ELE4120 Bioinformatics
Tutorial 8
Content

• Classifying Organisms
 – Systematics and Speciation
 – Taxonomy and phylogenetics
 – Phenetics versus cladistics

• Phylogenetic trees
Biological classification

• Goal:
 - To develop a system of categories that provides (‘useful’) information about living things
Classifying Organisms

- **Systematics** is the science of the relationships of organisms
 - how organisms are related and the evidence for those relationships

- **Speciation** -- the origin of new species from previously existing ones
 - anagenesis - one species changes into another over time
 - cladogenesis - one species splits to make two

Reconstruct evolutionary history

Phylogeny
In the western scientific tradition:

1. Biological Taxonomy - Aristotle - mid 300’s BCE
2. Hierarchical Taxonomy & Binomial nomenclature - Linnaeus - early to mid 1700’s
3. Phenetic taxonomy - Adanson - 1750s
4. Phylogeny - Darwin, Haeckel - mid 1800’s
5. Evolutionary taxonomy - Mayr and Simpson - mid 1900’s
6. Phenetic taxonomy - Sneath and Sokal - 1960’s
7. Cladistic taxonomy - Hennig - 1960’s
Species Classification

- **Phenetic**: physical attributes, numerical taxonomy
 - (resemblance: Based on phenotypic similarity)

- **Cladistic (Phylogenetic)**: evolutionary relationships
 - (descent: Based exclusively on the branching patterns of phylogeny)

- **Evolutionary**: synthesis of the two
Phenetic Classification

• “Like with like”
• Use many characters to define overall similarity
• Linnaean
 – “God created, Linnaeus arranged”
 – Before Darwin so not based on Evolution (but may reflect history)
• Problem: uses all types of characters (analogies, ancestral & derived homologies)
Taxonomy and phylogenetics

- **Taxonomy** is the science of the classification of organisms.

- Taxonomy deals with the naming and ordering of taxa.

- The *Linnaean* hierarchy:
 1. Kingdom
 2. Division
 3. Class
 4. Order
 5. Family
 6. Genus
 7. Species

Taxonomic Classification of Man

Homo sapiens

- Superkingdom: Eukaryota
- Kingdom: Metazoa
- Phylum: Chordata
- Class: Mammalia
- Order: Primata
- Family: Hominidae
- Genus: *Homo*
- Species: *sapiens*
- Subspecies: *sapiens*
Classification Systems

• Taxonomy:
 – Classification of living organisms into groups

• Phylogenetic Classification System:
 – Groups reflect genetic similarity and evolutionary relatedness

• Phenetic Classification System:
 – Groups do not necessarily reflect genetic similarity or evolutionary relatedness. Instead, groups are based on convenient, observable characteristics.
Phylogenetics

- **Phylogenetics** is the science of the pattern of evolution.
- Evolutionary theory states that groups of similar organisms are descended from a **common ancestor**.
 - **Phylogenetic systematics** is a method of taxonomic classification based on their evolutionary history.
- Evolutionary biology versus phylogenetics
 - Evolutionary biology is the study of the **processes** that generate diversity.
 - Phylogenetics is the study of the **pattern** of diversity produced by those processes.
Phenetics *versus* cladistics

- Within the field of taxonomy there are two different methods and philosophies of building phylogenetic trees: **cladistic** and **phenetic**

 - **Phenetic** methods construct trees (*phenograms*) by considering the current states of characters without regard to the evolutionary history that brought the species to their current phenotypes; *dendrograms* are based on **overall similarity**

 - **Cladistic** methods construct trees (*cladograms*) rely on assumptions about ancestral relationships as well as on current data; *cladograms* are based on **character evolution** (e.g. shared derived characters)

- Cladistics is becoming the method of choice; it is considered to be more powerful and to provide more realistic estimates, however, it is slower than phenetic algorithms
Phenetic Classification of Vertebrates

Amphibians Reptiles Birds Mammals

Are the phenetic reptiles a valid phylogenetic group?

To create a phylogenetically valid class of reptiles, what groups would need to be included?
Possible Phylogenetic Classification of Vertebrates

Are the *phenetic* reptiles a valid phylogenetic group?

To create a phylogenetically valid class of *reptiles*, what groups would need to be included?
Character and Distance Data

The molecular data used to generate phylogenetic trees fall into one of two categories:

1. Characters: a well-defined feature that can exist in a limited number of different states.
2. Distances: a measure of the overall, pairwise difference between two data sets.
Phylogenetic trees

• The central problem of phylogenetics:
 --how do we determine the relationships between taxa?

In phylogenetic studies, the most convenient way of presenting evolutionary relationships among a group of organisms is the **phylogenetic tree**.
Phylogenetic trees

- **Node**: a branchpoint in a tree (a presumed ancestral OTU)
- **Branch**: defines the relationship between the taxa in terms of descent and ancestry
- **Topology**: the branching patterns of the tree
- **Branch length** (scaled trees only): represents the number of changes that have occurred in the branch
- **Root**: the common ancestor of all taxa
- **Clade**: a group of two or more taxa or DNA sequences that includes both their common ancestor and all their descendents
Phylogenetic trees

• There are many ways of drawing a tree
Phylogenetic trees

• There are many ways of drawing a tree
Phylogenetic trees

• There are many ways of drawing a tree

\[
\begin{align*}
A & \quad B & \quad C & \quad D & \quad E \\
\text{no meaning}
\end{align*}
\]
Phylogenetic trees

• There are many ways of drawing a tree

Diagram:
- Bifurcation
- Trifurcation

≠
Phylogenetic trees

- Trees can be scaled or unscaled (with or without branch lengths)
Phylogenetic trees

- Trees can be unrooted or rooted
Phylogenetic trees

- Trees can be unrooted or rooted

These trees show five different evolutionary relationships among the taxa!
Example: Cladograms
---Restate steps in other words

1) select group of organisms
2) determine characters & states
3) for each character, classify ancestral & derived
 - comparison to outgroup
 - traits shared with outgroup = ancestral
4) group by shared derived characters (synapomorphies)
5) choose most parsimonious tree (fewest evolutionary transitions)
Example: Seed Plants

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Cotyledon #</th>
<th>Carpels</th>
<th>Perianth</th>
<th>Seeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conifers</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>Present</td>
</tr>
<tr>
<td>球果植物</td>
<td>2</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Dicots</td>
<td>2</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Gnetales</td>
<td>2</td>
<td>-</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Monocots</td>
<td>1</td>
<td>Present</td>
<td>Present</td>
<td>present</td>
</tr>
<tr>
<td>Outgroup</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Example: Parsimonious Tree