-timescale shared representations are shown in Figure
1 and 2.

Figure 3: Retrieval precisions using sampling shared
rep., CCA with deep rep., CCA with initial features,
and random pairing

4. EXPERIMENTS

4.1 Multi-modal retrieval
We construct a video dataset with 2000 video segments,

and use 500 audio segments as queries to evaluate the per-
formance of retrieval. Note that the MVs containing these
segments are not used in training deep models. We also
implement a classic CCA method to evaluate similarity in
the same way as [10]. Both CCA and our deep models are
trained with 38,000 music-video segment pairs. Figure 3
shows the performance of retrieval using our method and C-
CA. We treat the retrieval as successful as long as the top N
retrieved examples contains the true match. The precisions
of top-N ranks are reported. CCA of deep rep. uses deep
representations of videos and audio, and outperforms CCA
using initial features as input, which proves deep representa-
tions are easier to fuse than initial features. Retrieval with
shared representation achieves big improvement over CCA
on deep representations or initial features.

4.2 Korean MV classification
A number of YouTube hot clicks are Korean MVs of girl

groups and boy bands. Modern Korean MVs are quite dis-
tinctive in style. Their music parts have fast tempo and
repeated patterns. Their video parts are filled with singers’
singing and dancing scenes. In this experiment, we try to
learn a classifier to identity Korean MVs. We train an SVM
classifier with concatenated initial music and video features
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Data input AP

Video initial feature 0.3123
Video deep rep. 0.5012
Music initial feature 0.2656
Music deep rep. 0.2975
Video and music initial feature (SVM) 0.4542
Shared rep. base-1 0.5585
Shared rep. base-2 (12 sec) 0.5841
Shared rep. base-5 (30 sec) 0.6479
Shared rep. base-10 (60 sec) 0.6025

Table 1: Average precisions of classifiers trained
with different data input

as input for comparison. We also demonstrate the effect of
multi-timescale fusion of temporal data.
Among 2,000 MVs in our dataset, around 10% are Korean

MVs. We cut each MV into segments of 60 seconds, leading
to 4,000 segments in total with around 400 Korean MV seg-
ments. We randomly obtain 2,000 MV segments containing
200 Korean MV segments as training data, leaving the rest
as testing data.
In order to build a multi-timescale fusion model, we cut

data into segments of 6 seconds as our base level, denot-
ed by base-1 (40,000 segments in total). Deep representa-
tions are extracted for all the base-1 segments. To form a
multi-timescale hierarchy, we concatenate the hidden rep-
resentations of adjacent base-1 segments belonging to the
same original 60-second-long segment. We concatenate two
adjacent base-1 segments to form 1 base-2 segment (12 sec-
onds long, 20,000 segments in total), concatenate 5 adjacent
base-1 segments to form 1 base-5 segment (30 seconds long,
8,000 segments in total), and concatenate 10 adjacent base-
1 segments to form 1 base-10 segment (60 seconds long, i.e.
the original segments, 4,000 segments in total). One shared
RBM is trained on each hierarchy level using base-1, base-2,
base-5, and base-10 segments respectively. Then one FFNN
classifier is trained with each level’s shared RBM individu-
ally. We evaluate each classifier’s performance using testing
data belong to its concatenation level.
With base-1 segments, we also train FFNN classifiers us-

ing unimodal input, namely video/music initial features, and
video/music deep representations individually. In another
comparison, an SVM classifier is trained using concatenat-
ed initial music feature and video feature as input. Classi-
fiers’ performances are listed in Table 1. Classifiers using
shared representations performs much better than those us-
ing unimodal representations. Both shared rep. base-1 and
SVM use multi-modal input, however, it outperforms SVM
by 10%. It shows that the shared representations obtained
by deep learning are more effective than the initial features.
Noted that AP of shared rep. base-2, base-5 and base-10
are provided for reference only and we do not compare them
with others since they use smaller number of data segments
(longer length) during training and testing.
In order to deal with long sequences of 60 seconds, we ex-

tract predictions from all classifiers and concatenate them
into a vector. For each original segment of 60 seconds long,
its prediction vector includes 10 local predictions by the
base-1 classifier, 5 predictions by the base-2 classifier, 2 pre-
dictions by the base-5 classifier, 1 prediction by base-10 clas-
sifier. We train a FFNN with prediction vectors and evaluate

Method AP

Multi-timescale 0.7900
Averaging shared rep. base-1 0.6750
Averaging SVM 0.6130

Table 2: Comparison of multi-timescale representa-
tion and averaging on local predictions.

our multi-timescale fusion model performance. As shown in
Table 2, our final classifier (Multi-timescale) gives 0.79 av-
erage precision, outperforming the strategy of averaging 10
local predictions using either shared representation or SVM.

5. CONCLUSIONS
We propose deep models to explore correlations of music

and video in MVs. Shared representations for music and
videos are learned with DBNs. A retrieval experiment is
conducted to demonstrate the power of the shared represen-
tations on matched music and videos. We also show that
shared representations combines information of music and
video and perform better than unimodal representations in
the classification task. A novel method is proposed to han-
dle temporal sequences with varying length, by constructing
multi-timescale shared representations. It significantly out-
performs averaging predictions on local intervals.
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