Foundamental Course on Probability, Random Variable and Random Processes

Teacher: W.K. Cham

- Probability Theory
- Random Variables
- Random Processes
 - Stationary RP & Ergodic RP
 - Gaussian RP
 - Filtering of RP
Probability Theory - 3 stages

In order to develop a useful theory of probability, it is important to separate 3 stages in the consideration of any real probability.

1. The association of an events with a probability by (i) experiments and (ii) reasoning.

 e.g. $P(1) = \frac{1}{6}$

2. Development of the relationship of the probability of an event with the probabilities of some other events.

 e.g. $P(1) P(1)$

3. The application of the results of stage 1 & stage 2 to the real world.

 e.g.
A single performance is called a **trial** & at it we observe a single **outcome** S_i.

The **event** A is said to have occurred in this trial if $S_i \in A$.

Probability space $S = \text{universal set} = \{1,2,\ldots,6\}$

Set contains all possible experimental outcomes

$\emptyset = \text{empty set} = \text{set contains impossible outcomes}$
Stage 1: The association of an event with a probability

For example, we are to determine the probability of event A which is the outcome being one in a trial of throwing a dice.

- **Probability determined by experiment**

 The experiment of throwing a dice is repeated n times. Suppose n_a times of the n trials result in event A.

 \[
 \text{Probability of } A = P(A) \equiv \frac{n_a}{n} \quad \text{provided } n \text{ is sufficiently large.}
 \]

 Comments:

 (i) not exact!

 \[
 \lim_{n \to \infty} \frac{n_a}{n} \equiv P(A) \]
 may be exact but cannot be found in practice.

- **Probability determined by reasoning**

 We may assume that throwing a dice has six possible outcomes and so there are 6 possible events. If all events have the same probability, then $P(A) = 1/6$.

 Comment: not exact as the assumptions may be wrong.
Stage 2: Development of the relationship between probabilities of different events

We assign to each event A a number $P(A)$ which we call the probability of A. This number satisfies the 3 axioms:

1. $P(A) \geq 0$
2. $P(S) = 1$
3. $AB = \emptyset \rightarrow P(A + B) = P(A) + P(B)$ (i.e. mutually exclusive)

Thm.

1. $P(\overline{A}) = 1 - P(A)$
2. $P(\emptyset) = 0$
3. $AB \neq 0 \rightarrow P(A + B) = P(A) + P(B) - P(AB)$
 $\therefore P(AB) \leq P(A) + P(B)$
4. $B \subset A \rightarrow P(A) = P(B) + P(A\overline{B}) \geq P(B)$
Fill in the missing words in

Definitions:

1) Event S (universal set) occurs at ____ trial.

2) Event \emptyset (empty set) ____ occurs.

3) Event $A+B$ occurs when event A ____ event B occur.

4) Event AB occurs when event A ____ event B occur.

Properties:

1) $A \cdot B = 0$ \rightarrow event A & event B ____ occur in the same trial.

2) Event A occurs \rightarrow Event \overline{A} ____ occurs.
Two Theorems in Probability Theory

Prove: \(P(\overline{A}) \leq 1 - P(A) \leq 1 \)

Proof:

\(A \cdot \overline{A} = \phi \) (set theory)

\(A + \overline{A} = S \) (set theory)

\[\therefore \ P(A + \overline{A}) = P(A) + P(\overline{A}) = 1 \] (axiom 3)

\[\rightarrow P(\overline{A}) = 1 - P(A) \quad Q.E.D. \]

Prove: \(P(\phi) = 0 \)

Proof:

\(S = S + \overline{S} = S + \phi \) (set theory)

\(S \cdot \overline{S} = \phi \) (set theory)

\[\therefore \ P(S + \phi) = P(S) + P(\phi) = 1 \]

\[\rightarrow P(\phi) = 1 - P(S) = 0 \quad Q.E.D. \]
Three definitions in Probability Theory

Given event A & event B, we have

$P(AB)$ The probability of the occurrence of events A & B.

$P(A+B)$ The probability of the occurrence of event A or B.

$P(A/B)$ The probability of the occurrence of event A given B.

In general, we have

$P(ABCD....) \ &

P(A+B+C+D+....)$
Def. The conditional event for A given B, A/B, is the event A under the stipulation that B has occurred.

Def. The conditional probability of A given B is $P(A/B) \equiv P(AB)/P(B)$.

Properties

1) $AB = 0 \rightarrow P(A/B) = 0$

2) $A \subset B \rightarrow A \cdot B = A$
 $$\rightarrow P(A/B) = \frac{P(A)}{P(B)} \geq P(A)$$

3) $B \subset A \rightarrow AB = B$
 $$\rightarrow P(A/B) = \frac{P(B)}{P(B)} = 1$$

4) $A = \{1,2,3\}$
 $B = \{1,3,5\}$
 $$\rightarrow P(A/B) = \frac{P(AB)}{P(B)} = \frac{1}{3} / \frac{1}{2} = \frac{2}{3}$$

Examples
Probability Theory

Def. Two events A & B are independent if $P(AB) \equiv P(A)P(B)$.

Two events are independent when knowledge of the occurrence of one event gives no additional information concerning the likelihood of the occurrence of a second event.

$$P(\frac{A}{B}) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

e.g.

trial 1

- $S_1 = \{1,2,3,4,5,6\}$
- $A_1 = \{1\}$
- $P(A_1) = \frac{1}{6}$

trial 2

- $S_2 = \{1,2,3,4,5,6\}$
- $A_2 = \{1\}$
- $P(A_2) = \frac{1}{6}$

$$P(A_1A_2) = P(A_1)P(A_2) \text{ if } A_1 \text{ & } A_2 \text{ are independent.}$$

The space of A_1A_2 is

$$S = S_1 \times S_2 = \{(1,1), (1,2), (1,3), \ldots, (6,6)\}.$$
Mutually Exclusive Events and Independent Events

e.g. 1
\[A = \{1\} \quad B = \{2\} \]

\[
P(A/B) = \frac{P(AB)}{P(B)} = \frac{P(\phi)}{P(B)} = 0
\]

A & B are mutually exclusive, i.e. \(AB = 0 \)

e.g. 2
\[A = \{1\} \quad B = \{2\} \]

\[
P(A/B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)
\]

A & B are independent, i.e. \(P(AB) = P(A)P(B) \)
Independent Events

Def. Events A_1, A_2 & A_3 are independent

iff $P(A_1A_2A_3) = P(A_1) \ P(A_2) \ P(A_3)$

& $P(A_1A_2) = P(A_1) \ P(A_2)$

& $P(A_1A_3) = P(A_1) \ P(A_3)$

& $P(A_2A_3) = P(A_2) \ P(A_3)$.

Example:

Given:

$P(A_1) = 1/2$

$P(A_2) = 1/4$

$P(A_3) = 1/4$

$P(A_1A_2) = 1/8$

$P(A_1A_3) = 1/8$

$P(A_2A_3) = 1/8$

$P(A_1A_2A_3) = 1/32$

Are A_1, A_2 & A_3 independent?

Def. In general, n events A_1, A_2, ..., A_n are independent iff

$P(A_1A_2 \ldots A_n) = P(A_1) \ P(A_2) \ldots \ P(A_n)$

: ... :

$P(A_iA_jA_k) = P(A_i) \ P(A_j) \ P(A_k)$

$P(A_iA_j) = P(A_i) \ P(A_j)$

for all combinations of $i, j, k, ...$

where $1 \leq i \leq j \leq k \leq \ldots \leq n$.
Thm. For events A_1, A_2, \ldots, A_i (which may or may not be independent), the probability of the simultaneous occurrence of the i events is

$$P(A_1A_2\ldots A_i) = P(A_1) \cdot P(A_2/A_1) \cdot P(A_3/A_1A_2) \cdots P(A_i/A_1A_2\ldots A_{i-1}).$$

Example: Let A_1, A_2, A_3 & A_4 represent the consecutive events of drawing an aces.

Find: $P(A_1A_2A_3A_4)$

Solution:

$$P(A_1A_2A_3A_4) = P(A_1)P(A_2/A_1)P(A_3/A_1A_2)P(A_4/A_1A_2A_3)$$

$$= \frac{4}{52} \cdot \frac{3}{51} \cdot \frac{2}{50} \cdot \frac{1}{49}$$

$$= \frac{1}{270725}$$
PROBABILITY THEORY

set theory
- \(AB \)
- \(A + B \)
- \(S \)
- \(\phi \)

Definitions:
- **trial**
- **outcome**
- **event**

3 axioms
1. \(P(A) \geq 0 \)
2. \(P(S) = 1 \)
3. \(AB = 0 \rightarrow P(A + B) = P(A) + P(B) \)

single trial

Definition: Conditional Probability

\[
P(A / B) = \frac{P(AB)}{P(B)}
\]

Theorem of Total Probability

\[
P(B) = P(B / A_1)P(A_1) + \ldots + P(B / A_n) \cdot P(A_n)
\]

multiple trials

Definition: Events \(A \) & \(B \) are independent

\[
P(AB) = P(A) \cdot P(B)
\]

\[
P(A_1A_2 \ldots A_n) = \frac{P(A_1) \cdot P(A_2 / A_1)}{P(A_2 / A_1)}
\]

space \(S_1 \)

space \(S_2 \)

new space \(S = S_1 \times S_2 \)