GES1810 Perspective in Engineering & Technology

Image Processing

W.K. Cham
Professor
Department of Electronic Engineering
The Chinese University of Hong Kong
Why Image Processing?

- Human relies very much on our visual system to collect information about our surrounding. This was the case in the past and will also be true in the future.

- Equipment and software to capture, display, store, edit and transmit images and video are getting cheaper and better quality.

As a result, more & more images and videos are used on multimedia systems and internet.
Topics to be covered

• Human Visual System
• Image Processing
 – Image Enhancement
 – Image Restoration
 – Image Coding
 – Image Understanding
Human Visual System

- Light, Luminance, Brightness and Contrast
- Spatial Frequency Response
- Image Fidelity Criteria
- Color Representation
- Temporal Properties of Vision
Light is the electromagnetic wave that stimulates human visual systems which respond to EM wave of wavelength $\lambda \in [350\text{nm}, 780\text{nm}]$. The light intensity l is measured by illumination (lux) or luminance per unit area (lumen/m2) and is equal to

$$l = k \int_0^\infty c(\lambda) V(\lambda) d\lambda$$

where

(a) $c(\lambda)$ is the power density of light (watt/m3),
(b) $V(\lambda)$ is the relative luminous efficiency function and
(c) k is a constant equal to 685 lumen/watt.

Luminance (lumen or lux m2) and illumination (lux) do not measure human perception of brightness exactly. For example, a projector with 1000 lux does not appear twice as bright as one with 500 lux.
Human Visual System

- Luminance (lumen or lux m2) and illumination (lux) do not measure human perception of brightness exactly. For example, a projector with 1000 lux does not appear twice as bright as one with 500 lux.

- HVS consists of eyes to transform light to neural signals and brain to process neural signals and extract needed information.

- HVS are affected by many factors
 - Adaptation
 - Mach Band Effect
 - Spatial Frequency Response
 - Image Fidelity Criteria
 - Color Representation
 - Temporal Properties of Vision
The retina contains **photoreceptors**, rods & cones.

Rod: ~100 millions; sensitive to dim light

Cone: ~6.5 million; sensitive to color bright light
Just Noticeable Difference D (j.n.d.) at the intensity I quantifies our ability to resolve two visual stimuli.

Weber's Law: $\frac{D}{I} = \text{constant}$
Intensity Sensitivity affected by Adaptation

The j.n.d. D at the intensity I is affected by the background intensity I_0 to which the observer is adapted.
Mach Band Effect: Although the physical brightness is constant across each vertical region, the human observer perceives a brighter left part and a darker right part in each region due to the influence of adjacent regions.
The spatial frequency that gives the maximum response is 10 cycles per degree. With a monitor of distance d cm away, the **10 cycles** occur in $d \tan(1^\circ)$ on the monitor. If $d=50$ cm, then

$$f = \frac{10}{d \tan 1^\circ} = \frac{573}{d} \text{ [cycle/cm]} = 11.46 \text{ cycles/cm}.$$
The physical perception of color is based upon 3 types of cones in the retina. Based upon psychophysical measurements, standard sensitivity curves of these cones have been adopted by the CIE for the standard observer.

A standard observer will perceive 2 color lights the same if they produce the same amount of stimuli on the 3 types of cones. The CIE recommends the use of 3 monochromatic light sources, red (700 nm), green (546.1 nm) and blue (435.8 nm) to reproduce other colors.
Critical Fusion Frequency (CFF): HVS cannot distinguish between a **steady light** and a **flickering light** of frequency above the CFF.

- Different persons have different CFFs which, however, generally do not exceed 60 Hz.
- TV refresh rates are 60 Hz in NTSC and 50 Hz in PAL.

HVS is more **sensitive** to flickering of **high** spatial frequencies than **low** spatial frequencies.

- Monitors of higher resolution need to have higher refresh rates.
- Edges in a video need to be represented by sufficient frames.
Digital Representation of Images

Advantages of digital representation of images

• exact reconstruction of the original from the output of a communication channel or a storage device is possible.

• more error resilient during transmission by error detection or error correction methods.

• can be stored for future uses and processed by computers for different applications (e.g. enhancement, restoration, coding and understanding.)
• For most vidicon tubes $\gamma_v = 0.65$

 For most picture tubes $\gamma_{PT} = 2.2$

• In order to have $E_s \propto E_m$,

 γ_v is adjusted to γ'_v s.t. $\gamma'_v \gamma_{PT} = 1$, i.e. $\gamma'_v = 0.45$
Histogram Equalization

Original

Enhanced
Histogram Equalization
For most vidicon tubes $\gamma_v = 0.65$

For most picture tubes $\gamma_{PT} = 2.2$

In order to have $E_s \propto E_m$,

γ_v is adjusted to γ'_v s.t. $\gamma'_v \gamma_{PT} = 1$, i.e. $\gamma'_v = 0.45$
If $\gamma_v \neq 1$, then E_s (illumination input to a camera) is not proportional to E_m (illumination output from a display). The image will appear to be too bright or too dark.

Gamma correction is to transform $\{x(i,j)\}$ into $\{y(i,j)\}$ to adjust the brightness by $y = x^\gamma$.

$\gamma > 1$ will make an image darker.

$\gamma > 1$ will make an image brighter.
Gamma Correction

Gamma correction is to transform \(\{x(i,j)\} \) into \(\{y(i,j)\} \) to adjust the brightness by \(y = x^\gamma \).

- \(\gamma = 2.2 \): output image darker
- \(\gamma = 0.45 \): output image brighter
Image Restoration

Restoration involves two tasks:

• estimate the information that is available in the idealized model but not in the image
• present the information in the same format as the original image

The idealized models can represent

• deterministic or statistical information of a degradation
• characteristics of the original image
• statistical information about the noise
Image Restoration

• The relation between original image w, distorted image v, degradation model G and noise η can be modeled as

$$v = Gw + \eta.$$

• Difficulties
 – ill-posed inverse problem.
 – no unique solution.
 – requiring *a priori* information about the image, degradation and noise.
Enhancement versus Restoration

Enhancement
- Concerning the extraction of image features
- Difficult to quantified performance
- Performance depending on particular image.

Restoration
- Concerning the restoration of degradation
- Performance can be quantified
- Performance depending on the ensemble of images.
Image formation models

Motion blur:

$$h(x, y) = \begin{cases} \frac{1}{L} & \text{if } \sqrt{x^2 + y^2} \leq \frac{L}{2} \text{ and } \frac{y}{x} = -\tan \phi \\ 0 & \text{otherwise} \end{cases}$$

Out of focus blur:

$$h(x, y) = \begin{cases} \frac{1}{\pi R^2} & \text{if } \sqrt{x^2 + y^2} \leq R \\ 0 & \text{otherwise} \end{cases}$$

Atmospheric blur:

$$h(x, y) = \frac{1}{2\pi \sigma^2} \exp \left\{ -\frac{x^2 + y^2}{2\sigma^2} \right\}$$
Image formation models

Out of focus blur:

\[h(x, y) = \begin{cases} \frac{1}{\pi R^2} & \text{if } \sqrt{x^2 + y^2} \leq R \\ 0 & \text{otherwise} \end{cases} \]
JPEG2000 & MPEG4

Image coding standards
JPEG (the current most widely used image coding standard), JPEG2000

Video coding standards
MPEG1 (VCD), MPEG2 (DVD), MPEG4

Video conferencing standards
H.261, H.263
Images coded using JPEG

Original at 8 bpp JPEG at 0.5 bpp
Images coded using JPEG

JPEG at 0.3 bpp

JPEG at 0.15 bpp
Why JPEG2000

Why do we need a new standard?

- A single standard for different applications such as
 - natural images, video component frame, electronic photography
 - computer generated images
 - medical imaging
 - facsimile, laser print rendering

- Higher compression and better image quality
 - JPEG2000 use Wavelet Transform and Zero-tree Quantization (SPIHT)

0.3 bpp vs 0.1 bpp
JPEG2000 features

JPEG at 0.15 bpp
SPIHT at 0.1 bpp
MPEG Standards

• MPEG-1 and MPEG-2
 – deal with frame-based video and audio. They allow content to be accessed randomly.
 – make storage and transmission more efficient by compressing the material.

• MPEG-4
 – has all the capabilities of MPEG-1 and MPEG-2
 – video & audio are represented in the form of 'objects' that can be flexibly and interactively used and re-used.
Why MPEG-4 necessary?

− More and more content is **audiovisual**, i.e. containing not only text but also sound, image and video data.
− A growing part of the information is read, seen and heard in **interactive** ways.
− The borders between
 − **telephone** (communication)
 − **PC** (interactive and computing)
 − **TV** (broadcast)

are blurring. MPEG-4 is a standard that supports all of these services and so allows systems to be built with a combination of these services.
What MPEG-4 does?

MPEG-4 defines an audiovisual scene as a coded representation of audiovisual objects that have certain relations in space and time (rather than video frames with associated audio).

- An audiovisual object could be
 - a **video object** such as a car, a dog or the complete background.
 - an **audio object** such one instrument in an orchestra, the barking of the dog, a voice.
- Each object is coded separately.
What MPEG-4 does?