MicroSim PLS yn
PLD/CPLD Design Software

User’s Guide

MicroSim’
MicroSim Corporation
20 Fairbanks

Irvine, California 92618
(714) 770-3022

Version 8.0, June, 1997.

Copyright 1997, MicroSim Corporation. All rights reserved.
Printed in the United States of America.

TradeMarks

Referenced herein are the trademarks used by MicroSim Corporation to identify its products. MicroSim
Corporation is the exclusive owners of “MicroSim,” “PSpice,” “PLogic,” “PLSyn.”

Additional marks of MicroSim include: “StmEd,” “Stimulus Editor,” “Probe,” “Parts,” “Monte Carlo,” “Analog
Behavioral Modeling,” “Device Equations,” “Digital Simulation,” “Digital Files,” “Filter Designer,” “Schematics,”
“PLogic,” "PCBoards,” “PSpice Optimizer,” and “PLSyn” and variations theron (collectively the “Trademarks”)

are used in connection with computer programs. MicroSim owns various trademark registrations for these marks in
the United States and other countries.

SPECCTRA is a registered trademark of Cooper & Chyan Technology, Inc.

Microsoft, MS-DOS, Windows, Windows NT and the Windows logo are either registered trademarks or trademarks
of Microsoft Corporation.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Exchange and PostScript are trademarks of Adobe Systems
Incorporated or its subsidiaries and may be registered in certain jurisdictions.

EENET is a trademark of Eckert Enterprises.
All other company/product names are trademarks/registered trademarks of their respective holders.

Copyri ght Notice

Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced
or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written
permission of MicroSim Corporation.

As described in the license agreement, you are permitted to run one copy of the MicroSim software on one
computer at a time. Unauthorized duplication of the software or documentation is prohibited by law. Corporate
Program Licensing and multiple copy discounts are available.

Technical Support

Internet Tech.Support@microsim.com
Phone (714) 837-0790

FAX (714) 455-0554

www http://www.microsim.com

Customer Service

Internet Sales@MicroSim.com
Phone (714) 770-3022

Contents

Chapter 1

Chapter 2

Before You Be gin

Welcome to MicroSim XVii
MicroSim PLSyn Overviewo Xviii
HowtoUsethisGuide XiX
Typographical Conventions XX
Related Documentation XX
OnlineHelp e XXIi
The PLSyn Features In Your Configuration. XXiii
The Programmable Lo gic Desi gn Process—An Overview
Chapter Overview e 1-1
Steps for Designing Systems with Programmable Logic 1-2
Design e e 1-3
Simulate 1-3
Set Constraints and Priorities 1-/
Fitand Partition 1-4
SelectDevice -E
Simulate with Timing 1-5
Program Device e 1-E
Primer: How to Define Pro grammable Lo gic
Chapter Overview e 2-]
Implementing a 3-to-8 Decoder with Programmable Logic 2-2
Design Phase: Defining Programmable Logic using Schematic Symbols 2-3
Beforeyoubegin 2-3
Loading and simulating the design 2-3
Converting 74LS Symbols to Programmable Logic 2-4
Verifying Functionality using Simulation 2-5

iv Contents

Chapter 3

Implementation Phase: Fitting and Partitioning the Design 2-5
Setting Constraints 2-6
Setting Priorities L 2-7
Partitioningand Fitting 2-7
Verifying Timing Behavior using Simulation 2-8
Creating Device Programming Files 2-9
Back Annotating the Schematic 2-9

Using a DSL Block to Define the Programmable Logic 2-10
Before YouBegin 2-10
Loadingthe Design 2-10
AddingaDSLBlock. 2-11
Defining DSL Source Code 2-11
Equivalent Ways to Define the DecoderwithDSL 2-13

Designin g with Pro grammable Lo gic

Chapter Overview e e 3-1
The Different Ways to Specify Programmable Logic in Schematics 3-2
Using Programmable Logic Symbols 3-2
Generic Logic Symbols 3-2
74xx Series Logic Symbols 3-3
Using DSL Blocks o 3-4
What Are DSL Blocks? 3-4
What Are DSL Procedures? 3-5
Creating a DSL Block in Your Schematic 3-6
Using the MicroSim Text Editor to Define DSL Procedures 3-7
Changing the DSL Block Interface 3-8
Using Existing DSL Source Code 3-9
Structuring DSL Source Files 3-10
Calling DSL Procedures and Functions from within a Procedure 3-12
Understanding Programmable Logic Nodes 3-13
LabelingNodes 3-13
Node naming restrictions 3-14
Labeling interfacenodes 3-14
Creating Active-Low Interface Nodes 3-15
Converting Internal Nodes to Interface Nodes 3-15
Creating PhysicalNodes 3-15
Assigninga LogicOorltoaninput. 3-16

Guidelines for Entering Programmable Logic 3-16

Contents Vv

Chapter 4

Chapter 5

Simulatin g Programmable Lo gic Designs

Chapter Overview e 4-]
Introduction to Simulating with PLogic or PSpice A/D 4-2
Setting Up Simulations 4-¢
Displaying the Dialog Box for Simulation Setup 4-3
Ifyou have PLogic 4-3
Ifyou have PSpice A/ID 4-3
Defining Simulation Setup Options for Programmable Logic 4-4
Starting Simulations 4-/
How the Simulator Uses Programmable Logic /O Models 4-5
Simulating with Timing 4-6
Generating TestVectorso 4-(
Enabling Test Vector Generation 4-7
Ifyouhave PLogic 4-7
If you have PSpice AID, 4-7
How the Simulator Responds 4-7
Using the “Sample Window” Control 4-8
Example: How the Simulator Creates TestVectors 4-8
Troubleshooting Test Vector Differences 4-10
Using Probe Markers 4-1’
A caution about collapsednodes L. 4-11
Creatin g the Physical Implementation
Chapter Overview 5-1
Overview of the Physical Implementation Process 5-3
If You Want More Control 5-4
Where to Find Status and Design Information 5-4
Activating and Loading PLSyn Lo 5-5
Activating PLSyn 5-5
From Schematics 5-5
From the Windows Program Manager 5-5
Loading a DifferentDesign 5-6
The PLSyn Main Window 5-6
Compilingthe Logic 5-7
Manually Compiling Logic 5-7
Compiling DSL Libraries 5-8
Responding to Compile-Time Statusand Errors 5-8
Controlling Node Generation During Compilation 5-9
Resolving “Out of Memory” Conditions 5-9

vi Contents

Chapter 6

Optimizing the Logic Equations, 5-10
How the PLSyn Optimizer Synthesizes Logic Equations 5-11
Choosing the Optimization Method 5-13

Overview of Fitting and Partitioning Logic 5-14
If You Don't Have the Partitioning Option 5-14
How the PLSyn Fitter Works 5-15

Limiting the PLD Parts Available for Search 5-16

Constraining Devices 5-18
Setting Up User-Defined Constraints 5-20
How PLSyn Calculates Maximum Propagation Delay 5-22
The Default Constraints File 5-22

Prioritizing the Solutions, 5-23
Using Constraints and Priorities Together 5-25

Running the PLSyn Fitter and Partitioner 5-25

Selecting Devices 5-26

Creating Fuse Maps e 5-27
Including TestVectors 5-27
The Implementation-Specific Physical Information File (.npi) 5-28

Updating the Schematic 5-28

Creating PCB Netlists, 5-29

When You ChangetheDesign 5-30

Controllin g the Fittin g Process Usin g the .pi File

Chapter Overview e e e e 6-1
Introductiontothe .piFile 6-2
Why Use the .piFile? 6-2
Using the Default .piFile 6-3
Referring to Nodes in Your Design 6-3
Interfacenodes 6-3
Internalnodes 6-3
Controlling PLD Utilization 6-5
Fitting a Node asan OUTPUT orNODE 6-6
Controlling How Signals Are Fit Together 6-6
Disabling Outputsfor Test, 6-8
Controlling Synthesis 6-9
Cautions when using the DEMORGAN_SYNTH property 6-9
Controlling the Size of Equations 6-10
Specifying Devices without Specifying Signals 6-11

Specifying JEDEC FileNames 6-12

Contents Vii

Chapter 7

Chapter 8

More Examples Using the .piFile 6-13
Forcing Signals to be Fit Together in the Same Device 6-13
Using Specific Devices e 6-14
Maintaining Pin Assignments 6-15
Fitting the Designinto One Device 6-16
Fitting the Design into Multiple Devices 6-17
Mixing Automatic and Directed Partitioning 6-17
Refitting a Design into the Same Footprint 6-18

PLD Device-Specific Fittin g

Chapter Overview e 7-1
Accessing Internal Pointsina PLD Device 7-2
The Kindsof Nodes 7-2
Hiddennodes 7-2
Unarynodes e e 7-4
Unary Nodes inthe P330and P331 7-¢
Fitting Specific Device Architectures 7-11
22V10, 750, and 2500: Handling Synchronous Preset 7-11
Using set and preset for the 22V10and 750 7-11
Using set and presetforthe 2500 7-12
P22V10I: Assigning Combinatorial Output During Feedback 7-13
P750B AND P2500B: Controlling Clock Source 7-14
P1800: Controlling Quadrant-Based Architectures 7-16
Assigningpinsandnodes 7-16
Subgroups: Targeting quadrants 7-17
P16V8HD, P22VP10, and P16VP10: Accessing the
Open-DrainOQutput 7-17

MACH 1-4 Device-Specific Fittin g

Chapter Overview e e e 8-
Designing with MACH Devices i 8-2
When You Have Fitting Problems 8-2
Usingthelogfile, 8-2
Usingthereportfile 8-2
Summary of MACH Devices 8-3
Output Enable Functions 8-3
Register Reset/Preset Functions 8-

Packaging 8-

viii

Contents

Using Standard Clock Functions 8-5
MACH 1xx, MACH 2xx: Synchronous Clock Functions 8-5
MACH 215, 3xx, 4xx: Asynchronous Clock Functions. 8-5
Using Complex Clock Functions 8-6
Clock Limitations 8-7
Implementing Hazard-Free Combinatorial Latches 8-8
Basic Latch Circuit 8-8
Creating a Hazard-Free Latch 8-8
Specifying Reserve Capacity 8-9
Targeting PAL Blocks 8-10
Using Signal Groups e e e 8-10
Using Device Sections e 8-11
Constraining the Size of Combinatorial Nodes 8-13
Making Adjustments 8-13
Optimizing MACH 4xx Devices Using MAX_XOR_PTERMS 8-15
A Few Considerations 8-15
Other Optimizing Parameters 8-16
Understanding Pin Naming and Numbering 8-17
Using the MACROCELLX##notation 8-18
Using the IN_REGX##notation 8-18
Achieving Satisfactory Pinouts 8-19
MACH 2xx, 4xx: Using Input Registers 8-23
Understanding Input Register PinNames 8-23
MACH 2xx and 4xx Compared 8-24
Input Registration 8-24
Finding Signals FitasUnary 8-25
Forcing a Functiontobe FitasUnary 8-26
Preventing a Function from Being Fitas Unary 8-26
Preserving Pinouts when Refitting 8-27
Planfor Refitting 8-27
Method 1: Creating a Two-Level .piFile 8-28
Method 2: Floating Nodes 8-34
When Fitting into One Device Fails 8-35
Using the “Default” Signal Reference 8-35
What you can find outinthe logfile 8-36
What you can find out in the reportfile 8-36
Usinga Second Device 8-37
Accessing the MACH Internal Feedback Path 8-38
MACH 215, 4xx: Fitting Asynchronous Functions 8-40
PTERM Clock and RESET and PRESET 8-40
More Than One RESET/PRESET Pair per PALBlock 8-40

MACH 4xx: Using XOR T-Equations 8-41

Contents iX

Chapter 9

MACH 4xx: Controlling AsynchronousMode 8-42
MACH 4xx: Controlling T-Flop Synthesis 8-43
Normal Operation e 8-43
DFF-Only Fitting 8-43
Usingthe T-Equation 8-44
MACH 4xx: Controlling Power-OnReset 8-44
What Is a Logical Reset? 8-44
The Nominal Case i 8-4¢
Exception Cases e 8-4!
MACH 230 and 435: Possible Pin Incompatibility Between 8-46
MACH 445 and 465: Configuring for Zero-Hold Time 8-47
MACH 445 and 465: Accessing Signature Bits 8-48
MACH 1xx and 2xx: Driving or Floating Unused Outputs 8-49
Forcing Outputs Driven 8-49
Forcing Outputs Floating 8-50
The MACHReportFile 8-52
Obtaininga ReportFile, 8-52
Contents of the ReportFile 8-53
Failure Disclaimers 8-54
Summary Statistics e 8-5¢€
Device Resource Utilization 8-58
Partitioner Report e 8-60
Clock Assignments 8-60
Signal Directory 8-61
Resource AssignmentMapo 8-62
PTERM steering of clusters 8-66

MACH 5 Device-Specific Fittin g

Chapter Overview e e 9-]
Comparing the MACH 5 to Other MACH Architectures 9-2
MACHIXX/2XXI3XXIAXX . . . o o o o o s s e 9-3
MACHSXX e e e 9-4
Using the .pi File to Control MACH 5 Fitting 9-5
Routing ina SegmentandBlock 9-¢
Assigning Pinsand Nodes, 9-
Placing a Signal on an Input Registeror Latch 9-C
Using Dual Feedback 9-1(
Forcing the Feedback Pathtobe Local 9-1
Specifying Fanout 9-12
Implementing Toggle Register Feedback 9-14

Implementing Dual-Edge Clocking 9-15

X Contents

Chapter 10

Specifying Reserve Capacity 9-16
Constraining the Size of Combinatorial Nodes 9-17
Making Adjustments 9-17
AFew Considerations 9-18
Other Optimizing Parameters 9-19
Controlling Power Levels 9-19
ControllingSlew Rates 9-20
The Document File 9-21
The ReportFile 9-22
Heading 9-22
Summary Statistics 9-23
Power Resource Utilization, 9-24
Device Resource Utilization 9-24
Partition Groups 9-27
Signal Directory 9-28
FanoutTable 9-30
Power Table 9-32
Block Configuration Tables 9-32

ATV5000 Device-Specific Fittin g

Chapter Overview e 10-1
Designing with the ATV5000 10-2
Constraining the Size of Combinatorial Nodes 10-2
The Effect of MAX_PTERMS 10-3
The Effect of MAX_SYMBOLS 10-4
Specifying Device Utilization 10-5
Using the Flip-Flop Clock Option 10-5
Enabling Clocking 10-6
Controlling the Clock Source 10-6
Usingthe I/O Pin Latches 10-8
Identifying Pinsand Nodes 10-8
Targeting Quadrants inthe ATV5000 10-10
Using the GROUP Construct 10-10
Using the SECTION Construct 10-11
Placing Node Signals on Buried LogicCells 10-13

Understanding RU Conversion 10-14

Contents Xi

Understanding Regionalization 10-14
Universal and regional PTERMs 10-14
Regionalization, sum-term combining, and fitting PTERMs 10-15

How PLSyn Does Regionalization 10-16
Signal Regionalization 10-16
Usinginputpins e 10-16
Using feedback paths (UR conversion) 10-17
PTERM Regionalization 10-17
The ReportFile 10-1¢
Obtaining ReportFile 10-18
Heading e 10-1¢
Failure-to-Partition Disclaimer 10-20
Partitioner Report 10-20
Signal Directory 10-20
Signals Universalized on Sum TermB 10-22
Signals Regionalized on InputPins 10-22
Function PlacementReport 10-22
Quadrantsections 10-22
Fitattempt sections 10-23
UR conversionreport o o v oo 10-23
Pterm regionalizationreport 10-23
Output/node signal placementreport 10-23
Input Signal PlacementReport 10-24
Failure-to-Fit Disclaimer 10-24
Appendix A The Documentation File
Appendix OVerview e e A-1
Summary of Documentation File Contents A-2
Reduced Design Equations A-
Equation Extensions Used inthe .docFile A-3
DeMorgan Equations A-4
Equation Display A-5
Partitioning Criteria A-6
Solutions List A-6
FuseMapFiles A-¢
Pinout Diagrams A-7
Possible Devices List A-7

Wire List

xii Contents

Appendix B Summary of Files

Appendix Overview e e B-1
FilesUsed by PLSyn B-2

Appendix C AMD MACH Device Tables

Appendix Overview C-1

PinName Tables e C-2
MACH 110 e C-2
MACH 111, 111SP o e e C-2
MACH 120, 121 o e e C-3
MACH 130, 131, 131SP e C-3
MACH 210, 211,211SP e e C-4
MACH 215 e e C-5
MACH 220, 221,221SP o e e C-6
MACH 230,231 e C-7
MACH 435,436 o e e C-8
MACH 445,446 e C-9
MACH 465,466 e C-10

MACH 1xx and 2xx: Fuse Commands for Driving Qutputs C-12
MACH 110 e C-12
MACH 120 e C-13
MACH 130 e C-14
MACH 210 e C-16
MACH 215 e C-17
MACH 220 o e C-18

MACH 230 C-20

Figures

Figure 1-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 5-1
Figure 5-2
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 9-1
Figure 9-2
Figure 9-3

PLD SynthesisDesignFlow 1-
3-to-8 Decoder Schematic L 2-
Results of Decoder Simulation L. 2-
Back-Annotated SchematicPage 2
The decoderl.sch Example Schematic 2-!
Connectingthe DSLBlock 2-1:
Finished DSLBlock 2-1:
7400 Symbol as Programmable Logic 3-
Relation of PLMODEL Attribute and DSL Procedure Name 3-5
The DSL Procedure Template 3
A Source Code File forEachDSL Block 3-1(
Single DSL Source Code File with More Than One Procedure 3-1
Programmable Logic Interface Node Labeled with a Global Port 3-14
Main PLSyn Window e 5-¢
PLSyn Functional Architecture 5-1!
HiddenNode 7-2 . .
Shadow Node 7-3 ..
InputUnary e 7-4. .
Feedback Unary e 4 .. 7
P33x LocalUnary 9.. 7-
P33x SharedUnary 7
Simplified MACH 1xx/2xx/3xx/4xx Block Diagrams 9-3
Simplified 5xx Block Diagram 9-5
Mach 5 Architecture L 9-

Tables

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 5-2
Table 5-1
Table 5-3
Table 6-1
Table 6-2
Table 7-1
Table 7-2
Table 7-3
Table 8-1
Table 8-2
Table 8-3
Table 9-1
Table 10-1
Table 10-2
Table 10-3
Table 10-4
Table 10-5
Table 10-6
Table 10-7
Table 10-8

PLSyn1l/OModels e 4-!
TestVectorsforCase 1l 4
TestVectorsforCase 2 4
Test Vectors for Corrected Case 2, 4-]
Temperature Rating Abbreviations 5-1
Device Selection Constraints Dialog Box Controls 5-1¢
Solution Priorities Dialog Box Controls 5-23
PLD Utilization Properties -
Synthesis Control Properties o 6-1
Node Descriptions and Labels by Device Architecture 7-¢
Node Descriptions and Labels for P330and P331 7-1
Node Descriptions and LabelsforP1800 7-1
MACH Device Properties 8-
MACH PAL Block Names 8-11
Minimum and Maximum Number of PTERMS 8-14
MACH 5 Node Names and Pin Numbers 9-
Equation Extensions Used inthe .docFile A-
MACH 110 OE Fuse Commands v v v v oo C-1
MACH 120 OE Fuse Commands« o v v v v C-1
MACH 130 OE Fuse Commands v v v v C-1
MACH 210 OE Fuse Commands v v v v .. C-1
MACH 215 OE Fuse Commands C-1
MACH 220 OE Fuse Commands C-1

MACH 230 OE Fuse Commands v v v v v i C-2

Before You Be gin

Welcome to MicroSim

Welcome to the MicroSim family of products. Whichever
programs you have purchased, we are confident that you will
find that they meet your circuit design needs. They provide an
easy-to-use, integrated environment for creating, simulating,
and analyzing your circuit designs from start to finish.

XViii

Before You Begin

MicroSim PLS yn
Overview

MicroSim PLSyn is a programmable logic synthesis program
that allows you to synthesize all or any portion of your design
into PLD and/or CPLD parts.

PLSyn is fully integrated with other MicroSim programs. This
means you can do all of the following within the same
environment:

Design your circuit with MicroSim Schematics.
Synthesize programmable logic with MicroSim PLSyn.

Simulate with MicroSim PSpice A/D (for mixed digital and
analog simulation) or MicroSim PLogic (for digital logic
and timing simulation).

Analyze simulation results with MicroSim Probe.

MicroSim MicroSim
Schematic PC
symbols || — — - i@i—— = || [packages
packages — @ — footprints
= - = || Jpadstack
MicroSim
‘ PLSyn
MicroSim 4/
PSpice
Optimizer Q\
MicroSim MicroSi SPECCTHRAL
CSF)'CG D Autoroute
/ = ERombome
= MicroSim (Fj)le_\Ei)ces ‘L A
models ~ Probe et [EPOTES
RN drill
EFEN Gerber files
=<4um files

How to Use this Guide

XiX

How to Use this Guide

This guide is designed so you can quickly find the information
you need to use PLSyn, including:

« how to create and edit designs which use PLDs (schematic
and language-based), and

« how to optimize, partition, and fit devices.

This guide assumes that you are familiar with Microsoft
Windows (NT or 95), including how to use icons, menus, and
dialog boxes. It also assumes you have a basic understanding
about how Windows manages applications and files to perform
routine tasks, such as starting applications and opening, and
saving your work. If you are new to Windows, please review
your Microsoft Windows User’'s Guide.

xx Before You Begin

Typographical Conventions

Before using PLSyn, you need to understand the terms and
typographical conventions used in this documentation.

This guide generally follows the conventions used in the
Microsoft Windows User’s Guiderocedures for performing an
operation are generally numbered with the following

typographical conventions.

Notation Examples

Description

+(R] PressCtr+R]

monospace TypeVAC.. or

font dig_prim.slb

I - Partitioning
Option

@ Required

|

~~“| To improve
-@ accuracy...
N

7

é Be careful...

Ny
/[Z\

>

A specific key or key stroke
on the keyboard.

Commands/text entered from
the keyboard, or file names.

Feature available in systems
with the partitioning option
only

Tip providing advice or
different ways to do things.

Cautionary message.

Related Documentation XXi

Related Documentation

Documentation for MicroSim products is available in both hard
copy and online. To access an online manual instantly, you can
select it from the Help menu in its respective program (for
example, access the Schematics User’s Guide from the Help
menu in Schematics).

Note The documentation you receive depends on the
software configuration you have purchased.

The following table provides a brief description of those
manuals available in both hard copy and online.

This manual... Provides information about how to use...

MicroSim Schematics MicroSim Schematics, which is a schematic capture front-end program
User's Guide with a direct interface to other MicroSim programs and options.
MicroSim PCBoards MicroSim PCBoards, which is a PCB layout editor that lets you specify
User’s Guide printed circuit board structure, as well as the components, metal, and

graphics required for fabrication.

MicroSim PSpice A/D & Basics+ PSpice A/D, Probe, the Stimulus Editor, and the Parts utility, which are

User's Guide circuit analysis programs that let you create, simulate, and test analog and
digital circuit designs. It provides examples on how to specify simulation
parameters, analyze simulation results, edit input signals, and create

models.
MicroSim PSpice & Basics MicroSim PSpice & MicroSim PSpice Basics, which are circuit analysis
User’s Guide programs that let you create, simulate, and test

analog-only circuit designs.

MicroSim PSpice Optimizer MicroSim PSpice Optimizer, which is an analog performance

User's Guide optimization program that lets you fine tune your analog circuit designs.
MicroSim FPGA MicroSim FPGA—the interface between MicroSim Schematics and
User's Guide XACTstep—with MicroSim PSpice A/D to enter designs that include

Xilinx field programmable gate array devices.

MicroSim Filter Designer MicroSim Filter Designer, which is a filter synthesis program that lets you
User's Guide design electronic frequency selective filters.

xxii Before You Begin

The following table provides a brief description of those
manuals available onlinanly.

This online manual...

Provides this...

MicroSim PSpice A/D
Online Reference Manual

MicroSim Application Notes
Online Manual

Online Library List

MicroSim PCBoards Online
Reference Manual

MicroSim PCBoards Autorouter
Online User’'s Guide

Reference material for PSpice A/D. Also included: detailed descriptions of the
simulation controls and analysis specifications, start-up option definitions, and
a list of device types in the analog and digital model libraries. User interface
commands are provided to instruct you on each of the screen commands.

A variety of articles that show you how a particular task can be accomplished
using MicroSim's products, and examples that demonstrate a new or different
approach to solving an engineering problem.

A complete list of the analog and digital parts in the model and symbol
libraries.

Reference information for MicroSim PCBoards, such as: file name extensions,
padstack naming conventions and standards, footprint naming conventions, the
netlist file format, the layout file format, and library expansion and

compression utilities.

Information on the integrated interface to Cooper & Chyan Technology's
(CCT) SPECCTRA autorouter in MicroSim PCBoards.

Online Help

Selecting Search for Help On from the Help menu brings up an
extensive online help system.

The online help includes:

« step-by-step instructions on how to use PLSyn features
- DSL language reference

« PIL language reference

» device lists (by manufacturer and by template)

e Technical Support information

Every dialog box also includes a help button which, when
selected, displays a description of the dialog box and each
control.

The PLSyn Features In Your Configuration xxiii

The PLSyn Features In
Your Confi guration

PLSyn, running with other MicroSim programs, provides the
following features:

« Multiple design entry modes.
« Schematic entry with support for hierarchical design.

« Design Synthesis Language (DSL) support of arithmetic
operators and arrays, procedure and function library linking.

« Device-independent design entry.

- Integrated simulation at the system level to detect problem
areas in the design; you can simulate the functionality of
your design while it is still in the design phase.

- Compilation, optimization, and device selection.

» Logic consolidation; optimization and reduction of your
design to the smallest set of gates using industry-standard
methods.

« Multiple equation reduction levels; automatic
DeMorganization, automatic flip-flop synthesis, XOR
synthesisdon’t caregeneration, and node collapsing.

« Automatic or manual placement of input and output signals
in the selected programmable logic devices.
- Automatic partitioning of the design across as many as 202> B";‘,&ELEL‘,W“Q
devices. Required
« Libraries with up to 3,500 PLDs from twelve manufacturersYour configuration depends on

and 100+ architectures. which of the design modules you

. . . purchased: PLDs, AMD MACH,
» Ability to test programmable devices by automatically and/or Atmel V-Series.

generating test vectors from the functional simulation
results and downloading them to the programmer with the
fuse map file.

« On-line reference to the complete list of devices supported
by PLSyn.

The Programmable Lo gic
Design Process—AnN
Overview

Chapter Overview

This chapter introduces the programmable logic design process,
and terms and concepts used throughout this manual. Topics
include:

Design entrypagel-3

Functional simulationpagel-3

Constraints and priorities definitiopagel-4
Fitting and partitioning procesgagel-4
Device selectionpagel-5

Timing simulationpagel-5

Device programmingpagel-5

1-2 The Programmable Logic Design Process—An Overview

Because the design phase is
separate from the
implementation phase, you can
design and simulate your system
before choosing which PLD
part(s) you want to use.

Steps for Desi gning
Systems with
Programmable Lo gic

Figure 1-1 illustrates the typical design flow for synthesizing
programmable logic.

Design Phase

- T T T T T T T T = N~ = ~ = 7 7 i{Implementation
Define { Phase
Constraints & :

Priorities

Simulate
with
Timing

Figure 1-1 PLD Synthesis Design Flow

Steps for Designing Systems with Programmable Logic 1-3

Design

You can program all or any part of your design into PLD partsExample: Your design might be a
To start, this means you need to define the functionality targetearge system which contains

Schematics

for PLDs asprogrammable logién your schematic. discrete PCB-level parts and one
)] or more PLDs. Or, it might be a
Programmable logic takes the form of either: design of a reusable system

- programmable logisymbolssuch as gates, flip-flops, shift Whi,Chly‘?“ WgEtDto implement
registers, and counters, or entirely in a :

« Design Synthesis Language (DSL) blocks, which describe
programmable logic in a hardware description language

Your schematic can also include logic that is not targeted for
PLDs. This is callethon-programmable logiwhich takes the
usual form of discrete parts.

Your schematic can contain any combination of programmable
logic symbols, DSL blocks, non-programmable logic, and even
analog parts.

A

Simulate U] Pspice AD

You can simulate your design before you know which PLD .-‘IJ}FLL PLogic
architectures (part types) you want to use. Before running the=_L
simulation, PLSyn automaticalbompilesall of your

programmable logic into logic equations which are then used b Probe
the simulator.

Because simulations at this stage are before implementation,
they do not include timing information. However, functional
simulations can save a lot of time early in the design process,
because the more time-consuming steps of optimization and
fitting are not required until your design is finished.

1-4 The Programmable Logic Design Process—An Overview

PLSyn %

See The PLSyn Features In
Your Configuratioron page xxiii
for more information.

Example: You can place more
importance on lower power than
total price

PLSyn %

Note You must have the
partitioning feature to fit a
design into multiple devices.

Paggwnmg @#
Requwed @*

Set Constraints and Priorities

By default, the PLSyn fitter considers every device in the
library. The number of devices you have available depends on
the design module options you have purchased.

Before you begin the fitting/partitioning process, you can
constrainthe parts that the PLSyn fitter considers by device
properties such as architecture, logic family, package type,
speed, etc. This helps narrow the architecture-set from which
PLSyn can choose, which results in faster completion of the
fitting/partitioning process.

You can also have PLSyn rank the solutions by defining the
relative merit of device properties like price, number of pins,
size, propagation delay, and frequency, before running the fitter.
These are your solutigriorities.

Fit and Partition

After you have completed the functional design and set the
fitting constraints and priorities, you are readyitgour
programmable logic into PLD parts. Fitting is the process of
mapping a logic design into physical devices.

PLSyn finds and displays a list of up to tutionswhich
implement your design’s programmable logic while abiding to
your constraints. PLSyn lists the best solutions, ranked by your
assigned solutiopriorities.

For each solution it finds, PLSyn displays the generic
architecture ortemplate for the device, along with its cost,
speed, and power consumption.

If your PLSyn package includes the partitioning feature, PLSyn
automatically allocates guartitionslogic into two or more
devices (up to a maximum of twenty). PLSyn can also partition
logic between devices with different architectures. If so, PLSyn
shows each architecture in the solution list.

PLSyn'’s fitting and partitioning process works automatically.
You can also direct the process by usingpimgsical
informationfile which contains statements in the Physical

Steps for Designing Systems with Programmable Logic 1-5

Information Language (PIL). Using PIL, you can specify exact
part numbers, put groups of logic into specific devices, and
specify device pinouts.

Select Device % PLSYN

After the PLSyn fitter has found the solutions that implement
your design, the next step is to choose one of the architectures
and the corresponding physical part(s) you want to use.

When you select an architecture in the solution list, PLSyn
displays a list of all part numbers meeting the constraints you
have specified. These appear in the Solution Detail at the botto

2. P22v10

of the PLSyn window. All you have to do is select which one(s] &&it e oo o e e
to use.
Simulate with Timin ¢ U] Pspice AD

Any simulations that you perform after you have selected actue'_|IJ1=FLL PLogic
PLD part numbers, include timing information specific to those=_L

parts. This allows you to check the device’s timing within your

system and find potential problems such as setup/hold time Probe
violations or worst-case timing hazards which involve the PLD

device.

Program Device % PLSyn

As the final step, you need to generate the fuse maps that your
device programmer needs to program the PLDs. PLSyn
generates these as JEDEC files, one for each PLD device in your
implementation.

Primer: How to Define
Programmable Lo gic

Chapter Overview

This chapter guides you through the steps needed to synthesize
a PLD device for a simple 3-to-8 decoder.

Implementing a 3-to-8 Decoder with Programmable Lagic
page 2-Zescribes the sample circuit.

Design Phase: Defining Programmable Logic using Schematic
Symbolson page 2-3valks you through the steps needed to
convert existing schematic symbols to programmable logic.

Implementation Phase: Fitting and Partitioning the Design
page 2-5walks you through the steps needed to fit, select and
program a PLD device subject to the constraints and priorities
you define.

Using a DSL Block to Define the Programmable Logic
page 2-1(presents a way of defining the programmable logic
that is equivalent to that using schematic symbols.

2-2 Primer: How to Define Programmable Logic

Implementin g a 3-to-8
Decoder with
Programmable Lo gic

Figure 2-1 illustrates a simple 3-to-8 decoder, consisting of
three 74LS04 inverters and eight 74LS11 3-input AND gates.

u1
z

= J@ Do
74L504
ST
@ m° 7aLste
[r— - . . .D/@
o]
uz
J—— 1 Z FaLs1
FTaLs0a
= Gz
B
= z .‘>/®
FaLsoa FaLs11

S

FaLs11

9

il

A

uly

e

i

STMS
@) -_sz
IE\F)'

.

o
5]

2 -a/@ Oe
FaLs11

FALS11

i

vl

= LJN_‘
N
L ‘EU
Ean
I [

y

Figure 2-1 3-to-8 Decoder Schematic

Assume that you want to target all of the decoder for PLD
implementation. You have two alternative but equivalent
methods from which to choose:

Note You can mix both « Convert discrete components to programmable logic using
programmable logic symbols schematic symbols.

and DSL.b locks on your « Create Design Synthesis Language (DSL) blocks to define
schematic.

functionality using a hardware description language.

Design Phase: Defining Programmable Logic using Schematic Symbols 2-3

In the remainder of this chapter, you will see how to use both of
these methods. You will also learn how to set up and run the
physical implementation process, which is the same regardless
of how you specify the programmable logic.

Design Phase: Definin g
Programmable Lo gic
usin g Schematic
Symbols

Before you begin

Copy the following files from theMicroSim root
directory\examples\plsyn\decoder directory to your
working directory:

decoder.sch schematic file

decoder.stl stimulus library file

Loadin g and simulatin g the desi gn

To load the schematic

1 Inthe MicroSim program group, double-click the
Schematics icon to start Schematics.

2 From the File menu, select Open .

Move to the directory containindgcoder.sch

4 In the File Name list box, select the schematic file that you
are interested in.

2-4 Primer: How to Define Programmable Logic

8 Decoder e

nnnnnnnnnnnnnnn

Figure 2-2 Results of Decoder
Simulation

Once the circuit is loaded, you should run a simulation to ensure
that the circuit is working properly before you fit it into a PLD.
The schematic is already configured to perform an 800 nsec
simulation.

To simulate

1 From the Analysis menu, select Simulate.

Next you can view the results in Probe. This schematic has been
set up to start Probe automatically and to display the signals
which have markers attached. The resulting signals shown in
Figure 2-2 indicate that the decoder is in fact working correctly.

Convertin g 74LS Symbols to
Programmable Lo gic

There are two ways to enter programmable logic symbols, using
either:

- pre-defined programmable logic symbols found in the
dig_prim.slb symbol library, or

e 74xx symbols and then setting theaPL attributes to
PLSYN

Since the decoder is already defined with discrete logic, the
second method (defining the IMPL attribute) is the most
convenient way to turn the existing design into a PLD design.
To include devices in the pro grammable lo gic
1 Select all 74LS symbols on the schematic. Either:

- draw a box around each symbol, or

+ (o shift)+click on each 74LS part.

2 From the Edit menu, select Attributes.

3 Click Yes to the prompt: Globally edit attributes of all
selected items?

Implementation Phase: Fitting and Partitioning the Design 2-5

4 Inthe Attribute Name text box, type IMPL; inthe Value As an alternative, you can
text box, type PLSYN change each part individually

. . (rather than globally) by double-
This sets the value of theIPL attrlb_ute toF_’LS\(Nfor all clicking each 74LS device and
selected parts that have IMPL attribute (in this case, all setting the value of each IMPL

parts). attribute to PLSYN.
5 Click OK.

Notice that the reference designator for each logic device Note If you changed the

changes to PLSYN_U1, PLSYN_UZ2, ..., and the color changedefault color settings, your

from green to blue, by default. colors may differ from this
example.

Verifying Functionalit y using

Simulation Although you have just made the
entire decoder design
At this point, you can re-run the simulation to verify that the programmable logic, you can

programmable logic representation matches the discrete devialso specify only a portion of a
representation. The programmable logic is compiled for you design as programmable logic.
automatically before the simulation starts. It's also easy to change a symbol

back into a non-programmable
logic symbol. Just edit the
symbol’s IMPL attribute and
clear its value so that it is blank.

Implementation Phase:
Fittin g and Partitionin g
the Design

You are now ready to create the physical implementation. To do
this, you must run PLSyn.

To activate PLS yn

1 From the Tools menu, select Run PLSyn.

PLSyn starts with the current design file loaded.

2-6 Primer: How to Define Programmable Logic

Available File plsprilibe3ul Browse...
Select Device Templates =]
Cancel
Al
Hone

P20G10 P2410
5 —

Use <CTAL-LLICK> to toggle single
Use <CTALDORAGS to togdle black selection

Settin g Constraints

Constraints allow you to choose the types of devices into which
PLSyn must fit the design. You can narrow the search for
solutions by selecting criteria such as device template
(architecture), logic family, manufacturer, package type, power,
speed, and temperature.

By default, PLSyn considers all devices. Suppose you want to
narrow the solution search by selecting spedévice
templatesP16V8A and P22V10.

To constrain the solution to the P16V8A and
P22V10 device templates

1 From the Edit menu, select Constraints.

PLSyn displays a list of constraints that you can enable.
Some constraints, such as Device Template, also require
that you select from a list of values.

Click Devices.

Click None to deselect all items.

Scroll untilP16V8A is visible and click on it.
Scroll and findP22V10.

Hold down théctrl] key and clickP22Vv10.
Click OK.

You can also constrain the device search by telling PLSyn to
look only for one logic family of devices. By default, all three
logic families—CMOS, ECL, and TTL—are included in the
search.

N o o~ WN

Suppose that you don’t want to use ECL.

To exclude the ECL lo gic famil y from the solution

1 Click Logic Families.

2 Hold down thectr) key and clickeCL This leave£MOS
OBS andTTL highlighted.

Implementation Phase: Fitting and Partitioning the Design 2-7

3 Click OK to return to the constraints selection dialog
box.

4 Click OK to exit constraints specification.

Settin g Priorities

Solution priorities allow you to determine the ranking of the
solutions found during the fitting and partitioning process
according to factors such as price, speed, power consumption,
and pin count. They also determine the ordering of alternate
devices for a given solution.

By default, price has the highest priority.

To indicate a preference for faster parts Solution Priorities]
1 From the Edit menu, select Priorities. g
™ Mumber of Ping B Cancel |
2 Inthe Prop Delay text box, tyg®. LE= |
V¥ Prop Delay 10 Help |
3 Inthe Price text box, type. I Frequency
. [~ Supply Cument [
4 CI|Ck OK ™ Userl [
™ User2 [

Partitionin g and Fittin g

You are now ready to start the fitting and partitioning process.
During the fitting process, PLSyn finds and displays a list of up
to 10 solutions which implement the programmable logic
according to your constraints. PLSyn lists the best solutions,
ranked according to solution priorities that you just assigned.

To begin the fittin g process

1 From the Tools menu, select Fitter/Partitioner.

PLSyn first checks the netlist to make sure that the design has
not changed. Then PLSyn automatically compiles the design (if
not already compiled), optimizes the design, and starts the
fitting process.

2-8 Primer: How to Define Programmable Logic

PLSyn scans the available file to find devices which match your
constraints. PLSyn then searches for the devices which actually
fit your design’s programmable logic. When this process is
complete, PLSyn displays the solutions in the solution list at the
top of the PLSyn window.

This design fits into either of the two templates which you

selected earlier: P16V8A and P22V10. P16V8A is listed first

because it is thkestdevice meeting the specified priorities.

Bt e ron e teng e i e e Further, thebestP16V8A is a GAL16V8C-5LP, shown in the
e | solution detail list.

To select a different part number

For example, suppose you want to use a leadless chip
carrier,

1 Click Browse to view the list of alternate parts.

2 Select the PALCE16V8H-5JC/5.
3 Click OK to keep the selection.

The PALCE16V8H-5JC/5 is now the physical device
o which implements the decoder (although a rather
expensive implementation!).

c
=

GAL1EVEQS-FLHC
GALTEYEOS-7PLYC
GALTEYE0S-7LMC
GALTEVEQS-TLNI MNAT 0BS DIF EXT 115ma 9n:
GALTBVEAS-7LYI MAT 0BS JLCC EXT 115ma 9n:
0BS SOICEXT 115madns 36
CMOS JLCC COM 90ma 9ns
LVT16vE-ED PS CMOS 50IC COM SOma Sns

Cancel Help

GALTBYEOS-7LMI NAT
LUT1EVE 64 %3

Verifying Timin g Behavior usin ¢
Simulation

If you now simulate the design, the simulator includes the
timing specifications for the PALCE16V8H-5JC/5. This
allows you to check the timing behavior for both:

« the device itself, and

» the device operating within your entire system.

Implementation Phase: Fitting and Partitioning the Design 2-9

Creatin g Device Pro grammin g

Files
You are now ready to run the Fuse Map Generator to create {The JEDEC file is the input to
device programming file in JEDEC format. your device programmer.

To generate fuse maps

1 From the Tools menu, select Fuse Map Generator.

PLSyn displays a warning message that no test vectors wAlternatively, you could go back
be included in the fuse map file at this time. For now, this i¢o the schematic and set the

fine. switch to generate test vectors in
. . the PLSyn Setup dialog box (see
2 Click Yes when prompted to continue. page 4-3), then re-simulate to
This creates a file namefgcoder.ji . include the test vector in the
JEDEC file.

To view the JEDEC file name and other useful
information

1 Select Examine Doc File in the File menu.

Back Annotatin g the Schematic

You can now back annotate the schematic to include the
physical device(s) that you selected.

To back-annotate the schematic Ut3

i Juolk o718 57
1 In PLSyn, from the Tools menu, select Update Schematic. PLSYN Toa 1o vos 12 [D6
PLSYN U4jB— 11 1/05 -2 — 5
: . PLSYN Usic—¢ 12 voa S oy
Schematics places the selected PLD(s) on a new schematic peé A o2 103 Ty |03
. o 6 a1 —p2
along with the appropriate input/output ports. c 77;:2 ljgﬂ)% o1

917 oe M

PALCE16V8H-5JC/5

To view the PLD part as shown in Fi gure 2-3

Decoder.j1

1 In Schematics, from the Navigate menu, select Next PageFigure 2-3 Back-Annotated

) Schematic Page
2 Click YES to the prompt: Save changes to current page?

2-10 Primer: How to Define Programmable Logic

Physical implementation is the
same no matter how you set up
the programmable logic in your
schematic. If, after having
defined the DSL block, you want
to implement the design, follow
the instructions in Implementing
a 3-t0-8 Decoder with

Programmable Logion
page 2-2

S

[111
o

m
)
)
2z

|5
|

Figure 2-4 The decoderl.sch
Example Schematic

Using a DSL Block to
Define the
Programmable Lo gic

The following steps describe how to implement the 3-to-8
decoder with a DSL procedure which is equivalent to the
programmable logic symbols you used in the previous example.

Before You Be gin

Copy the following files from theMicroSim root
directory\examples\plsyn\decoderl directory to your
working directory:

decoderl.sch schematic file

decoderl.stl stimulus library file

Loadin g the Design

The schematic filegecoderl.sch , contains only digital
stimulus and global output ports. The analysis setup is also pre-
configured to perform an 800 nsec simulation.

To load the schematic
1 From the File menu, select Open.

2 Move to the directory containirdecoderl.sch

3 Inthe File Name list, select the schematic file that you are
interested in.

Using a DSL Block to Define the Programmable Logic 2-11

Addin g a DSL Block

DSL blocks are simply hierarchical blocks which reference DSL
source code files instead of schematic files.

To add a DSL block
1 From the Draw menu, select Block. ﬂ

2 Place one block on the schematic page between the inputs
and the outputs, as shown in Figure 2-3.

3 From the Draw menu, select Wire and connect each
stimulus input directly to the block.

4 Repeat step 3 for each global output port, as shown in —
Figure 2-3. Each connection to the block creates a pin. "= mo R N

a Rename the DSL block’s pins as shown in Figure 2-3: s
double-click the pin name (for example, P1) to bring up
the Change Pin dialog box.

Figure 2-5 Connecting the

b Enter a new pin name. DSL Block

c Click OK. o

d Repeat steps a-c for each of the input and output pins g2 w o 0
= N .

STM3 D4 D
5 i M2 D5 D
D
D

D6t
D74

Definin g DSL Source Code | i
Figure 2-6 Finished DSL Block

You are now ready to enter the DSL source code for the block.

To define DSL source code

Set Up Block]

1 Double-click the block t@ushinto it. S B, |
2 Enter the DSL source code fildgcod3x8.dsl , in the e [oSL - Help |
Setup Block dialog box, then click OK. o]

Cancel

Schematics displays the MicroSim Text Editor. Because
you are defining a new block, thROCEDUREeader andND
statements are defined for you as follows.

PROCEDURE decod3x8(INPUT A, B, C;
OUTPUT DO, D1, D2, D3, D4, D5, D6, D7);

END decod3x8;

2-12 Primer: How to Define Programmable Logic

[=

H -
5

Notice that the INPUT and OUTPUT nodes in the procedure
header correspond to the pin names of the DSL block.

Type the entird RUTH_TABLEstatemenbetweerthe
PROCEDUREBeader andENDstatement as shown:

E decod3x8.dsl* - MicroSim Text Editor
File Edit Search Yiew |nsert Help

Ol2lEl S lm@]o] sl
PROCEDURE decod3z8(INPUT A, B, C;
QUTPUT DO, D1, D2, D3, D4, D5, D&, D7):

TRUTH_TABLE
[C.B.A]::[D0..D7]:
0::10000000k;
1::01000000k;
2::00100000k;
3::00010000k:;
4::00001000b;
5::00000100k;
f::00000010k;
7::00000001k;

END TRUTH_TABLE;

END decod3zf:

ForHelp, press F1 [Ln14,Cal7 //il

This simple construct sets a single bit in the D7.. DO output
based on the three inputs’ integer value.

From the File menu, select Save.

From the File menu, select Close to exit the MicroSim Text
Editor.

To verif y that the DSL version of the decoder
performs exactl y as the lo gic symbol version

1 From the Analysis menu, select Simulate.

Equivalent Wa ys to Define the
Decoder with DSL

Try experimenting with the different features of DSL. For
example, you could also implement the decoder using the
following CASE statement:

CASE [C,B,A]
WHEN 0 => [D7..D0] = 00000001b;
WHEN 1 => [D7..D0] = 00000010b;
WHEN 2 => [D7..D0] = 00000100b;

Using a DSL Block to Define the Programmable Logic 2-13

WHEN 3 => [D7..D0] = 00001000Db;

WHEN 4 => [D7..D0] = 00010000Db;

WHEN 5 => [D7..D0] = 00100000b;

WHEN 6 => [D7..D0] = 01000000Db;

WHEN 7 => [D7..D0] = 10000000Db;
END CASE;

Or, you could use the following (somewhat crude, but still
effective) set of equations:

DO=/(A+B+C);
D1=A*/(B +C);
D2=B* /(A + C);
D3=A*B*/C;
D4 = /(A + B) * C;
D5=A*/B*C;
D6=/A*B*C;
D7=A*B*C;
With a little experimentation, you should find that DSL is both

easy-to-learn and powerful enough to describe complex blocks
of logic.

Designing with
Programmable Lo gic

Chapter Overview

This chapter describes in detail how to specify programmableThe discussion in this chapter
logic using Schematics. assumes that you are familiar

. . . with Schematics, including the
The Different Ways to Specify Programmable Loqic in use of hierarchical blocks. Refer

Schematic®n page 3-Introduces the two equivalent to your MicroSim Schematics
mechanisms you can use to define programmable logic. User’s Guideor details on using
Schematics.

Using Programmable Logic Symbais page 3-2lescribes
where to find programmable logic symbols and how to convert
discrete logic symbols to programmable logic.

Using DSL Blockson page 3-#xplains how to place and define
functional blocks describing programmable logic using a
hardware description language.

Understanding Programmable Logic Nodespage 3-13
explains how to define the internal and interface nodes
connecting to programmable logic.

Guidelines for Entering Programmable Logitpage 3-1dists
the do’s and don’ts that you should follow to avoid problems
during the physical implementation phase.

3-2 Designing with Programmable Logic

Note IMPL is short for
“implementation.”

For a complete list of symbols,
refer to the Programmable Logic
Symbol Referende PLSyn
online help.

The Different Wa ys to
Specify Programmable
Logic in Schematics

You can define programmable logic in two ways using:
» logic symbols (such as gates and flip-flops)
- DSL (Design Synthesis Language) blocks

You can place programmable logic symbols and DSL blocks
anywhere on your schematic—that means on any page and at
any level of the hierarchy.

Using Programmable
Logic Symbols

Logic symbols used as programmable logic have their IMPL
attribute set to the vallRLSYN The available logic symbols
fall into two classes:

» Generic logic symbols
Example: NAND4, JKFF

e 74xx series symbols
Example: 74LS04 or 74HC107

Generic Lo gic Symbols

Thedig_prim.slb symbol library contains ready-to-use
programmable logic symbols, including gates, enabled gates,
flip-flops, and latches. Each symbol already has its IMPL
attribute set te°LSYN

Using Programmable Logic Symbols 3-3

74xx Series Lo gic Symbols

You can also convert the common 74xx series logic symbols
found in the74xx.slb symbol libraries to programmable logic. = [

" TEMPLATE= @REFDES %A %8 %7 %PWH 34GND GMOL

e Change Display
MHTYMRDLY =0
ipin(PWRI=3G_DFWA
ininGND J=55 DGHD

PRGTYPE=DIPT4

Deleie

To convert one 74xx series lo gic symbol to

pI’O g I’am mable IO g |C ¥ Inchide Non-changeable Attibutes oK
¥ Inchude System-defined Attibutes Cancel

1 Double-click the symbol.

Click theIMPL= entry.

In the Value text box, typPLSYN
Click Save Attr.

Click OK.

a b~ W N

To convert several 74xx series lo gic symbols to
pro grammable lo gic all at once

1 Select the 74xx symbols.
2 From the Edit menu, select Attributes.

3 Click Yes to the prompt: Globally edit attributes of all
selected items?

4 Click theIMPL= entry.

5 Inthe Value text box, typPLSYN

6 Click Save Attr.

7 Click OK.

Schematics automatically updates the symbol’s reference

designator and changes its color to blue (by default), to show

that it is programmable logic. I ' 2

Note Some of the 74xx symbols cannot be converted to _i om | e
programmable logic. These symbols do not have

the IMPL attribute. Adding an IMPL attribute will .
not work because PLSyn does not know the Figure 3-1 7400 Symbol as
symbol’s logic function. Programmable Logic

3-4 Designing with Programmable Logic

This section describes how to
define and edit DSL blocks within
Schematics. For information on
DSL language syntax, refer to
the PIL Referencén PLSyn
online help.

Note DSL files must have the
.dsl extension.

You can also change programmable logic symbols back to
discrete PCB devices.
To revertto non-programmable lo gic

1 Selectthe symbol(s) and bring up the Edit Attributes dialog
box as described in the above two procedures.

Click thelMPL= entry.

Clear (set to blank) the Value text box.
Click Save Attr.

Click OK.

g A W N

Using DSL Blocks

In addition to logic symbols, you can define programmable logic
using DSL (Design Synthesis Language) blocks on your
schematic.

What Are DSL Blocks?

DSL blocks are hierarchical blocks which have a language-
based definition instead of a symbolic definition. DSL logic
expressions and constructs take the place of discrete logic
symbols. So, instead of referencing a schematic.fith (),
DSL blocks reference a DSL source code filisl().

Using DSL Blocks

3-5

What Are DSL Procedures?

Each DSL block you place corresponds to a sipgheedure
within the source code file. Procedures contain language
constructs such as simple logic expressions, truth-tables, or
state-machine definitions. The signals coming into the DSL
block define the inputs to the procedure. Likewise, the outputs
of the procedure define the output signals of the DSL block.

A DSL block has a PLMODEL attribute which defines the
procedure name.

Example: The HB1 DSL block shown in Figure 3-2 references
the adder5.dsl DSL source code file which contains the
ADDERS5 procedure referenced by the block’'s PLMODEL

attribute.
({DSL block
B1 |

—_—i[4—D)]

SUM[4—0D]4
—E[4-0]

PLMODEL=ADDERS

adder5.dsl }T

PROCEDURE ADDERS5(INPUT A[4..0], B[4..0];
OUTPUT SUM[4..0]);
SUM=A +.B;

END ADDERS;

Figure 3-2 Relation of PLMODEL Attribute and DSL
Procedure Name

3-6 Designing with Programmable Logic

4l

You can change the size of the
block by selecting the block, then
using right-click on one

of the corners to drag it to the
desired size.

Note Pin names must not be
one of the DSL keywords,
such as INPUT or OUTPUT.
For the list of DSL keywords,
refer to the DSL Referencen
PLSyn online help.

The ERC attribute defines the
electrical purpose of the pin.

Set Up Block
Filename:
|decoda:8.ds!

Browse...

Tupe: DsL - Help

ildiy.

Ok

Cancel

Note The .dsl file cannot
have the same name as the
schematic file. (It is reserved
for system use.) For example,
a schematic named
decoder.sch cannotreference
a file named decoder.dsl.

Creatin g a DSL Block in Your
Schematic

To create a DSL block

1
2
3

In Schematics, from the Draw menu, select Block.
Click to place the block on the schematic page.

Connect wires or buses directly to the block. Each
connection automatically creates a pin at the junction.

Define the names and types of each pin.
a Double-click the pin name.
b Enter a new pin name.

When naming a bus connection, use the Schematics bus
label syntax, for example, A[4-0].

c If necessary, select the correct ERC value for the pin.

By default, the pins on the left are given an ERC
attribute ofinput and pins on the right are given an
ERC ofoutput . Do not set the ERC attributeR®N'T
CARE this is not allowed for a DSL block.

Push into the DSL block. Either:
« double-click the block, or
- from the Navigate menu, select Push.

Because this is a new block, you are prompted for the name
of the file containing the DSL source code.

Enter the name of the DSL source file (using.tise
extension) that you want to create or reference.

Using DSL Blocks 3-7

7 Ifyou have not yet created the DSL procedure for this block,
then do one of the following:

- If the DSL file does not exist, Schematics activates the
MicroSim Text Editor automatically. Specify the new
DSL procedure and save thisl file.

- If the DSL file does exist but you still need to specify
the procedure, activate the MicroSim Text Editor from
the MicroSim program group, open thisl file,
specify the new DSL procedure, and save the file.

See the next section for information on defining DSL
procedures.

Usin g the MicroSim Text Editor
to Define DSL Procedures

When given a file name with theésl extension, Schematics
displays the MicroSim Text Editor which you can use to:

» Define the body of the DSL procedure.
» Add other procedures or functions.

For new DSL procedures, Schematics automatically creates a
procedure template with input and output ports corresponding to
the DSL block’s pin names and attributes.

E adder5.dsl* - MicroSim Text Editor
File Edit Search Yiew Insent Help

HEEE TS
PROCEDURE adderS(INPUT A[4..0]. B[4..0]:
QUTFUT SUM[4..0]):

END adderS;

For Help, press F1 W’iﬁ’i//él
Figure 3-3 The DSL Procedure Template

3-8 Designing with Programmable Logic

If the block’s PLMODEL attribute is undefined, Schematics
defines it for you using the DSL file name (excluding .t
extension).

Schematics also automatically translates the bus label format to
the DSL array format.

Example: In the procedure header shown in Figure 3-3, the bus
format A[4-0] is translated to the array format A[4..0].

Changing the DSL Block
Interface

The pins on the DSL block must match the number, name, and
signal direction of the port nodes used in the DSL procedure.
This means that if you add or delete pins, or change the width of
a bus on your DSL block, you must update the procedure’s port
nodes corresponding to the changed pins.

Example: If you change a port’s direction from an output to an
input, you must change the ERC value of the corresponding
DSL block pin toINPUT.

Using DSL Blocks 3-9

To chan ge the pin properties in Schematics

1 In Schematics, double-click the pin name in the DSL block.

2 Change values in the Pin Name text box or Pin Attibutes
frame as needed.

To chan ge the pin properties in the MicroSim Text
Editor

1 In Schematics, double click the DSL block.
2 Modify the procedure header to match the new interface.

Usin g Existin g DSL Source Code

You can create a DSL file ahead of time and then associate it
with any DSL block you create thereafter.

To associate an existin g DSL file with a new DSL
block

1 Check the port node names in the DSL procedure you plan
to use with the new DSL block.

2 Place a block. For detailed instructions (menu
options and mouse moves), see
the following procedures:

4 For each pin, change its name and ERC (if needed) to mat. Tg create a DSL bloc&n

Add a pin for each of the port nodes in the DSL procedure

the corresponding port node in the DSL procedure. page 3-6
5 Adda PLMODEL attribute to the block and assign the DSL+ To change the pin properties
procedure’s name as its value. in Schematic®n page 3-9
a Select the DSL block.
b From the Edit menu, select Attributes.

c Inthe Name text box, type PLMODEL.In the Value text
box, type the DSL procedure name.

3-10 Designing with Programmable Logic

d Click Save Attr.
e Click OK.

6 Push into the block, and when prompted, enter the name of
the existing DSL source code file.

Structurin g DSL Source Files

When organizing your DSL procedures, you can have
< one procedure per file, or

- multiple procedures per file.

Example: A sin gle DSL procedure in each file

In Figure 3-4, if you were to make a change onfjda.dsl ,
filel.dsl is not recompiled.

Schema‘)}f’c
page

DSL DSL
— Block Block [—
filel.dsl file2.dsl
PLMODEL=A PLMODEL=

file1.d¢f PROCEDURE A(INPUT ...; OUTPUT ...);

END A;

file2.d¢f PROCEDURE B(INPUT ...; OUTPUT ...);

END B;

Figure 3-4 A Source Code File for Each DSL Block

Using DSL Blocks 3-11

Example: More than one DSL procedure in a
single file

From a maintenance point of view, this method is easier to
manage because there are fewer files.

Schemati}f
page
DSL DSL
| Block Block |——
file3.dsl file3.dsl

PLMODEL=A PLMODEL=B

. PROCEDURE A(INPUT ...; OUTPUT ...);
file3.dsl ¥ ()

END A;

PROCEDURE B(INPUT ...; OUTPUT ...);

END B;

Figure 3-5 Single DSL Source Code File with More Than One
Procedure

3-12 Designing with Programmable Logic

For information on the use of the
INCLUDE and USE statements,
refer to the DSL Referenci
PLSyn online help.

To create a pre-compiled DSL
file, manually compile the file
from PLSyn using Compile
Library from the Tools menu.

Callin g DSL Procedures and
Functions from within a

Procedure

Like other programming languages, DSL allows a procedure to
contain calls to other procedures and functions.

You must define called procedures and functhefsrethey are
called from the main DSL procedure. There are several ways to
do this:

« Add the called procedure or function directly to the source
codebeforethe calling procedure.

« Include another DSL source file into your source before the
calling procedure by using the INCLUDE statement.

« Reference a pre-compiled DSL file (for example, a library
of commonly used DSL procedures) from your source by
using the USE statement before the calling procedure.

Understanding Programmable Logic Nodes 3-13

Understandin ¢
Programmable Lo gic
Nodes

As you enter a programmable logic design, the nodes which
connect to programmable logic symbols or DSL blocks are of
two types.

Internal nodes These connect programmable logic to
other programmabile logic.

Interface nodes These are at the boundary of the
programmable logic, and connect to all other schematic
symbols, such as global ports, non-programmable logic, and
analog devices.

After you have performed the physical implementation of your
design, interface nodes correspond to physical pins on a PLD.

Labelin g Nodes

You are not required to label the programmable logic nodes in
Schematics. Schematics automatically generates a unique name,
such asNPL_0013.

However, to reference a node in your design’s Physical For more information on the . pi
Information (pi) file, you should label the node so that you'll file, see Chapter 6, Controlling
know how to refer to it. Once labeled, PLSyn carries the namhe Fitting Process Using the

throughout the physical implementation process by PLSyn. -P/ File and refer to the PIL
Referencén PLSyn online help.

To label an y node
1 Double-click the wire.

2 Enter a name.

3-14 Designing with Programmable Logic

Node namin g restrictions

Programmable logic node names must adhere to the following
naming conventions:

« The first character must be alphabeticz(, orA-Z).

« Remaining characters can be any combination of alphabetic
(a-z , A-Z), numeric ¢-9), and underscore) characters.

For a listing of DSL keywords, « Names cannot be any of the DSL keywords.
refer to the DSL Referencim

PLSyn online help. Node names are cagesensitivewhich means upper-case and

lower-case letters are treated alike.

Labelin g interface nodes

For interface nodes, you can insure that the node label will
persist with the PLD implementation.

To force the label to appear in the back-annotated

PLD symbol
For more information, see Back 1 Attach a global port to the interface node, as shown in
Annotating the Schematic on Figure 3-6.
page 2-9.

2 Label the global port.

i PLSYN_U3A

U1A m—l —= o8
! Aotk | 5
7404

o K
CLR
74051004
Non-programmgdile
logic Programmable
logic

Figure 3-6 Programmable Logic Interface Node Labeled with
a Global Port

Understanding Programmable Logic Nodes 3-15

Creatin g Active-Low Interface

Nodes
To create active-low inputs or outputs to your The LOW_TRUE port symbol is
pro grammable lo gic contained in the dig_prim.slb

symbol library.
Place a LOW_TRUE port (instead of a global port).

Note The LOW_TRUE port creates interface nodes in
the same manner as the global port. Therefore,
you cannot use the LOW_TRUE port to create
active-low internal nodes.

Convertin g Internal Nodes to
Interface Nodes

When PLSyn runs an optimization, internal programmable logic
nodes are automatic candidates for removal known as node You could use this method to
collapsing. To avoid this, you can change an internal node to kmake an internal node available

an interface node, and have the node appear at a physical PIfor testing. See Figure 3-6 on
pin. page 3-14 for an example.

To convert an internal node to an interface node

1 Attach a global port.

2 Assign a label.

Creatin g Physical Nodes

To create a ph ysical node at the schematic level For more information on physical

]) nodes, refer to the DSL
Place the PHYNODE/PL symbol and connect itto a wire. Referencean PLSyn online help.

3-16 Designing with Programmable Logic

The LO and HI symbols are

contained in the port.slb
symbol library.

Assigning a Logic O or 1 to an
Input
You can assign constant 0 or 1 to a programmable logic symbol

by using the LO and HI symboils in one of the ways described
below.

Alone If you attach a LO or HI symbol directly to an input
pin of a programmable logic symbol (or to an unlabeled wire
connected to an input pin), PLSyn treats that input as a logic
constant O or 1.

Example: Use the HI symbol to tie an unused input on an AND
gate high, or to tie the J and K inputs of a flip-flop high to create
a T flip-flop.

Attached to an interface node If a LO or HI symbol
is attached to an interface node, the LO or HI behaves like a
stimulus during simulation. PLSyn still creates a physical device

pin.

Guidelines for Enterin g
Programmable Lo gic

Do this

- Always begin the names of the following objects with an
alphabetic charactea{z orA-Z):

« Schematic §ch) and DSL sourcedsl) file names
« Programmable logic interface and internal nodes
- DSL block pins

The remainder of the name can contain numki®es) or
the underscore .

Guidelines for Entering Programmable Logic 3-17

Note Do not use any other punctuation characters in the
name.

» Make sure that each independent collection of
programmable logic has at least one input interface and one
output interface node. That is, at least one input and one
output signal must connect either to a global port or to non-
programmable logic.

Don’t do this m

« Label any programmable logic node (interface or internal)For a listing of DSL keywords,
the same as any of the DSL keywords. For example, you c#efer to the DSL Referenci
useOUT but notOUTPUT PLSyn online help.

- Tie output interface nodes together. That is, the same node
may not be driven by two or more programmable logic
output pins.

« Connect the analog ground node (node 0) to any
programmable logic interface. Use the digital constant
sourcesd. O andHI instead.

« Make a port label an integer.

« Use punctuation marks (except for underscore characters) in
names. SeBo thisabove for naming conventions.

« Name the DSL file or procedure the same name as any of the
programmable logic symbols containedigprim.slb

Simulatin g Programmable
Logic Designs

Chapter Overview

This chapter describes how to simulate your programmable For more information on PSpice

logic design both before and after PLD implementation. TopicA/D, refer to your MicroSim
include: PSpice A/D User’s Guide

Introduction to Simulating with PLogic or PSpice AdDb
page 4-2
Setting Up Simulationsn page 4-3

Starting Simulationsn page 4-4

How the Simulator Uses Programmable Logic I/O Mode&ls
page 4-5
Simulating with Timingon page 4-6

Generating Test Vectomn page 4-6

Using Probe Markeren page 4-10

4-2 Simulating Programmable Logic Designs

Introduction to
Simulatin g with PLo gic
or PSpice A/D

Once you have entered a design which includes programmable
logic, you can simulate both before and after you have chosen a
physical implementation. The purpose of the simulation
depends on the development stage of your design.

Verify function before implementation At this

stage, simulations do not include timing. Instead, this is a good
time to verify that your design is behaving as you expect it to
operate.

Verify timin g after implementation At this stage,

after having selected the PLD devices, simulations
automatically include timing information for the devices such as
propagation delays and setup times. You can verify not only the
timing of each PLD, but also the timing of the entire circuit
including the PLD(s).

Setting Up Simulations 4-3

Settin g Up Simulations

Simulation setup for circuits containing programmable logic is
similar to that for any other circuit. The way you navigate to the
setup options depends on which simulator you have: PLogic or
PSpice A/D.

Displaying the Dialo g Box for
Simulation Setup

PLogic simulation setup

. Simulation Duratiory [sec
If you have PLo gic
To displa y the Anal ysis Setup dialo g box Lumemthnn e
. . o Als I Capture Test Yectors
1 In Schematics, from the Analysis menu, select Setup. i {Wl_

If you have PSpice A/D

PSpice A/D simulation setup

To displa y the Digital Setup dialo g box
© Binimum @ Level - =
1 In Schematics, from the Analysis menu, select Setup. oo - Lo w
© Waorst-case Min/Max) © Leveld
2 Click Digital Setup. o I
((: ::E %ample Window: Advance -

4-4 Simulating Programmable Logic Designs

Refer to your MicroSim PSpice
A/D User’s Guidefor detailed
information on how to specify the
delay, A/D interface level
(PSpice A/D only), and flip-flop
initialization for your design as a
whole.

Note The power and ground
nodes and the A/D interface
settings only apply to mixed-
signal simulations with
PSpice A/D. These options
have no effect on digital-only
simulations.

Definin g Simulation Setup
Options for Pro grammable Lo gic

Besides the usual simulation setup options, you can also specify
simulation setugpecificto the programmable logic part of your
design. This includes options for delay, A/D interface level, and
power supplies.

To displa y the dialo g box for pro grammable lo gic
settin gs

1 From within the simulation setup dialog box, click
Advanced.

PLSyn Advanced Setup [x]
Default &/D Interface | 2

~Tiing Made
& System Default & Gystem Default
€ Minimum © Levell
© Typical © Level2
" Maximum C Level3
" warstcase [Min/Has) C Leveld
~Pawer Supply Nodes———
Fover, [$G6_DPwR
Ground: [$G_DGND

These seftings only apply to the PLD device(s) being simulated

In addition to the usual settings for the simulator, you can enable
the capture of test vectors for the fuse map (JEDEC) file. See
Generating Test Vectomn page 4-6or more information.

Startin g Simulations

There are two ways to start a simulation, either from
Schematics, or from the simulator (PSpice A/D or PLogic).

Using Schematics, the netlister generates a netlist and compiles
the programmable logic. Although you can run simulations on
circuit files previously generated by Schematics, they might not
reflect the current state of your design. To insure that what you
are simulating is always in sync with your schematic design, we
recommend that you always start your simulations from
Schematics.

How the Simulator Uses Programmable Logic I/0 Models 4-5

To start a simulation from within Schematics

Select Simulate in the Analysis menu.

How the Simulator Uses
Programmable Lo gic I/O
Models

I/O models define the digital and analog characteristics of
digital input and output pins. As with all other digital devices,
your programmable logic also uses I/O models. If a digital pin is
connected to other digital devices, the simulator refers to the I/
O model to obtain the pin’s output resistance, as well as its input
or output capacitance.

If your package includes PSpice A/D, you can simulate analog

devices along with your programmable logic. If a digital pin is

connected to analog devices, PSpice A/D refers to the 1/0 model

to obtain the name of an interface subcircuit (either AtoD or Table 4-1 PLSyn I/O Models
DtoA) to insert between the devices.

1/0 Model Name*
When you simulate programmable logic, the simulator attempt PLSYN_IO_DEFAULT
to use the 1/0 model appropriate for the technology. Table 4-]

lists the 1/0 models used by PSpice A/D and PLogic for PLSYN_IO_TTL
programmable logic. PLSYN_IO_CMOS
The simulator determines the correct technology if: PLSYN_INT_IO_ECL

« You have constrained the physical implementation to one PLSYN_EXT_IO_ECL
technology.

* These models are located in
« The fitting process is complete and you have selected PLlthe dig_io.11b symbol library.
part numbers.

If the simulator cannot determine the technology of the
programmable logic (for example, you have selected two or
more technologies in your device constraints), the simulator
uses I0_DEFAULT_PLSYN, which has 74LS characteristics.

4-6 Simulating Programmable Logic Designs

For more information on how
PSpice A/D treats unspecified
propagation delays, refer to your
MicroSim PSpice A/D User's
Guide

Note If your design is partitioned into two or more
devices, the simulator automatically uses the
appropriate I/0 model at the logical boundaries of
each device.

Simulatin g with Timin g

After you have performed the physical implementation and
selected PLD devices, any simulations that you run will include
timing information for those devices. This timing information is
obtained from PLSyn’s device library. The simulator uses these
timing values:

tpp combinatorial propagation delay
tco clock-to-output propagation delay
ts setup time

The device library contains maximum-rated valuesggrand
tco and minimum values fogt The simulator calculates
minimum and typical values from the maximum propagation
delay values.

Generatin g Test Vectors

In the PLSyn context, the tertast vectorgefers to the section

of the JEDEC file used by device programmers to validate the
device after it has been programmed. Each line of the JEDEC
file's test vector section contains input signals (which stimulate
the programmable logic) and the expected output signals.
Device programmers apply the input signals and compare the
results to the expected outputs specified in the JEDEC file.

Generating Test Vectors 4-7

Enablin g Test Vector Generation

If you enable test vector generation during the simulation,
PLSyn collates and formats the input and output signals for each
PLD in the solution into test vectors. PLSyn adds these vectors
to the JEDEC file(s) when the fuse map is createyou have
fitted and performed device selection.

If you have PLo gic

To enable test vector generation

1 In Schematics, from the Analysis menu, select Setup.

aa

2 Select () the Capture Test Vectors check box.

If you have PSpice A/D

To enable test vector generation

1 In Schematics, from the Analysis menu, select Setup.
2 Click Digital Setup.

a0
L

3 Select (1) the Capture Test Vectors check box.

How the Simulator Responds

With test vector generation enabled, the programmable logic Unit delay mode effectively turns
portion of the design runs in unit delay mode. This avoids tesoff the simulator’s inertial delay

vector mismatches during device programming. behavior which causes short
. .)] pulses to be swallowed.
Note Anytime you re-fit or select a different solution, you Because device programmers

must re-simulate in order to generate the test do not support inertial behavior,
vectors for the new device(s). this helps avoid test vector
mismatches.

4-8 Simulating Programmable Logic Designs

Usin g the “Sample Window”

Control
See page 4-3for information on The Sample Window value (specified in the simulation setup
how to get to the setup dialog dialog box) defines the interval during which the simulator
box for your simulator. considers input changes to occur at the same time.

S Set this value when signals, considered part of the same input
@\ vector, arrive at the boundary of the programmable logic at
slightly different times. This is useful, for example, in mixed
analog/digital designs.

Example: How the Simulator
Creates Test Vectors

Casel
Consider the following case,

PLSYN_U1

3
»

AND2

with inputs and outputs as follows.

Table 4-2 Test Vectors for 11
Case 1 12 [
$!1l'1<2n8ample 1 2 o1 o1 I
0 10 20 30
10 0 0 L
With Sample Window set to zero, the simulator creates test
1 oot vectors by recording the value of all inputs and outputs
20 1 1 H whenever any input changes. The vector consists of all prior
30 0o 1 L input values, along with the current output value. In other words,

. the simulator assumes that any input change propagates to the
Note InJEDECfiles, 0,and1 output by the time the next input change occlizble 4-2

are input values; L and Hare shows the test vectors that the simulator creates using this logic.
output values.

Generating Test Vectors 4-9

The simulator takes one final sample at the end of the
simulation. As you can see, these test vectors are correct, even
though the input changes do not arrive simultaneously.

Case 2

Unfortunately, this approach produces the wrong results in the
following case,

PLSYN_U2
1
3 —T
2 o
OR2

with inputs and outputs shown below.

11 | |

12 |

o1 0 10 20 30

With Sample Window set to zero, the simulator produces the Table 4-3 Test Vectors for
vectors shown iffable 4-2 At time 11, the output value of Lis Case 2
incorrect. The result of 11 changing to 1 had not yet propagate

Time Sample

to the output. Taken I 12 o1

Corrected Case 2 10 o o L
. . _ 11 1 0 L

The sampling window allows you to treat staggered inputs as

they had arrived simultaneously. A sampling window begins

when any input changes and ends after the sample time expin 30 0 1 H

The inputs in the test vector consist of the input values at the end
of the sampling window.

In case 2, a sampling window at least 1 unit in the duration, Taple 4-4 Test Vectors for

corrects the problem. Corrected Case 2
Time Sample
11 | Taken 2ol
|
12 | 10 0 o0
o1 | 10 20 30 20 1 1

30 0 1

4-10 Simulating Programmable Logic Designs

|

N Z
/@\

AN\

Collapsed nodes happen when
PLSyn removes an internal
signal node by substituting the
node’s equation into any
equation that references the
node.

Table 4-2 shows the test vectors.

Troubleshootin g Test Vector
Differences

Sometimes, when the device programmer tests the device, the
results produced by the part are different from the expected
output results produced by the simulator. If this occurs, the
following hints can help you solve the problem.

- Try specifying a non-zero sampling window as described in
the previous section. Use a value greater than the
propagation delay ({f,) of the device.

« Make sure that the initial value of the clock stimulus is
inactive for the type of flip-flop you are using. Why? In the
simulator, the flip-flop primitive requires the entire clock
edge (for example, 0. 1) to register the data. However, in
the programmer, the flip-flop registers its input if the first
vector contains a value of 1 for the clock.

Using Probe Markers

To view logic levels, you can place markers on both
programmable logic interface nodes and nodes internal to the
programmable logic in the schematic. If you've configured your
system to automatically run Probe after simulation, waveform
results immediately display in the Probe window.

A caution about collapsed nodes

When optimizing a design, PLSyn reduces the logic equations
which can result in collapsed nodes. Collapsed nodes are not
available in Probe, even if you have placed markers on them.

Note Results at interface nodes are still available.

Creatin g the Physical
Implementation

Chapter Overview

This chapter describes how to create the physical
implementation of your programmable logic using PLSyn.

Overview of the Physical Implementation Procesgpage 5-3
reviews the steps you must follow to implement the
programmable logic.

Where to Find Status and Design Informatiznpage 5-4alks
about the log and document files that PLSyn generates.

Activating and Loading PLSyan page 5-®xplains how to
activate PLSyn.

Compiling the Logimn page 5-&xplains how PLSyn converts
the programmable logic symbols and DSL blocks to logic
equations.

Optimizing the Logic Equationsn page 5-1@escribes the
kinds of algorithms PLSyn uses to reduce the logic equations.

Overview of Fitting and Partitioning Logmn page 5-14
explains how to run the PLSyn fitter and how it works.

5-2 Creating the Physical Implementation

Limiting the PLD Parts Available for Searcm page 5-16
explains how to use thavailablefile to specify a preferred
device set.

Constraining Devicesn page 5-1@&xplains how to narrow the
search by manufacturer, logic family, speed, and/or part type.

Prioritizing the Solution®n page 5-2@xplains how to use
PLSyn to rank the solution set by speed, cost, power
consumption, and pin count preferences.

Running the PLSyn Fitter and Partitiorogr page 5-28xplains
how to start the PLSyn fitter.

Selecting Devicesn page 5-2@xplains how you can select a
different device from the solution list.

Creating Fuse Mapsn page 5-2&xplains how to generate fuse
maps to program the devices.

Updating the Schematan page 5-2&xplains how to back-
annotate the schematic with the selected PLD implementation.

Creating PCB Netlisten page 5-2%rovides tips when
preparing to generate a netlist for board layout.

When You Change the Desion page 5-3provides tips when
trying iterative what-if implementations.

Overview of the Physical Implementation Process 5-3

Overview of the Ph ysical
Implementation Process

After you have described your design in Schematics, you are
ready to create the physical implementation of your
programmable logic using PLSyn.

To have PLS yn determine solutions for the
physical implementation automaticall y

1 If needed, customize the available file (.avl) with user-
defined properties that you want to constrain.

2 Define the selection constraints using Constraints in the Edit
menu.

3 Define the solution priorities using Priorities in the Edit
menu.

4 Run the PLSyn fitter using Fitter/Partitioner from the Tools
menu. PLSyn automatically compiles and optimizes the
programmable logic in your design.

Select the PLD device(s) you want to use.

Create the fuse maps using Fuse Map Generator in the Tools
menu.

7 Back-annotate the schematic with the PLD device(s) using
Update Schematic in the Tools menu.

5-4 Creating the Physical Implementation

See Compiling the Logicmon
page 5-7and Optimizing the
Logic Equation®n page 5-10
for more information on what
PLSyn does when compiling and
optimizing your design.

For more information on the

using the .pi file, refer to

Chapter 6. Controlling the

Fitting Process Using the .pi File
and the PIL Referencé PLSyn
online help.

For MACH devices, PLSyn also
produces a report file. For more
information, see The MACH
Report Fileon page 8-52

For a detailed description of
documentation file contents, see
Appendix A, The
Documentation File

If You Want More Control

As described above, you can leave the synthesis details to
PLSyn. But if you want more control, you can:

Manually run the PLSyn compiler.
« Manually run the PLSyn optimizer.

- Direct the fitting/partitioning process by specifying controls
in the physical implementation filep().

Where to Find Status
and Desi gn Information

To document your design, or, if your design fails to fit, PLSyn
furnishes tools that can help you solve any problems:

Message Viewer The Message Viewer displays warnings
and error messages that occur when PLSyn (or another
MicroSim program) encounters a problem. You can access help
text that relates directly to each message. For some messages,
you can also jump to the point in your design where the problem
was detected.

Log file The log file @esign_name.log) contains status
and error messages from each of the implementation processes.

Documentation file The documentation file
(design_name.doc) contains detailed information about your
design, such as the logic equations and device pinouts. PLSyn
automatically creates this file after the optimization phase, and
updates this file after you generate the fuse map file(s).

Activating and Loading PLSyn 5-5

Activatin g and Loadin ¢
PLSyn

This section describes how to:
« Start PLSyn.
« Load a design.

« Interpret the PLSyn window.

Activatin g PLSyn

Start the PLSyn program either from:
- Schematics, or

» the PLSyn program icon in Windows.

From Schematics

To activate PLS yn from Schematics

1 Inthe Schematic Editor, from the Tools menu, select Run
PLSyn.

If your design is already open in Schematics, then you can start
the physical implementation phase of your design once the
PLSyn main window displays. If not, you must load a design
directly into PLSyn as describedlimading a Different Design

on page 5-6

From the Windows Pro gram Manager

In the Windows program manager, there is a program group that
contains Windows icons for all installed MicroSim programs,
including PLSyn.

5-6 Creating the Physical Implementation

To activate PLS yn from the Windows Pro gram

Manager
N double-click 1 In the MicroSim program group, double-click the PLSyn
this icon icon.

PLSyn activates without a design. $eading a Different
Designfor further instructions.

Loadin g a Different Desi gn

Once you have activated PLSyn, you can change to a different
design at any time.
To load an existin g design
E 1 From the File menu, select Open.
2 Select a schematics¢h) or DSL source.{sl) file.

The PLSyn Main Window

Once loaded, PLSyn’s main window appears as shown in
Figure 5-1.

Solution List

The top area, called ths®lution list displays architectures

\ chosen by the PLSyn fitter. The bottom area, calledahdion
detail list, displays a list of alternative part numbers available
for the architecture you selected in the solution list above.

Readyto run Compiler

\|Solution Detall List
During fitting, this window contains a list of the device

Figure 5-1 Main PLSyn templates PLSyn is considering.
Window

Compiling the Logic 5-7

Compilin g the Lo gic

The PLSyn compiler converts all of your design’s
programmable logic (logic symbols and DSL blocks) into
equivalent logic equations. PLSyn writes the compiled logic to
an internal file namedesign_name .afb which the

simulator and the PLSyn optimizer use later on.

You can compile programmable logic at different stages of
design development:

- Automatically during the fit and partition process. For more information on fitting

M I ity th fth ble logi and partitioning, see Qverview
. anually to verify the syntax of the programmable logic. Fitting and Partitioning Logic

« Manually to compile DSL files that include the USE on page 5-14nd the sections
statement to reference other DSL files—also known as a that follow.
library compile.

Note You must manually compile DSL files that contain
the USE statement before running a general
compilation of your design, or before starting the fit
and partition process. This is explained in more
detail in the following two sections.

Manuall y Compilin g Logic
To manuall y compile all pro grammable lo gic in
your desi gn

1 Pre-compile any DSL files that include the USE statement
(seeCompiling DSL Librarieson page 5-8

2 From the Tools menu, select Compiler. Another way to automatically

. compile the programmable logic
To ensure that the schematic matches the PLSyn database, is as follows:

PLSyn first checks to see if any of the programmable logic, ot
its interfaces, has changed since the last generated netlist. If it
programmable logic portion of your design has changed, PLSy
automatically regenerates the netlist.

In Schematics, from the
Analysis menu, select Create
Netlist.

5-8 Creating the Physical Implementation

Compilin g DSL Libraries

Whenever your design includes DSL blocks that include the
USE statement, you must load each DSL file and run a library
compile before any other manual or automatic compilations take
place.

To compile DSL blocks that include the USE
statement

1 From the File menu, select Open, and then select the name
of the DSL file you want to compile.

2 From the Tools menu, select Compile Library.

Respondin g to Compile-Time
Status and Errors

During compilation, PLSyn displays a status window which
shows the compiler’s progress. You can abort the compilation at
any time.

To abort the compilation

1 In the status window, click Cancel.

If there are compile-time errors, PLSyn displays the messages in
the Message Viewer. In addition, PLSyn keeps a written log.

To control whether PLS yn writes compiler errors
to the lo g file

Do the following before starting the compile:

1 From the Tools menu, select Options.

2 Select (I) the Output Warnings check box.
3 Click OK.

After you have corrected any errors in your DSL blocks, you
must restart the compiler.

Compiling the Logic 5-9

Controllin g Node Generation

Durin g Compilation

You can control whether the PLSyn compiler creates internal
nodes for carry bits for arithmetic and relational operators.
To allow PLS yn to create internal nodes

Do the following before starting the compile:

1 From the Tools menu, select Options.

2 Select () the Create Nodes check box.

3 Click OK.

Resolvin g “Out of Memor y”
Conditions

If you encounter an “Out of Memory” message, you can reduce
memory requirements by setting the maximum number of
product terms any equation form can have.

To limit the number of product terms
Do the following before starting the compile:
1 From the Tools menu, select Options.

2 Inthe Product Term text box, type an integer value for the
maximum number of allowed product terms ranging from
64 to 5012. The default is 1024.

3 Click OK.

As arule of thumb, lower the Product Term value by a factor of

two. If you continue to get an “Out of Memory” message, lower >

the value again.

5-10 Creating the Physical Implementation

Note Optimization is only
needed prior to fitting and
partitioning, not prior to
running simulations.

For more information on fitting
and partitioning, see Overview
of Fitting and Partitioning Logic
on page 5-14nd the sections
that follow.

If you experience an “Out of
Memory” message, try limiting
the maximum number of product
terms allowed in an equation
form and restart the optimization.
For more information, see
Resolving “Out of Memory”
Conditionson page 5-9

Optimizin g the Lo gic
Equations

PLSyn performs optimization prior to fitting to compact your
design’s programmable logic into as few equations and nodes as
possible. This allows your design to fit into the fewest and
smallest possible devices.

PLSyn writes the optimizer output to a file named
design_name.fb which the fitter and partitioner use later on.

Though you would usually have PLSyn run the optimizer
automatically in the fit and partition process, you can also
manually run the optimizer.

To manuall y optimize all pro grammable lo gic in
your desi gn

1 Make sure your design is compiled ($&@mpiling the
Logic on page 5-¥

2 From the Tools menu, select Optimizer.

During optimization, PLSyn displays a status window which
shows the optimizer’s progress. You can abort the optimization
at any time.

To abort the optimization

1 In the status window, click Cancel.

Optimizing the Logic Equations 5-11

How the PLS yn Optimizer
Synthesizes Lo gic Equations

In addition to compacting the logic, the optimizer also produces
multiple, functionally-equivalent equation sets to accommodate
the wide variety of device architectures available on the market.
This means that for each potential device solution, the PLSyn
fitter is able to select the set of equations that best uses the
characteristics of that particular architecture.

The optimizer employs several techniques to synthesize the
equations.

DeMorganization DeMorganization allows the PLSyn
fitter to invert signals internal to a device while maintaining the
signal polarity and functionality as described by the logic
design. The ability to tailor equations internally to the device
lets you create a functional design that is independent of the
signal polarity capabilities of a particular device. It also gives
maximum flexibility to the fitter so that PLSyn can place larger,
more complex designs into fewer devices.

Register s ynthesis The optimizer synthesizes flip-flop
types to optimize equation placement within a device. For
example, you can describe logic in terms of J-K flip-flops. The
optimizer also synthesizes the D equation so that the PLSyn
fitter can place the equation in a device with D flip-flops.

Don’t care generation You can expresBon’t Care
conditions using the DSL If/Then/Else, Case, Truth Table, and
State Machine statements. You can also a$3ayit Care
conditions to signals within procedures and functions. When
output values are unspecified, the optimizer assunbEmnd
Carecondition. This allows the optimizer to assign either a zero
or one value, depending upon which value generates the most
optimal equation.

Exclusive-OR (XOR) s ynthesis = Whenever possible,
the optimizer maintains exclusive-OR representations of all

5-12 Creating the Physical Implementation

equations. The partitioner can then use the exclusive-OR
representation in devices with that capability. In devices without
exclusive-OR capability, the partitioner uses the sum-of-
products representation.

Node collapsin g The optimizer minimizes the use of
intermediate nodes. The optimizer removes nodes by collapsing
their equations into any equations that reference them.

Logic minimization There are three final reduction
algorithms available: Espresso, Espresso/Exact, and Quine-
McCluskey. You can set the method from the Tools/Options
dialog. The Espresso algorithm is the fastest method and usually
produces results as good as the other two algorithms. The
Espresso/Exact and Quine-McCluskey methods are slower and
use more dynamic memory but may result in smaller equations.
Due to the speed and memory use issues, these optional
reduction techniques should be restricted to designs with
relatively small equations where optimal equation minimization
is critical. The default reduction technique is Espresso.

Optimizing the Logic Equations 5-13

Choosin g the Optlmlzatlon You can also control optimization

using the .pi file. See
MethOd Chapter 6, Controlling the
Fitting Process Using the .pi
File and the PIL Referencén
PLSyn online help.

You can control the optimization algorithm PLSyn uses to
reduce the logic equations, choosing from:

« Espresso
« Espresso/Exact
e Quine-McCluskey

Espresso is the default reduction technique.

To chan ge the optimization al gorithm
1 From the Tools menu, select Options.

2 From the Optimization Method list, select the algorithm
name.

3 Click OK.

The Espresso technique is fast and generally produces very gogd.
equations. The Espresso/Exact and Quine-McCluskey metho —/@—
are slower and use more dynamic memory but may result in
smaller equations. Due to the speed and memory use issues, you
should restrict using these optional reduction techniques to
designs with relatively small equations where optimal equation
minimization is critical.

5-14 Creating the Physical Implementation

Overview of Fittin g and
Partitionin g Logic
During the fitting and partitioning process, PLSyn searches its

library of parts for the PLD device architecture(s) which can
implement, offit, the programmable logic in your design.

There are two ways you can proceed with the fitting/partitioning

process:
« Completely automatic, letting PLSyn determine how to best
fit the logic.
For information on using the .pi « Using thepi file to control how logic is fit; for example,
file see Chapter 6, Contr_olllng into specific part numbers, with specific grouping of the
the Fitting Process Using the logic into specific devices, and with specific pinouts for
.pi File and refer to the PIL individual nodes.

Referencean PLSyn online help.
This rest of this chapter describes how to use PLSyn to

automatically fit and partition the programmable logic.

If You Don’t Have the Partitionin g
Option

Systems with the partitioning option allow PLSyn to fit your
design into multiple PLD devices. If you do not have the
partitioning feature, all of your programmable logic must fit into
a single device. The discussions which mention more than one
device in a solution do not apply to you.

Overview of Fitting and Partitioning Logic 5-15

How the PLS yn Fitter Works

Figure 5-2 shows how the PLSyn fitter and partitioner relate to
other PLSyn functions, data, and programmable logic. The
shaded objects indicate functions that must occur before PLSyn
can fit and partition the design: define, compile, and optimize
the programmable logic.

Available
File
; Compiler/ —
Constraints [Optimizer) Priorities

lFitter/Partitioner'

Figure 5-2 PLSyn Functional Architecture

If needed, PLSyn automatically compiles and optimizes the Note Ifany ofthe DSL blocks
programmable logic before starting the fitting process. contain USE statements to
refer to other DSL blocks, you
must first manually compile
these DSL files using the
Compile Libraries option in

- Edit the available parts fileayvl). the Tools menu. For more
information, see Compiling
DSL Librarieson page 5-8

There are two ways you can narrow the device search to the
devices that interest you, and thereby speed up the fitting
process:

- Define constraints, such as device architecture,
manufacturer, technology, speed, power consumption, an
temperature.

PLSyn begins the search by scanning the list of available parSolutions, or architectures, are
contained in the available parts filaW), then filtering the sometimes referred to as
search further by the constraints you have defined. When thetémplates. For example, in the
search is complete, PLSyn displays a list of up to ten solutiondialog box that PLSyn displays
(architectures), ranked by the priorities which you defined ~ When you select Constraints in
earlier. For a given architecture, you can then select the exacthe Edit menu, you'll see a

constraint named Device
part numbers that you want to use. Templates.

5-16 Creating the Physical Implementation

Partltlonlng
ption
Requwed

.

If your system includes the partitioning option, and if needed,
PLSyn automatically fits your programmable logic into more
than one device, up to a maximum of twenty. PLSyn can also
partition into different architectures. If so, PLSyn displays each
architecture in the Solution Detall list.

Limitin g the PLD Parts
Available for Search

The available file.avl) contains the list of only those devices
that you want PLSyn to consider as potential solutions. This file
contains information on:

- available device types

« device manufacturer names
e logic families

- package types

« temperatures

e prices

The default available filglsynlib.avl , resides in thein
subdirectory under your MicroSim root directory. When
shipped, this file contains every part in the master device library.

Because limiting architectures, not devices, is what speeds up
the fitting process, we recommend that you avoid editing the
.avl file unless you plan to constrain the device search using
user-defined properties. In this case, we recommend that you
create a nevavl file usingplsynlib.avl as a starting point.

Limiting the PLD Parts Available for Search 5-17

To create and use a custom available file

1

3
4

Copyplsynlib.avl to a different file name with thavl
extension.

Using any text editor, open the file, make modifications
according to the restrictions explained after this procedure,
and save it.

In PLSyn, from the Edit menu, select Constraints.

In the Available File text box, enter the file name.

Each line in the file is a complete record of a device. The only é
changes you should make to the available file are to:

Delete the entire line containing a device to remove that
device from consideration.

Update the last three fields on a line, which are (listed in
order of appearance):

» part price (in cents),

« auser-defined numeric property You can enforce constraint-
checking on the user-defined

« asecond user-defined numeric property fields by defining the User1 and

Note Do not change any other fields or the format of the =~ USer2 constraint controls. See

available file. Constraining Devicesn
page 5-18nd Setting Up User-
Defined Constraintsen

page 5-20

5-18 Creating the Physical Implementation

¥ Device Templates Qevlces LI
I Logic Family Logic Families. | ﬂl
I Manufacturer Manufacturers... | Help |
I” Package Type Packages. |
™ Temperature Temperatures... |
™ Max Prop Delay I— ns
™ Max Frequency I— MHz
™ Max Curent Usage I_ ma
™ Userl I_;l I—
I~ User2 I_;l I—
Mar Devices IF

Available File

Iplsyn\ib.av\ Browse...

Constrainin g Devices

Constraints allow you to narrow the list of devices that the
PLSyn fitter considers when searching for solutions. The fitter
compares your constraints against each part in the available file,
and only those matching the specified constraints are considered
for fitting.

Note If your constraints are too narrow, the PLSyn fitter
and partitioner may not be able to implement your
design.

To edit the constraints for your current desi gn

1 From the Edit menu, select Constraints.

2 Enable the constraints you want PLSyn to consider as
follows:

« For Device Templates, Logic Family, Manufacturer,
Package Type, or Temperature, click the button to the
right of the constraint and select the items you want
considered. Seable 5-1for a description of each of
these.

< For all other constraints, type an appropriate value into
the corresponding text box as describedahle 5-1

3 Clear any constraints you don’t want PLSyn to consider
(Lremoved).

4 Click OK.

Constraining Devices

5-19

Table 5-1 Device Selection Constraints Dialog Box

Controls

Control Name

Meanin g

Device
Templates

Logic Family

Manufacturer

Package Type

Temperature

Max Prop Delay

Max Frequency

Max Current
Usage

List of the architectures that are available in
your package. PLSyn considers only the
selected architectures. For more information,
refer to the théevice Listsn PLSyn online
help.

List of available logic families. PLSyn
considers only the selected logic families. For
more information, refer to the tigevice
Listsin PLSyn online help.

List of available manufacturers. PLSyn
considers only the selected logic families. For
more information, refer to the tigevice
Listsin PLSyn online help.

List of footprints or package types available
for partitioning. PLSyn considers only the
selected footprints. For more information,
refer to the théevice Listsn PLSyn online
help.

List of available temperature ratings. PLSyn Table 5-2 Temperature
considers only the selected temperature Rating Abbreviations

ratings.Table 5-2lists the valid temperature

rating abbreviations. Temperature

Abbreviation Meaning

Highest allowable value for propagation delay ggsg MIL-STD-883B
in nanoseconds. Se®w PLSyn Calculates
Maximum Propagation Delagn COM Oto +75°C
page 5-2For more information. EXT -40 to 85°C
Highest allowable frequency value in MHz. MIL -55t0 125°C

Default is 10 MHz.

Highest allowable value for power supply
current in mAmps. Default is 10 mA.

5-20 Creating the Physical Implementation

Table 5-1 Device Selection Constraints Dialog Box Controls
(continued)

Control Name Meanin g

User 1 Comparison criteria used on the first user-
defined property in each device statement in
the available file. Defined as a pair of a values:

* relational operator (e.g., <, <=, =, etc.)
 target number between 0 and 255
SeeSetting Up User-Defined Constraints
on page 5-20

User 2 Comparison criteria used on the second user-
defined property in each device statement in

the available file. See Userl above and
Setting Up User-Defined Constrairin

page 5-20
part|t|0n|ng @* Max Devices Highest allowable number of devices into

Re&'b’ﬂed @ which the partitioner can allocate
* programmable logic, ranging from 1 to 20.

Available File The name of the available file. Default is
plsynlib.avl.

Settin g Up User-Defined
Constraints

Enabling user-defined constraints requires:

- Associating a property and value for each device listed in
your available file.

- Defining the comparison that must be satisfied to include
that device in the fitting/partitioning process.

Constraining Devices 5-21

To set up user-defined constraints For more information on the

. . available file format, see
1 Inyour.avl file, use a standard text editor to enter the Limiting the PLD Parts

value of a numeric property in each device line either afte 5\ 5ijaple for Searclon
the price property (referred to as the Userl property) or aftepage 5-16

the first user-defined property (referred to as the User2

property).

You can haveat mosttwo user-defined properties.

2 In PLSyn, when defining constraints (by selecting
Constraints in the Edit menu), selelck)the corresponding
Userl or User2 check box.

3 Select a relational operator from the drop-down list to the
right of the Userl or User2 constraint that you selected.

4 Type the target value for comparison in the text box to the
right of the relational operator you just selected.

Example

A common application for the user-defined fields is device
defect rate. If your production group has failure statistics on
devices that range from 0 to 100, then you can enter those values
into your available file.

Suppose that each device statement in yodir file contains
device defect rate values in the field after price—the User1 field.
Then you can enforce device selections with a failure rate of less
than 10% by:

1 In PLSyn, from the Edit menu, selecting Constraints.
2 Selecting [0) the Userl check box.

3 Selecting < for the relational operator.
4

Typing 10 in the text box.

5-22 Creating the Physical Implementation

How PLS yn Calculates Maximum
Propagation Dela y

Combinatorial (non-re gistered) devices The
maximum propagation delay is the worst casg &s published
by the manufacturer.

Registered devices = The maximum propagation delay is
the sum of thegand o (setup time and clock-to-output delay).

Devices with both combinatorial and re gistered
outputs The maximum propagation delay is the larger of
the two cases described above.

The Default Constraints File

When fitting a new design, PLSyn initializes the constraints to
values contained in the default constraints tkfault.cst

This file resides in thein subdirectory under your MicroSim
root directory.

To customize the set of default constraints

1 Choose a constraints file created for an existing design
(residing in your working directory).

2 Make a copy of that file and save it to tie subdirectory
with the namelefault.cst

Prioritizing the Solutions 5-23

Prioritizin g the
Solutions

When PLSyn finds a solution which fits your programmable
logic, it ranks the solution to determine whether lesteror
worsethan other solutions it has found. If the solution is within
the ten best, PLSyn positions it in the solutions list according to
its relative merit.

The ranking is based on priorities that you define.

To define rankin g priorities

1 From the Edit menu, select Priorities. Solution Priorities =]
2 Select {U) the check boxes for the priorities you want to use * Piice Bl
to rank the solution. See Table 5-1 for a description of eac [Humber of Pins |
one. p - sie | Cancel
v Prop Delay Mo Help |
3 Enter weighting factors from 1 to 10 for the criteria that you I Frequensy [
enabled where 10 indicates most important. I': Sty Clovante [
zer
Note Disabled criteria are not considered in the ranking I~ Userz —
of solutions.
Table 5-3 Solution Priorities Dialog Box Controls
Control Name Meanin g
Price Minimize the total price of the solution. Use a
high priority to indicate a preference for
lower-cost solutions. In multiple-template
solutions, PLSyn considers the total price of
all devices in the solution.
If you have the partitioning option, then @* Partitioning

PLSyn can opt for cheaper, multiple-device % Option
solutions instead of more costly, single-device
solutions.

Number of Pins ~ Minimize the total pin count. Use a high
priority to indicate a preference for a lower pin
count. In multiple-template solutions, PLSyn
considers the pin count of all devices.

Required

5-24 Creating the Physical Implementation

Table 5-3 Solution Priorities Dialog Box Controls

Control Name Meanin ¢

Size Minimize total size. Use a high priority to
indicate a preference for physically smaller
parts. In multiple-template solutions, PLSyn
considers total size.

Prop Delay Maximize speed. Use a high priority to
indicate a preference for faster parts. In
multiple-template solutions, PLSyn considers
the device with the longest propagation delay.

Frequency Maximize clock speeds. Use a high priority to
indicate a preference for parts with higher
maximum clock speeds. In multiple-template
solutions, PLSyn considers the device with the
lowest frequency rating.

Supply Current Minimize power consumption. Use a high
priority to indicate a preference for parts with
lower power supply consumption. In multiple-
template solutions, PLSyn uses the sum of the
individual Icc values.

User 1 Use in conjunction with a USER1 constraint
as follows:

¢ If USERL1 > 0 is the constraint, then PLSyn
considers a solution to be better that has a
USERL1 value that is higher than another
USER1 value. Example: 99 is better than 4.

e If USER1 < 1 is the constraint, then PLSyn
considers a solution to be better that has a
USER1 value that is lower than another
USER1 value. Example: 4 is better than 99.

User 2 See Userl

In multiple-device solutions, PLSyn uses all of the criteria
where appropriate.

Example: The price given for a particular solution is the sum of
the prices of all parts in the solution.

Running the PLSyn Fitter and Partitioner 5-25

Usin g Constraints and Priorities
Together

While constraints eliminate devices, priorities eliminate
solutions. Used together, you can effectively focus the fitting/
partitioning process to find the devices that best meet your
needs.

Example: You can enable a constraint to eliminate devices with
propagation delays greater than 50 nsec, and then specify a
priority that indicates areferencebut not a requirement, for
low-power devices.

Runnin g the PLSyn
Fitter and Partitioner

To start the fittin g/partitionin g process
1 From the Tools menu, select Fitter/Partitioner.

As PLSyn tries solutions, it updates the number of attempted
and found solutions on the status line. If a successful solution
ranks within the top ten, PLSyn places it in the solution list.

Depending on the amount of programmable logic in your
design, and the number of architectures PLSyn has to consider,
the fitting/partitioning process can take from less than a minute
to several minutes or even hours. Therefore, select your
constraints carefully.

The fitting/partitioning process can fail because:

« PLSyn can’t find any parts in the available file which meet _/@f
your constraints.

« PLSyn can't fit your logic into the architectures which did
meet your constraints.

If this happens to you, try relaxing the constraints, thereby
allowing PLSyn to consider additional device architectures.

5-26 Creating the Physical Implementation

Selectin g Devices

After PLSyn has found the solution(s) which will implement
your design, you can select part numbers for each architecture in
the solution list.

PLSyn uses the solution and part numbers that you choose to:
e update the schematic.

- perform timing simulations, and

« generate fuse maps.

You can explore different implementations by changing your
selection to different part(s) or even a different solution.

To select the PLD implementation

1 Selectthe solution (architecture) you want from the solution
list.

P22V10

A list of part numbers corresponding to the selected

Solution Detail

N T architecture appears in the solution detail list.

‘ ‘ = 2 Select part numbers for the chosen solution. Either:
« double-click the device name in the list, or

« select the device and click Browse.

LAT CMOS DIP COM 1 15ma fne $7.90 0
Lal LU ILCL LU o 10 U
AMD - CMOS JLCC COM 1 26

HEl L] ne 391l O

. o 3 Select a different part and click OK.
BALTEVBAS-FLNC NAT OBS DIP COM 118ma9ns 3600 0

BALTEVBAS-FLYC NAT OBS JLCC COM 116ma 9ns 3606 0
BALTEVBIS-FLMC NAT OBS SOIC COM 116ma 9ns 3630 0
GALTEVEAS-TLNI NAT 0BS5S DIP EXT 116mafns $630 0
GALTEVBAS-FLW NAT 0OBS JLCC EXT 118ma 9ns $630 0
GALTEVBAS-FLMI NAT 0OBS SOICEXT 118ma9ns $660 0
LYT1EWE 64 PS CMOS JLCC COM - 90ma 9ns $870 0O
L¥T16YE-ED PS CHMOS SOIC COM 90ma Sns $8.70 a

Cancel Help

Creating Fuse Maps 5-27

Creatin g Fuse Maps

After you have selected the PLD device(s) to implement your The JEDEC file has a special
programmable logic, you can use PLSyn to create fuse mapsformat used by your device

PLSyn creates one fuse map file, called a JEDEC file, for eacProgrammer to determine which
device in the solution. of the PLD fuses to blow.

To create fuse maps

1 From the Tools menu, select Fuse Map Generator.

This command generates as many files as there are devices in the
solution namediesign_name.j n, wheren is an integer from
one to the number of devices.

After creating the fuse map file(s), PLSyn updates the
documentation file with the names of the JEDEC files created
for each device architecture. Each JEDEC file also contains the
name of the device architecture in its header. The remainder of
the device programming is handled by your device programmer.

Includin g Test Vectors

The JEDEC file also includes any test vectors created during For more information, see
simulation, which the device programmer uses to validate the Generating Test Vectors on
programming. If you have not run a simulation which generatePage 4-6.

test vectors, you will see a warning message, but you can

continue creating the fuse map file without test vector

information.

5-28 Creating the Physical Implementation

You will find this feature useful,
for example, when you must
change the functionality of your
design after having laid out the
printed circuit board.

For general information, see
Chapter 6, Controlling the
Fitting Process Using the .pi
File and refer to the PIL
Referencen PLSyn online help.

For more information on PCB
layout, see Creating PCB
Netlistson page 5-29

Note If Schematics cannot
find the PLD symbols, you
need to add the PLD symbol
libraries to your library
configuration (using the Editor
Configuration option in the
Options menu). These library
files are named pld_xxx.slb,
where xxx is the three
character manufacturer
abbreviation.

The Implementation-Specific
Physical Information File (.npi)

When you generate fuse maps, PLSyn creates a new physical
information file namediesign_name.npi . This file contains

the Physical Information Language (PIL) representation of your
design’scurrentimplementation (target device(s) and pinout
information) so that PLSyn can exactly duplicate the fitting and
partitioning of your design in subsequent iterations.

To recreate the implementation

1 Inyour design directory, copy thgesign_name.npi file
to thedesign_name.pi file.

2 In PLSyn, from the Tools menu, select Fitter/Partitioner to
refit the design.

Note Groups and fixed groups to which the PLSyn fitter
assigned a NAME property retain the given NAME

in the .npi file.

Updatin g the Schematic

After you have selected a solution and PLD part number(s), you
can back annotate your schematic with symbols for those parts.
This is useful if when you want to create a PCB layout from your
schematic.

To update your schematic

1 From the Tools menu, select Update Schematic.

Schematics adds a page to your schematic, and places a symbol
for each PLD in the selected implementation.

The PLD symbols use pin names which don’t always match the
pin-names found in the manufacturer’s data books. However,
the pin numbers and functionality are the same.

The used pins connect to either a:

Creating PCB Netlists 5-29

« global port, or
- off-page port.

A global port connects a pin to its corresponding programmable

logic interface node, which resides elsewhere on the schematFor more information on
If you have attached a global port to the programmable logic interface nodes, see
interface node, the PLD symbol’s global port label is the sam¢Understanding

as the interface’s global port label. Otherwise, the PLD Programmable Logic Nodes
symbol’s global port label is in the form BEEFDESpin on page 3-13.
namecorresponding to the programmable logic symbol or DSL

block.

For an internal node in the programmable logic, the PLSyn fitter
places an off-page port on the PLD pin. The fitter may do this
for a variety of reasons; for example, to use a feedback path
within a device, or to connect internal logic from one PLD to
another.

Note Each time you update your schematic from PLSyn, o
Schematics deletes then recreates the page ,@
containing the PLD symbols. Because of this, you
should make few or no additions or changes to this

page.

Creatin g PCB Netlists

After you have updated your schematic, you can create a PCFor more information, see
layout. You do not have to make any further changes to your Updating the Schematan
schematic. page 5-28

Note Schematics only netlists non-programmable logic Ecérl;nfor:’patior; on generating a
symbols including the back-annotated PLD netlist, refer to your

; MicroSim Schematics User’s
symbols, and analog devices. Guide

5-30 Creating the Physical Implementation

For more information, see The
Implementation-Specific
Physical Information File (.npi)
on page 5-2&nd Specifying
JEDEC File Names on

page 6-12.

When You Chan ge the
Design

When you make changes to your design, Schematics and PLSyn
determine whether any changes have been made to the
programmable logic or its interfaces. If changes have occurred,
you must start the physical implementation process over at the
compilation step. That means PLSyn will overwrite the original
solution with the new solution.

You canfreezeyour latest implementation by copying thgi

file to the.pi file after having generated the fuse maps. On
subsequent runs, PLSyn will create a physical implementation,
including device humbers and pin-outs, exactly as specified in
the.pi file.

Controllin g the Fittin g
Process Usin g the .pi File

Chapter Overview

This chapter introduces tha file and ways of using it to
control the fitting process. Topics include:

Introduction to the .pi Filen page 6-2

Controlling PLD Utilizationon page 6-5
Fitting a Node as an OUTPUT or NO@EA page 6-6

Controlling How Signals Are Fit Togethen page 6-6
Disabling Outputs for Tesin page 6-8

Controlling Synthesisn page 6-9

Controlling the Size of Equatioms page 6-10

Specifying Devices without Specifying Signals page 6-11

Specifying JEDEC File Nameam page 6-12

Note This chapter does not
describe the syntax of the
Physical Information
Language (PIL) statements
used inthe .pifile. Refer to the
PIL Referencen PLSyn online
help for this information.

For more information on device-
specific fitting, see:

Chapter 7, PLD Device-
Specific Fitting

Chapter 8, MACH 1-4
Device-Specific Fitting
Chapter 9, MACH 5 Device-
Specific Fitting

Chapter 10, ATV5000
Device-Specific Fitting

6-2 Controlling the Fitting Process Using the .pi File

Introduction to the .pi
File

Though PLSyn can handle the physical implementation of your
design automatically, you can also use the physical information
file (.pi file), to exercise control over implementation during
the optimization and fitting/partitioning process.

Why Use the .pi File?

With PLSyn, programmable logic designs are completely device
independent. This means, for example, that you don’t need to
make pin assignments with a DSL source file. However, you
might need to control the mapping from design to device. For
example, you might need to:

« Group signals together to make sure they are fit on the same
device, while letting the PLSyn fitter and partitioner select
devices and perform pin assignments automatically.

- Specify a device, letting the PLSyn fitter and partitioner
perform pin assignments.

« Specify a device and some or all pin assignments.
- Control equation sizes.

The.pi file lets you do any of these and more.

Introduction to the .pi File 6-3

Usin g the Default .pi File

When you create a design for programmable logic synthesis,
PLSyn copies the fildefault.pi (in thebin subdirectory

under the MicroSim root directory) to a file named
design_name.pi in your design directory. The default file
contains the Physical Information Language (PIL) statements
PLSyn needs to optimize and partition most designs
automatically. You can add statements to this file or change it to
suit your needs.

Referrin g to Nodes in Your 0
Design
Much of what goes into yousi file controls the properties and

placement of signals, which you identify by node name. In For more information on nodes,
general, label the nodes that you plan to reference withipithe see Understanding

file. Programmable Logic Nodes
. . i) . on page 3-13

Here are a few considerations when working with the different

node types.

Interface nodes

Use the associated label on your schematic directly irpithe
file.

Internal nodes

PLSyn transforms node names which are internal to a group of
programmable logic (including NODES statements inside of
DSL blocks), into unique names by adding prefixes to the name.

6-4 Controlling the Fitting Process Using the .pi File

If you are in doubt, refer to the
equation section in the
documentation file (. doc) for the
list of actual node names PLSyn
uses.

The new name has the form

proc_name . instance_name . local_name

where
proc_name is the name of the procedure or
function
instance_name is the name assigned to this instance
of the procedure or function
Tocal_name is the name of the INPUT or

OUTPUT parameter or local NODE
within the procedure or function.

By default, the DSL compiler assighsas the first
instance_name, 2 as the seconilstance_name, and so on.
You can also define thenstance_name in your DSL source.

To define the instance name of a DSL procedure
or function

1 Inyour DSL source, specify thiestance_name in the
procedure invocation statement as follows:

instance_name : procedure_name (signal_list)

Example

Consider this DSL procedure:

PROCEDURE proc(INPUT d, clk; OUTPUT y);
NODE dff CLOCKED_BY clk;
dff = d;
y = dff;

END proc;

The following table shows the nodes names the compiler
generates given the DSL procedure invocation.

Procedure/Function Invocation

Generated Nodes

ul:proc(data3, clock3, q3);
proc(datal, clockl, ql);
proc(data2, clock2, q2);

proc.ul.d, proc.ul.clk, proc.ul.y, proc.ul.dff
proc.1l.d, proc.l.clk, proc.l.y, proc.l.dff
proc.2.d, proc.2.clk, proc.2.y, proc.2.dff

Controlling PLD Utilization 6-5

Controllin g PLD
Utilization

For some designs, you should reserve PLD resources for futuSee also Specifying Reserve
logic expansion. Capacity on page 8-9 for
information on the

To keep specific pins free MACH_UTILIZATION property.

1 Usethe NO_CONNECT construct.

To control the percenta ge of inputs, outputs, and
product terms that can be used

1 Use the properties summarizedliable 6-1

Table 6-1 PLD Utilization Properties

Property Syntax Meaning

{ PLD_INPUT_UTILIZATION % }; Sets the maximum percentage of array inputs on a
device that may be used during fitting.

{ PLD_OUTPUT_UTILIZATION % }; Sets the maximum percentage of output pins or output
macrocells on a device that may be used during fitting.

{ PLA_PTERM_UTILIZATION % }; Sets the maximum percentage of PLA and row-product
terms used during PLA fitting. There is no equivalent
control property for PALs.

*. The default percentage for each of these properties is 100%, meaning that the device properties are
fully utilized.

Example
Suppose you are targeting a P22V10 architecture having defined
the following utilization properties in youpi file:
{PLD_INPUT_UTILIZATION 90},
{PLD_OUTPUT_UTILIZATION 80};
{PLA_PTERM_UTILIZATION 95};

PLSyn will use only 19 of the 22 available array inputs, and only
8 of the 10 available outputs.

6-6 Controlling the Fitting Process Using the .pi File

If a PLA such as the S6001 is the target device, PLSyn will use
only 60 of the 64 product terms.

Fittin g a Node as an
OUTPUT or NODE

To control whether a node is fit as an OUTPUT or
as a NODE

1 Usethe FIT_AS_OUTPUT property.

FIT_AS_OUTPUT has no effect on output signals, which are
already destined to be fit on a visible output pin of a device. For
node signals, this property alerts the PLSyn fitter to place this
node signal on an output pin.

Controllin g How Signals
Are Fit To gether

Early in the fitting process, the PLSyn decides which signals to
fit together as one inseparable block of functionality. For PLDs,
this means signals are fit in the same output macrocell. Signals
can be fit together if a NODE is the only signal feeding another
NODE or OUTPUT that has no register or latch equations.

To control how si gnals are fit
1 Usethe NO_COLLAPSE and FIT_WITH properties.

NO_COLLAPSE The NO_COLLAPSE property tells
PLSyn to fit this signal individually, separate from the fitting of
any other signal.

Controlling How Signals Are Fit Together

6-7

FIT_WITH The FIT_WITH property lets you specify two
signals to be fit together. The FIT_WITH property is allowed on
any.pi output, and takes one argument. For example, to say
that signahode_x should be fit withx, you would need to add
the following statement to thgi file:

node_x {FIT_WITH x};

Example

SOURCE FILE

INPUT d, e, clk, oe;

NODE d_node CLOCKED_BY clk;

NODE e_node CLOCKED_BY clk;

OUTPUT out, e_out, not_e_out ENABLED_BY oe;

d_node =d;

e _node =¢;

out =d_node;
not_e_out =e_node;
e _out =e_node;

PHYSICAL INFORMATION FILE

d_node {NO_COLLAPSE}
e _node {FIT WITH ‘e_out’}

6-8 Controlling the Fitting Process Using the .pi File

Disablin g Outputs for
Test

In some cases, you might want to disable an output only
during testing, but otherwise leave the output enabled
during normal operation.

To indicate that an output is disabled onl y durin g
testin g
1 Use the DISABLED_ONLY_FOR_TEST property.

When the output isnabled PLSyn treats the input and output
of a buffer as functionally different. When the outputigabled
(using the DISABLED_ONLY _

FOR_TEST property), PLSYN:

« Programs the enable equation.

- Treats the signal on the input of the tri-state buffer as
equivalent to the signal on the output of the tri-state buffer
(for feedback purposes).

Example

The following PIL statement disables a single output:
out_x {DISABLED_ONLY_FOR_TEST};

If the output signabut_x has an enable, the PLSyn fitter
programs the enable equationolft_x is given only a single
signal (e.g.node_y), thenout_x andnode_y are
interchangeable (for feedback purposes).

Example

The following PIL statement disables all outputs:
{DISABLED_ONLY_FOR_TEST};

Controlling Synthesis 6-9

COntI’O”In g SyntheS|S Note Because PLSyn

automatically optimizes your
To control DeMor gan synthesis of data equations design by default, there is
in PLSyn: generally l/ttle_ reason to use
these properties.
Use the DEMORGAN_SYNTH property where data equations
are the D, JK, SR, T, XOR left and XOR right equations.

Cautions when usin g the DEMORGAN_SYNTH
propert y A
When using DEMORGAN_SYNTH, do not do the following:

« Control DeMorganization of control equations, such as
ENABLE, CLOCK, RESET, or PRESET.

« Control DeMorganization of the J equation of a JK flip-flop
with no corresponding DeMorganization of the K equation.

To control flip-flop s ynthesis
1 Usethe FF_SYNTH property.

To control XOR to Sum-of-Products s ynthesis
1 Usethe XOR_TO_SOP_SYNTH property.

6-10 Controlling the Fitting Process Using the .pi File

Table 6-2summarizes the settings and meanings for all three of
these properties.

Table 6-2 Synthesis Control Properties

Property Value Action
DEMORGAN_SYNTH AUTO (default) The optimizer will automatically select the
best DeMorganization choice.
FORCE Force the optimizer to DeMorganize the
primary equation (use the offset).
OFF Prevent the optimizer from DeMorganizing
the primary equation (use the onset).
FF_SYNTH AUTO (default) The optimizer will automatically do flip-flop
synthesis to meet the needs of the target
device.
OFF Require the target device to have the flip-flop

type given in the design.

XOR_TO_SOP_SYNTH AUTO (default) The optimizer will automatically select
between the XOR equation and the sum-of-
products equation.

FORCE Force the optimizer to use the sum-of-
products equation.

OFF Force the optimizer to use the XOR equation.

Controllin g the Size of
Equations

Controlling the size of equations can have a major impact on the
success of the PLSyn fitter and the number of solutions it
generates.

To control the size of equations

1 Usethe MAX PTERMS and MAX_SYMBOLS properties.

Specifying Devices without Specifying Signals

6-11

Example

If you know that you want to use devices with macrocells that
have eight or fewer PTERMSs, then you want to keep the
optimizer from collapsing nodes into equations with more than
eight PTERMs using these PIL statements:

{MAX_PTERMS 8};
{MAX_SYMBOLS 16};

Specif ying Devices
without Specif ying
Signals

To specif y the devices to use without specific pin
information

1 Use the DEVICE property without a signal list.

Example

The following PIL statements will fit a design into two
MACH?210 devices and a MACH130 device:

DEVICE
TARGET 'PART_NUMBER AMD MACH210-15JC",
END DEVICE;

DEVICE
TARGET 'PART_NUMBER AMD MACH210-15JC",
END DEVICE;

DEVICE
TARGET 'PART_NUMBER MACH130-15JC";
END DEVICE;

6-12 Controlling the Fitting Process Using the .pi File

Specifying JEDEC File
Names

PLSyn automatically creates JEDEC files and saves them in
your design directory, using names of the form
design_name.j nwherenis a number from one up to the
number of devices.

To specif y a name for each JEDEC file

1 Use the FUSEMAP_FILE property within a DEVICE
construct of the form:

{ FUSEMAP_FILE ' file name '} ;

Example

DEVICE
{ FUSEMAP_FILE 'mypal.jedec'};

END DEVICE ;

More Examples Using the .pi File 6-13

More Examples Usin ¢
the .pi File

Forcin g Signals to be Fit
Together in the Same Device

Scenario

You have a design that implements a counter, and the output
signals are heavily interdependent. For timing reasons you want
them to be fit together in the same device, but want the
automatic device selection and partitioning to determine the best
device according to your priorities.

Solution

GROUP
q0..g5, carry;
END GROUP;

which tells PLSyn to fit the signals that are members of the
GROUP,q0..g5 andcarry together in the same device.

There are no limitations imposed by the GROUP on the device
to use. In addition, other groups and ungrouped signals can fit in
the same device with this group.

6-14 Controlling the Fitting Process Using the .pi File

Using the GROUP construct
instead would specify that the
signals 0[0..6] and carry must fit
together into the same device.

Usin g Specific Devices

Scenario

You are prototyping a small design, and have several
reprogrammable P16V8As that you know that you want to use
during the debugging stage.

Solution

DEVICE
TARGET "PART_NUMBER AMD PALCE16V8H-10JC/4";
0[0..6];
carry;

END DEVICE;

The DEVICE construct specifies that no other groups can be fit
into the same device. This means that you can give device-
specific information in fixed groups. One kind of device-
specific information is the device to TARGET or fit this fixed
group into. Here, the target device is named by its
PART_NUMBER.

More Examples Using the .pi File 6-15

Maintainin g Pin Assi gnments

Scenario

You have an existing design in which you have changed some
logic and you want to refit the design into the same device. The
device is a P20V8 in a JLCC package, and you want to maintain
the pin assignments.

Solution

DEVICE
TARGET 'TEMPLATE P20V8 JLCC-28-P28';
INPUT clk:2, in1:3, in2:4, in3:5, in4:6;
outl:18, out2:19,0ut3:20, out4:21;
NO_CONNECT 7..13, 15, 22..27;

END DEVICE;

where, the target device is named by its TEMPLATE P20V8
and its footprint JLCC-28-P28.

A template is a device architecture and the footprint is a certain
pinout configuration consisting of three things:

« The type of package (e.g., DIP, SOIC, or JLCC).
« The number of pins in the package.

« The mapping of physical pins to logical, or virtual, pins.

Example

DIP-24-STD indicates a 24 pin DIP package with the standard
pinout mapping (pin 12 as ground and pin 24 as VCC). Most
parts use a standard pin mapping, abbreviated as STD. An
example of a hon-standard pin mapping is the 4.5ns P16L8 from
AMD, which uses extra power and ground pins in a 28-pin DIP.
The footprint for such a device is a DIP-28-A28.

Signals used as inputs to the device are marked with INPUT in
the.pi file. The signals in the fixed group are assigned to pins
by appending pin_name to the signal name, suchals?2

If device pins must be left free, use the NO_CONNECT
property. The pin names in the pin assignments and no-connect
pins are the actual physical pin names for the targeted device.

6-16 Controlling the Fitting Process Using the .pi File

Fittin g the Desi gn into One
Device

Scenario

You want to fit your entire design into one AMD
PAL16R6B4CJ.

Solution

DEVICE
TARGET 'PART_NUMBER AMD PAL16R6B4CJ';
DEFAULT,

END DEVICE;

The DEVICE specification is marked as the DEFAULT group.
The default group is the group that contains all the output signals
that you havenot mentioned elsewhere in thg file.

Specifying a default group is optional. Here, it provides a quick
way to put all the signals in the design into the same device. You
can also specify DEFAULT at the global level, outside of any
group or DEVICE specification. This means PLSyn will
automatically fit and partition all unmentioned signals.

More Examples Using the .pi File

6-17

Fittin g the Desi gn into Multiple
Devices

Scenario
You have a design that will take two AMD parts.

Solution

DEVICE
TARGET 'PART_NUMBER AMD PAL16R6B4CJ',

outl..outb;
END DEVICE;
DEVICE
TARGET 'PART_NUMBER AMD PAL16R6B4CJ';

out6..outl0;
END DEVICE;

Mixin g Automatic and Directed
Partitionin g

Scenario

Assume that your design is similar to the design of the last
example. However, it has several critical functions that you
want placed into fast PLDs.

Solution

DEVICE
TARGET 'PART_NUMBER AMD PAL16R6B4CJ';

outl..outb;
END DEVICE;

DEVICE
TARGET 'PART_NUMBER AMD PAL16R6B4CJ';

out6..outl0;
END DEVICE;

6-18 Controlling the Fitting Process Using the .pi File

Note

The contents of this .pi file are the same as the
previous example. In this case, nothing needs to
be said in the .pi file about the critical functions. If
you prioritize for speed during partitioning, PLSyn
will automatically find the fastest device or
combination of devices available that will fit the
critical functions.

More Examples Using the .pi File 6-19

Refittin g a Design into the Same
Footprint

Scenario

Your board is already in production, but a logic flaw indicates
that you have changed the logic implemented in your PLD. This
causes your design to outgrow the P20R8 you were using. You
need to refit the design into another architecture, but must keep
the pinout the same.

Solution

DEVICE
TARGET 'FOOTPRINT DIP-24-STD",
INPUT clkk:1, 0e:13, in1:2, in2:3, in3:4, in4:5;
INPUT in5:6, in6:7, in7:8, in8:9, in9:10, in10:11;
INPUT in11:14, in12:23;
outl:15, out2:16, out3:17, out4:18;
out5:19, out6:20, out7:21, out8:22;

END DEVICE;

The fixed group is targeted to FOOTPRINT DIP-24-STD.
Targeting a device to a footprint causes automatic device
selection and fitting across devices that match the footprint.
Depending on the form of the actual equations, there are up to
79 architectures that can potentially fit this example.

For this example, the P20R8 architecture and P312 architecture
in a DIP package both have the same footprint, so you can use
the P312 instead of the outgrown P20R8. The old pin
assignments are enforced, regardless of which architecture you
choose. This means that the board layout is preserved.

Note You can narrow the search by setting constraints
and priorities to optimize the fit for price, speed, or
other factors.

PLD Device-Specific Fittin ¢

Chapter Overview

This chapter describes how to control the fitting process for
specific PLD device architectures using the file.

Accessing Internal Points in a PLD Devioe page 7-2
describes the different kinds of internal nodes and how to
reference them in your .pi file.

Fitting Specific Device Architecturem page 7-1tescribes
control mechanisms for the 22V10, 750, 2500,P22V10I, P750B,
P2500B, P1800, P16V8HD, P22VP10, and P16VP10,
including:

« Handling synchronous preset

« Assigning combinatorial output during feedback
« Controlling clock source

« Controlling quadrant-based architectures

« Accessing the open-drain output

7-2 PLD Device-Specific Fitting

Accessin g Internal
Points in a PLD Device

To reference si gnals internal to a PLD device

1 Use the node name convention corresponding to the kind of
node: hidden/buried, shadow, unary.

This section describes the node types and naming conventions.
SeeTable 7-1 on page 7-@or a summary of the node naming
conventions that apply to specific PLD device architectures.

The Kinds of Nodes

Hidden nodes

A hidden node is a node that does not terminate in a physical pin
connection. Shadow and buried nodes are examples of hidden
nodes, typically used to hold functions used only within a
device.

Node signals are signals that you place on hidden nodes.
However, node signals are not restricted to hidden nodes; you
can also place them on visible pins.

Hidder

N N
- \

I
[

| |
| |
I I
I I
| |
| |
| |
I I
I I
| |
| |
I ’ I
I I
| |
| |
| |
=] I
T AT | — |
| |
| |
I I
I

Figure 7-1 Hidden Node

Accessing Internal Points in a PLD Device

7-3

Shadow nodes

You can create a shadow hidden node (known simply as a
shadow node or shadow) by disabling the output buffer of a
normal output macrocell. The shadow node terminates with the
internal feedback to the array, and is therefore not visible
outside the device as shown in Figure 7-2.

CE
cutpyt disabled
=GISTER

QUTRUT
PIN

Figure 7-2 Shadow Node

Buried nodes

A buried node is a hidden node where some external pin number
is associated.

7-4

PLD Device-Specific Fitting

Unary nodes

Unary nodes are nodes with a single input. Usually the node is
registered. There are two basic types of unaries. The most
common is a registered input pin, also called an input unary. A
second type is a clocked feedback path, called a feedback unary.

Input unar y
An input unary is a hidden unary in an input macrocell, i.e., a
clocked input pin, as shown in Figure 7-3.

Input Unary

INPUT
REGISTER

Figure 7-3 Input Unary

Feedback unar y

A feedback unary is a hidden unary path through the feedback
register of an output macrocell, as shown in Figure 7-4.

MACROCELL

110
PIN

FEEDB/—\CK‘
MUX

Figure 7-4 Feedback Unary

Accessing Internal Points in a PLD Device 7-5

To select a node or unar y path Note MACH devices use a
different naming convention.
For more information, see
Understanding Pin Naming

1 Inyour.pi file, use the label associated with the node or
unary using the following labeling convention:

hidden node NOD&# and Numbering on page 8-17.
unary node UNARY_OF##
buried node BURIED OR##

where##is the manufacturer-specified pin number in the primary
package, usually DIP.

Example

There are a large number of devices that have general-purpose
registers. This example shows how you can define DSL that
allows the fitter to take advantage of these general-purpose
registers.

The following DSL statements reflect a clocked input defined as
a unary node:

INPUT i_unclocked, clk;
NODE i CLOCKED_BY clk;

i =i_unclocked;

This approach provides certain advantages over a standard
clocked input.

« The design references both the clockédahd unclocked
(i_unclocked) versions of the signal.

» Reference the hidden node in thie file.

« Map this description into any device with a register.

7-6 PLD Device-Specific Fitting

Table 7-1 Node Descriptions and Labels by Device Architecture

Architecture Pin Description Pin Label
P16V8HD Input unaries UNARY_OF_2...UNARY_OF_9
Feedback unaries UNARY_OF_13..UNARY_OF 16

UNARY_OF_19..UNARY_OF_20
UNARY_OF_22..UNARY_OF_23

P204R Shadow nodes SHADOW_OF_12...SHADOW_OF _19
P23S8 Buried nodes BURIED_OF_13...BURIED_OF 18
P241R Shadow nodes SHADOW_OF_4...SHADOW_OF 9

SHADOW_OF_14...SHADOW_OF 23

P2500 Shadow nodes SHADOW_OF_4...SHADOW_OF_9
SHADOW_OF_11... SHADOW_OF 16
SHADOW_OF_24... SHADOW_OF 29
SHADOW_OF_31... SHADOW_OF_36

Buried nodes BURIED_OF 4...BURIED_OF 9
BURIED_OF_11...BURIED_OF 16
BURIED_OF_24...BURIED_OF 29
BURIED_OF_31...BURIED_OF 36

P29M16 Shadow nodes SHADOW_OF_3, SHADOW_OF 4
SHADOW_OF_9, SHADOW_OF_10
SHADOW_OF_15, SHADOW_OF_16
SHADOW_OF 21, SHADOW_OF 22

Input unaries UNARY_OF_3...UNARY_OF 10
UNARY_OF _15..UNARY_OF 22

P29MA16 Shadow nodes SHADOW_OF_3, SHADOW_OF 4
SHADOW_OF_9, SHADOW_OF 10
SHADOW_OF_15, SHADOW_OF_16
SHADOW_OF_21, SHADOW_OF_22

Input unaries UNARY_OF_3...UNARY_OF_10

UNARY_OF_15...UNARY_OF_22

P312 Input unaries UNARY_OF_3...UNARY_OF 10
Shadow nodes SHADOW_OF_2, SHADOW_OF_11

SHADOW_OF_14...SHADOW_OF 23

Accessing Internal Points in a PLD Device 7-7

Table 7-1

Node Descriptions and Labels by Device Architecturécontinued)

Architecture

Pin Description

Pin Label

P324

Shadow nodes

Input unaries

SHADOW_OF_4...SHADOW_OF_7
SHADOW_OF_9...SHADOW_OF_12
SHADOW_OF_14...SHADOW_OF 17
SHADOW_OF_24...SHADOW_OF 27
SHADOW_OF_29...SHADOW_OF 32
SHADOW_OF_34...SHADOW_OF 37

UNARY_OF_2, UNARY_OF_3
UNARY_OF_18...UNARY_OF_20
UNARY_OF 22, UNARY_OF 23
UNARY_OF_38...UNARY_OF_40

UNARY_OF 2, UNARY_OF_3
UNARY_OF_18...UNARY_OF_20
UNARY_OF 22, UNARY_OF 23
UNARY_OF_38...UNARY_OF_40

P332

Input unaries

Feedback unaries

UNARY_OF 1..UNARY_OF_7
UNARY_OF 9..UNARY_OF 14

UNARY_OF_15...UNARY_OF_20
UNARY_OF_23..UNARY_OF 28

P336/P337

Input unaries

UNARY_OF_1..UNARY_OF_6
UNARY_OF_9..UNARY_OF 14
UNARY_OF 9..UNARY_OF 14

P32VvX10

Shadow nodes

SHADOW_OF_14...SHADOW_OF 23

P448

Shadow nodes

SHADOW_OF _13
SHADOW_OF_15...SHADOW_OF 17
SHADOW_OF_19

SHADOW_OF_21...SHADOW_OF 23

P750

Buried nodes

Shadow nodes

BURIED_OF _14..BURIED_OF 23
SHADOW_OF_14...SHADOW_OF 23

S105

Hidden nodes

NODEZ29...NODE34

S167/S168

Hidden nodes

NODEZ25...NODE30

7-8 PLD Device-Specific Fitting

Table 7-1 Node Descriptions and Labels by Device Architecturécontinued)

Architecture Pin Description

Pin Label

S30S16 Input unaries
Hidden nodes
Shadow nodes

Shadow nodes

UNARY_OF 21..UNARY_OF 24
NODE29...NODE32
SHADOW_OF_8...SHADOW_OF_9
SHADOW_OF_15...SHADOW_OF_20

S405/S415 Hidden nodes NODE?29...NODE36
S506 Hidden nodes NODE25...NODE40
S507 Hidden nodes NODE25...NODE32

S6001/S6002 Hidden nodes

Shadow nodes

Input unaries

Feedback unaries

NODE25...NODE32

SHADOW_OF _14...SHADOW_OF 23

UNARY_OF 2..UNARY_OF 11
UNARY_OF 14..UNARY_OF 23

The architectures which have
unary nodes are the P16V8HD,
P29M16, P29MAL16, P312,
P324, P330, P331, P332,
S30S16, S6001, ATV5000, and
the MACH2xx parts.

For more information on the
MACH2xx parts, see Chapter 8,
MACH 1-4 Device-Specific
Fitting.

For more information on the
ATV5000 parts, see Chapter 10,

ATV5000 Device-Specific
Fitting.

Unary Nodes in the P330 and
P331

The P330 and P331 architectures have unusual types of hidden
unaries. In addition to the clocked input paths (input unaries),
they have clocked feedback paths in the output macrocells.
Neighboring macrocells can share the clocked feedback paths,
which can result in a large number of hidden paths.

In the P330 and P331, you can build two types of unaries with
these kinds of paths: local unary and shared unary

Accessing Internal Points in a PLD Device 7-9

Local unar y The local unary has a path through the
feedback multiplexer, as shown in Figure 7-5.

Local Unary

OuUTPUT
REGISTER

FEEDBACK

INPUT
REGISTER

1]

SHARED

:<]ﬂ‘——'—|%

Figure 7-5 P33x Local Unary

Shared unar y The shared unary has a path through a
shared multiplexer, as shown in Figure 7-6.

Shared Unary

QuTPUT
REGISTER

——) By

MUX

|
|
|
|
|
|
|
|
|
|
} FEEDBACK
|
|
|
|
|
|
|
|
|

INPUT
REGISTER

SHARED

:ﬂﬂgﬁ

Figure 7-6 P33x Shared Unary

7-10 PLD Device-Specific Fitting

To select a node or unar y path in a P330 or P331

1 Inyour.pi file, use the label associated with the node or
unary according to the following labeling convention:

hidden node NODE#
standard unary node UNARY_O##
local unary node LOCAL_OR#H#
shared unary node SHARED_QOFf
shadow node SHADOW_O+#

where## is the manufacturer-specified pin number in the
primary package, in this case, DIP.

Table 7-2 summarizes the node labels for the P330 and P331.
Table 7-2 Node Descriptions and Labels for P330 and P331

Architecture Pin Description

Pin Label

P330 Hidden nodes

Input unaries

Local feedback unaries

Shadow nodes

Shared feedback unaries

P331 Shadow nodes

Local feedback unaries

Shared feedback unaries

NODEZ29...NODE32

UNARY_OF 3..UNARY_OF_7
UNARY_OF 9..UNARY_OF_14

LOCAL_OF_15...LOCAL_OF_20
LOCAL_OF_23..LOCAL_OF_28

SHADOW_OF_15...SHADOW_OF_20
SHADOW_OF_23...SHADOW_OF_28

SHARED_OF _15...SHARED_OF_20
SHARED_OF 23..SHARED_OF 28

SHADOW_OF_15...SHADOW_OF_20
SHADOW_OF_23...SHADOW_OF 28

LOCAL_OF_15..LOCAL_OF_20
LOCAL_OF 23..LOCAL_OF 28

SHARED_OF _15...SHARED_OF_20
SHARED_OF 23..SHARED_OF 28

Fitting Specific Device Architectures 7-11

Fittin g Specific Device
Architectures

22V10, 750, and 2500: Handlin g
Synchronous Preset

PLSyn supports several device architectures that have a
synchronous reset. If PLSyn has DeMorganized the D equation
on a device, then the asynchronous reset is now an asynchronous
preset and the synchronous preset is a synchronous reset. Given
this anomaly and the priority PLSyn places on insuring the same
functionality for various implementations, PLSyn does not fit a
preset equation onto any synchronous preset.

In some architectures, however, you can still usedh@non set
(set or preset). A synchronous preset is like an extra AND row
input to the OR, but available only when the output is registered.

Usin g set and preset for the 22V10 and 750

For the 22V10 (which includes the P22V10, P22VP10, and
P22V10l) and the 750 (which includes the P750B), the
synchronous preset row is common to all macrocells in the
device.

To use set or preset in the 22V10 and 750
architectures

1 Use the COMMON_SET_PTERM property in yopi
file.

7-12 PLD Device-Specific Fitting

Example

SOURCE FILE

INPUT clk, resetl, reset2;
OUTPUT a[10] CLOCKED_BY clk;

IF (resetl*reset2) THEN
a=0;

ELSE
a=a.+. 1,

END IF;

PHYSICAL INFORMATION FILE

DEVICE
{COMMON_SET PTERM 'resetl*reset2"};
TARGET 'TEMPLATE P22VP10 DIP-24-STD';
a,

END DEVICE;

The common set PTERM issetl*reset2 . This term sets
the output low, so PLSyn automatically uses the DeMorgan to
meet this common set PTERM requirement.

Usin g set and preset for the 2500
The 2500 architecture (which includes the P2500) has eight

synchronous preset rows shared by 2 or 4 macrocells.
To use set or preset in the 2500 architecture
1 Usethe SET_PTERM property in yopi file.

If no pin assignments are given, PLSyn automatically
determines macrocell pairing to meet the SET_PTERM
requirements.

Fitting Specific Device Architectures 7-13

Example

SOURCE FILE

INPUT clk, resetl, reset2;
OUTPUT a[10] CLOCKED_BY clk;

IF (resetl*reset2) THEN
a=0;

ELSE
a=a.+. 1,

END IF;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'ATM ATV2500H-25DC";
a {SET_PTERM' resetl* reset2 ',

END DEVICE;

Note If you specify the pin numbers for macrocells that
share a synchronous preset term, all of the
macrocells must have the same SET_PTERM
requirements.

P22V10l: Assi gning
Combinatorial Output Durin g
Feedback

Using the P22V10I device, you can assign a combinatorial
output while feeding back a registered version of the signal.

To assi gn combinatorial lo gic to the P22V10I
architecture

1 Describe the DSL logic as follows:
« Assign the logic to an internal combinatorial node.

« Assign the internal combinatorial node to an internal
registered node.

7-14 PLD Device-Specific Fitting

« Assign the internal combinatorial node to a
combinatorial output. If needed, you can define this
output to have an output enable.

2 Inyour.pi file, attach the COM_OUT_REG_FB property
to the output signal.

Example

SOURCE FILE

INPUT clk, inl in2;

OUTPUT outl, out2;

PHYSICAL NODE before_feedback;
NODE after_feedback CLOCKED_BY clk;

before_feedback =in1;

outl = before_feedback;
after_feedback = before_feedback;
out2 = after_feedback * in2;

PHYSICAL INFORMATION FILE

DEVICE
TARGET ‘TEMPLATE P22V10I DIP-24-STD’;

"Force the Combinatorial
"Output/Registered Feedback mode
"using outl as the output and
"after_feedback as the

"registered feedback mode

outl {COMB_OUT_REG_FB after_feedback};
END DEVICE;

P750B AND P2500B: Controllin ¢
Clock Source

The Atmel P750B and P2500B architectures can provide the
clock for the registers from two locations:

« A dedicated clock pin.
e Arow in the fuse array.

Fitting Specific Device Architectures 7-15

To control the clock source for the P750B and
P2500B architectures

1 Adda CLOCKED_BY xxxproperty to the output or nodes
that you wish to control, in youpi file as follows:
CLOCKED_BY_PIN The register must be clocked by
the signal on the dedicated clock
pin.

CLOCKED_BY_ROW The register must be clocked by
the internal clock product term.

Note Do notuse the CLOCKED_BY PIN property when
the signal is clocked by an equation (for example,
CLOCKED_BY (a*b)).

Example

SOURCE FILE

INPUT clk, in1;
OUTPUT outl CLOCKED_BY clk;
outl =inl;

PHYSICAL INFORMATION FILE

DEVICE
TARGET ‘TEMPLATE P750B DIP-24-STD’;
outl {CLOCKED_BY_PIN};"Force the
"clock to come from the clock pin
END DEVICE;

Example

SOURCE FILE

INPUT clk, in1;
OUTPUT outl CLOCKED_BY clk;
outl =inl;

PHYSICAL INFORMATION FILE

DEVICE
TARGET ‘TEMPLATE P750B DIP-24-STD’;
outl {CLOCKED_BY_ROWs};"Force the clock
"to come from the product term
END DEVICE;

7-16 PLD Device-Specific Fitting

Note If you do not specify CLOCKED_BY_PIN or
CLOCKED_BY_ROW, the fitter will attempt to us
CLOCKED_BY_PIN first, then will try to use
CLOCK_BY_ROW.

P1800: Controllin g Quadrant-
Based Architectures

The P1800 device architecture is different from other PLDs
because it haguadrants Within a quadrant, local macrocells

and the pre-enable feedback of global macrocells feed only the
same quadrant and do not feed the other three quadrants (the
input pins and the post-enable feedback of the global macrocells
feed the entire device.)

Assi gning pins and nodes

You can assign a signal to a pin in much the same way as any
other device using thei file. Unless it is in a SECTION, an
OUTPUT in a P1800 DEVICE must have a pin assignment. An
output signal without a pin assignment is ambiguous since the
fitter needs to know (at a minimum) the quadrant you want.

Table 7-2lists the sixteen shadow nodes in the P1800
architecture which can accept node signal assignments.

Table 7-3 Node Descriptions and Labels for P1800

Pin Pin
Architect Descripti Label
ure on
P1800 Shadow SHADOW_OF_10...SHADOW_OF 13

SHADOW_OF_23...SHADOW_OF 26
SHADOW_OF_44...SHADOW_OF 47
SHADOW_OF_57...SHADOW_OF 60

As you make pin or node assignments, be aware of the
requirements imposed by the quadrants of the P1800. For
example, if signal x needs signal y, and signal x is assigned to a
local macrocell output pin, then y must be fit in the same
quadrant or the signal x must be brought in on a global input pin.

Fitting Specific Device Architectures 7-17

Subgroups: Tar geting quadrants

To indicate a tar get quadrant in a P1800 device

1 Use the SECTION construct in yopi file.

You can target the SECTION to any one of the four quadrants,
labeled A, B, C, and D (the target string should contain the word
quadrant followed by the quadrant letter (for example,
TARGET ‘Quadrant B’;). You can include OUTPUTS

without pin assignments in the SECTION construct.

Example
DEVICE
TARGET 'TEMPLATE P1800 JLCC-68-STD";
SECTION
TARGET 'Quadrant A';
a:3; " Place aon pin 3
" of quadrant A
END SECTION;
b:34, c:SHADOW_OF_44;
" b on pin 34,
" ¢ on pin 44's shadow
SECTION
TARGET 'Quadrant D';
di, " Place d1 ANYWHERE
"in quadrant D.
d2:57; " d2 goes on pin 57
" of quadrant D.
END SECTION;
END DEVICE;

P16V8HD, P22VP10, and
P16VP10: Accessin g the Open-
Drain Output

The P16V8HD, P22VP10, and P16VP10 architectures support
open-drain outputs. Unlike normal totem-pole outputs, an open-
drain output only drives y. Whereas Y, is driven on a totem-
pole output, nothing is driven from an open-drain output. The

7-18 PLD Device-Specific Fitting

voltage level of an open-drain output depends on external
loading and pull-up circuitry.

In your.pi file, you can direct outputs to be open drain by
attaching the OPEN_DRAIN property to the output signals,
provided those outputs support open drain.

To express this functionality, the enable equation of an output
(in this case x) must be of the form:

| internal_name_for x * enable_equation

This means that the output is enabled only if the data is low and
the enable equation is true. The vakhternal_name_for_is

any signal just prior to the enable buffer of the output on the
device. The enable equation is independent of the open-drain
functionality.

PLSyn provides a function that you can use to create open-drain
output signals of the proper form:

FUNCTION open_drain(d, oe);
NODE out ENABLED_BY /d*oe;
out = d;
return out;

END open_drain;

Example

SOURCE FILE

USE 'dfeature’;

LOW_TRUE INPUT oe;

INPUT i, j, clk;

NODE 1_x CLOCKED_BY clk;
OUTPUT x;

i X =10

X = open_drain(i_x, oe);
PHYSICAL INFORMATION FILE

DEVICE

TARGET ‘PART_NUMBER amd PALCD16V8HD-15PC’;
x {OPEN_DRAIN};

END DEVICE;

Once an output is in the proper form for an open-drain
configuration, the simulator can simulate the functionality

Fitting Specific Device Architectures 7-19

correctly and test vectors sent to the device programmer are also
be correct.

PLSyn generates two enable equations:
« open-drain capable devices
- all other devices

In the example given above, the enable equation for open-drain
outputs ine, and the enable equation for other outputs is
i_x*oe . To maintain device independence, you can fit an
output onto parts without the open-drain capability at the cost of
increased enable equation complexity. Consider timing and
parametric design issues independently of PLSyn’s open-drain
synthesis capability.

You can also use the open-drain function to aid in the design of
buses.

Example

SOURCE FILE
USE 'dfeature’;

" Declare the inputs
INPUT input_bus1[4];
INPUT input_bus2[4];
INPUT clk;

" Declare the two buses and the

" associated wired bus

NODE internal_bus1[4] CLOCKED_BY clk;
NODE internal_bus2[4] CLOCKED_BY clk;
OUTPUT bus1[4];

OUTPUT bus2[4];

WIRED_BUS combined_bus[4] : bus1, bus2;

" Declare an output that will refer to
" the wired bus
OUTPUT and_all;

" Make assignments to the two buses
internal_busl = input_bus1;
internal_bus2 = input_bus2;

7-20 PLD Device-Specific Fitting

" Declare each bus to have

" open-drain outputs

bus1[0] = open_drain (internal_bus1[0], 1);
bus1[1] = open_drain (internal_bus1[1], 1);
bus1[2] = open_drain (internal_bus1[2], 1);
bus1[3] = open_drain (internal_bus1[3], 1);
bus2[0] = open_drain (internal_bus2[0], 1);
bus2[1] = open_drain (internal_bus2[1], 1);
bus2[2] = open_drain (internal_bus2[2], 1);
bus2[3] = open_drain (internal_bus2[3], 1);

" Reference the wired bus and_all =
" combined_bus[0]*combined_bus[1]*
" combined_bus[2]*combined_busJ[3];

PHYSICAL INFORMATION FILE

bus2 {OPEN_DRAIN ;
bus1 {OPEN_DRAIN };

MACH 1-4 Device-Specific
Fittin g

Chapter Overview

This chapter describes how to control the fitting process for
specific MACH 1-4 device architectures. Topics include:

« When to design with MACH devicepgage8-2

« Summary of MACH device properties, pag8
« Tips and device detailpages3-10through8-49
» The report filepage8-52

See Appendix CAMD MACH Device Tablefor detailed
information on:

« Device-specific pin names

« Fuse commands for forcing outputs to be driven

8-2 MACH 1-4 Device-Specific Fitting

For additional device-specific
information, refer to the MACH
Family Data Book from AMD.

See Chapter 6, Controlling the
Fitting Process Using the .pi
File and the PIL Referencén
PLSyn online help for more
information on the .pi file.

For more information, see The
MACH Report Fileon

page 8-52

Designing with MACH
Devices

MACH devices, summarized ifable 8-1 on page 8-3are
handled like any other PLD with full support for automatic
device selection and patrtitioning. As with PLDs, you can also
control implementation using thgi file.

When You Have Fittin g Problems

If your design fails to fit, there are several tools to help you find
the problem(s). These include the:

« Log file
» Report file

Using the lo g file

The PLSyn fitter generates the log fileg) every time it runs.
The log file is thdirst place to look when you have fitting
problems.

If a fitting run fails, the log file contains information that
explains why the design did not fit. If you are using group and
pin assignments in thei file, the log file contains any
messages regarding the validity of these assignments.

Using the report file

When you specify a MACH device in th@ file, the PLSyn
fitter generates a device-specific report fitgt()., whether the
fitter succeeds in fitting or not. If the fitter fails, the report file
contains valuable information that shows which resources
presented the most problems in fitting. Use this information to
help you decide how to change the design orgihefile to

make the design fit easier.

Summary of MACH Devices 8-3

Summary of MACH
Devices

Table 8-1summarizes the properties of MACH devices.
Table 8-1 MACH Device Properties

Device zin SBlk 'I:r\wrgii/ II\D/It?r(ms OMCs BMCs g‘gg; Isnput Clks
MACH 110 44 2 22 12 32 0 0 4 2
MACH 210 44 4 22 16 32 32 0 4 2
MACH 215 44 4 22 12 32 0 32 6 2+32
MACH 120 68 4 26 12 48 0 0 4 4
MACH 220 68 8 26 16 48 48 0 4 4
MACH 130 84 4 26 12 64 0 0 2 4
MACH 230 84 8 26 16 64 64 0 2 4
MACH 435 84 8 33 20 64 64 64 2 4+128
MACH 465 208 16 34 20 128 128 128 14 4+256

*. For speed values, see the MACH Family Data Book from AMD.

Output Enable Functions

MACH 1xx These devices have 12 or 16 outputs per block.
There are two OE PTERMs for the top half of the block, and two
OE PTERMs for the bottom half of the block. Each output
selects its OE from either of the two available PTERMs or a
constantl orO.

MACH 2xx These devices have 6 or 8 outputs per block.
There are two OE PTERMSs per PAL block. Each output
selects its OE from either of the two available PTERMs or a
constant: 1 or 0.

8-4 MACH 1-4 Device-Specific Fitting

MACH 215, MACH 4xx These devices have one OE
PTERM per output. You can program them independently as
0, or any product of signals in the block.

Register Reset/Preset Functions

MACH 1xx, MACH 2xx These devices have one reset
and one preset in each block. The reset and preset apply to all
registers in the block.

Note Note, a registered function without a reset (or
preset) is the same as RESET_BY 0. This will not
fit in the same block with other functions with non-
zZero reset expressions.

MACH 215 This device has a reset and preset PTERM for
each output register. The input registers do not have reset
capabilities.

MACH 4xx These devices have one reset and one preset in
each block. These apply to the macrocells but not to the input
registers. The macrocells have an asynchronous option which
allows for a local reseir preset, but not both, for individual
functions.

Packaging

All like pin-count packages are pin compatible. For example,
when a MACH 110 design exceeds the capacity of the device,
you can generally substitute a MACH 210.

Using Standard Clock Functions 8-5

Using Standard Clock
FunCtIOnS Note For all MACH devices,

the clock signals are also

signal inputs to the switch
MACH 1xx, MACH 2xx: S ynchronous Clock matrix. You can route these to
Functions the blocks.

These devices support pin clock only.

MACH 215, 3xx, 4xx: As ynchronous Clock

Functions

Although both the MACH 215 and MACH 4xx support If your design needs a clock
asynchronous functions, some functions or groups of functiorwhich is more complex, you can
fit only in the MACH 215. These are: define a clock using a complex

. logic function. See Using
« Functions that are clocked by a PTERM and have areset acomplex Clock Functionsn

preset. page 8-6

« Groups of functions that have more than eight distinct pairs
of reset and preset equations.

MACH 215 This device supports pin clock or clock by
PTERM.

You can clock the output macrocells by:

e pin 13, or

- alocal PTERM, or

« the inverse of either of those signals.
You can clock the input registers by:

e pin 13, or

e pin 35, or

- the inverse of either of those signals.

8-6 MACH 1-4 Device-Specific Fitting

See device manufacturer
literature for specifics.

MACH 3xx and 4xx These devices support clock by pin
or clock by PTERM. You can set the pin clock mode from:

- any of four clock pins, or
- the inverse of those signals.

Not all possible clock signal and inverse combinations are
available in a given block.

Using Complex Clock
Functions

When a design requires a clock expression that can’t be
implemented directly in the clock resources of a MACH device,
you can place the clock logic in a separate NODE or OUTPUT.
The PLSyn fitter automatically wires the function to the clock
resources of the device.

MACH 1 and 2 You can use the complex clock output in
the MACH 1 & 2 families either internally or externally as the
clock. The only exception is if the MACH 215 clock pin is
unavailable. Then PLSyn routes the clock signal to the PAL
blocks where it is needed and connects it using the clock
PTERM.

MACH 3 and 4 You can use a function generated in the
MACH 3 & 4 families either internally or externally as the
clock. The PLSyn fitter defaults to using the clock signal
internally to save the pins used in external routing. To prevent
the clock from taking an 1/O pin, you can declare the clock
function to be a node.

If you need the faster timing provided by an external clock pin
connection, simply place the clock signal on a clock pin in the
pi file.

Using Complex Clock Functions 8-7

Example

The following source file can fit into any MACH device.
input i;
input c1, ¢2;
output ck;

output a clocked_by ck;
a=1,

Clock Limitations

« The synchronous MACH parts (MACH 1x0 and MACH
2x0) can only be clocked by pin.

e The synchronous MACH parts (MACH 215 and MACH 3
& 4 families) can clock by a single PTERM, and can invert
clock signals in most cases.

In either case, the PLSyn fitter allows you to generate and useNote This costs some extra
more complex clock than the part supports directly. For delay.

example, you can use the sum of two or more PTERMSs, or a

single PTERM on an asynchronous part.

To use a more complex clock than the part
supports

1 Create an output node with a data equation that is the clock
function you want generated.

2 Use the output node as the clock signal.

8-8 MACH 1-4 Device-Specific Fitting

Implementin g Hazard-
Free Combinatorial
Latches

You may need to implement combinatorial latches in MACH
devices. A combinatorial latch is a simple combinatorial
function in which the output is derived from inputs and
feedbacks. A seemingly correct latch design can be subject to
hazard conditions that might cause latch failure. By inserting
redundancy into the latch equation, you can protect against
hazard conditions.

Basic Latch Circuit

The basic transparent DLatch expression looks like the
following:
INPUT Data;
INPUT LatchEnable;
NODE DLatch;
DLatch = LatchEnable * Data
+ /LatchEnable * DLatch;

Creatin g a Hazard-Free Latch

A Karnaugh map reveals that it is possible to lose data when the
LatchEnable goes from 1 to 0 while asserting Data.

To create a latch that protects a gainstlosin g data

1 Add a Cover Term to the DLATCH equation by
encapsulating the combinatorial latch function in a DSL
procedure.

2 Add the NO_REDUCE option to the output to prevent
PLSyn from reducing out the Cover Term.

Specifying Reserve Capacity

8-9

The procedure to do this is as follows:

PROCEDURE DLatch(INPUT Data, LatchEnable;
OUTPUT DLatchOut NO_REDUCE);
DLatchOut = LatchEnable * Data
+ /LatchEnable * DLatchOut
+ Data * DLatchOut; "Cover Term

END Dlatch;

Specifying Reserve
Capacity

There are two reasons to reserve resources in a device:

Allow for expansion of logic.

Simplify and speed up the fitting process. Simply put, it is
easier to place and route a solution at 80% utilization than at
100% utilization. If design iteration speed is more important
than density (for example, you're early in the design cycle),
set the utilization factor to a lower value.

To specif y the amount of reserve capacit y to
leave available in a device

1

Use the MACH_UTILIZATION property in youmpi file
using the syntax

{MACH_UTILIZATION percent };

where % is the percentage of device resources to be used.
The range of values is 0 to 100.

This affects the use of pins, PTERMs, and macrocells. PLSyn
distributes the unused resources throughout the device.

8-10 MACH 1-4 Device-Specific Fitting

Although in MACH devices there
is no timing advantage to placing
signals in the same PAL block,
doing so may make PCB layout
easier by keeping related signals
together.

Targeting PAL Blocks

You can specify which nodes, outputs and biputs you want
placed together in the same PAL block. There are two ways to
do this:

- Signal groups

» Device sections

Usin g Signal Groups

Use this method if you don’t care whether PLSyn fits one signal
group into thesamePAL block as another signal group.

To group si gnals into a PAL block.

In your.pi file, use the GROUP property inside of a DEVICE
construct.

Example

SOURCE FILE

INPUT i[8];

OUTPUT ogroupl[8];
OUTPUT ogroup2[8];
ogroupl =i;

ogroup2 =i;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH110-15JC

GROUP
ogroupl; "all ogroupl signals will
"go into the
END GROUP; "same PAL block

Targeting PAL Blocks 8-11

GROUP
ogroupz; "all ogroup2 signals
"may or may not
END GROUP; "also go into ogroupl's
"PAL block
END DEVICE;

Usin g Device Sections

Use this method if you want PLSyn to:

» restrict the set of signals in each device sectiordifferent

PAL block, and/or

- targetthe signals in a device section to a specific PAL block.

To fit all si gnals in a device section into one PAL
block.

In your.pi file, use the SECTION property inside of a
DEVICE construct.

Totar getthe si gnalsin a section to a specific PAL
block

Use the TARGET property in yousi file of the form
TARGET ' pal _block name ;

Table 8-2lists the names of the PAL blocks for the MACH
family.

Table 8-2 MACH PAL Block

Architecture PAL Block

Name
MACH110 A..B
MACH120 A..D
MACH130 A..D
MACH210 A..D
MACH211 A..D
MACH211sp A..D
MACH215 A..D
MACH220/221 A..H
MACH230/231sp A..H
MACHA435 A..H
MACH465 A..P
MACHS5xx A..D

Names

Note MACH 5 devices have
4 PAL blocks (A-D) for each
segment. The number of
segments varies with specific
devices in the M5 family.

8-12

MACH 1-4 Device-Specific Fitting

Example
SOURCE FILE

INPUT i[8];
OUTPUT ogroupl[8];
OUTPUT ogroup2[8];

ogroupl =1i;
ogroup2 =1i;
PHYSICAL INFORMATION FILE
DEVICE
TARGET 'PART_NUMBER AMD MACH110-15JC";
SECTION
TARGET 'A’;
ogroupl; "all ogroupl signals
"will go into PAL
"block A
END SECTION;
SECTION
TARGET 'B;
ogroup2; "all ogroup?2 signals
"will go into PAL
"block B
END SECTION,;

END DEVICE;

Constraining the Size of Combinatorial Nodes 8-13

Constrainin g the Size of
Combinatorial Nodes

You can constrain the size of combinatorial nodes PLSyn
collapses during the optimization process, thereby affecting how
the logic fits into MACH devices.

To constrain the size of combinatorial nodes

Use the MAX_PTERMS property in yoysi file using the
syntax:

{MAX_PTERMSp};

wherep is the maximum number of PTERMSs to which the
optimizer can collapse.

The PLSyn optimizer collapses combinatorial nodes up to a size
specified by MAX_PTERMS.

Makin g Adjustments

If the value is low, then PLSyn typically implements the design
as a larger number of smaller equations. This makes placement
easier because smaller functions do not place demand on the
PTERM allocation mechanism. However, more smaller
functions can require more routing resources and can require
more overall macrocell logic.

At the other end, fewer larger functions can ease the routing
requirements, but be harder to place because the demand for
PTERMSs can cause conflicts when attempting to place functions
together in a PAL block.

8-14 MACH 1-4 Device-Specific Fitting

Table 8-3shows the minimum and maximum number of
PTERMs along with a suggested value. For optimal fitting, you
should try a number of values to determine the best value for a
given design.

Table 8-3 Minimum and Maximum Number of PTERMS

Minimum Maximum Suggested
Famil Number of Number of Number of
y PTERMs per PTERMs per PTERMSs per
Output Output Output
MACH 1XX 4 12 8
MACH 2XX 4 16 8 or 12
MACH 435 5 20 10 or 15

*. Will vary with the design.

Using higher MAX_PTERMS generall y results in
» More node collapsing

e Larger functions

- Faster implementation

« May increase routing requirements

Using lower MAX_PTERMS generally results in
» Less node collapsing

« Smaller functions

« Slower implementation

- May increase routing requirements

To see the exact effect of chan ging the optimizin g
parameters

1 Open thedoc file after optimizing and check the number
of nodes. The number of nodes generally goes down as the
MAX_PTERMS parameter goes up.

Constraining the Size of Combinatorial Nodes 8-15

Note You can use any optimization property (for For exact usage, see the PIL
example MAX_PTERMS or MAX_SYMBOLS) in Referencen PLSyn online help.
GROUPs, SECTIONS, or with any individual
signals.

Optimizin g MACH 4xx Devices
Using MAX_XOR_PTERMS

In addition to the MAX_PTERMS property, you can adjust Note The MACH 1xx/2xx
MAX_XOR_PTERMS for MACH 4xx devices. The devices do not support XOR.
MAX_XOR_PTERMS value is typically one less than the

MAX_PTERMS value to allow for the single PTERM which is

placed on the XOR row.

The following table shows suggested values for
MAX_XOR_PTERMS and MAX_PTERMS.

Larger < Smaller

Property Faster <« Slower
MAX_XOR_PTERMS 19 14 9 4
MAX_PTERMS 20 15 10 5

A Few Considerations AN

» Either High or Low MAX_PTERMS can cause greater
routing demand.

« Lower MAX_PTERMS can produce more internal nodes
which PLSyn must route to the equations where they are
used.

« Higher MAX_PTERMS allow PLSyn to collapse a node
into multiple equations. This results in placing the signals
needed to generate the node in multiple places.
Furthermore, large equations can require PLSyn to route a
large number of signals into the block where the equation is
placed, producing a locally high routing demand.

8-16 MACH 1-4 Device-Specific Fitting

For more information, refertothe - OQther Opt|m|Z|n g Parameters

PIL Referencén PLSyn online

help. Other optimizing parameters suitable for MACH devices are
listed below with suggested values.

For the MACH 4xx

MAX_PTERMS 10
MAX_XOR_PTERMS 9
MACH_UTILIZATION 100
MAX_SYMBOLS 20
POLARITY_CONTROL TRUE
XOR_POLARITY_CONTROL TRUE

For MACH 1xx/2xx devices

MAX_PTERMS 8
MACH_UTILIZATION 100
MAX_SYMBOLS 20
POLARITY_CONTROL TRUE

Note Within this range of suitable parameters there are
trade-offs on equation size and speed.

Understanding Pin Naming and Numbering 8-17

Understandin g Pin
Naming and Numberin g

In the MACH family, you can assign signals to pins and internal

nodes:
Physical pins input pins
input-clock pins
input/output pins
Internal nodes shadow node For more description of the
buried node internal node types, see
Accessing Internal Points in a
unary node PLD Device on page 7-2.
However, note that MACH
To reference MACH device pins devices reference internal nodes
)) differently than other kinds of
1 Use the following notations: PLDs.
MACROCELLX## physical pins
shadow node
buried node
IN_REG_X## unary node
whereX is the PAL block ID and# is the macrocell
number.

The macrocells and input registers are sequentially numbered
through the device in the same order as the macrocell names
(AO0O - H15). Depending on the device and PAL block, these
numbers are sequenced in either the same order as the
neighboring physical pin numbers, or reverse order.

For a list of device-specific pin names and numbers, see
Appendix C, AMD MACH Device Tables

8-18 MACH 1-4 Device-Specific Fitting

Using a shadow node rather than
a biput pin allows the physical
pin and its pin feedback path to
be used as an input.

For more information on using
unary nodes in MACH devices,
see MACH 2xx, 4xx: Using

Input Registersn page 8-23

Using the MACROCELL__ X## notation

For physical pins A physical pin (input, input-clock, or
input/output) connects to either an input or biput macrocell.
Reference physical pins by the block ID and pin number in the
package diagram found in your data book.

For buried nodes Aburied node is a macrocell within the
device which cannot be connected to an 1/O pin. In the MACH
2xx parts, these are the odd numbered macrocells.

For shadow nodes Shadow nodes are biput macrocells
that, when disconnected from an 1/O pin, are treated as a buried
node with the pin as an input. In the MACH 1xx and 2xx parts,
all I/0 pins have corresponding shadow nodes.

Using the IN_REG_X## notation

TheIN_REG_XjH# notation is reserved for unary nodes. Most
often they are input registers. In the MACH 215 and MAQK 4
input registers are available on all I/O pins.

Achieving Satisfactory Pinouts 8-19

Achievin g Satisfactor y
Pinouts

The general approach is to first fit the design unconstrained to
prove that there is a solution; then mold that solution into a
pinout that meets the board layout requirements.

To achieve acceptable pinouts

1 Generate an unconstrained solution: run the PLSyn fitter
and fuse map generator to producergi file.

Copy thennpi file to the.pi file.
In the.pi file, strip the pin assignments.
Take out the NO_CONNECT information.

Use the GROUP statement to control which sets of signallt may help to sort the .pi file first
you want to fit together in localized or sequential pins. to get signals with like names
together, since they often are
grouped together.

aa b~ W DN

Note Leave the INPUT signals for later. Not every

function must be in & group. See Using Signal Groupsn

The.pi file will look similar to this: page 8-1GFor more information.

DEVICE
TARGET 'PART_NUMBER AMD MACH130-15JC",

INPUT B20M;
INPUT NACKIO;
INPUT NACKIZ,;

TXC;

GROUP
COL1;
CRS1;

END GROUP;

GROUP
CcoLz;
CRS2;

END GROUP;

8-20 MACH 1-4 Device-Specific Fitting

See Table 8-2 on page 8-1for 9
the names of the PAL blocks.

See Using Device Sectionsn

page 8-1%or information on how

to use the SECTION and

TARGET properties.

Reminder: If you have outputs in
different PAL blocks that must be
adjacent, you can have them
either:

* span the boundary of
adjacent PAL blocks, or

e wrap-around between the last
PAL block and the first.

GROUP
NACKOOQ;
NACKO1,;
NACKO?2;

END GROUP;

END DEVICE;

Run the PLSyn fitter on the groupgd file to see which
groups go best with other groups (for example, similar
signal, OE, and RESET requirements).

If this fails to fit, check the log file to find the group which
violates the constraints of a PAL block, and either:

- dissolve the group, or
- divide it into two groups.

When PLSyn successfully completes the fit, copy the new
.npi file to a.pi file and make that your curremi file.

If it is necessary to swap the contents between two PAL
blocks, then target the PAL blocks.

a Refer to a pinout table for the device and determine
where the PAL block divisions occur.

b Divide the currentpi file into PAL block groups
using the SECTION construct with TARGET
statements. (Save the inputs for later.)

c Strip the pin numbers and reassign the groups as
required.

Achieving Satisfactory Pinouts 8-21

The.pi file will look like this:

DEVICE
TARGET 'PART_NUMBER AMD MACH130-15JC";

INPUT B20M;
INPUT NACKIO;
INPUT NACKIZ,

TXC;

SECTION
TARGET A’
NACKOO;
NACKO1,;
NACKOZ2;

END SECTION,;

SECTION
TARGET 'B';
COL1;
CRS1;
COoL2;
CRS2;

END SECTION;

EN.I5 DEVICE;
d Run the PLSyn fitter.

e If the fit fails, consult the log file and make adjustments
as required. One thing you can try is to rotate the PAL
block assignments (Ato B, Bto C, ... Hto A).

f Repeat stepg ande until the PAL block assignments
are satisfactory.

10 Copy thennpi file to a newpi file.

8-22 MACH 1-4 Device-Specific Fitting

11 Find suitable pin assignments within the PAL blocks.

a Add comments to thei file to show where the PAL
block’s limits are.

The intent here is to handle b Separate all of the inputs and strip off their pin numbers.
inputs last. Since inputs have

only routing constraints, fitting Be sure, however, to leave room for sequential

them last leaves more assignments of input groups. You might find it helpful
possibilities for the to leave biputs available adjacent to the dedicated input
programmable logic functions pins so that input groups can fit across dedicated inputs
which have routing, PTERM and onto the biputs. Remember that clock signals must
allocation, and control function go on clock/input pins.

traints. . .
constraints c Strip the pin numbers off of one PAL block.

d Pick one group of signals and assign it the desired pin
assignment.

e Run the PLSyn fitter.
f Ifitfails, be sure to check the log file. Try the following:
» Shift the signals by one pin.

« Try walking an unassigned pin through the
group.

* Tryassigning the other pins, and see where the
group ends up.

g When you finish one PAL block, repeat steps c-f for the
next PAL block.

MACH 2xx, 4xx: Using Input Registers 8-23

MACH 2xx, 4xx: Usin ¢
Input Re gisters

The MACH 2xx and 4xx devices can register signals between
the 1/0O pin and the switch matrix. The MACH 215 and MACH
4xx have a dedicated register for each I/O pin. The other MACH
2xx devices use the buried macrocell adjacent to the pin to
perform the registration.

The PLSyn fitter attempts to use these input registers as often as
possible because their use saves both routing resources and
propagation delay.

Understandin g Input Re gister For a list of pin names, see
Pln Names Appendix C, AMD MACH

Device Tables

The MACH 4xx and MACH 215 have dedicated hardware for
the input register function. These are called unary pins because
they support a function of exactly one signal. The naming
convention for these pinsilis_REG_XiHf whereX is the PAL

block ID andi# is the macrocell number.

To register the pin signal in the MACH 2x0 devices, the signal
is routed through the adjacent buried register. This effectively
takes one buried register macrocell and reduces the number of
nodes which the part can fit internally.

The MACH 2x0 devices register 1/O pin signals on nodes names
MACROCELLY{HF whereX is the block ID and is the
macrocell number.

Note Assigning a signal to that pin is not enough to force
use of the input register mode. The assignment is
ambiguous and PLSyn interprets it as an internal
node assignment.

8-24 MACH 1-4 Device-Specific Fitting

With conventional routing, the

input goes into the switch matrix
and is brought to the PAL block
array, then fit as any other node

MACH 2xx and 4xx Compared

The MACH 4xx devices have separate input register resources.
Because this simplifies the fitting of unary functions, these
assignments are simple and direct. You can assign manually any
unary function tdN_REG_X{Hf, or let the PLSyn fitter do this
automatically. The MACH 4xx is also able to automatically use
these resources to register the feedback of an output function.

The MACH 215 does have separate hardware for input registers,
but because of its general architecture, the PLSyn fitter handles
it as it would MACH 1xx/2xx devices, sharing the same
restrictions.

Input Re gistration

The input register configuration has several advantages over
conventional routing:

« It saves one PAL block input and four PTERMs needed to
generate the function in the standard configuration.

- Italso saves propagation time of one pass through the array
for the signal generated.

In PLSyn, there iso INPUT CLOCKED_BY construct, so the
fitter look for nodes that have a single signal as the D equation.
These areinaryfunctions because they are functions of one
signal. Whenever possible, the PLSyn fitter automatically fits
unaries in input registers.

If you are using the MACH 2xx, you might need to detect, force,
or prevent use of input registers for any given signal.

Example

The following source generates the unary-compatible function
u.

INPUT i, ui, clk;

NODE u CLOCKED_BY clk;
OUTPUT o;

u=ui

o=u*i

MACH 2xx, 4xx: Using Input Registers

8-25

Findin g Signals Fit as Unar vy

To detect signals which have been fit as unaries, you must
inspect the Signal Directory section of report file. Check the
number of clusters used for each function. A function with zero
clusters has been fit as a unary.

Example

Continuing with the example shown in the previous section, the
functionu is fit as a unary as shown in this excerpt from its

report file:

Signal Source PalBlk Pal

Name Type Clusters Block
Inputs

Oi Input Al12

1 ui Input

2 clk Input

3u DFF Hidden AO Al8

40 Cmb Internal Al

8-26 MACH 1-4 Device-Specific Fitting

Forcin g a Function to be Fit as
Unary

To force a function to be fit as unary, the function must meet all
of the following conditions:

« Must be a NODE, not an OUTPUT
« Must have a single signal data equation
e Must be a DFF, TFF, or DLATCH equation

« Must conform to the reset and preset equation of the PAL
block

To force the function into the input re gister
1 Inyour.pi file, place the input signal on an I/O pin.

2 Place the function on the adjacent buried macrocell.

Example

Continuing with the example shown in the previous section, the
following PIL statements use the input register configuration to
register the signal ui to form the function u which goes into the
switch matrix:

DEVICE
TARGET 'PART_NUMBER AMD MACH210-12JC";
INPUT ui :4;
u :MACROCELL_AO05;

END DEVICE;

Preventin g a Function from
Being Fit as Unary

To prevent a function from bein g fitas a unar y

1 Fix either the input or the function signal to a pin.

The pin can be the same pin which PLSyn previously fit as a
unary. Given that one but not both signals is fixed is sufficient
to prevent the unary configuration.

Preserving Pinouts when Refitting 8-27

Preservin g Pinouts
when Refittin g

This section describes how to refit your design by:

» Setting up your design with the intention of refitting before
you ever start the physical implementation process.

« Using one of the following two methodsfig the pinouts
when refitting your design:

« Create atwo-levepi file fromthe.npi file by adding
PAL block SECTIONSs within a DEVICE construct

(page8-29).
» Float nodesgage8-34).

Plan for Refittin g

Before you start the first fitting, follow these design guidelines
to ensure the greatest success when refitting:

- Target a device using the DEVICE construct in.fhie file.
« Keep utilization low; below 70%.
» Keep pinout options open as long as possible.

- Don'trelease board layout after the first successful fit, since
the design might change and changes may not refit the way
the original design was fit.

» As much as possible, try to work with what the PLSyn fitter
prefers to do, especially in terms of partitioning into PAL
blocks, rather than forcing a specific pinout.

8-28 MACH 1-4 Device-Specific Fitting

Before you apply this method,
you must run a fit (which
automatically generates a .npi
file) and generate a fuse map.

Method 1: Creatin g a Two-Level
.pi File

This method preserves the PAL block partitioning of the
programmable logic while giving the PLSyn fitter the freedom
to move buried logic within a PAL block, but not from one PAL
block to another. Outputs and inputs remain fixed to specific
pins of the device.

To create the two level .pi file

1 After completing the first fitting, copyles i gn_name.npi
to design_name.pi

2 Inthe.pi file, move all inputs to the top (or bottom) of the
file. Do not change or delete any of the pin assignments.

3 Set up two, four, or eight SECTIONS, depending on
the device, within the DEVICE construct.

4 Segregate all outputs and nodes into sections
according to which PAL block they were originally fit
into.

5 Preserve pinassignments for different types of devices
as follows:

e For MACH 2xx parts, check thept file (Signal
Directory section) for nodes fit using zero clusters.
Preserve these pin assignments; PLSyn fits these nodes
with input registers.

» For MACH 435, preserve pin assignments to
IN_REG_X{H}; these are input register assignments.

6 Drop the pin assignment on nodes which have been fit on I/
O pins and are not required on another device.

The.doc file lists all nodes, and also provides a wire list
which shows which nodes are wired to another device.

7 Except as indicated in steps 4 and 5, drop all pin
assignments for buried logic, and preserve all pin
assignments for I/O pins.

8 Rerun the PLSyn fitter. If the design fits successfully, you
have a repeatable solution.

Preserving Pinouts when Refitting 8-29

Example

Suppose you have fit a design into a MACH 230. The report file
contains the following lines in the Signal Directory section
showing thatif reg[1l] anddf reg[2] are fit on input

registers:
Signal Source PalBIk Pal Block
Name Type Clusters Inputs
68 df_reg|[2] DFF Hidden AO Al13
69 df_reg[1] DFF Hidden AO Al2

Notice that, for routing purposes, PLSyn placed node
df_reg[0] onapin since the signal is not needed outside of the
device.

The.npi file looks like this:

DEVICE
TARGET 'PART_NUMBER AMD MACH230-15JC";

dout[19]:3;
dout[6]:4;
dout[5]:5;
dout[2]:6;

INPUT dflags[1]:7;
INPUT dflags[2]:8;
dout[1]:9;

INPUT dflags[0]:12;
INPUT din[0]:13;
INPUT din[10]:14;
INPUT din[2]:15;
frame:16;

INPUT delay[4]:17;
INPUT rst:18;
INPUT new_con:19;
INPUT clk:20;
INPUT din[18]:23;
dout[9]:24;
dout[8]:25;
dout[4]:26;
dout[3]:27;

INPUT din[4]:29;
INPUT din[17]:33;
INPUT tx_en:34;

8-30 MACH 1-4 Device-Specific Fitting

INPUT din[15]:35;

INPUT delay[0]:36;

INPUT din[16]:37;

INPUT din[11]:38;

INPUT ef0:39;

INPUT phase:40;

INPUT delay[5]:41;
dout[18]:45;

INPUT delay[2]:46;

INPUT din[9]:47;

INPUT delay[3]:48;

INPUT din[5]:49;

INPUT din[1]:50;

INPUT din[14]:51;

INPUT din[19]:52;
dout[17]:54;

INPUT delay[1]:55;
dout[14]:56;

dout[11]:57;

dout[7]:58;

INPUT din[3]:65;
dout[16]:66;

dout[15]:67;

INPUT din[12]:68;

INPUT din[8]:69;
dout[12]:70;

INPUT din[7]:71;
fifo_ren:72;

df reg[0]:75;

INPUT ef1:76;

INPUT din[6]:77;
dout[13]:78;

dout[10]:79;

dout[0]:80;

INPUT din[13]:83;
df_reg[1]:MACROCELL_A13;
df_reg[2]:MACROCELL_A15;
sO:MACROCELL_BO0O;
s2:MACROCELL_BO02;
dent[0]:MACROCELL_BO04;
s1:MACROCELL_B10;
dval:MACROCELL_B12;
dent[2):MACROCELL_DOS5;
dcnt[4):MACROCELL_DO0S8;
prep_done:MACROCELL_D10;

Preserving Pinouts when Refitting 8-31

dent[5]:MACROCELL_D14;
dent[3]:MACROCELL_E11;
dent[1]:MACROCELL_G10;
dv_IvI0:MACROCELL_HO05;
dv_IVIL1:MACROCELL_H12;

END DEVICE;

The newpi

this:

file (a modified version of thapi

.pi file

DEVICE
TARGET 'PART_NUMBER AMD MACH230-15JC';

INPUT dflags[1]:7;
INPUT dflags[2]:8;
INPUT dflags[0]:12;
INPUT din[0]:13;
INPUT din[10]:14;
INPUT din[2]:15;
INPUT delay[4]:17;
INPUT rst:18;
INPUT new_con:19;
INPUT clk:20;
INPUT din[18]:23;
INPUT din[4]:29;
INPUT din[17]:33;
INPUT tx_en:34;
INPUT din[15]:35;
INPUT delay[0]:36;
INPUT din[16]:37;
INPUT din[11]:38;
INPUT ef0:39;
INPUT phase:40;
INPUT delay[5]:41;
INPUT delay[2]:46;
INPUT din[9]:47;
INPUT delay[3]:48;
INPUT din[5]:49;
INPUT din[1]:50;
INPUT din[14]:51;
INPUT din[19]:52;
INPUT delay[1]:55;
INPUT din[3]:65;
INPUT din[12]:68;
INPUT din[8]:69;

file) looks like

8-32 MACH 1-4 Device-Specific Fitting

INPUT din[7]:71,;
INPUT ef1:76;
INPUT din[6]:77;
INPUT din[13]:83;

SECTION
dout[19]:3;
dout[6]:4;
dout[5]:5;
dout[2]:6;
dout[1]:9;
df_reg[1]:MACROCELL_A13; "Part of input
"register assignment
df_reg[2]:MACROCELL_A15; "Part of input
"register assignment
END SECTION;

SECTION
frame:16;
sO; ":"MACROCELL_BO00;
s2; ""MACROCELL_B02;
dcnt [0]; ":MACROCELL_BO04;
sl; ":"MACROCELL_B10;
dval; ""MACROCELL_B12;
END SECTION;

SECTION
dout[9]:24;
dout[8]:25;
dout[4]:26;
dout[3]:27;

END SECTION;

SECTION

dent[2]; ":MACROCELL_DOS5;
dent[4]; ":MACROCELL_DO0S;
prep_done; ":"MACROCELL_D10;

dent[5]; ":MACROCELL_D14;
END SECTION;

SECTION

dout[18]:45;

dent[3]; ":MACROCELL_E11;
END SECTION;

SECTION

dout[17]:54;
dout[14]:56;
dout[11]:57;

Preserving Pinouts when Refitting 8-33

dout[7]:58;
END SECTION;

SECTION

dout[16]:66;

dout[15]:67;

dout[12]:70;

fifo_ren:72;

dent[1]; "MACROCELL_G10;
END SECTION;

SECTION

df_reg[0]; ":75; This is a node
"on a pin

dout[13]:78;
dout[10]:79;
dout[0]:80;
dv_Ivl0o; ":MACROCELL_HO5;
dv_Ivll; "MACROCELL_H12;

END SECTION;

END DEVICE;

8-34 MACH 1-4 Device-Specific Fitting

Before you apply this method,
you must run a fit (so thata . np1
file exists) and generate a fuse
map.

Method 2: Floatin g Nodes

Another way to release nodes from their pin assignments, while
keeping them in the PAL block to which they were assigned is

to specifically float the nodes.

To
1

float the nodes when refittin g

After completing a fitting, copy:
design_namenpi todesign_name.pi

In the.pi
form:

{ FLOAT NODES};

Place the statement so that it applies globally to all devices.

Example

Note For clarity, some of the
constructs normally found in
the .npi file have been
eliminated.

SOURCE FILE

INPUT i1;

INPUT clk, oe;

NODE nl1..n2 CLOCKED_BY clk;
OUTPUT 01 ENABLED_BY oe;
nl-il;

n2 = nl;

ol =n2;

PHYSICAL INFORMATION FILE
{FLOAT_NODES};

DEVICE
TARGET 'PART_NUMBER AMD MACH110-20/BXA";
ol:2;
INPUT clk:13;
INPUT o0e:32;
INPUT i1:33;
ni:SHADOW_OF_16; "ni will be fit in
"PAL block A
"but not necessarily
"on nodeSHADOW_OF_16
END DEVICE;

file, use the FLOAT_NODES property of the

When Fitting into One Device Fails 8-35

When Fittin g into One
Device Falls

When your design fails to fit into a single MACH device, there
are two ways to approach debugging the problem:

» Force the design into one device using the default signal
reference in thepi file.

- Partition the design between two devices and analyze the@* Partitioning

result. Option
% Required

Usin g the “Default” Si gnal
Reference

It would seem that setting the Max Devices constraint to one For more information on Max
should force PLSyn to fit the design into one device. HowevelDevices and setting constraints,
this actually tells the PLSyn fitter tquit after one device is see Constraining Devices on
filled. This means that when there is a failure, there is very litt|P2g9€ 5-18.

diagnostic information available in the log and report files.

To force the entire desi gn into one part and
obtain a report file

1 Use the default signal reference in a DEVICE statement in
your.pi file. The default reference is the same as naming
all signals in the design not mentioned elsewhere ipthe
file.

Example

The following PIL fits the design into a single MACH 210
device.

DEVICE
TARGET 'part_number AMD MACH210-15JC";
default;

END DEVICE;

8-36 MACH 1-4 Device-Specific Fitting

N 7
/@\

When you do this, the design might fit the first time. If it does
not, look at the log and report files for valuable information
about why PLSyn could not fit the circuit.

What you can find out in the lo g file
The log file (log) can tell you things like:

» Your design exceeds device limits such as RESET/PRESET
constraints. You might need to adjust the design to the limits
of the device, or use another part or parts with greater
resources.

« The PLSyn fitter did not find a suitable partition. You
should check the report file for details.

What you can find out in the report file
The report file pt) can tell you things like:

e The best partition PLSyn could produce and why it is not
valid for the device.

« The PLSyn patrtitioner succeeded assigning functions to
PAL blocks, but the PLSyn fitter failed placing and routing
the design.

Based on the progress and problems written to the report file,
you need to use thpi file to:

- adjust the design and/or
- adjust the implementation specification.

In general, look for resources which are in high utilization. If
macrocells are in high demand, more node collapsing can
relieve the problem. If PTERMs are in high demand, you might
try extracting some common factors into a common node.

When Fitting into One Device Fails 8-37

Using a Second Device Dl Partitioning

— | i Sption
Another approach to a difficult fitting problem is to allow the B Required
design to overflow into a second device, and then see which
functions the PLSyn fitter leaves out of the first device.

If you generate fusemaps for the two-device solution, you can
use thenpi file to work one or two functions back into the first
device.

To work functions back into the tar get device

1 Copythenpi fileto a newpi file.

2 Move the functions assigned to the second device and
include them in the DEVICE statement for the first device
but without any pin assignments.

If that does not work, try the following: \@,

* Node collapsing.

« Factoring to allow room for the left out functions.
Considering a larger device.

8-38 MACH 1-4 Device-Specific Fitting

Accessin g the MACH
Internal Feedback Path

In MACH devices, outputs without an output enable can feed
back into the device through two paths:

« Directly from the pin. The is callguin feedbacland may or
may not bond-out to a physical pin.

« Directly from the macrocell. This is called macrocell
feedback.

?D—Dﬂw

Programmable
Polarity

Macrocell Pin
Feedback Feedback

-

To Array g

To Array

These paths are functionally equivalent, but the pin feedback
can be slower that the macrocell feedback. By default, PLSyn
routes signals using the pin-feedback path.

To use the macrocell-feedback path for one
signal

1 Inyour.pi file, attach the FORCE_INTERNAL_ FB
property to the appropriate signal.

To use the macrocell-feedback on all si gnals in
the device

1 Include the FORCE_INTERNAL_FB property in the
DEVICE specification.

Accessing the MACH Internal Feedback Path

8-39

Example

This example shows the PIL that forces signal to follow
the macrocell (internal) feedback path instead of the pin
feedback path.

SOURCE FILE

INPUT a, b, c;
OUTPUT outl CLOCKD_BY clk;
OUTPUT out2;

outl =a*b;
out2 = outl * c;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH465-15KC";
outl {FORCE_INTERNAL_FB}; "Use the
"macrocell feedback
DEFAULT;
END DEVICE;

Example

This example shows the PIL that specifies that all signals in the
device should use the macrocell (internal) feedback path instead
of the pin feedback path.

SOURCE FILE

INPUT a, b, c;
OUTPUT outl CLOCKD_BY clk;
OUTPUT out2;

outl =a*b;;
out2 = outl * c;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH465-15KC";
{FORCE_INTERNAL_FB};"Use the macrocell
"feedback for all signals in the
"device
DEFAULT,;
END DEVICE;

8-40 MACH 1-4 Device-Specific Fitting

MACH 215, 4xx: Fittin g
Asynchronous
Functions

Both the MACH 215 and MACH 4xx devices support
asynchronous functions, but they have different capabilities.
Some functions, or groups of functions, suitable for the MACH
215 will not fit in the MACH 4xx.

PTERM Clock and RESET and
PRESET

When the clock expression is a product term (PTERM), a device
requires both RESEAndPRESET in its equation. An equation
such as this requires the device to run in asynchronous mode.

However, a MACH 4xx device can have either asynchronous
RESETor PRESET, but not both. This means that functions of
this type can only fit in the MACH 215 (which allows both
asynchronous PRESENdRESET) using the following
construct:

OUTPUT 01 CLOCKED_BY (clk1 * clk2) RESET_BY reset
PRESET_BY preset;

More Than One RESET/PRESET
Pair per PAL Block

In the MACH 4xx, any function which has both a RESET and
PRESET expression must use the block resources for reset and
preset. If a design has more than eight different pairs of RESET
and PRESET equations, it cannot fit in one MACH 4xx, but may
fitin one MACH 215.

The following set of functions can only fit in a MACH 215:

MACH 4xx: Using XOR T-Equations 8-41

OUTPUT 01 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_1;
OUTPUT 02 CLOCKED_BY ck RESET BY reset PRESET BY pre_2;
OUTPUT 03 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_3;
OUTPUT 04 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_4;
OUTPUT 05 CLOCKED_BY ck RESET _BY reset PRESET BY pre_5;
OUTPUT 06 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_6;
OUTPUT 07 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_7;
OUTPUT 08 CLOCKED_BY ck RESET _BY reset PRESET BY pre_8;
OUTPUT 09 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_9;

MACH 4xx: Usin g XOR

T-Equations

If you are fitting an XOR T-equation that is greater than 20
PTERMSs, you need to insert a node between the equation and
the T-register. This rule also applies to a function that requires
both a TFF register and an XOR equation because the PLSyn
compiler expands the XOR equation into a T-equation which

can be greater than 20 PTERMs.

Example

This design will not fit due to equation 02.T expanding to 24

PTERMSs.

INPUT clk;

INPUT i1, 2,3, i4, i5

INPUT 1, j2, 3, 4, i5;

T_FLOP OUTPUT 01 CLOCKED_BY clk;
T_FLOP OUTPUT 02 CLOCKED_BY clk;

0LT=il(+) ([2+[2+[3+j4*]5);
02.T = (I1*1) (+) (1242 + 343 + 44 + I55);

If rewritten with a node for the T-equation, it fits because the
combinatorial equation does not need to be expanded.

INPUT clk;

INPUT i1, i2, i3, i4, i5;

INPUT j1, j2,j3, j4, j5;

T_FLOP OUTPUT 01 CLOCKED_BY clk;
T_FLOP OUTPUT 02 CLOCKED_BY clk;
NODE n;

OLT =il () (2+j2+j3 +j4*5);

8-42 MACH 1-4 Device-Specific Fitting

n = (i141) (+) (i2%2 + i3%3 + i4*j4 + i5%5);
02.T=n;

MACH 4xx: Controllin g
Asynchronous Mode

You can manually control the implementation of functions with
asynchronous clocking using the asynchronous macrocell
features of the MACH 4xx.

Because asynchronous fitting can be a resource and timing cost,
the PLSyn fitter opts for synchronous mode wherever possible.
However, if by doing so PAL blocks are underutilized or the
solution requires extra devices, PLSyn opts for asynchronous
mode.

When using asynchronous mode, the PLSyn fitter selects the
block reset and preset, and the block clock signals so as to
minimize the number of macrocells that are fit.

Since the macrocell local-reset PTERM and the shared PAL
block reset and preset PTERMs are generated in the PAL block
array, there is no timing penalty for using the asynchronous
mode reset. However, you might need more control over
selecting the functions that use asynchronous clocking. The
difference in timing between the pin clock and an array
PTERM-generated clock signal can be of overriding
importance.

To control which functions are clocked
asynchronousl y

1 Group and select the signals that you want placed on the
clock pins.

MACH 4xx: Controlling T-Flop Synthesis

8-43

MACH 4xx: Controllin g
T-Flop Synthesis

For some equations, the T-flop might have a smaller equation,
but slightly greater delay. For speed-sensitive circuits, you can
use D-flops exclusively instead because the XOR in the MACH
4xx provides for relatively efficient implementation of T-
equations using the D register.

Normal Operation

Unless otherwise directed, PLSyn fits the smallest equation of
D, T, or XOR, or their complements.

DFF-Only Fittin g

To use DFF equations onl y

1 Design the circuit in terms of DFF equations. If you do not
reference T_FLOP or other register types, PLSyn will
generate DFF equations by default.

2 Torestrict the design to fitting only DFF equations, include
the statement:

{ FF_SYNTH OFF}
in the.pi file.

Depending on where you place the statement, this option can
apply to specific signals, or to the entire device or design.

8-44 MACH 1-4 Device-Specific Fitting

Usin g the T-Equation

If a given function is most easily expressed using an equation for
toggle operation, then the D equation is the XOR of that
equation and the register output.

If (T) defines the toggle equation of function F, then the direct
TFF expression of that function in DSL is:

T_FLOP OUTPUT F CLOCKED_BY clk ...;
F=();

while the DFF equivalent function is:

OUTPUT F CLOCKED_BY clk ...;
F=() () F;

MACH 4xx: Controllin ¢
Power-On Reset

The MACH 4xx has a built-in power-on reset feature that sets
all registers to a known state when power is applied to the part.
This section discusses how you can determine the state of the
registers, and the steps you can take to manage the power-on
feature.

What Is a Lo gical Reset?

DSL defines the termesetin a device-independent way. To
reseta signal means to put the signal in the unasserted state. A
HIGH_TRUE signal goes to the low-voltage state when it is
reset. If the signal is a LOW_TRUE sense, then a reset causes
the signal to go to the high voltage state. In both cases, the signal
is in its unasserted condition. This ikgical reset.

MACH 4xx: Controlling Power-On Reset 8-45

The Nominal Case

Most applications of the MACH 4xx performagical reset on
power-up. Registered signals go to the unasserted state.

Exception Cases

For each signal that violates the power-on logical reset, PLSyn
flags the entry in the Signal Directory section of the report file
with the stringRS_SWAPThese signals receive a logical preset
at power-on.

A violation can be caused by one of two things:

Macrocells in asynchronous mode that have a preset PLSyn flags functions which are

equation perform a power-on logical preset. fit using an asynchronous
. . L macrocell with the string ASYNC
A function performs a power-on logical preset if it is fit on i, ihe Signal Directory section of

a macrocell in a PAL block where its reset and preset are the report file.
out-of-phasewith the majority of functions in the PAL

block. Out-of-phase means that a function’s reset and preset
equations are identical to the PAL block preset and reset

equations, respectively.

To prevent the out-of-phase condition

1 Manually partition your design.

This allows PLSyn to fit a function with a preset equation fit in
an asynchronous macrocell into a synchronous macrocell if the
function is not inherently asynchronous (that is, if it does not
have a clock which is a product of multiple signals).

8-46 MACH 1-4 Device-Specific Fitting

MACH 230 and 435:
Possible Pin
Incompatibilit y Between

In rare cases, designs that fit in a MACH 230 are not pin-
compatible with the MACH 435. This only happens when you
are using both registers and latches in the same PAL block using
pins 20 and 22, or pins 62 and 65 for the clock and latch enable
signals.

This is due to the change in latch implementation between the
MACH 1 and 2 families and the MACH 3 and 4 families. In the
MACH 1 and 2 case, latches arensparent lonandlatched

high. In the MACH 435, this sense is reversed to provide the
more common functionality dfansparent highlatched low

This is seldom a problem in the MACH 435 since it can select
clock polarity. Not all combinations of clock polarities for all
clock pins are available within a single PAL block. This means
that a problem can arise when porting a design with clocks and
registers in the same block using clock pins from the same clock
pair.

The clock pins are paired internally as CLKO (pin 20) and CLK1
(pin 22), and as CLK2 (pin 62) and CLK3 (pin 65). Within each
PAL block, the MACH 435 can select a clock polarity
configuration (from each pair) that allows:

« both clocks TRUE,
« both clocks inverted, or
« both phases of one of the clock pair.

A given PAL block cannot select the true sense of one clock of
the pair and the inverted sense of the other.

Example

Consider a MACH 230 design with a register and latch in the
same PAL block. Assume that the register is clocked by one
clock pin of a pair and the latch is enabled by the other pin of the
pair. Differences between the latches of the MACH 230 and the

MACH 445 and 465: Configuring for Zero-Hold Time

8-47

MACH 435 mean that the MACH 435 must invert the latch
enable to achieve the same functionality. This also means that
the PAL block needs exactly the same clock polarity. It can’t
have true sense of one pair member and inverted sense of the
other.

If one of the functions is a node, you can move it to another [57=<7
block. You can also force one of the clocks to be asynchronou }@
(clocking by PTERM row) by using an internal node to produc
the clock signal.

MACH 445 and 465:
Configurin g for Zero-
Hold Time

The MACH 445 and MACH 465 have an option to insert a delay

between the I/O pins and the input registers in the device. This
increases the setup time for the input registers and reduces the
hold time for these registers to zero.

To set the hold time on the input re gisters

1 Usethe MACH_ZERO_HOLD_INPUT property in the
DEVICE construct of youmpi file.

Example

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH465-15KC";
{MACH_ZERO_HOLD_INPUT};"Set all input
registers to zero hold time

DEFAULT,
END DEVICE;

Assigning the MACH_ZERO_HOLD_INPUT property to a
device configures all of the input registers for zero-hold time.

8-48 MACH 1-4 Device-Specific Fitting

MACH 445 and 465:
Accessin g Signature

Bits

The MACH 445 and MACH 465 devices have a 32-bit field that

you can use to hold user data. This field is called the Signature
Bits, or USERCODE, field.

To place data in the USERCODE field

1 Inyour.pi file, use the SIGNATURE property in the
DEVICE section with the syntax:

{SIGNATURE data };

wheredatais a string of up to four characters (enclosed in
single quotes) or a 32-bit signed integer.

Example
PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH465-15KC";

{SIGNATURE 'test};

DEFAULT,
END DEVICE;

MACH 1xx and 2xx: Driving or Floating Unused Outputs 8-49

MACH 1xx and 2xx:
Drivin g or Floatin g
Unused Outputs

For MACH 1xx and 2xx devices, you can drive or float I/O pins
that do not have input or output signals attached, depending on
whether the associated macrocell (shadow pin) is in use. If you
place a hidden function in the macrocell, the pin goes to the high
impedance ofloating state. If you do not use the macrocell, the
pin goes to a driven state with a constant value.

Note This does not apply to the MACH 435 because
these outputs have built-in pull-ups on the outputs,
providing a default input when left unconnected.

Forcin g OUtpUtS Driven For a list of fuse assignment
statements that assert the tri-
TO force an Output to be drlven state enable for unused pinS in

all MACH devices, see
1 Assign all outputs to pins so that the unused pins are knowAppendix C, AMD MACH
Device Tables

2 Inyour.pi file, place fuse statements with the syntax

INTACT fuse #
BLOWNfuse #

to modify the implementation.

After placing a node on the corresponding shadow pin, its signal
is present on the pin. Otherwise, the pin asserts either high or
low depending on how other unused internal resources are
dispensed.

8-50 MACH 1-4 Device-Specific Fitting

Use the fuse statements in
Appendix C, AMD MACH
Device Tables to configure
floating outputs. Just replace the
BLOWN keyword with INTACT.

Example

An examplepi file looks like this with outputs on pins
2-9 and intent to assert the OE on pins 14 to 21.

DEVICE TARGET 'PART_NUMBER AMD MACH110-15JC";

01:2; 02:3; 03:4; 04:5;
05:6; 06:7; 07:8; 08:9;

"Assert OFE on remaining outputs

INTACT 6230 ;
INTACT 6238 ;
INTACT 6246 ;
INTACT 6254 ;
; BLOWN
INTACT 6270 ;
INTACT 6278 ;
INTACT 6286 ;

INTACT 6262

END DEVICE;

BLOWN
BLOWN
BLOWN
BLOWN

BLOWN
BLOWN
BLOWN

6231 ;"
6239 ;
6247 ;
6255 ;
6263 ;
6271 ;
6279 ;
6287 ;

" Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

14
15:
16:
17:
18:
19:
20:
21:

Forcin g Outputs Floatin ¢

To force an output to float
1 Assign all outputs to pins so that the unused pins are known.

2 Inyour.pi file, place fuse statements with the syntax:

INTACT fuse #
INTACT fuse #

to modify the implementation.

When placing a node on the corresponding shadow pin, its
signal is present on the pin. Otherwise, the pin asserts either high
or low depending on how other unused internal resources are

dispensed.

MACH 1xx and 2xx: Driving or Floating Unused Outputs 8-51

Example

An examplepi file would look like this with outputs on pins
2-9 and intent to float the OE on pins 14 to 21.

DEVICE TARGET 'PART_NUMBER AMD MACH110-15JC"';
0l:2; 02:3; 03:4; 04:5;
0b5:6; 06:7; 07:8; 08:9;

"Float OFE on remaining outputs

INTACT 6230 ; INTACT 6231 ; " Pin 14:
INTACT 6238 ; INTACT 6239 ; " Pin 1b:
INTACT 6246 ; INTACT 6247 ; " Pin 16:
INTACT 6254 ; INTACT 6255 ; " Pin 17:
INTACT 6262 ; INTACT 6263 ; " Pin 18:
INTACT 6270 ; INTACT 6271 ; " Pin 19:
INTACT 6278 ; INTACT 6279 ; " Pin 20:
INTACT 6286 ; INTACT 6287 ; " Pin 21:

END DEVICE;

8-52 MACH 1-4 Device-Specific Fitting

The MACH Report File

The PLSyn fitter writes a complete description of a fitted
MACH device showing:

« Resource utilization
« All signal and routing information

» Full placement details including internal nodes

Obtainin g a Report File

PLSyn creates a report file when fitting for targeted MACH
devices; not during automatic device selection and partitioning.

To obtain a MACH report file on the first fittin g
Either:

« Use the DEVICE and TARGET properties in ygoir file
using the syntax:

DEVICE TARGET 'part_number amd part #';
END DEVICE;

in the simplest case.

» Put empty DEVICE constructs into yopi file. This
forces a report file while allowing the program the complete
freedom to partition the design.

Example

The following PIL partitions a design into two MACH110’s and
produces a report for each device.

DEVICE TARGET 'PART_NUMBER AMD MACHI10-15JC";
END DEVICE ;

DEVICE TARGET 'PART_NUMBER AMD MACHI110-15JC";
END DEVICE ;

The MACH Report File 8-53

To obtain a MACH report file when usin g
automatic partitionin g

1 Run the PLSyn fitter the first time.
2 Copythenpi fileto anewpi file.
3 Runthe PLSyn fitter the second time using the péwfile.

Contents of the Report File

The report file contains device-specific fitting information about
the internal resources of the MACH device. It shows exactly
which macrocells and routing paths each signal uses.

The report file is not a replacement for the documentation
(.doc) file. It does not list the equations for any given function,
or give a simple pinout diagram. It gives in depth information
that the documentation file does not provide.

The report file serves two purposes:

+ When the design fits, it describes the specific placement and
routing of the solution.

« If a design fails to fit, it provides information to help you
understand why the fit attempt failed, how far the fitting
proceeded, and what aspect of the fitting caused problems.

For MACH 1xx and 2xx devices, the report file format is
slightly different from that for the MACH 3xx and 4xx devices.
However, the report file has the same sections of information as
summarized here and described in greater detail in the
remainder of this chapter.

Failure Disclaimers I the design fails when partitioning
or during place-and-route, PLSyn writes a disclaimer
immediately following the heading. This alerts you that the
design did not fit successfully and to the possibility that
information might be missing or inconsistent.

8-54 MACH 1-4 Device-Specific Fitting

Summary Statistics Summarizes the number of inputs,
nodes, and outputs for your design by PAL block.

Device Resource Utilization Reports utilization
statistics for the different resource types for each device and its
PAL blocks.

Partitioner Report ~ Shows how the design is partitioned
into PAL blocks.

Clock Assi gnments Shows which pin clocks are used in
which PAL blocks for MACH 3xx and 4xx devices.

Signal Director y Lists all inputs, outputs, and nodes on
the device with specific assignment information for each signal.

Resource Assi gnment Map Shows device details (in
physical order by pin and macrocell) and which signals use
which resources.

Failure Disclaimers

If the design fails when partitioning or during place-and-route,
PLSyn writes a disclaimer immediately following the heading.
This alerts you that the design did not fit successfully and to the
possibility that information might be missing or inconsistent.

There are different disclaimers depending on where the fitting
failed and the device type that PLSyn attempted to fit.

If a MACH 435 or MACH 1xx or 2xx device desi gn

fails when partitionin g

The following disclaimer is printed:
FAILURE-TO-PARTITION DISCLAIMER:

The following partitioner reports show the
last failed attempts to partition the

The MACH Report File 8-55

design. Partitions which violate device
limits are indicated. Also, if there are
more Block partitions than blocks in the
device, the partition will fail.

Because of different fitting algorithms for the two MACH
families, MACH 1 and 2 family devices have a different fit
disclaimer from MACH 3 and 4 family devices.

If a MACH 1xx or 2xx famil y device fails when
fittin g
The following disclaimer is printed:

FAILURE-TO-FIT DISCLAIMER:

The following report represents the final
status of a failed fit attempt. The report

is accurate but incomplete. It indicates
which signals were not placed or routed.
In the 'SIGNAL DIRECTORY' signal lines
preceded by '-' represent signals which
could not be placed. Founts ending in '--'
represent signals which could not be
routed.

process proceeded before PLSyn gave up. The un-routed and|”,
unplaced signals should point to the cause of the fitting
problems. To achieve a fit, try modifying the design or manually
direct the partitioner.

The Signal Directory information indicates how far the fitting \@,

8-56 MACH 1-4 Device-Specific Fitting

If a MACH 4xx desi gn fails when fittin g

The following disclaimer is printed:
FAILURE-TO-FIT DISCLAIMER:

The following report represents the final
status of a failed fit attempt. The

'SUMMARY STATISTICS', 'RESOURCE
UTILIZATION', and 'CLOCK ASSIGNMENTS'
sections are accurate. The 'SIGNAL
DIRECTORY' is accurate except for pin and
macrocell designations. The RESOURCE
ASSIGNMENT MAP may have missing or
redundant signals and conflicting resource
assignments.

S This disclaimer includes statistics showing which resource
@ proved most troublesome during the fit operation. Use this
information to decide how to modify your design before
attempting another fit.

Example

The relative conflict levels for each resource type listed here,
indicate the reason for failure when fitting:

Pins 3
Input Regs 0
Macrocells 0
PTERMSs 352
Feedbacks 0
Fanouts 0

The PTERMSs value of 352 indicates that the PLSyn fitter had
trouble assigning product terms.

Summary Statistics

This section summarizes the number of inputs, nodes, and
outputs for your design by PAL block and how many functions
per block. Because the MACH 3 and 4 families have more ways
to fit a function, the PLSyn fitter provides more statistics for
these designs.

The MACH Report File 8-57

Sample: MACH 1xx and 2xx statistics

5 Inputs

0 Registered/Latched Inputs
11 Outputs

0 Tri-states

0 Nodes

Functions by block (8, 3,0,0)

Sample: MACH 3xx and 4xx statistics

4 Inputs

0 Outputs
32 Tri-states
0 Nodes

Functions by block

D Register Macrocells

T Register Macrocells

D Latch Macrocells
Combinatorial Macrocells
D Input Registers

D Input Latches

Xor Equations
Asynchronous Equations
Single-PTERM Equations
Total PTERMs Required

(4,4,4,4,4,4,4,4)
2
26

The sum total of Outputs, Tri-
states, and Nodes should equal
the total Functions by block and
the total of the Macrocells and
Input Registers/Latch statistics.
The numbers for Xor Equations
on down are not mutually
exclusive nor should they match
the total number of functions.

8-58 MACH 1-4 Device-Specific Fitting

Device Resource Utilization

This section provides utilization statistics for the resource types
of each device and its PAL blocks. The section is broken into
two parts:

» Global resource utilization statistics.
« Resource statistics for each PAL block.

The statistics for the MACH 1 and 2 families are slightly
different to those for the MACH 3 and 4 families. These
examples show the global statistics and one PAL block statistic
set for each device family.

Sample: MACH 1xx and 2xx resource statistics

Resource Available Used Remaining %
Clocks: 2 1 1 50
Pins: 38 35 3 92
Input Lines: 88 72 16 81
1/0 Macro: 32 16 16 50
Total Macro: 64 48 16 75
PTERMS: 256 48 64 75
PAL_BLOCK A

Input Lines: 22 18 4 81
1/0 Macro: 8 4 4 50
Total Macro: 16 12 4 75

PTERMs: 64 12 16 75

The MACH Report File

8-59

Sample: MACH 3xx and 4xx resource statistics

Resource
Clocks:
Pins:

Input Regs: 64

Macrocells: 128

PTERMSs:
Feedbacks:

Fanouts:

PAL_BLOCK A

Blk Clocks: 4

I/O Pins:

Input Regs: 8

Macrocells: 16
PTERMS:
Feedbacks:
Fanouts: 33

264

Available Used Remaining %
1 3 25
67 3 95
0 64 0
96 32
314 326 49
125 67 65
161 103 60
1 3 25
8 0 100
0 8 0
12 4 75
42 38 52
16 8 66
18 15 54

The resource utilization statistics are defined as follows:

Clocks

Pins

Input Lines
I/0 Macro
Total Macro
I/O Pins
Input Re gs
Macrocells
Pterms
Feedbacks
Fanouts

Blk Clocks

Clock pins used for clock signals

Input and 1/O pins used in any capacity
Array inputs

Output macrocells

Output and buried macrocells

Number of bonded-out pin feedbacks
Macrocells used as input registers
Macrocells without output/buried distinction
AND array rows used in equation generation
Inputs to the Switch Matrix

Inputs to the AND Arrays

Number of selectable clock lines for each
block

8-60 MACH 1-4 Device-Specific Fitting

Partitioner Report

This section shows how the functions (outputs and nodes) are
partitioned into PAL blocks including:

« Which signals must be routed to the PAL block to generate
the functions assigned to the block.

- How many unique clocks, enables, and register set/reset
equations the assigned functions require.

Clock Assi gnments

Note Inthe MACH 3 and 4 The Clock Assignments sections is specific to the MACH 3 and
families, the clock signals can 4 families, and shows:
vary from one PAL block to

which clocks are required in which PAL blocks, and
another.

« which phase (true or inverted) is needed.

The Clock Assignments section can have zero to four clock pins
listed depending on how many clocks the design uses.

Example
This report describes two clocks where:

« CLKOis on pin 62 and is used in its true sense in all eight
PAL blocks.

« CLK1lis on pin 23 and is used in its inverted sense in PAL
block D.

CLOCK ASSIGNMENTS:
Notes: block usage 'H' indicates used in TRUE sense.
block usage 'L' indicates used in INVERSEsense.

clock signal [35] CLK1
pin 23

block usage ,,,L,,,,
clock signal[34] CLKO

pin 62
block usage H,H,H,H,H,H,H,H

The MACH Report File 8-61

Signal Director y

The Signal Directory section lists all inputs, outputs, and nodes
on the device with specific assignment information for each
signal. The format of this section for the MACH 1 and 2 families
is different from that for the MACH 3 and 4 families.

Sample: MACH 1xx and 2xx Si gnal Director y
section

SIGNAL DIRECTORY:

Notes: Leading ' indicates signal not assigned.
Trailing '+ indicates feedback path is from pin.
Functions with '0' Clusters are input registered.

Signal Source PalBlk Pal Block Inputs

Name Type Clusters

0A 10_ p2 CmbOutput D 1 D11

1A 11 p3 CmbOutput D1 D10

2A8 p4 CmbOutput D 1 D09

3A9 p5 CmbOutput D1 D15

4A°19 po9 Input A01 +
S5RESET__ p10 Input A05B05C05D05 +

6A 20 pll Input D21 +

Every input, output, and node is listed in this directory. The data
columns are defined as follows:

Signal # The index number used to reference
the signal

Signal Name The user identifier for the signal

Source Type {Input | Hidden | Output | Biput |
Internal} with register type qualifiers

PalBlk Pal Block where output or node is
assigned

Clusters: Used Number of Pterm Clusters used to
generate function

Clusters: Unused Unused Pterms left in used clusters

PTs

Pal Block Inputs Array input lines for Signal Fanouts

Sample: MACH 3xx and 4xx Si gnal Director y

SIGNAL DIRECTORY:

8-62 MACH 1-4 Device-Specific Fitting

Notes:Register type suffix'_X' indicates XOR used;

Register type suffix '_A'" indicates Asynchronous mode used;
Register type suffix'_LT" indicates function is LOW_TRUE.
'RS_SWAP' flags functions which are preset at power-on.
'OE' flags tri-state functions.

[O] Output: SAO_8
Pin 72 (/O) Block G Macrocell_G14 1 PTERM COMB

[1] Output: SAO_7_
Pin 48 (I/O) Block E Macrocell_E10 1 PTERM COMB

[2] Output: SAO_6_
Pin 45 (I/O) Block E Macrocell_E00 1 PTERM COMB

[32] Reg. Input: NBDIR
Pin 3 (/O) Block A Unary_of_3 1 PTERM LATCH

[33]Reg. Input: NCDIR
Pin 78 (I/0) Block H Unary_of_78 1 PTERM LATCH

[34] Node: ST4
Block D Macrocell D03 13 PTERM DFF_A

[35] Node: ST3
Block H Macrocell H09 15 PTERM DFF_A

[44] Input: ADIR
Pin 5 (/O) Block A

[45] Input: BDIR
Pin 3 (/O) Block A

The MACH Report File 8-63

Each of the entries has two lines:

- The first line contains the signal index (in brackets), signal
type, and signal name. The Resource Assignment Map uses
the signal index shown here since there is not always
enough room for the full signal name. The Signal type is one
of the following: Input, Reg. Input, Reg., Feedback, Node,
Tri-state, or Output.

« The second line contains the assignment information for the
signal. If the signal appears on a pin, PLSyn reports the pin
number and type. Function and Inputs on I/O pins provide
the block number of the pin and/or macrocell assignments.
Functions provide macrocell assignment information along
with specifics on how PLSyn fit the function. This includes
the number of PTERMSs the function requires, and the
register type used to implement the function. These are
noted in the Notes section at the top.

Resource Assi gnment Map

This section follows the physical layout of the device and shows
signal assignments. As with the Signal Directory, the format of
this section is different for the MACH 1 and 2 and the MACH 3
and 4 families.

The MACH 1 and 2 families are simpler to represent since there
is a one-to-one relationship between pins, macrocells, and array
inputs.

8-64 MACH 1-4 Device-Specific Fitting

Sample: MACH 1xx and 2xx Resource
Assi gnment Map

RESOURCE ASSIGNMENT MAP:

MINC Node Pin/Macro Signal

Node# Type ID i Name
1 Vee/Gnd PWR

2 1o 10-00 (34) A 13
45 Shadow A00 (34) A 13
46 Buried AO1 (64) B_16

3 1o 10-01 (24) A 17
47 Shadow A02 (61) C_13
48 Buried A03

8 1o 10-06 (32) A 15
57 Shadow Al12 (32) A 15
58 Buried Al13

9 1o 10-07 (31) A 20
59 Shadow Al4 (65) B_17
60 Buried A15 (63) C_15
10 Input 10 (6) A 24
11 Input 11 (30) A2l
12 Vee/Gnd PWR

13 In/Clk 12/CO (8) CLK2
14 l[e} 10-08 (21) A_30
75 Shadow B14

76 Buried B15 (53) B_25

Every input, output, and node is listed in this directory. The data
columns are defined as follows:

MINC Node #

Node Type

Pin/Macro ID
Signal #
Signal Name

The physical pin number or internal node
number

{Vcc/Gnd | Shadow | Buried | I/O | Input |
In/Clk}

Pin or macrocell identifier
Signal index (see SIGNAL DIRECTORY)
Signal name

The MACH Report File 8-65

If the same signal is assigned to a shadow node and the adjacent
I/O pin, the signal is an output. If these two are different, the
signal on the shadow pin is a node, and the signal on the 1/O pin
is an input.

The MACH 3 and 4 families are more complex to represent
since the paths between pins, macrocells, and array inputs are
programmable.

Sample: MACH 3xx and 4xx Resource
Assi gnment Map

Resource Assignment Map

Notes:Signal index '[###] refers to SIGNAL DIRECTORY entry ##.
Signal index '[N/C]'is specified 'NO_CONNECT" in the .pi file.
Signal index [--]' indicates no signal present.

Resource 'IR'is input register; 'MC' is macrocell.

PTERM Cluster 'E'is equation cluster (2 PTERMS).

PTERM Cluster 'A'is async cluster (2 PTERMs).

PTERM Cluster 'S'is single cluster (1 PTERM).

Cluster Steering 'd": down one macrocell (by macrocell number).
Cluster Steering 'u’: up one macrocell.

Cluster Steering 'U": up two macrocells.

Cluster Steering '=" to adjacent macrocell.

Cluster Steering -": cluster not used.

-PINOUT-- -—— PLACEMENT ROUTING———————
Pin [Sig] InReg/ [Sig] PTERMs Feedback: Fanout
___ McCell____ EAS ID_[Sig] Src Block and Input Line
PWR
PWR
[45] IR 0 [32] A00 [32] IR AO8 B08 C08 D11 EO8 GO08 H19
MC A0 [24] == A0l [-
MC A0l [~] ddd A02 [-] -
4 [IR 1 [AO3 [-] -
MC A02 [42] === A04 [42] MC HOO
MC AO3 [-~] uw A0S [-] -
5 [44 R 2 [31] AO6 [31] IR A03 BO3 CO03 D03 EO3 GO3 HO3

MC A04 [-] UW A07 [-] -
MC A0S [-] — A8 [-

8-66 MACH 1-4 Device-Specific Fitting

Every input, output, and node is listed in this directory. The data
columns are defined as follows:

PINOUT Signals on physical pins

Pin Physical pin number

[Sig] Signal index of pin signal

PLACEMENT Resources used to generate nodes and
outputs

InReg/Mcell Input Register (IR) or Macrocell (MC)
identifier

[Sig] Signal index of node or output

PTERMs EAS PTERM steering (See below)

ROUTING Signals into and out of switch matrix

Feedback ID Identifier of switch matrix input

Feedback [Si g] Signal index of feedback signal

Feedback Src Source directed to switch matrix { Pin | IR |

Fanout

MC }
PAL block inputs assigned to signal

PTERM steerin g of clusters

The report shows PTERM steering for three PTERM clusters
per macrocell. The three clusters are:

E

A

Equation which consists of two PTERMs which are
always part of the data equation

Asynchronous which consists of the two PTERMs
which are either used as part of the data equation or
used as asynchronous clock and reset.

Single consists of the single PTERM which is either
part of the data equation or half of the XOR
equation.

The MACH Report File

8-67

The following character flags indicate the steering of these

clusters:
= Local macrocell
u Up one macrocell
d Down one macrocell
U Up two macrocells
Note “Up” and “down” do not mean physically higher or

lower in the printout. Up refers to a lower-
numbered macrocell, while down refers to a
higher-numbered macrocell. In odd numbered PAL
blocks (blocks B, D, F, H) the macrocells are
numbered in reverse order compared to the pins.
Since this printout is ordered by physical pins, the
macrocells in those blocks show up in reverse
order. However, down from any macrocell 3 is
always macrocell 4.

MACH 5 Device-Specific
Fittin g

Chapter Overview

This chapter describes how to control the fitting process for
specific MACH 5 devices. Topics include:

» A comparison of MACH 5 devices to other MACH
architecturespage9-2

» Tips and device detailpages9-5 through9-20
« The document filepage9-21

9-2 MACH 5 Device-Specific Fitting

Comparin g the MACH 5
to Other MACH
Architectures

AMD’s MACHb5xx architecture represents a departure from
previous MACH (MACH1xx/2xx/3xx/4xx) families. The

earlier MACH families have extremely predictable timing
because all signals follow the same paths through internal
matrices. The MACH 1 and 2 families have a single internal
matrix through which all input signals are routed to PAL blocks.
The MACH 3 and 4 families extend internal routability by using
Input, Central and Output matrices (see Figure 9-1).

The MACH 5 architecture has a hierarchical interconnect
system with internal routability of 100%. It also allows you to
send signals directly to the PAL blocks without going through
the interconnect matrices (as long as equations have fewer than
16 pterms). Even if functions have more than 16 pterms, the
Block Interconnect (see Figure 9-2) can connect the signals to
another PAL block within the segment.

When equations become too large to fit into a segment (4 PAL
blocks), they can be routed to other segments via the Segment
Interconnect. This means that tpd becomes longer with
increased equation size, with boundaries at 16 and 48 pterms.
However, this increased tpd is offset by the fact that the MACH
5 can connect any two signals internally. This lessens the
necessity of having to use up 1/O pins to connect signals (and
eliminates some of the timing problems created by going “off
chip”). Thus the MACH 5 can make refitting much easier.

The major differences between MACH1xx/2xx/3xx/4xx and
MACHS are shown graphically in the following two figures.

MACH 1xx/2xx/3xx/4xx

- Timing paths are the same for all signals, making for very
predictable propagation delays.

Comparing the MACH 5 to Other MACH Architectures 9-3

MACH 1 and 2
PAL Blocks
Switch
1/0 Pins Matrix ———

Note: Diagram is greatly simplified
for illustration. Foractual
block diagrams, see the
AMD MACH 1, 2, 3, and 4 Family Data Book.

MACH 3 and 4
) Input Central Output
110 Pins Switch Aﬁ/Switch — PAL Blocks |::>Swnch
Matrix Matrix Matrix

Note: Diagram is greatly simplified
for illustration. For actual
block diagrams, see the
AMD MACH 1, 2, 3, and 4 Family Data Book.

Figure 9-1 Simplified MACH 1xx/2xx/3xx/4xx Block
Diagrams

- To maintain timing paths, all I/Os go through a Switch
Matrix (MACH 1 and 2) or an Input Switch Matrix (MACH
3 and 4). There are no direct paths from the outside world
(except clocks) to the macrocells.

9-4 MACH 5 Device-Specific Fitting

Highly configurable, due to use of internal routing matrices.

MACHb5xXx

While timing paths are not all the same for the MACH 5
(unlike previous MACH families), this less predictable
nature has significant advantages. For example, a block with
bonded-out I/O pins could be used as a fast PLD for timing-
critical signals. These signals need not go through the
internal interconnect matrices.

The use of hierarchical interconnect matrices in the MACH
5 yields increased internal routability (up to 100%). To say
it another way, any two signals in an MACH 5 can be
connected via the interconnect matrices.

1/0 to Blocks
(note, not every
Block Block block has bonded
Segment 16 Macrocells Interconnect out pins)
4 Blocks
\ ~ v p—
- S [— —H Ho= H—
— Segment —
— Interconnect —
- = = H— —t = = T

Note: Actual number of blocks
varies with device. Number shown CLK
here is only for illustration.

Figure 9-2 Simplified 5xx Block Diagram

Using the .pi File to Control MACH 5 Fitting 9-5

Using the .pi File to
Control MACH 5 Fittin g

MACH 5 devices are handled like any other PLD with full For additional device-specific
support for automatic device selection and partitioning. As witlinformation, refer to the MACH
PLDs, you can also control implementation using.phe file. Family Data Book from AMD.

See Chapter 6, Controlling the

The following is a list ofpi file properties unique to the -T ; ;
g N prop g Fitting Process Using the .pi

MACH 5. File and the PIL Referencén
FANOUT POWER PLSyn online help for more
FORCE_LOCAL_FB SLEW_RATE information on the .pi file.

LOCAL_TOGGLE_FEEDBACK

Routin g in a Segment
and Block

The SECTION construct and the TARGET statement are used
to specify how signals are routed in a Segment and Block of an
MACH 5 device.

Syntax
TARGET S<seg id> [B <block id>]

where
seg_id is an optional segment identifier from 0..7
block_id is an optional block identifier from a..d

You can specify just the targeted segment with:
TARGET 'S0';"'section targeted at segment O

or specify both targeted segment and block with:
TARGET 'S0Ba' "section targeted at segment 0, block A

Example

DEVICE

9-6 MACH 5 Device-Specific Fitting

TARGET TEMPLATE MV256_68 QFP-100-M256":
"place group into MVV256

SECTION
TARGET 'S1}
“force g1 into MACHS5 segment 1
q1:8;
END SECTION;
SECTION
TARGET 'SOBa;
“force out7..out10 into

"MACHS5 segment 0
"block A

out7:5, out8:6;
"assignment with physical pin
"or node numbers

END SECTION;

END DEVICE;

Assi gning Pins and
Nodes

An MACH 5 device has both physical (or absolute) pins (the
ones on the device package) and relative node numbers (that is,
node locations within the device). For each node number there
is a corresponding node name (which is generally easier to
remember than the node number).

%?D%y Jy@

Programmable
Polarity

Macrocell Pin
Feedback Feedback

o

To Array <—<}
To Array
(7<

Figure 9-3 Mach 5 Architecture

There are two feedbacks associated with each macrocell in an
MACH 5:

Assigning Pins and Nodes

9-7

« Macrocell feedback which feeds back immediately after the
macrocell, to the Block Interconnect.

» Pin feedback which feeds back after the tristate buffer. The
pin feedback may or may not bond-out to a physical pin.

Syntax
[S< seg id >][B< block id >]< feedback id >
where

seg_1idis an optional segment identifier from 0..7 (for
MACH 5)

block_idis an optional block identifier from a..d
feedback_id=Ms<mcell_no>|P<mcell_no>
mcel1_no is the macrocell number from 0..16
M<mcel 1_no> is the macrocell feedback
P<mcell_no>is the pin feedback

Note that there is a node number for every pin feedback,
regardless of whether or not the pin feedback is bonded-out to a
physical pin. If the pin feedback is bonded-out, there is also a
corresponding absolute (physical) pin number. If you specify
absolute (physical) pin numbers, they will be reproduced in all
output files of the fitter.

The following table defines relative node names and their virtual
pin numbers.

Note Virtual pin numbers are defined for internal device
use only and are unique for the entire MACH 5
family.

Table 9-1 MACH 5 Node Names and Pin Numbers

Relative Node Names Virtual Pin Names
SO0BaM00..S0BaM15 0-15
S0BaP00..S0BaP15 16-31
SOBbMO00..S0BbM15.. 32-47
SOBbP00..SOBbP15 48-63

S0BcM00..S0BcM15 64-79

9-8 MACH 5 Device-Specific Fitting

Table 9-1 MACH 5 Node Names and Pin Numbers

Relative Node Names Virtual Pin Names
SO0BcP00..SOBcP15. 80-95
SO0BdMO00..S0BcM15 96-111
S0BdP00..S0BcP15. 112-127
S1BaMO00..S1BaM15.. 128-143
S1BaP00..S0BaP15...... 144-159
S1BbMO00..S1BbM15. 160-175
S1BbP00..S1BbP15. 176-191
S1BcMO00..S1BcM15 192-207
S1BcP00..S1BcP15. 208-223
S1BdMO00..S1BdM15 224-239
S1BdP00..S1BdP15 240-255
S7BaM00..S7BaM15 896-911
S7BaP00..S7BaP15 912-927
S7BbMO00..S7BbM15 928-943
S7BbP00..S7BbP15 944-959
S7BcMO00..S7BcM15 960-975
S7BcP00..S7BcP15 976-991
S7BdMO00..S7BdM15 992-1007
S7BdP00..S7BdP15 1008-1023
Example

INPUT j1:S2BaMO00 "route j1 to mux S2BaM00

Placing a Signal on an Input Register or Latch 9-9

Placin g a Signal on an
Input Re gister or Latch

The.pi file property UNARY is used to place a signal on an For more information on unaries,
input register or input latch. The UNARY property must be — see Accessing Internal Points
specified on the output signal of the unary function. in a PLD Device on page 7-2.

Example

Source File

INPUT ui, iclk;
OUTPUT uo CLOCKED_BY iclk;
uo = ui;

Physical Information File

DEVICE
SECTION

TARGET 'SOBa’;

INPUT ui;

OUTPUT uo { UNARY };
END DEVICE;

Usin g Dual Feedback

Dual feedback is the simultaneous use of both feedback paths,
internal and pin. There are no DSL.pir constructs for
specifying dual feedback.

To specif y dual feedback

1 Write an intermediate node equation.

Note There might be
exceptions (unknown at this
The PLSyn fitter looks for such dual feedback equations and time) that will not allow
places them on the internal and pin feedback of the same placement of such dual
macrocell. feedback equations on the
same macrocell internal/pin
feedback. One possible
example is lack of routing
resources.

2 Set the pin feedback equal to node feedback.

Note The node collapsing in the optimizer will collapse
the intermediate node away unless you preserve
the intermediate node in the .pi file.

9-10 MACH 5 Device-Specific Fitting

Example

INPUT 1, 12,3, i4;

OUTPUTS outl, out2, out3;

OUTPUT pin_fb; "pin_fb has to be placed
"on bonded out pin. If you
“consider this wasting an
"I/O pin, declare this a
"node instead.

NODE node_fb;

node fb=il*i2+i3*i4;

"node feedback equation
pin_fb =node_fb;

"intermediate node equation

outl =i2 *i3* node_fb;
"node feedback used
out2 =i2 +i4 * pin_fb;
"pin feedback used
out3 =i2 * node_fb +i3 * pin_fb;
"both node and pin feedback
"on same egn

Forcin g the Feedback
Path to be Local

There are cases, for timing reasons, you may want all feedbacks
to be contained within the same PAL block. You can do this in
the MACH 5 with the FORCE_LOCAL_FB property. This
property can be used at the DEVICE, SECTION, or signal level
in the.pi file.

Examples

Source File

INPUT clk, rst, load, up_down, data[7..0] ;iclk;
OUTPUT count[7..0] CLOCKED_BY clk RESET_BY rst;
IFload =0 THEN
IF up_down =1 THEN
count = count .+. 1;
ELSE
count = count .-. 1,
END IF;
ELSE

Forcing the Feedback Path to be Local

9-11

count = data;
END IF; = ui;

Physical Information File (Case 1)

"This example shows the use of the FORCE_LOCAL_FB ata
"device level. This forces local feedback on all fanout
"signals in the device.

DEVICE
TARGET 'PART_NUMBER AMD MACH 5-256/160-7HC;
{FORCE_LOCAL_FB}; “force local feedback on
“all signals in the device
END DEVICE;

9-12 MACH 5 Device-Specific Fitting

Physical Information File (Case 2)

"This example shows the use of the FORCE_LOCAL _FBina
"GROUP and SECTION. Note that you have to specify
"FORCE_LOCAL_FB at the signal level in a GROUP.

DEVICE
TARGET 'PART_NUMBER AMD MACH 5-256/160-7HC;
GROUP

COUNT[7];

COUNT[®];

COUNTI5];

COUNT[4];

DATA[7]{FORCE_LOCAL_FB};

DATA[B]{FORCE_LOCAL_FB;
END GROUP;

SECTION
TARGET 'S1BD’;
{FORCE_LOCAL _FBY;
COUNT[3];

COUNTZ];
COUNTL];
COUNT[O];
DATA[S];
DATAMI;
END SECTION
END DEVICE;

Specif ying Fanout

To route a signal between two points, the fitter needs to know
the signal’s:

- Fanout destinations: The PAL block inputs are the signal's
destinations.

- Path: If the destination is within a segment, no path
information is required. If the fanout crosses segment
boundaries via the segment interconnect bus, the
intersegment line has to be specified.

Specifying Fanout

9-13

Syntax
{FANOUTS
'S< seg _id >B<block id >M<mux_id ><mux_line >
S<intersegment line >
where
seg id =0..7

block id =a|b]|c|d (mustbe lower case)
mux_id =0..31

mux_line =0..7

intersegment _line =0..191

You can use the syntax shown above to specify a local feedback
by using 17 formux_line This assumes an 8:1 Level 1 mux.

Example
A FANOUT specification of SOBaM01S100 means route to:
« Level 1 mux SOBaMO.

« Select line 1 via intersegment line 100.

DEVICE

" fully specified signal, NOT within a section

" The third fanout for j1 specifies a local feedback

INPUT j1:S2BaM00 { FANOUTS 'S2BaM0,S1BaM1I1,S2BaM00I7"' };

NODE j2:S3BaP15 { FANOUTS 'S2BaM1I7'}; "This line will
"produce an error, local feedback incorrectly specified

NODE j2:S3BaP15 { FANOUTS'I7'};
"correct j2 fanout spec, local feedback

SECTION
TARGET 'SOBa’; "force out7..out8 into
"MACHS segment 0 block A
g1:MQ0; "placements are local to block

INPUT i1:P01 { FANOUTS 'M0I0,S1BbM2I3'};
" 2 fanouts: 1st fanout is
" S0BaMOIO if fully specified

NODE f1:M01 { FANOUTS 'M15I10'};
"route to L1 mux 15, line 15 of this
"block signal origin is MO1 of this
"block. Note that i2 has been removed
"from this section and the fanout moved
"to its block of origin.

END SECTION,;

SECTION
TARGET 'S1Bb'; "force out7..out8 into

9-14 MACH 5 Device-Specific Fitting

"MACHS segment 1 block b

g2:M00; "placements are local to block
INPUT i2:P02; { FANOUTS 'M0I1,S0BaMOI1' };

" 2 fanouts
f22M01 { FANOUTS 'M1I2'}; "route to L1

"mux 1, line 2 of this block

"Note that i1 has been removed from

"this section and the fanout moved

"to its block of origin.
END SECTION,;

END DEVICE;

Implementin g Toggle
Register Feedback

A toggle (T) register is implemented by taking the feedback of
the register output Q and XORing it with the D register input.
The toggle feedback can be

« Alocal feedback.
- Routed via alevel 2 demux and the segment bus (non-local).

The property LOCAL_TOGGLE_FEEDBACK is used to force
local toggle feedback.

The LOCAL_TOGGLE_FEEDBACK property can be
specified at the device, SECTION or signal (outputs and nodes
only) level.

If a local feedback path cannot be found for the toggle feedback,
the fitter generates a warning.

Implementin g Dual-
Edge Clockin g

The MACH 5 has three clocking options:

- Selectable positive/negative edge clocking.

Implementing Dual-Edge Clocking 9-15

« Clocking on both edges.

- Complementary clocking, creating an inverse of clock line
3 (CLK2) on clock line 4 (CLK3).

The DSL control modifier CLOCKED_BY BOTH_EDGES lets
you make use of either or both edges of the specified clock. You
can use enables to specify negative or positive edge clocking by
means of two keywords:

. CLOCK_ENABLED BY NEG_EDGE
- CLOCK_ENABLED_BY POS_EDGE.

If a CLOCK_ENABLED_BY is not specified with the
CLOCKED_BY BOTH_EDGES construct, the equation
defaults to clocking on BOTH edges.

Complementary clocking is available if the macrocell is not
controlled by a CLOCKED_BY BOTH_EDGES construct.
Complementary clocking uses clock line 3 (CLK2) as the
primary clock and clock line 4 (CLK3) as the inverted clock.

Syntax

OUTPUTsignal name CLOCKED_BY BOTH_EDGES_OElk_name
CLOCK_ENABLED_BY POS_EDGenable_name ;
CLOCK_ENABLED_BY NEG_EDG#hable_name ;

9-16 MACH 5 Device-Specific Fitting

Example

INPUT clk1, clk2, cel, ce2;
OUTPUT outl CLOCKED_BY BOTH_EDGES_OF clk1,
"clocks outl on both edges of clkl1

OUTPUT out2 CLOCKED_BY BOTH_EDGES_OF clk2
CLOCK_ENABLED_BY POS_EDGE_OF cel
CLOCK_ENABLED_BY NEG_EDGE_OF ce2;
"clocks out2 on either edge of clk2,

"determined by enables cel and ce2

Specifying Reserve
Capacity

The MACH_UTILIZATION property specifies the amount of
reserve capacity to leave available in a device. This affects the
use of pterms and macrocells.

Syntax
{MACH_UTILIZATION percent };

wherepercent is the percentage of device resources to be used.
The range of values is 0 to 100.

The unused resources are distributed throughout the device.
There are two reasons to reserve some resources in a device.

« To allow for expansion of logic.

« Toease and speed the fitting process. Simply put, it is easier
for the fitter to place and route a solution at 80% utilization
than at 100% utilization. If design iteration speed is more
important than density (for example, earlier in the design
cycle or for refitting), set the utilization factor to a lower
value.

Constraining the Size of Combinatorial Nodes 9-17

Constrainin g the Size of
Combinatorial Nodes

You can constrain the size of combinatorial nodes PLSyn
collapses during the optimization process, thereby affecting how
the logic fits into MACH devices.

To constrain the size of combinatorial nodes

1 Usethe MAX_PTERMS property in youpi file using the
syntax:

{MAX_PTERMSp};

wherep is the maximum number of PTERMs to which the
optimizer can collapse.

The PLSyn optimizer collapses combinatorial nodes up to a size
specified by MAX_PTERMS.

Makin g Adjustments

Using lower MAX_PTERMS generall y results in

« Less node collapsing

e Smaller functions

« Slower implementation

- May increase routing requirements

If the value is low, the design will typically be implemented as

a larger number of smaller equations. This makes placement
somewhat easier because smaller functions do not place demand
on the pterm allocation mechanism, but more smaller functions
may require more routing resources and may require more
overall macrocell logic.

9-18 MACH 5 Device-Specific Fitting

Using higher MAX_PTERMS generall y results in

« More node collapsing

« Larger functions

» Faster implementation

- May increase routing requirements

Fewer larger functions may ease the routing requirements, but
be harder to place, because the demand for pterms may cause
conflicts in placing functions together in a PAL block.

Note

For optimal fitting, you should try a number of
values to determine the best value for your design.

To see the exact effect of chan ging the optimizin ¢
parameters

1 After optimizing, open thedoc file.

2 Check the number of nodes. The number of nodes generally
goes down as the MAX_PTERMS parameter goes up.

/N\ A Few Considerations

Either High or Low MAX_PTERMS can cause greater
routing demand.

Lower MAX_PTERMS can produce more internal
nodes which must be routed to the equations where they
are used.

Higher MAX_PTERMS can allow a node to be
collapsed into multiple equations so that the signals
required to generate the node may be needed in multiple
places. Furthermore, large equations may require large
numbers of signals to be routed into the block where the
equation is placed, producing a locally high routing
demand.

Controlling Power Levels 9-19

Other Optimizin g Parameters

For general purposes, the following parameters may be used in
the.pi file for designs targeting MACHS devices.

MAX_PTERMS 32
MAX_XOR_PTERMS 31
MACH_UTILIZATION 100
MAX_SYMBOLS 32
POLARITY_CONTROL TRUE
XOR_POLARITY_CONTROL TRUE

Controllin g Power
Levels

The syntax for specifying power level is:
POWER LOW | MED_LOW | MED_HIGH | HIGH

Power levels can be specified at a signal, SECTION or device
level. The fitter will check the power levels for consistency
across the various levels. Error messages will be printed out
when the power levels specified do not match. If none is
specified, the default power level will be HIGH.

Example
SECTION
TARGET 'S1Bb'; “force out?..out8 into MACH5
"segment 1 block b
g2:MQ0; "placements are local to block

INPUT 02:P02; { FANOUTS 'MOIO', POWER LOW };
"power level for 02 is low
f22M01 { FANOUTS 'M1I1' };"Use default slew rate
"“which is FAST
END SECTION,;

9-20 MACH 5 Device-Specific Fitting

Controllin g Slew Rates

The syntax for specifying slew rate is:
SLEW_RATE SLOW | FAST

Slew rate can be specified for signal, SECTION or device level.
The fitter will check the slew rates for consistency across the
various levels. If slew rates specified do not match, the fitter will
generate an error.

Example

SECTION
TARGET 'S1Bb';'force out7..out8 into MACH5
"segment 1 block b
02:MO00; "placements are local to block
"{ SLEW_RATE FAST}
INPUT 02:P02; { FANOUTS 'MO0IO', SLEW_RATE SLOW };
"slew_rate is SLOW

f2:M0O1 { FANOUTS 'MII1' }; "Use default slew
“rate which is FAST
END SECTION;

There is also a factory-programmed device-level downgrade to
SLOW. When set to SLOW, it overrides the FAST slew rate
attribute for individual signals. If individual signals are

explicitly specified with a FAST slew rate and the device-level
slew rate has been downgraded to SLOW, the fitter will generate
a warning.

The Document File 9-21

The Document File

The document fileges ign_name.doc , contains information
about the various stages of compilation and partitioning. The
following information is contained in thdoc file:

- Information about the design (title, designer, date, company,
etc.) and switch values specified for compiler and optimizer
functions.

« Explicit (or reduced) design equations that are realized in
the final layout.

» Alist of the solutions generated for the design.

- Partitioning criteria used in generating the device solutions.
- Pinout diagrams of the device solution selected.

» Alist of possible devices for the templates in the solution.

o« Awire list.

9-22 MACH 5 Device-Specific Fitting

The Report File

In addition to thedoc file, a report file,design_name.rpt ,
will be generated for an MACH 5 device. The report file
generally contains the sections described below.

Heading

This section generally contains the following information:
- Date when the design was run through the fitter

« Part type and device number

- Package type

e User supplied design information

Example

DATE: FriJan 26 14:44:48 1996

DESIGN: probl.fo
DEVICE: MV256_160:1

The Report File 9-23

Summar y Statistics

This section summarizes the design in terms of number-of-
clocks, inputs, nodes and outputs at the device level and its
various sub-partitions namely, segments and PAL blocks.
Power levels for each block are specified here.

Example

SUMMARY STATISTICS:

10 Inputs
32 Outputs
0 Tri-states

124 Nodes

Functions by block:
S0: 8 71212
S1: 871212
S2: 871212
S3: 871212

D Register Macrocells 36
T Register Macrocells 24
D Latch Macrocells 0
Combinatorial Macrocells 92
D Input Registers 0

D Input Latches 0

Xor Equations 24
Single-Pterm Equations 23
Total Pterms Required 867

9-24 MACH 5 Device-Specific Fitting

Power Resource Utilization

The POWER SUMMARY section shows the following:
« Number of blocks with power set to LOW

« Number of blocks with power set to MED_LOW

« Number of blocks with power set to MED_HIGH

« Number of blocks with power set to HIGH

Example

POWER SUMMARY:

Number of blocks with power setto LOW is 0
Number of blocks with power setto MED_LOW is 0
Number of blocks with power setto MED_HIGH is 0
Number of blocks with power set to HIGH is 16

Device Resource Utilization

The DEVICE RESOURCE UTILIZATION section provides
utilization statistics for the different device resources at the
device, segment and PAL block partitions. A table is provided
for each partition with the following columns:

Resource Name of resource; the resources available
for each block may be different

Available Available resource count for the partition

Used Used resource count for the partition

Remainin g Unused resource count for the partition

Percent Percentage resource utilization for the

partition

The Report File 9-25

The resource types referenced in these tables are defined as

follows:

Clocks Clock pins used for clock signals

Pins Input and 1/O pins used in any capacity

I/O Pins Number of bonded-out pin feedbacks

Input Re gs Macrocells used as input registers

Macrocells Macrocells without output/buried
distinction

Pterms AND array rows used in equation
generation

Feedbacks Inputs to the Switch Matrix

Fanouts Inputs to the AND Arrays

Blk Clocks Number of selectable clock lines for each
block

The resource types for the device and segment partitions are:

Clocks Pins

Input Regs Macrocells
Pterms Feedbacks
Fanouts

The resource types for the PAL block partitions are divided into

two groups:

Clock generator Clocks

block:
Pterms
Blk Clocks

Macrocell block: I/O Pins
Input Regs
Macrocells
Pterms
Feedbacks

Fanouts

9-26 MACH 5 Device-Specific Fitting

Example

DEVICE RESOURCE UTILIZATION:

Resource Available
DEVICE

Clock Pins: 4
/O Pins: 160
Input Regs: 32
Macrocells 256
Control Pterms 144
Cluster Pterms 1024
1-pt Clusters: 256
3-pt Clusters: 256
Signal Resources 512
Array Inputs 512
Intersegment Lines: 128
SEGMENT 0

Clock Pins: 4
Pins: 40
Input Regs: 8
Macrocells: 64
Control Pterms: 36
Cluster Pterms: 256
1-pt Clusters: 64
3-pt Clusters: 64
Signal Resources: 128
Array Inputs: 128
Segment Lines: 128

CONTROL BLOCK ‘SOBa’

Clock Pins: 4
Blk Pins: 4
Enable Pterms: 2
Init Pterms: 3

Clock Pterms: 4

MACROCELL BLOCK ‘S0Ba’

/O Pins: 16
Input Regs: 2
Macrocells 16
Cluster Pterms 64
1-pt Cluster 16
3-pt Clusters: 16
Signal Resources 32

Array Inputs 32

Used

41

156
16
876
180
252
133
264

17
39
219
45
63

66

R o ®

14
16
10
14

Remaining

119
32
100
128
148
76

379
248
119

23

25
32
37
19

88
62
88

%

25
25

60
11
85
70
98
25
51

25
42

60
11
85
70
98
31
51
31

25
25

33

50

50
95
87
10
31

The Report File 9-27

Partition Groups

This section shows how functions (outputs and nodes) are
assigned to the PAL blocks. It shows which signals must be
routed to the PAL block to generate the functions assigned to the
block. It also shows how many unique clocks, enables and
register preset/reset equations are required for the assigned
functions.

Example

PARTITION GROUPS:

Block 'SOBaPartition 0; Group-type FIXED_GROUP;
1 Clocks; 0Enables; 1 Register Sets

8 Functions

O3[4] O3[2] 0O3[1]
prep_4.12.large-Oprep_4.12.large-1prep_4.12.large-2
prep_4.12.large-3prep_4.12.large-4

15 Signals

clk rst q8[7]

gs[6] a8l a8

a8[3] q82] o[l

g8[0] prep_4.12.large-Oprep_4.12 large-1
prep_4.12.large-2prep_4.12.large-3prep_4.12.large-4

Block 'SOBbPartition 1; Group-type FIXED_GROUP;
1 Clocks; 0Enables; 1 Register Sets

7 Functions

g8[5] q8[4] prep_4.11large-0
prep_4.11.large-1prep_4.11.large-2prep_4.11.large-3
prep_4.11.large-4

15 Signals

clk rst q7[7]

q7[e] q7[5] q7[4]

q738] q7[2] q7[1]

q7[0] prep_4.11.large-Oprep_4.11.large-1
prep_4.11.large-2prep_4.11.large-3prep_4.11.large-4

Block 'SOBcPartition 2; Group-type FIXED_GROUP;
1 Clocks; 0Enables; 1 Register Sets
12 Functions

q7[7] q7[6] q7[1]
q7[0] q8[7] q8[e]
as8[3] a8[2] a8[1]

08[0] prep_4.10.large-0 prep_4.10.large-3

9-28 MACH 5 Device-Specific Fitting

20 Signals

It7] 16 I5]
M4 13 2]
1 10] clk

rst prep_4.10.large-Oprep_4.10.large-1
prep_4.10.large-2prep_4.10.large-3prep_4.10.large-4
prep_4.11.large-Oprep_4.11.large-1prep_4.11.large-2
prep_4.11.large-3prep_4.11.large-4

Signal Director y

Clocks, inputs, outputs and nodes on the part are listed with
specific assignment information for each signal. Slew rate
which is on a per-signal basis on the MACH 5 will also be listed
here.

The signal directory table will have the following columns:

Signal # The index number used to reference
the signal

Signal Name The user identifier for the signal

Source Type {Input | Hidden | Output | Biput |
Internal} with register type qualifiers

PalBlk Pal Block where output or node is
assigned

Clusters: Used Number of Pterm Clusters used to
generate function

Clusters: Unused Unused Pterms left in used clusters

PTs

Pal Block Inputs Array input lines for Signal Fanouts

The Report File 9-29

Example

SIGNAL DIRECTORY:

Notes:
Register type suffix'_X' indicates XOR used,;
Register type suffix '_LT" indicates function is LOW_TRUE.
'RS_SWAP' flags functions which are preset at power-on.
'OE' flags tri-state functions.

[0] Output: Q7]
Pin 168 (I/OBlock S3Bd Macrocell_02 4 Pterm COMB
[1] Output: O[6]

Pin 169 (I/0)Block S3Bd Macrocell_03 2PtermCOMB
[2] Output: O[5]

Pin 170 (I/O)Block S3Bd Macrocell_04 2PtermCOMB
[3] Output: O4]

Pin 165 (I/0O)Block S3Ba Macrocell_00 1 PtermCOMB
[4] Output: O[3]

Pin 171 (I/O)Block S3Bd Macrocell_05 2 Pterm COMB
[5] Output: O[2]

Pin163(1/O) BlockS3BaMacrocell_021PtermCOMB
[6] Output: O[1]

Pin 164 (I/O)Block S3Ba Macrocell_01 3Pterm COMB
[7] Output: O[0]

Pin 172 (//O)Block S3Bd Macrocell_06 2Pterm COMB
[8] Node: qgi[7]

S3BcM2 Block S3Bc Macrocell_02 4 Pterm COMB
[9] Node: qgil[6]

S3BcM1 Block S3Bc Macrocell 01 2 Pterm COMB
[10] Node: qi[5]

S3BdM1 Block S3Bd Macrocell_01 2 Pterm COMB
[11] Node: q1[4]

S3BdMO Block S3Bd Macrocell_00 1 Pterm COMB
[12] Node: g1[3]

S3BdM12 Block S3Bd Macrocell_12 2 Pterm COMB

9-30 MACH 5 Device-Specific Fitting

Fanout Table

The headings in the table have the following meanings:

Signal_Src Signal name from the SIGNAL
DIRECTORY LIST

ISL# Intersegment line number to which
Signal_Src connects

SL# Segment line number

Src SL# Segment line number for the same segment

as the source signal

The Report File 9-31

Example

FANOUT TABLE:

PASS/
FAIL

Block SOBa:
PASS[151] SOBaM3
PASS[152] SOBaM4
PASS[153] SOBaM5
PASS[154] SOBaM8
PASS [155] SOBaM11
PASS [162] SOBaP4

PASS [165] SOBaP5

PASS [156] SOBaP6

PASS [163] SOBaP7

PASS [157] SOBaP9

Signal_Src ISL#

SL# Blk

SOBa
SOBa
SOBa
SOBa

SL#

66
97
74
75

1

90

23

126

SO0Ba 104
SO0Bc
S1Bd
S3Bc
SOBa
SOBd
S1Bc
S2Bb
S3Ba
S3Bd
86 SO0Bc 86
S1Bd
S3Bc
SOBc
S1Bd
S3Bc
89 SO0Bc 89
S1Bd
S3Bc

117

119

116

119
102

117

117
101
114
100
100

87
71

119

99
111

73
88

M1712
M2410
Mi6l1
M2712

SOBd
SO0Bd
SOBd
SO0Bd

66
o7
74
75

MO710
M1115
MO5I6
M2215
MO1I0
MO3I6
M15I5
MO4i1
M29I0
M13I5
M10I3
M2814
M2013
MO3I5
M16I5
M3115
MO0914
M2315
M1014

S0Bd
S0Bd

SO0Bb

SO0Bd

SO0Bd

104

S2Bc
S3Bd

SiBa
S1Bd
S2Bc
S3Bb

SOBd
S2Bc
S3Bd

S2Bc
S3Bd

S2Bc
S3Bd

86

89

116

98
102

117

101
101
114
100

65
71

119

115
111

92
88

Mux Bk SL#
M16I3
M22I5
Mm1814
M1714
MO06I5
M2914 S1Bc 119
M09I5 S2Bd 98
M19I5
M1311 SOBc 117
M2113 S1Bb 101
M18I5 S2Ba 114
M2416 S2Bd 114
M12]11 S3Bc 100
M0413 S1Bc 87
M2213 S2Bd 65
M18I3
MO5l6 S1Bc 99
Mo1l5 S2Bd 115
M30I6
MO714 S1Bc 73
M1414 S2Bd 92
M0214

Mux

M3016
M31I5

Mo4I5
MooI1
M1210
MO7I6
MO8I5

Mo114
MO1I3

M19I5
M11l6

MO6I3
MO3I4

9-32 MACH 5 Device-Specific Fitting

Power Table

Example

POWER TABLE:

BLOCKA BLOCKB BLOCKC
SEGMENT O:HIGH HIGH HIGH
SEGMENT 1:HIGH HIGH HIGH
SEGMENT 2:HIGH HIGH HIGH
SEGMENT 3:HIGH HIGH HIGH

BLOCK D
HIGH
HIGH
HIGH
HIGH

Block Confi guration Tables

Example

BLOCK CONFIGURATION TABLES:
Notes: * indicates that the pin is bonded-out
BLOCK 'SOBa’: POWER=HIGH
CONTROL PTERMS:
RSTO =rst;
BLOCK CLOCKS:
BLK_CLK 2 (PIN_CLOCK,POL=HIGH) : clk ;
BLK_CLK 3 (PIN_CLOCK,POL=LOW): clk ;
ARRAY INPUTS:

= [165] -] [138] [139] = [135] [155] Inputs 10 to 7
[140] 1 -~ -~]]] 1 Inputs 18 to 115

[153] [151]] -] [136] [134] [133]] Inputs 116 to 123
[152]] [137] [154]] -]] -] Inputs 124 to 131

Note Arrayinputs 10 through 131 are are assigned signal
names from the SIGNAL DIRECTORY list.

The Report File

9-33

In the following segment, labels have the following meanings:
Pterms Used

Number of pterms used on this macrocell; if
the column has 1+7, it means 7 pterms were
used and one pterm was steered from

elsewhere
Pterms Avl Number of pterms available for this
macrocell
PT Map Indicates whether pterm was applied to the
XOR or product term cluster (OR input)
POL Indicates polarity of the signal
CLK Indicates which clock from the clock
generator was used
Reg Ctrl Indicates whether signal was combinatorial
or registered
Slew Slew rate set
OE Indicates whether the output enable was
high or low
Node Relative node number
Pin Actual pin number
Example
cccceceecececcecceccecceccecceccce P C
0123456789111111 Pterms PT O L Reg
MC 012345 Used Avl Map L K cul Slew Node OE Pin
(070 JNNN: [P, 1 0 SUM L 3 COMB FAST [-] VvCC [120] *
o P 3 0 SuM | 3 COMB FAST [-] VCC [123] *
072 1 0 SUM L 3 COMB FAST [-] VvcC [122] *
03 431------------ 1+7 0 XOR H 2 RSTO SLOW [151] GND [-] *
04 3144-------- 1+11 0 XOR H 2 RSTO SLOW [152] GND [162] *
05 ----3--44------- 11 0 SUM H 2 RSTO SLOW [153] GND [165] *
07T — - [-] GND [156] *
078 [-] GND [163] *
08 --m-e-e-- 3344 13 1 SUM H 2 RSTO SLOW [154] GND [-] *
09 -e--ee--- 1omon-- - - - - [-] GND [157] *
10 ceemeeee- 1o---- - - - - [-] OGND [*

ATV5000 Device-Specific
Fittin g

Chapter Overview

This chapter describes how to control the fitting process for
Atmel's ATV5000 architecture. Topics include:

« General information about designing with the ATV5000,
pagelO-2

» Tips and device detailpagesl0-2throughl0-17
e The report filepagel0-18

10

10-2 ATV5000 Device-Specific Fitting

See Chapter 6, Controlling the
Fitting Process Using the .pi
Fileand the PIL Referencén
PLSyn online help for more
information on the .pi file.

Designing with the
ATV5000

The Atmel ATV5000 CPLD is supported by PLSyn through
automatic device selection and automatic partitioning/fitting.
The ATV5000 is a sophisticated device, with many unique
features. ATV5000-Specific Optimization

There are severgli properties that control optimization of the
design. While these properties are not specific to the ATV5000,
they provide a means of tuning the optimization to best fit a
design into ATV5000 parts.

Constrainin g the Size of
Combinatorial Nodes

The MAX_PTERMS and MAX_SYMBOLS properties are the
key optimizer properties for fitting into the ATV5000. For most
designs, the following settings for MAX_PTERMS and
MAX_SYMBOLS are suggested:

{
MAX_PTERMS 13,

MAX_SYMBOLS 40
}

Constraining the Size of Combinatorial Nodes 10-3

The Effect of MAX_PTERMS

The MAX_PTERMS property is the most critical property for
optimizing a design for the ATV5000. The effect of changing
MAX_PTERMS is summarized here.

Using higher MAX_PTERMS generall y results in
this

- Fewer leftover combinatorial nodes

« Larger functions

» Faster implementation

» Increased number of sum terms required

Setting MAX_PTERMS higher may increase the number ofsurA
terms needed. The PLSyn fitter may place small registered

nodes on logic cell register Q2 or on the buried logic cells.
However, as MAX_PTERMS is increased, the registered nodes
increase in size beyond the capacity of the sum terms feeding
register Q2 and the buried logic cells. The only option remaining
may be to use more logic cell sum-terms to feed register Q1,
possibly leaving register Q2 unusable.

Using lower MAX_PTERMS generally results in
this

More leftover combinatorial nodes

Smaller functions

Slower implementation

Increased regionalization requirements

Setting MAX_PTERMS lower may increase regionalization
requirements. The regionalization requirements depend on th
number of universal PTERMs in each function. Increasing
MAX_PTERMS may increase the number of PTERMs in each
function, but the number of universal PTERMs in each function
does not necessarily also increase. This is so because in the
ATV5000, combinatorial shadow nodes feed back into the
universal bus. Lowering MAX_PTERMS will cause more
combinatorial nodes to remain after node collapsing, and these
additional combinatorial nodes may cause certain PTERMSs to

10-4 ATV5000 Device-Specific Fitting

be universal rather than regional, possibly increasing
regionalization requirements.

To see the exact effect of chan ging the optimizin g
parameters

1 Open thedoc file after optimizing and check the number
of nodes. The number of nodes generally goes down as the
MAX_PTERMS parameter goes up.

It is advantageous to keep the number of combinatorial nodes
low. This is because the combinatorial shadow nodes in the
ATV5000 (the nodes in the logic cell where combinatorial node
signals are placed) do double duty as RU converters. However,
this depends on the particular design. If there are not many
signals that must be routed from a quadrant's regional bus to the
universal bus, it may be more advantageous to keep the size of
the functions smaller.

In critical fitting cases, it may be necessary to try several settings
for MAX_PTERMS to get satisfactory results.

The Effect of MAX_SYMBOLS

Increasing MAX_SYMBOLS will increase the number of
inputs per PTERM in output and node signals. We suggest
setting MAX_SYMBOLS to 40 because the smallest product
terms are the regional product terms, which have 40 input
signals available. Increasing MAX_SYMBOLS will potentially
create PTERMs that are too big for the regional rows in the
ATV5000.

Specifying Device Utilization 10-5

Specifying Device
Utilization

To specif y the amount of reserve capacit y to
leave available in a device

1

Use the ATV5_UTILIZATION property in youmi file
using the syntax:

{ATV5_UTILIZATION percent};

where percent if the percentage of device resources to be
used. The range of values is 0 to 100.

This affects the use of PTERMs, macrocells, and pins.The
unused resources are distributed throughout the device. There
are two reasons to reserve some resources in a device:

Resources may be reserved to allow for expansion of logic.

Resources may be reserved to ease and speed the fitting
process. It is easier for the PLSyn fitter to place and route a
solution at 80% utilization than at 100% utilization. If
design iteration speed is more important than density (e.g.,
earlier in the design cycle), set the utilization factor to a
lower value.

Using the Flip-Flop
Clock Option

The flip-flop clock option in the ATV5000 architecture can
provide the clock for the registers from two locations:

One product term.

One product term ANDed with a clock pin signal.

The PLSyn fitter uses this flip-flop clock option to:

Provide enabled clocking functionality.

10-6 ATV5000 Device-Specific Fitting

For more information on
CLOCK_ENABLED_BY, refer to
the PIL Referencén PLSyn
online help.

» Allow you to control the source of the clock signal.

Enablin g Clockin g

A registered output or node signal may be declared isithe
file to have a clock enable through the DSL
CLOCK_ENABLED_BY declaration. The PLSyn fitter will
implement clock enable functionality by using the flip-flop
clock option as follows:

- The clock signal is placed on the regional clock pin.

e« The PTERM given in the CLOCK_ENABLED_BY
declaration is placed on the clock product term.

Therefore, the clock signal will not be seen by the register until
the CLOCK_ENABLED_BY PTERM is asserted.

The clock for the registered output or node signal must be a
single signal. The clock enable may be a single signal or a single
PTERM.

There is no on-chip synchronization circuitry between the clock
signal and the clock product term. It is your responsibility to
assure that the signals that feed the flip-flop clock option are
glitch-free.

Example

SOURCE FILE

INPUT i, clk, cel..ce2;

OUTPUT o CLOCKED_BY clk CLOCK_ENABLED_ BY
cel*ce2;

0=1i

Controllin g the Clock Source

The flip-flop clock option in the ATV5000 allows the clock for
registered output and node signals (with no clock enable), to be
provided by one of two sources:

Using the Flip-Flop Clock Option

10-7

- adedicated clock pin, one per quadrant
» the clock product term

By default, the PLSyn fitter will place the clock on the clock
product term, saving the quadrant clock pin for inputs to the
regional bus. However, if you need the speed provided by the
guadrant clock pin, you can specify that the clock be placed on
the quadrant clock pin. This is done through the
CLOCK_BY_PIN.pi property.

This property cannot be used if the signal is clocked by an
equation (for example, CLOCKED_BY a*b).

Example

SOURCE FILE

INPUT i, clk;

OUTPUT o CLOCKED_BY clk;

o=1i

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';
0 {CLOCK_BY_PIN}; "Force the clock to

"come from the quadrant clock pin
END DEVICE;

You can also explicitly specify that the clock is to be supplied
by the clock product term. This is done through the
CLOCK_BY_ROW.pi property.

CLOCK_BY_ROW is the default for registered outputs and
nodes.

Example

SOURCE FILE

INPUT i, clkl..clk2;
OUTPUT o CLOCKED_BY clk1*clk2;
o=i

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';

10-8 ATV5000 Device-Specific Fitting

0 {CLOCK_BY_ROW};
END DEVICE;

Using the I/O Pin Latches 10-9

Using the I/O Pin
Latches

The I/O pins in the ATV5000 architecture can direct an input For more information on unaries,
signal through a latch. You can use the I/O pin latches througsee Accessing Internal Points
the latched unary concept. in a PLD Device on page 7-2.

The PLSyn fitter considers the 1/O pin latches to be unary nodes,
and hence possible locations for placing unary functions.

To declare a unary function in your design, declare a node signal
in the.src file with the following characteristics:

« Declared as a latched node signal.
- Latched by either a low-true or an inverted signal.
» Fed by a single signal.

The PLSyn fitter may place the unary functions automatically,
or you can place them manually througih file assignments.
See the following section for the unary pin names.

ldentif ying Pins and
Nodes

This section describes the pin and node names for the ATV5000.
This information is useful to manually assign signals to pins and
nodes in thepi file. It is also useful for interpreting where
signals were fit in thept and thenpi files.

The ATV5000 has both physical pins and virtual pins. Physical

pins are the pins that physically appear on the device package.
Virtual pins are device node locations where node signals may
be placed.

Physical pins are referenced by the pin number in the package
diagram.

Virtual pins are named according to their characteristics and
their location in the device. The names imply the characteristics

10-10 ATV5000 Device-Specific Fitting

of the device nodes, their location within the logic cell or buried
logic cell, and the physical pin number of the logic cell that they
are associated with.

REG_SHADOW_OF _ Registered shadow pins are

located on register Q1, with the logic cell disconnected from the
I/O pin. The I/O pin then functions as an input. Registered
shadow pins have access to sum terms A, B, and C. Registered
node signals may be placed on registered shadow pins.

COMB_SHADOW_OF _ Combinatorial shadow pins are
located on sum term B, with the feedback going into the
universal bus. Combinatorial shadow pins have access to sum
term B. Combinatorial node signals may be placed on
combinatorial shadow pins.

BURIED_ OF _ Buried pins are located on register Q2.
Buried pins have access to sum term C. Registered node signals
may be placed on buried pins.

UNARY_OF _ Unary pins are located on the 1/O pin latch.
Unary functions may be placed of binary pins.

BLMC Designator for the buried logic cells. Combinatorial
node signals or registered node signals may be placed on the
buried logic cells.

Targeting Quadrants in the ATV5000 10-11

Targeting Quadrants in
the ATV5000

You can specify which output and node signals are to be placed
together in the same quadrant of a device. This specification is
done in thepi file. There are several reasons for explicitly
grouping signals in the ATV5000, including:

« Critical timing may require you to keep a group of signals in
the same quadrant, minimizing speed lost in RU conversion.

- PCB layout may be easier when related signals are kept
together.

- Critical fitting cases may require you to manually tune the
partitions created by the PLSyn fitter in order to achieve a
successful fit.

Usin g the GROUP Construct

The.pi file GROUP construct allows you to specify a set of For more information on
output and node signals that are to be fit together into the sarGROUP, refer to the PIL
quadrant, without specifying which quadrant and without Referencen PLSyn online help.
keeping multiple GROUPs from being fit together in the same

quadrant.

10-12 ATV5000 Device-Specific Fitting

For more information on
SECTION, refer to the PIL
Referencen PLSyn online help.

Example

SOURCE FILE

INPUT i[8];
OUTPUT ogroupl[8];
OUTPUT ogroup2[8];

ogroupl =1i;
ogroup2 =1i;
PHYSICAL INFORMATION FILE
DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';
GROUP
ogroupl; "all ogroupl signals will go
"into the same quadrant
END GROUP;
GROUP
ogroup2; "all ogroup?2 signals may or
"may not also go into
"ogroupl's quadrant
END GROUP;
END DEVICE;

Using the SECTION Construct

The.pi file SECTION construct allows you to specify a set of
signals that are to be fit together in the same quadrant. Two
different SECTIONS will not be fit into the same quadrant.

In addition, you can specify which quadrant to fit the SECTION
into with the TARGET construct.

Syntax is:
TARGET 'quadrant_name’;

The list below details the names of the quadrants in the
ATV5000.

Targeting Quadrants in the ATV5000 10-13

Quadrant Names

Quadrant 1
Quadrant 2
Quadrant 3
Quadrant 4

If a SECTION isn't targeted to a specific quadrant, PLSyn will
place the SECTION into a quadrant automatically.

Example

SOURCE FILE

INPUT i[8];
OUTPUT ogroupl[8];
OUTPUT ogroup2[8];
ogroupl =i;
ogroup2 =1i;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';
SECTION
TARGET 'Quadrant 1
ogroupl; "all ogroupl signals
"will go into quadrant 1
END GROUP;

SECTION
TARGET 'Quadrant 2",
ogroup2; "all ogroup?2 signals
"will go into quadrant 2
END GROUP;
END DEVICE;

10-14 ATV5000 Device-Specific Fitting

Placin g Node Signals on
Buried Lo gic Cells

The PLSyn fitter will not automatically place node signals on
the buried logic cells. However, you can manually place
combinatorial or registered node signhals on the buried nodes.
This is accomplished through pin assignments ingihefile.

You can sometimes reduce the number of resources used for
regionalization by manually placing combinatorial node signals
on the buried logic cells rather than on the combinatorial shadow
nodes. Since the buried logic cells feed back into the regional
bus rather than the universal bus, as the combinatorial shadow
nodes do, regionalization resources may be saved. However,
you must weigh this savings against potentially incurring RU
conversion if the signal placed on a buried logic cell is needed
in another quadrant.

The PLSyn fitter uses the buried logic cells for regionalization
when fitting output and node signals. We recommended that you
do not assign node signals, especially registered node signals, to
the buried logic cells unless you are sure that you have enough
buried logic cells to satisfy regionalization requirements.

Example

SOURCE FILE

input i, clk;

node n clocked_by clk;

n=i

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';
n: BLMC23; "place node n on buried

"logic cell 23
END DEVICE;

Understanding RU Conversion

10-15

Understandin g RU
Conversion

When a design is partitioned across the quadrants of an
ATV5000, there are often signals fed back into one quadrant's
regional bus via the Q1 and Q2 register feedbacks that are
needed by output or node signals in a different quadrant. By
routing the necessary regional bus signals to the universal bus,
the signals can become available to the output and node signals
in other quadrants. This routing process is called RU conversion
(Regional - Universal conversion).

The PLSyn fitter performs RU conversion automatically by
using the logic cell configuration that gives sum term B a
feedback path into the universal bus. The regional bus signal to
be RU converted is placed on one of the regional rows feeding
sum term B, and the signal then takes the feedback path into the
universal bus. In this configuration, sum term B functions as an
RU converter

When a logic cell's sum term B is used as an RU converter, it
becomes unavailable for any other use (such as a combinatorial
shadow node).

Understandin ¢
Regionalization

Regionalization is the process of manipulating a universal
PTERM so that it may be fit on a regional row in the ATV5000.
Regionalization is used during the process of fitting the
PTERMSs of an output or node signal.

Universal and re gional PTERMs

Universal PTERMSs have at least one signal that is available only
in the universal bus or in the regional bus of a different quadrant

10-16 ATV5000 Device-Specific Fitting

than the output or node signal is assigned to. Universal PTERMs
can go only on the universal rows of the ATV5000.

All the signals of regional PTERMs are available in the regional
bus of the same quadrant that the output or node signal is
assigned to. Regional PTERMs may go on universal or regional
rows of the ATV5000.

Regionalization, sum-term combinin g, and fittin g
PTERMs

In a difficult-to-fit design, the key to directing PLSyn’s PLSyn
fitter to a successful fit is simply understanding how the fitter is
attempting to fit the universal PTERMs. It also helps to know
how sum-term combining and regionalization are interrelated
for a particular design. You can use tfpe file to obtain much
information about the results of sum term combining and
regionalization for a fit attempt.

When the PLSyn fitter fits the PTERMSs of an output or node
signal, it attempts to get enough regional and universal rows by
combining sum terms. If this fails to supply enough universal
rows, then regionalization is used to convert some of the output
or node signal's universal PTERMs to regional PTERMs,
allowing placement of PTERMs on the otherwise unused
regional rows.

In addition, if a node signal has a universal PTERM that must go
on the regional row feeding the asynchronous preset of register
Q2, regionalization will be used to convert that universal
PTERM to a regional PTERM.

Regionalization is handled automatically by the PLSyn fitter.
There are no provisions to manually force regionalization of
PTERMSs.

There are two basic techniques used in regionalization:
- signal regionalization

« PTERM regionalization

Understanding Regionalization 10-17

How PLSyn Does
Regionalization

The Plsyn fitter always performs signal regionalization via input
pins when attempting to fit a design. This is done before any
other regionalization technique is used.

UR conversion and PTERM regionalization are complementary
regionalization techniques. Some designs can only be fit via UR
conversion, but others can be fit only via PTERM
regionalization.

During a fit attempt, the PLSyn fitter varies the number of
buried logic cells available per quadrant for PTERM
regionalization, from O to 6, as it attempts to place the PTERMs
of output and node signals. The remainder of the buried logic
cells are used for UR conversion. This allows the best mix of
these complementary regionalization techniques to be used.

Signal Regionalization

Signal regionalization is the process of routing universal signals
to the regional bus of a quadrant. By regionalizing the universal
signals in a universal PTERM, the universal PTERM may
become regional. Often, many universal PTERMs that have few
universal signals can be regionalized by regionalizing just a few
universal signals. The PLSyn fitter uses the input/clock pins and
UR conversion to regionalize signals.

Usin g input pins

The PLSyn fitter will place universal input signals on any input/
clock pins that are not used to supply clock signals to registers
or latches. The fitter uses the path from the pins into all four
regional buses to regionalize the universal input signals.

Input signals are selected for regionalization via input pins
based on the number of universal PTERMs that need each
universal input signal across the entire device.

10-18 ATV5000 Device-Specific Fitting

Usin g feedback paths (UR conversion)

UR conversion (Universal - Regional conversion) is the process
of regionalizing universal signals, using the feedback path from
the buried logic cells into the regional bus.

The PLSyn fitter performs UR conversion by placing a universal
signal on the universal row of a buried logic cell and configuring
the buried logic cell for combinatorial operation. When used in
this manner, the buried logic cell functions d$Raconverter

PTERM Regionalization

Pterm regionalization is the process of regionalizing an entire
universal PTERM, using a buried logic cell. Since the entire
universal PTERM is regionalized at once, universal PTERMs
that have a lot of universal signals can be regionalized via
PTERM regionalization.

The PLSyn fitter performs PTERM regionalization by placing
the entire universal PTERM on the universal row of a buried
logic cell and configuring the buried logic cell for combinatorial
operation. Therefore, a signal representing the entire universal
PTERM is available in the regional bus, and substitutes for the
original universal PTERM in any output or node signals that
have the universal PTERM in their equations.

The Report File

10-19

The Report File

The.rpt file is written by the PLSyn fitter during the process
of fitting part or all of a design into ATV5000 devices. The
arpt file is useful as an aid in:

» Understanding why designs do not fit.

- Directing the PLSyn fitter to success in fitting a difficult
design.

« Determining how a design was fit and the device resources
that were used.

The.rpt file is complementary to theoc file. It contains
information about the design and about the attempt made by the
PLSyn fitter to implement the design. This information is
specific to the ATV5000. In-depth information about the input,
output, and node signals is given, along with assignments to
device resources made by the PLSyn fitter.

Obtainin g Report File

To obtain a report file

1 Create api file with a DEVICE that is targeted towards an
ATV5000.

No other specifications in thgi file are necessary. PLSyn will
generate automatically a report file named
design_name<nn>rpt where<nn>is a sequence number
representing the edition of the report.

10-20 ATV5000 Device-Specific Fitting

Example

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD',
END DEVICE;

If you think the design will take more than one device, put as
many DEVICEs in thepi file as you think the design will
need. A differentrpt file will be created for each device in the
solution, namedies ign_name0l.rpt

design_name02.rpt , and so on.

Pin assignments, properties, and otper file constructs may
be placed in the DEVICEs if needed. They will not affect
creation of therpt file.

Heading

The header contains the date and time the design was run
through PLSyn. It also contains the user-supplied design
information from thesrc file. This gives a way of identifying
the.rpt file.

DATE: FriSep 2 15:18:45 1994Date design was run

DESIGN: drink Design name
DEVICE: ATV5000:1 Part name and position in Pl file

DEVICE statement list

TITLE: drink User-supplied information from
ENGINEER: ATV5000 Designer.src file

COMPANY: Atmel Corporation

PROJECT: ATV5000 .rpt example

REVISION: 1.0

COMMENT: Example of ATV5000 .rpt file using example drink.src

The Report File

10-21

Failure-to-Partition Disclaimer

If the PLSyn fitter fails to partition the design successfully
across the quadrants of the device, a disclaimer is printed
immediately following the heading. This lets you know that
partitioning failed.

If the design partitions successfully, no disclaimer will be
printed.

Partitioner Report

This section shows:

« The functions (output and node signals) assigned to each
guadrant.

« The signals that must be available in each quadrant.

« How many unique clocks, latch enables, enables, and
register reset/preset equations are in each quadrant.

Signal Director y

This section contains information about the design that is
specific to the ATV5000. All input, output and node signals
assigned to the device are listed.

For each signal, the buses that the signals are available in are
listed.

For output and node signals, the universal and regional PTERMs
are listed. Also shown for output and node signals is the
equation form used (DFF, TFF, or DeMorganized).

The information in the signal directory is taken before any
device resources are assigned to. Therefore, some signals may
become available in different buses during function placement.
Also, some universal PTERMs may be regionalized during
function placement.

10-22 ATV5000 Device-Specific Fitting

Example

SIGNAL DIRECTORY:

Notes: Universal PTERMs may become regional
during function placement.
‘BAR' indicates DeMorganized form equation used.
'DFF' indicates D flip-flop form equation used.
TFF indicates T flip-flop form equation used.

Input: nickel
Buses: Univ

Input: dime
Buses: Univ

Outputreturn_dime
Buses: Univ
Universal PTERMSs:
Inickel*/dime*quarter*/drink_machine-1*drink_machine-2;
Inickel*/dime*quarter*drink_machine-0*
drink_machine-1*/drink_machine-2 ;
Regional PTERMs:
/drink_machine-0*drink_machine-1*drink_machine-2 ;

Node:DFF drink_machine-0
Buses: Univ Q1
Universal PTERMSs:
nickel*/drink_machine-0*/drink_machine-2 ;
nickel*/drink_machine-0*/drink_machine-1 ;
Inickel*/quarter*drink_machine-0*/drink_machine-2 ;

/dime*quarter*/drink_machine-0*/drink_machine-1*
/drink_machine-2 ;
Inickel*/dime*/quartertdrink_machine-0*
/drink_machine-1 ;
Inickel*dime*drink_machine-0*/drink_machine-2 ;
Regional PTERMs:
In this example, the input signals nickel and dime are available
in the universal bus. The output signal return_dime is available
in the universal bus, has two universal PTERMs, and one
regional PTERM. The node signal drink_machine-0 is available
in the universal bus and quadrant 1's regional bus, and has 6
universal PTERMs.

The Report File

10-23

Signals Universalized on Sum
Term B

The signals that underwent RU conversion are listed here,
quadrant by quadrant, as follows:

SIGNALS UNIVERSALIZED ON SUM TERM B:
Quadrant 1

drink_machine-2
drink_machine-1
drink_machine-0

In this example, RU conversion was performed only in quadrant
1.

Signals Re gionalized on Input
Pins

Signals that were regionalized on input/clock pins are listed
here. Signals that only supply register clocks or latches from the
input/clock pins are listed also, since they are available in all
regional buses.

Function Placement Report

The function placement report provides information about the
actions of the PLSyn fitter during output and node signal
placement. Information about UR conversion, PTERM
regionalization, and output/node signal placement is provided.
If the PLSyn fitter failed to fit the design, this information is
especially valuable as an aid in guiding the PLSyn fitter to a
successful fit.

Quadrant sections

The function placement report is organized on an primary level
around quadrant sections. In each quadrant section, function

10-24 ATV5000 Device-Specific Fitting

placement progress for each quadrant is reported. Information
about quadrant 1 is reported first, then quadrants 2, 3, and 4, if
any functions were assigned to those quadrants. Within each
guadrant section, each line in thaet file is preceded by a
guadrant indicator to remind you of the current quadrant.

Fit attempt sections

Within each quadrant section, the function placement report is
organized on a secondary level around fit attempt sections for
each gquadrant. Each fit attempt section contains information
about function placement for a fit attempt within each quadrant.
Each fit attempt represents an attempt the PLSyn fitter made at
placing the functions in the quadrant, with a different number of
buried logic cells available for PTERM regionalization in each
fit attempt. There may be up to 7 fit attempts. See the preceding
section on Understanding Regionalization for more information
on regionalization and the fitting process.

Within each fit attempt section is an UR conversion report, a
PTERM regionalization report, and an output/node signal
placement report. These three reports give information about
regionalization and function placement progress for a fit
attempt.

UR conversion report

The signals that underwent UR conversion during the fit attempt
are listed in this table, along with the buried logic cells serving
as UR converters.

Pterm re gionalization report

The PTERMSs that underwent PTERM regionalization during
the fit attempt are listed in this table, along with the buried logic
cells each PTERM was regionalized on.

Output/node si gnal placement report

Each output and node signal that was successfully placed during
the fit attempt is listed in this table, with the pin the signal was
assigned to and the sum terms in the logic cell that were used by

The Report File

10-25

the signal. This lets you examine how sum term combining was
performed.

Example

The output/node signal placement report for the drink example
for quadrant 1, fit attempt 1 looks like:

Q1: OUTPUT/NODE SIGNAL PLACEMENT REPORT:
QL

QL Device Pin Sumtermsused Signal

Q1
Q1: REG_SHADOW_OF 13 ab drink_machine-0
Ql: REG_SHADOW_OF 12 ab drink_machine-1
Q1l: REG_SHADOW_OF 11 ab drink_machine-2

Input Si gnal Placement Report

This table lists each input signal that was placed on an input/
clock or I/O pin. Signals that were regionalized via input are also
listed. If all the input signals could not be placed, the failure is
notes.

Failure-to-Fit Disclaimer

If the PLSyn fitter fails to place all output, node, and input
signals in the partitioned design, a disclaimer is printed
immediately following the input signal placement report. This
lets you know that fitting failed.

If the design fit successfully, a message is printed with the
number of functions successfully fit in the device.

The Documentation File

Appendix Overview

This appendix describes the sections of the documentation file
that PLSyn creates whenever you try to physically implement a
programmable logic design.

A-2 The Documentation File

Summary of
Documentation File
Contents

PLSyn generates a documentation file for the design throughout
the physical implementation process. This file is called
design_name.doc , by default, and contains the following
information:

Compiler and optimizer run-time options (switch values).
Reduced design equations.

Solutions generated for the design.

Partitioning criteria.

Pinout diagrams for the chosen implementation.

A list of possible devices for each architecture in the
solution list.

A wire list.

To view the documentation file

1

In PLSyn, from the File menu, select Examine Doc File.

Reduced Design Equations A-3

Reduced Desi gn
Equations

When compiling and optimizing your programmable logic, = Example: If you specify a JK flip-
PLSyn synthesizes the equations which represent the logic flop as part of the design, the
thereby creating additional alternative equations. The additionPLSyn compiler generates
equations give the PLSyn fitter more options when attempting t¢quations for all other flip-flop

fit your design. This also means that e file mightinclude ~ YPeS as well. The synthesized

. . o . . . equations are simply logically-
:gﬂra::t;ogzm addition to those supplied by you in the design equivalent versions of the flip-

flop you specified.

Equation Extensions Used in the
.doc File

Table 10-1 lists equation types and the equation extension you
might see in thedoc file.

Table 10-1 Equation Extensions Used in the .doc File

.doc File
Extensio Description Example
n

XORL" ify =a (+) b, then y.xorl=a Y.XORL
(left side of XOR operation)

XORR* ify=a (+) b, theny.xorr=b Y.XORR
(right side of XOR operation)

.EQN Combinatorial equation AEQN

(no CLOCKED_BY on output,
biput, or node)

.D D flip-flop equation FLOP.D
J J flip-flop equation FLOP.J
K K flip-flop equation FLOP.K
.S S flip-flop equation FLOP.S
R R flip-flop equation FLOP.R
T T flip-flop equation FLOP.T

A-4 The Documentation File

Note PLSyn can always
generate the complemented
(DeMorgan) version of the
equations. But when the
version of an equation is non-
complemented, PLSyn might
not be able to generate it
because of its size.

Table 10-1 Equation Extensions Used in the .doc File

.doc File
Extensio Description Example
n
.CLK clock equation X.CLK=/A
OUTPUT x CLOCKED_BY /a
.RESET reset equation X.RESET =RST
OUTPUT x CLOCKED_BY /a
RESET_BY rst
.PRESET preset equation X.PRESET = PRST
OUTPUT x CLOCKED_BY /a
PRESET_BY prst
.OE OE enabled equation X.OE=0E
OUTPUT x ENABLED_BY oe
.LATCH latched equation X.LATCH =LAT1
OUTPUT X LATCHED_BY
latl
.CE clock-enabled equation X.CE=CE

*. The compiler/optimizer may generate an XOR equation,
even if none was specified in the original .dsl file. Exam-
ples include synthesis from T flops, arithmetic operators
.+.and .-, etc.

DeMorgan Equations

In addition to the equations listed in the previous table, PLSyn
might generate DeMorgan versions of the same equations.
These, too, are candidates for device fitting.

In the.doc file, PLSyn marks the DeMorgan version of an
equation with a tilde (~) after the equation name.

Example

Suppose you have declared equations as follows:

INPUT a, b, oe;
OUTPUT orl ENABLED_BY oe;
orl=a+b;

Reduced Design Equations

A-5

After synthesis, PLSyn writes the .doc file equations as follows:

OR1.EQN = A+ B;
.OE = OE;
OR1.EQN(~) = /A * /B;
.OE(~) = /OE;

Equation Displa y

Equations can fall into four categories:

Primary Equations used to describe the signal.

Synthesized Equations generated by the compiler/
optimizer.

DeMorgan Complemented equations generated by the

compiler/optimizer.

Fit Form of the equations (primary, synthesized,
or the DeMorgan of the two) that PLSyn
actually fits into the device.

By default, thedoc file includes either:
- the version of the equation that was used during fitting, or

- the primary equation version if fitting has not yet been done.

A-6 The Documentation File

Partitionin g Criteria

The Partitioning Criteria section lists the constraints in effect
during the partitioning/fitting process.

Note A warning appears in the .doc file if you updated
the constraints used during partitioning after
PLSyn generated the solutions. This tells you that
the partitioning criteria displayed in the .doc file
might be incorrect.

PLSyn writes the partitioning criteria to thioc file after
having created the list of possible devices from the available
(.avl) file and the enabled constraints.

Solutions List

The Solutions List section lists the architectures that the PLSyn
fitter found to fit your programmable logic. This is the same
information that PLSyn displays in the solutions list in the
PLSyn window.

Fuse Map Files

The Fuse Map Files section associates which fuse maps go to
which device for a particular solution. You will only see this
section if you ran the Fuse Map Generator command from the
Tools menu.

Pinout Diagrams A-7

Pinout Dia grams

The Pinout Diagrams section contains for each device in your
chosen implementation either:

- adiagram, for a DIP or CDIP package type, or,
< apinout table, for all other package types.

that shows the device, the pin types (INPUT, OUTPUT,
BIPUT), and an indicator of the signal/pin placement. PLSyn
writes this information to thedoc file after having completed
fitting and partitioning.

Possible Devices List

When PLSyn generates device solutions, the solution list in the
PLSyn window contains architecture names, not manufacturers’
names, for devices. The Possible Devices List section in the
.doc file provides a list of the actual devices that are available
for a given architecture.

Wire List

The Wire List section lists for your chosen implementation,
which signals to connect to which pins.

Summary of Files

Appendix Overview

This appendix describes each of the file types that PLSyn uses.

B-2 Summary of Files

Files Used b y PLSyn

File

Extension Description Source
.afb Database containing compiled logic equations. UsedPLSyn compiler
for simulations and as input to the PLSyn optimizer.
Lavl Available parts file. You can cogyl synlib.av] System-installegp1synTib.av] file
to create a custom available file for your site.
.cst Constraint file. A temporary file used to specify the PLSyn
partitioning constraints and priorities.
.doc Design documentation file, updated during physical PLSyn
implementation.
.ds DSL source code files. If the design is schematic- user, schematic-to-DSL translator
based, the file nametkesign_name.ds] is
reserved for use by PLSyn.
.edf EDIF netlist containing the design’s programmable Schematics
logic.
.fb Database containing optimized logic equations and PLSyn
implementation data.
.jl,.32, ... Fuse map files, in JEDEC format. PLSyn fuse maps generator
.log PLSyn log/error file, updated during physical PLSyn
implementation.
.npi PIL file containing a description of the design’s PLSyn, after fuse map is generated
fitting/partitioning. Can be used to repeat the
implementation on subsequent iterations by copying to
the . pi file.
.pi Physical information file containing optimization, For new designs, a copy of
fitting, and partitioning statements. You can customizdefault . pi, found in the MicroSim
the . pi file to control the implementation. root directory
.sch Schematic file. Schematics
.s1b Symbol library file. Schematics
.plb Package library file. Schematics

.tv Test vectors file. PSpice/PLogic

AMD MACH Device Tables

Appendix Overview

This appendix contains lookup tables for pin names and fuse
commands for AMD MACH device architectures. These are the
notations you can use in yoipi file.

Pin Name Tablesn page C-Zists the pin reference name for
each macrocell in a PAL block.

MACH 1xx and 2xx: Fuse Commands for Driving Outpoits
page C-14ists the fuse commands you can use to force the
named pin to be driven.

C-2 AMD MACH Device Tables

Pin Name Tables

The following tables list the reference name for each macrocell
in a PAL block.

To determine the exact name for a pin

Replace thé# characters in the listed Reference Name with the
corresponding two digit Macrocell Number.

MACH 110
Macrocell Number (##)
Bloc . .
K Pins Reference Name Output Buried Input
A 2-9 MACROCELL_A## 00 - 07
14-21 08 - 15
B 24-31 MACROCELL_B## 00-07
36-43 08 - 15
MACH 111, 111SP
Macrocell Number (##)
Bloc . .
K Pins Reference Name Output Buried Input
A 2-9 MACROCELL_A## 00-07
14-21 08 - 15
B 24-31 MACROCELL_B## 15-08
36-43 07 - 00

Pin Name Tables

C-3

MACH 120, 121

Bloc

Macrocell Number (##)

K Pins Reference Name Output Buried Input
A 2-7 MACROCELL_A## 00-05
9-14 06-11
B 21-26 MACROCELL_B## 11-06
28-33 05-00
C 36-41 MACROCELL_C## 00-05
43-48 06-11
D 55-60 MACROCELL_D## 11-06
62-67 05-00

MACH 130, 131, 131SP

Macrocell Number (##)

Eloc Pins Reference Name Output Buried Input
A 3-10 MACROCELL_A## 00-07
12-19 08 -15
B 24-31 MACROCELL_B## 15-08
33-40 07- 00
C 45-52 MACROCELL_C## 00 - 07
54-61 08 -15
D 66-73 MACROCELL_D## 15-08
75-82 07- 00

C-4 AMD MACH Device Tables

MACH 210, 211, 211SP

Bloc

Macrocell Number (##)

K Pins Reference Name Output Buried Input
A 2-9 MACROCELL_A## 00,02,04, 01,03,05,
06,08,10, 07,09,11,
12,14 13,15
B 14-21 MACROCELL_B## 14,12,10,15,13,11,
08,06,04, 09,07,05,
02,00 03,01
C 21-31 MACROCELL_C## 00,02,04,01,03,05,
06,08,10, 07,09,11,
12,14 13,15
D 36-43 MACROCELL_D## 14,12,10,15,13,11,

08,06,04, 09,07,05,
02,00 03,01

Pin Name Tables

C-5

MACH 215

Bloc

Macrocell Number (##)

K Pins Reference Name Output Buried Input
A 2-9 MACROCELL_A## 00,02,04,
06,08,10,
12,14
IN_REG_A## 01,03,05,
07,09,11,
13,15
B 14-21 MACROCELL_B## 14,12,10,
08,06,04,
02,00
IN_REG_B## 15,13,11,
09,07,05,
03,00
C 24-31 MACROCELL_C## 00,02,04,
06,
08,10,12,
14
IN_REG_Ct# 01,03,05,
07,09,11,
13,15
D 36-43 MACROCELL_D## 14,12,10,
08,06,04,
02,00
IN_REG_D## 15,13,11,
09,07,05,

03,00

C-6 AMD MACH Device Tables

MACH 220, 221, 221SP

Macrocell Number (##)

Eloc Pins Reference Name Output Buried Input

A 2-7 MACROCELL_A## 00,02,04, 01,03,05,
06,08,10 07,09,11

B 9-14 MACROCELL_B## 10,08,06,11,09,07,
04,02,00 05,03,01

C 21-26 MACROCELL_C## 00,02,04,01,03,05,
06,08,10 07,09,11

D 28-33 MACROCELL_D## 10,08,06,11,09,07,
04,02,00 05,03,01

E 36-41 MACROCELL_E## 00,02,04,01,03,05,
06,08,10 07,09,11
F 43-48 MACROCELL_F## 10,08,06,11,09,07,

04,02,00 05,03,01

G 55-60 MACROCELL_G## 00,02,04,01,03,05,
06,08,10 07,09,11

H 62-67 MACROCELL_H## 10,08,06,11,09,07,
04,02,00 05,03,01

Pin Name Tables C-7

MACH 230, 231

Bloc
k

Pins Reference Name Output Buried

Macrocell Number (##)

Input

A

3-10

12-19

24-31

33-40

45-52

54-61

66-73

75-82

MACROCELL_A##

MACROCELL_B##

MACROCELL_C##

MACROCELL_D##

MACROCELL_E##

MACROCELL_F##

MACROCELL_G##

MACROCELL_H##

00,02,04, 01,03,05,
06,08,10, 07,09,11,
12,14 13,15

14,12,10,15,13,11,
08,06,04, 09,07,05,
02,00 03,01

00,02,04,01,03,05,
06,08,10, 07,09,11,
12,14 13,15

14,12,10,15,13,11,
08,06,04, 09,07,05,
02,00 03,01

00,02,04,01,03,05,
06,08,10, 07,09,11,
12,14 13,15

14,12,10,15,13,11,
08,06,04, 09,07,05,
02,00 03,01

00,02,04,01,03,05,
06,08,10, 07,09,11,
12,14 13,15

14,12,10,15,13,11,
08,06,04, 09,07,05,
02,00 03,01

C-8 AMD MACH Device Tables

MACH 435, 436

Bloc

Macrocell Number (##)

K Pins Reference Name Output Buried Input
A 3-10 MACROCELL_A## 00-15

IN_REG_A## 00 - 07
B 12-19 MACROCELL_B## 00-15

IN_REG_B## 07 - 00
C 24-31 MACROCELL_C## 00-15

IN_ REG_Ci## 00 - 07
D 33-40 MACROCELL_D## 00-15

IN_REG_D## 07 - 00
E 45-52 MACROCELL_E## 00 - 15

IN_REG_E## 00 - 07
F 45-52 MACROCELL_F## 00 - 15

IN_ REG_F## 07 - 00
G 66-73 MACROCELL_G## 00-15

IN_REG_Gt# 00 - 07
H 75-82 MACROCELL_H## 00 -15

IN_REG_H## 07 - 00

Pin Name Tables C-9

MACH 445, 446

Macrocell Number (##)

Eloc Pins Reference Name Output Buried Input
B 5-12 MACROCELL_B## 00 - 15

IN_REG_B## 07 - 00
C 19-26 MACROCELL C## 00 - 15

IN_REG_C## 00 - 07
D 31-38 MACROCELL D## 00-15

IN_REG_D## 07 - 00
E 43-50 MACROCELL_E## 00 - 15

IN_REG_E## 00 - 07
F 55-62 MACROCELL F## 00- 15

IN_REG_F## 07 - 00
G 69-76 MACROCELL G## 00 - 15

IN_REG_G## 00 - 07
H 81-88 MACROCELL_H## 00-15

IN_REG_H## 07 - 00

A 93-100 MACROCELL_G## 00-15
IN_REG_G## 00 - 07

C-10 AMD MACH Device Tables

MACH 465, 466

Macrocell Number (##)

Eloc Pins Reference Name :)utpu Sune Input
C 3-10 MACROCELL_C## 00-15

IN_REG_C## 07 - 00
D 13-20 MACROCELL_D## 00-15

IN_REG_D## 07 - 00
E 32-39 MACROCELL_E## 00-15

IN_REG_E## 00 - 07
F 42-49 MACROCELL_F## 00-15

IN_REG_F## 00 - 07
G 54-61 MACROCELL_G## 00-15

IN_REG_G## 07 - 00
H 64-71 MACROCELL_H## 00-15

IN_REG_H## 07 - 00
| 86-93 MACROCELL_I## 00-15

IN_REG_I## 00 - 07
J 96-103 MACROCELL_J## 00-15

IN_REG_J## 00 - 07
K 107-114 MACROCELL_K## 00-15

IN_REG_K## 07 - 00
L 117-124 MACROCELL_L## 00-15

IN_REG_L## 07 - 00
M 136-143 MACROCELL_M## 00 -15

IN_REG_M## 00 - 07
N 146-153 MACROCELL_N## 00 - 15

IN_REG_N## 00 - 07
o 158-165 MACROCELL_O## 00 - 15

IN_REG_O## 07 -00
P 168-175 MACROCELL_P## 00-15

IN_REG_P## 07 - 00

Pin Name Tables C-11

Macrocell Number (##)

Bloc Pins Reference Name Outpu Burie Input

k t d

A 190-197 MACROCELL_A## 00 - 15
IN_REG_A## 00 - 07
B 200-207 MACROCELL B## 00-15
IN_REG_B## 00 - 07

C-12 AMD MACH Device Tables

MACH 1xx and 2xx: Fuse
Commands for Drivin ¢
Outputs

The following tables give the fuse commands for.phe file to
force the named pin to be driven.

MACH 110
Table 10-2 MACH 110 OE Fuse Commands
Pin 02: INTACT 6166 ; BLOWN 6167 ;
Pin 03: INTACT 6174 ; BLOWN 6175 ;
Pin 04: INTACT 6182 ; BLOWN 6183 ;
Pin 05: INTACT 6190 ; BLOWN 6191 ;
Pin 06: INTACT 6198 ; BLOWN 6199 ;
Pin 07: INTACT 6206 ; BLOWN 6207 ;
Pin 08: INTACT 6214 ; BLOWN 6215 ;
Pin 09: INTACT 6222 ; BLOWN 6223 ;
Pin 14: INTACT 6230 ; BLOWN 6231 ;
Pin 15: INTACT 6238 ; BLOWN 6239 ;
Pin 16: INTACT 6246 ; BLOWN 6247 ;
Pin 17: INTACT 6254 ; BLOWN 6255 ;
Pin 18: INTACT 6262 ; BLOWN 6263 ;
Pin 19: INTACT 6270 ; BLOWN 6271 ;
Pin 20: INTACT 6278 ; BLOWN 6279 ;
Pin 21: INTACT 6286 ; BLOWN 6287 ;
Pin 24: INTACT 6294 ; BLOWN 6295 ;
Pin 25: INTACT 6302 ; BLOWN 6303 ;
Pin 26: INTACT 6310 ; BLOWN 6311 ;
Pin 27: INTACT 6318 ; BLOWN 6319 ;
Pin 28: INTACT 6326 ; BLOWN 6327 ;
Pin 29: INTACT 6334 ; BLOWN 6335 ;
Pin 30: INTACT 6342 ; BLOWN 6343 ;
Pin 31: INTACT 6350 ; BLOWN 6351 ;
Pin 36: INTACT 6358 ; BLOWN 6359 ;
Pin 37: INTACT 6366 ; BLOWN 6367 ;

MACH 1xx and 2xx: Fuse Commands for Driving Outputs C-13

Table 10-2 MACH 110 OE Fuse Commands

Pin 38: INTACT 6374 ; BLOWN 6375 ;
Pin 39: INTACT 6382 ; BLOWN 6383 ;
Pin 40: INTACT 6390 ; BLOWN 6391 ;
Pin 41: INTACT 6398 ; BLOWN 6399 ;
Pin 42: INTACT 6406 ; BLOWN 6407 ;
Pin 43: INTACT 6414 ; BLOWN 6415 ;
MACH 120
Table 10-3 MACH 120 OE Fuse Commands
Pin 02: INTACT 2918 ; BLOWN 2919 ;
Pin 03: INTACT 2927 ; BLOWN 2928 ;
Pin 04: INTACT 2936 ; BLOWN 2937 ;
Pin 05: INTACT 2945 ; BLOWN 2946 ;
Pin 06: INTACT 2954 : BLOWN 2955 ;
Pin 07: INTACT 2963 ; BLOWN 2964 ;
Pin 09: INTACT 2972 ; BLOWN 2973 ;
Pin 10: INTACT 2981 ; BLOWN 2982 ;
Pin 11: INTACT 2990 ; BLOWN 2991 ;
Pin 12: INTACT 2999 ; BLOWN 3000 ;
Pin 13: INTACT 3008 ; BLOWN 3009 ;
Pin 14: INTACT 3017 ; BLOWN 3018 ;
Pin 21: INTACT 6037 ; BLOWN 6038 ;
Pin 22: INTACT 6028 ; BLOWN 6029 ;
Pin 23: INTACT 6019 ; BLOWN 6020 ;
Pin 24: INTACT 6010 ; BLOWN 6011 ;
Pin 25: INTACT 6001 ; BLOWN 6002 ;
Pin 26: INTACT 5992 ; BLOWN 5993 ;
Pin 28: INTACT 5983 ; BLOWN 5984 ;
Pin 29: INTACT 5974 ; BLOWN 5975 ;
Pin 30: INTACT 5965 ; BLOWN 5966 ;
Pin 31: INTACT 5956 ; BLOWN 5957 ;
Pin 32: INTACT 5947 ; BLOWN 5948 ;
Pin 33: INTACT 5938 ; BLOWN 5939 ;
Pin 36: INTACT 8958 ; BLOWN 8959 ;

Pin 37: INTACT 8967 ; BLOWN 8968 ;

C-14 AMD MACH Device Tables

Table 10-3 MACH 120 OE Fuse Commands (continued)

Pin 38: INTACT 8976 ; BLOWN 8977 ;
Pin 39: INTACT 8985 ; BLOWN 8986 ;
Pin 40: INTACT 8994 ; BLOWN 8995 ;
Pin 41: INTACT 9003 ; BLOWN 9004 ;
Pin 43: INTACT 9012 ; BLOWN 9013 ;
Pin 44: INTACT 9021 ; BLOWN 9022 ;
Pin 45: INTACT 9030 ; BLOWN 9031 ;
Pin 46: INTACT 9039 ; BLOWN 9040 ;
Pin 47: INTACT 9048 ; BLOWN 9049 ;
Pin 48: INTACT 9057 ; BLOWN 9058 ;
Pin 55: INTACT 12077 ; BLOWN 12078 ;
Pin 56: INTACT 12068 ; BLOWN 12069 ;
Pin 57: INTACT 12059 ; BLOWN 12060 ;
Pin 58: INTACT 12050 ; BLOWN 12051 ;
Pin 59: INTACT 12041 ; BLOWN 12042 ;
Pin 60: INTACT 12032 ; BLOWN 12033 ;
Pin 62: INTACT 12023 ; BLOWN 12024 ;
Pin 63: INTACT 12014 ; BLOWN 12015 ;
Pin 64: INTACT 12005 ; BLOWN 12006 ;
Pin 65: INTACT 11996 ; BLOWN 11997 ;
Pin 66: INTACT 11987 ; BLOWN 11988 ;
Pin 67: INTACT 11978 ; BLOWN 11979 ;
MACH 130
Table 10-4 MACH 130 OE Fuse Commands
Pin 03: INTACT 3750 ; BLOWN 3751 ;
Pin 04: INTACT 3759 ; BLOWN 3760 ;
Pin 05: INTACT 3768 ; BLOWN 3769 ;
Pin 06: INTACT 3777 ; BLOWN 3778 ;
Pin 07: INTACT 3786 ; BLOWN 3787 ;
Pin 08: INTACT 3795 ; BLOWN 3796 ;
Pin 09: INTACT 3804 ; BLOWN 3805 ;
Pin 10: INTACT 3813 ; BLOWN 3814 ;
Pin 12: INTACT 3822 ; BLOWN 3823 ;

Pin 13: INTACT 3831 ; BLOWN 3832 ;

MACH 1xx and 2xx: Fuse Commands for Driving Outputs C-15

Table 10-4 MACH 130 OE Fuse Commands (continued)

Pin 14: INTACT 3840 ; BLOWN 3841 ;
Pin 15: INTACT 3849 ; BLOWN 3850 ;
Pin 16: INTACT 3858 ; BLOWN 3859 ;
Pin 17: INTACT 3867 ; BLOWN 3868 ;
Pin 18: INTACT 3876 ; BLOWN 3877 ;
Pin 19: INTACT 3885 ; BLOWN 3886 ;
Pin 24: INTACT 7773 ; BLOWN 7774 ;
Pin 25: INTACT 7764 ; BLOWN 7765 ;
Pin 26: INTACT 7755 ; BLOWN 7756 ;
Pin 27: INTACT 7746 ; BLOWN 7747 ;
Pin 28: INTACT 7737 ; BLOWN 7738 ;
Pin 29: INTACT 7728 ; BLOWN 7729 ;
Pin 30: INTACT 7719 ; BLOWN 7720 ;
Pin 31: INTACT 7710 ; BLOWN 7711 ;
Pin 33: INTACT 7701 ; BLOWN 7702 ;
Pin 34: INTACT 7692 ; BLOWN 7693 ;
Pin 35: INTACT 7683 ; BLOWN 7684 ;
Pin 36: INTACT 7674 ; BLOWN 7675 ;
Pin 37: INTACT 7665 ; BLOWN 7666 ;
Pin 38: INTACT 7656 ; BLOWN 7657 ;
Pin 39: INTACT 7647 ; BLOWN 7648 ;
Pin 40: INTACT 7638 ; BLOWN 7639 ;
Pin 45: INTACT 11526 ; BLOWN 11527 ;
Pin 46: INTACT 11535 ; BLOWN 11536 ;
Pin 47: INTACT 11544 BLOWN 11545 ;
Pin 48: INTACT 11553 ; BLOWN 11554 ;
Pin 49: INTACT 11562 ; BLOWN 11563 ;
Pin 50: INTACT 11571 ; BLOWN 11572 ;
Pin 51: INTACT 11580 ; BLOWN 11581 ;
Pin 52: INTACT 11589 ; BLOWN 11590 ;
Pin 54: INTACT 11598 ; BLOWN 11599 ;
Pin 55: INTACT 11607 ; BLOWN 11608 ;
Pin 56: INTACT 11616 ; BLOWN 11617 ;
Pin 57: INTACT 11625 ; BLOWN 11626 ;
Pin 58: INTACT 11634 ; BLOWN 11635 ;

Pin 59: INTACT 11643 ; BLOWN 11644 ;

C-16 AMD MACH Device Tables

Table 10-4 MACH 130 OE Fuse Commands (continued)

Pin 60: INTACT 11652 ; BLOWN 11653 ;
Pin 61: INTACT 11661 ; BLOWN 11662 ;
Pin 66: INTACT 15549 ; BLOWN 15550 ;
Pin 67: INTACT 15540 ; BLOWN 15541 ;
Pin 68: INTACT 15531 ; BLOWN 15532 ;
Pin 69: INTACT 15522 ; BLOWN 15523 ;
Pin 70: INTACT 15513 ; BLOWN 15514 ;
Pin 71: INTACT 15504 ; BLOWN 15505 ;
Pin 72: INTACT 15495 ; BLOWN 15496 ;
Pin 73: INTACT 15486 ; BLOWN 15487 ;
Pin 75: INTACT 15477 ; BLOWN 15478 ;
Pin 76: INTACT 15468 ; BLOWN 15469 ;
Pin 77: INTACT 15459 ; BLOWN 15460 ;
Pin 78: INTACT 15450 ; BLOWN 15451 ;
Pin 79: INTACT 15441 ; BLOWN 15442 :
Pin 80: INTACT 15432 ; BLOWN 15433 ;
Pin 81: INTACT 15423 ; BLOWN 15424 ;
Pin 82: INTACT 15414 ; BLOWN 15415 ;
MACH 210
Table 10-5 MACH 210 OE Fuse Commands
Pin 02: INTACT 3086 ; BLOWN 3087 ;
Pin 03: INTACT 3102 ; BLOWN 3103 ;
Pin 04: INTACT 3118 ; BLOWN 3119 ;
Pin 05: INTACT 3134 ; BLOWN 3135 ;
Pin 06: INTACT 3150 ; BLOWN 3151 ;
Pin 07: INTACT 3166 ; BLOWN 3167 ;
Pin 08: INTACT 3182 ; BLOWN 3183 ;
Pin 09: INTACT 3198 ; BLOWN 3199 ;
Pin 14: INTACT 6406 ; BLOWN 6407 ;
Pin 15: INTACT 6390 ; BLOWN 6391 ;
Pin 16: INTACT 6374 ; BLOWN 6375 ;
Pin 17: INTACT 6358 ; BLOWN 6359 ;
Pin 18: INTACT 6342 ; BLOWN 6343 ;

Pin 19: INTACT 6326 ; BLOWN 6327 ;

MACH 1xx and 2xx: Fuse Commands for Driving Outputs C-17

Table 10-5 MACH 210 OE Fuse Commands (continued)

Pin 20: INTACT 6310; BLOWN 6311 ;
Pin 21: INTACT 6294 ; BLOWN 6295 ;
Pin 24: INTACT 9502 ; BLOWN 9503 ;
Pin 25: INTACT 9518 ; BLOWN 9519 ;
Pin 26: INTACT 9534 ; BLOWN 9535 ;
Pin 27: INTACT 9550; BLOWN 9551 ;
Pin 28: INTACT 9566 ; BLOWN 9567 ;
Pin 29: INTACT 9582 ; BLOWN 9583 ;
Pin 30: INTACT 9598 ; BLOWN 9599 ;
Pin 31: INTACT 9614 ; BLOWN 9615 ;
Pin 36: INTACT 12822 ; BLOWN 12823 ;
Pin 37: INTACT 12806 ; BLOWN 12807 ;
Pin 38: INTACT 12790 ; BLOWN 12791 ;
Pin 39: INTACT 12774 BLOWN 12775 ;
Pin 40: INTACT 12758 ; BLOWN 12759 ;
Pin 41: INTACT 12742 ; BLOWN 12743 ;
Pin 42: INTACT 12726 ; BLOWN 12727 ;
Pin 43: INTACT 12710 ; BLOWN 12711 ;
MACH 215

Table 10-6 MACH 215 OE Fuse Commands

Pin 02: BLOWN 88 .. 131 ;
Pin 03: BLOWN 440 .. 483 ;
Pin 04: BLOWN 792 .. 835 ;
Pin 05: BLOWN 1144 .. 1187 ;
Pin 06: BLOWN 1496 .. 1539 ;
Pin 07: BLOWN 1848 .. 1891 ;
Pin 08: BLOWN 2200 .. 2243 ;
Pin 09: BLOWN 2552 .. 2595 ;
Pin 14: BLOWN 5536 .. 5579 ;
Pin 15: BLOWN 5184 .. 5227
Pin 16: BLOWN 4832 .. 4875,
Pin 17: BLOWN 4480 .. 4523 ;
Pin 18: BLOWN 4128 .. 4171,
Pin 19: BLOWN 3776 .. 3819 ;

C-18 AMD MACH Device Tables

Table 10-6 MACH 215 OE Fuse Commands (continued)

Pin 20: BLOWN 3424 .. 3467 ;

Pin 21: BLOWN 3072 .. 3115 ;

Pin 24: BLOWN 6056 .. 6099 ;

Pin 25: BLOWN 6408 .. 6451 ;

Pin 26: BLOWN 6760 .. 6803 ;

Pin 27: BLOWN 7112 .. 7155 ;

Pin 28: BLOWN 7464 .. 7507 ;

Pin 29: BLOWN 7816 .. 7859 ;

Pin 30: BLOWN 8168 .. 8211 ;

Pin 31: BLOWN 8520 .. 8563 ;

Pin 36: BLOWN 11504 .. 11547 ;

Pin 37: BLOWN 11152 .. 11195 ;

Pin 38: BLOWN 10800 .. 10843 ;

Pin 39: BLOWN 10448 .. 10491 ;

Pin 40: BLOWN 10096 .. 10139 ;

Pin 41: BLOWN 9744 .. 9787 ;

Pin 42: BLOWN 9392 .. 9435 ;

Pin 43: BLOWN 9040 .. 9083 ;

MACH 220
Table 10-7 MACH 220 OE Fuse Commands

Pin 02: INTACT 2814 ; BLOWN 2815 ;
Pin 03: INTACT 2830 ; BLOWN 2831 ;
Pin 04: INTACT 2846 ; BLOWN 2847 ;
Pin 05: INTACT 2862 ; BLOWN 2863 ;
Pin 06: INTACT 2878 ; BLOWN 2879 ;
Pin 07: INTACT 2894 ; BLOWN 2895 ;
Pin 09: INTACT 5798 ; BLOWN 5799 ;
Pin 10: INTACT 5782 ; BLOWN 5783 ;
Pin 11: INTACT 5766 ; BLOWN 5767 ;
Pin 12: INTACT 5750 ; BLOWN 5751 ;
Pin 13: INTACT 5734 ; BLOWN 5735 ;
Pin 14: INTACT 5718 ; BLOWN 5719 ;
Pin 21: INTACT 8622 ; BLOWN 8623 ;
Pin 22: INTACT 8638 ; BLOWN 8639 ;

MACH 1xx and 2xx: Fuse Commands for Driving Outputs C-19

Table 10-7 MACH 220 OE Fuse Commands (continued)

Pin 23: INTACT 8654 ; BLOWN 8655 ;

Pin 24: INTACT 8670 ; BLOWN 8671 ;

Pin 25: INTACT 8686 ; BLOWN 8687 ;

Pin 26: INTACT 8702 ; BLOWN 8703 ;

Pin 28: INTACT 11606 ; BLOWN 11607 ;
Pin 29: INTACT 11590 ; BLOWN 11591 ;
Pin 30: INTACT 11574 ; BLOWN 11575
Pin 31: INTACT 11558 ; BLOWN 11559 ;
Pin 32: INTACT 11542 ; BLOWN 11543 ;
Pin 33: INTACT 11526 ; BLOWN 11527 ;
Pin 36: INTACT 14430 ; BLOWN 14431 ;
Pin 37: INTACT 14446 ; BLOWN 14447
Pin 38: INTACT 14462 ; BLOWN 14463 ;
Pin 39: INTACT 14478 ; BLOWN 14479 ;
Pin 40: INTACT 14494 ; BLOWN 14495 ;
Pin 41: INTACT 14510 BLOWN 14511 ;
Pin 43: INTACT 17414 BLOWN 17415 ;
Pin 44: INTACT 17398 ; BLOWN 17399 ;
Pin 45: INTACT 17382 ; BLOWN 17383 ;
Pin 46: INTACT 17366 ; BLOWN 17367 ;
Pin 47: INTACT 17350 ; BLOWN 17351 ;
Pin 48: INTACT 17334 ; BLOWN 17335 ;
Pin 55: INTACT 20238 ; BLOWN 20239 ;
Pin 56: INTACT 20254 ; BLOWN 20255 ;
Pin 57: INTACT 20270 ; BLOWN 20271 ;
Pin 58: INTACT 20286 ; BLOWN 20287 ;
Pin 59: INTACT 20302 ; BLOWN 20303 ;
Pin 60: INTACT 20318 ; BLOWN 20319 ;

Pin 62: INTACT 23222 ; BLOWN 23223 ;

C-20 AMD MACH Device Tables

MACH 230

Table 10-8 MACH 230 OE Fuse Commands

Pin 03:
Pin 04:
Pin 05:
Pin 06:
Pin 07:
Pin 08:
Pin 09:
Pin 10:
Pin 12:
Pin 13:
Pin 14:
Pin 15:
Pin 16:
Pin 17:
Pin 18:
Pin 19:
Pin 24:
Pin 25:
Pin 26:
Pin 27:
Pin 28:
Pin 29:
Pin 30:
Pin 31:
Pin 33:
Pin 34:
Pin 35:
Pin 36:
Pin 37:
Pin 38:
Pin 39:
Pin 40:
Pin 45:
Pin 46:
Pin 47:

INTACT 3646 ;
INTACT 3662 ;
INTACT 3678 ;
INTACT 3694 ;
INTACT 3710,
INTACT 3726
INTACT 3742,
INTACT 3758 ;
INTACT 7526 ;
INTACT 7510,
INTACT 7494
INTACT 7478
INTACT 7462
INTACT 7446
INTACT 7430,
INTACT 7414 ;

INTACT 11182 ;
INTACT 11198 ;
INTACT 11214 ;
INTACT 11230 ;
INTACT 11246 ;
INTACT 11262 ;
INTACT 11278 ;
INTACT 11294 ;
INTACT 15062 ;
INTACT 15046 ;
INTACT 15030 ;
INTACT 15014 ;
INTACT 14998 ;
INTACT 14982 ;
INTACT 14966 ;
INTACT 14950 ;
INTACT 18718 ;
INTACT 18734 ;
INTACT 18750 ;

BLOWN 3647 ;
BLOWN 3663 ;
BLOWN 3679 ;
BLOWN 3695 ;
BLOWN 3711 ;
BLOWN 3727 ;
BLOWN 3743 ;
BLOWN 3759 ;
BLOWN 7527 ;
BLOWN 7511 ;
BLOWN 7495 ;
BLOWN 7479 ;
BLOWN 7463 ;
BLOWN 7447 ;
BLOWN 7431 ;
BLOWN 7415 ;
BLOWN 11183 ;
BLOWN 11199 ;
BLOWN 11215
BLOWN 11231 ;
BLOWN 11247 ;
BLOWN 11263 ;
BLOWN 11279 ;
BLOWN 11295 ;
BLOWN 15063 ;
BLOWN 15047 ;
BLOWN 15031 ;
BLOWN 15015 ;
BLOWN 14999 ;
BLOWN 14983 ;
BLOWN 14967 ;
BLOWN 14951 ;
BLOWN 18719 ;
BLOWN 18735 ;
BLOWN 18751 ;

MACH 1xx and 2xx: Fuse Commands for Driving Outputs C-21

Table 10-8 MACH 230 OE Fuse Commands (continued)

Pin 48: INTACT 18766 ; BLOWN 18767 ;
Pin 49: INTACT 18782 ; BLOWN 18783 ;
Pin 50: INTACT 18798 ; BLOWN 18799 ;
Pin 51: INTACT 18814 ; BLOWN 18815 ;
Pin 52: INTACT 18830 ; BLOWN 18831 ;
Pin 54: INTACT 22598 ; BLOWN 22599 ;
Pin 55: INTACT 22582 ; BLOWN 22583 ;
Pin 56: INTACT 22566 ; BLOWN 22567 ;
Pin 57: INTACT 22550 ; BLOWN 22551 ;
Pin 58: INTACT 22534 ; BLOWN 22535 ;
Pin 59: INTACT 22518 ; BLOWN 22519 ;
Pin 60: INTACT 22502 ; BLOWN 22503 ;
Pin 61: INTACT 22486 ; BLOWN 22487 ;
Pin 66: INTACT 26254 ; BLOWN 26255 ;
Pin 67: INTACT 26270 ; BLOWN 26271 ;
Pin 68: INTACT 26286 ; BLOWN 26287 ;
Pin 69: INTACT 26302 ; BLOWN 26303 ;
Pin 70: INTACT 26318 ; BLOWN 26319 ;
Pin 71: INTACT 26334 ; BLOWN 26335 ;
Pin 72: INTACT 26350 ; BLOWN 26351 ;
Pin 73: INTACT 26366 ; BLOWN 26367 ;
Pin 75: INTACT 30134 ; BLOWN 30135 ;
Pin 76: INTACT 30118 ; BLOWN 30119 ;
Pin 77: INTACT 30102 ; BLOWN 30103 ;
Pin 78: INTACT 30086 ; BLOWN 30087 ;
Pin 79: INTACT 30070 ; BLOWN 30071 ;
Pin 80: INTACT 30054 ; BLOWN 30055 ;
Pin 81: INTACT 30038 ; BLOWN 30039 ;

Pin 82: INTACT 30022 ; BLOWN 30023 ;

Index

Symbols

.afb,B-2

.avl,5-16, B-2

.cst,B-2

.doc,A-3, B-2
MACHS5, 9-21

.dsl,3-4,B-2

.edf,B-2

.fb,B-2

g, B-2

.npi, 5-28, B-2

.pi, B-2

.plb, B-2

.sch,B-2

.slb,B-2

v, B-2

A

A/D interface 4-4
active-low nodes3-15

architecture constrairfi;18

available file 5-16

Available File text box5-20

B

back annotatiorh-28
back annotation (schemati6)28
blocks

creating DSL 3-6

C

changing designs with PLD%,30
Compile Library command:-8
Compiler command-7
compiling,1-3, 5-7, 5-8
commandb-7
Create Nodes optioh;9
Output Warnings optiory-8
Product Term optiorg-9
constants3-16
constraints]-4
architecture5-18
available file 5-20
current usages-19
device templates-18
frequencyp-19
logic family,5-18
manufacturer-18

Index-2

number of device$-20

package types-18

propagation delay-19

setting upb-18

temperature)-18

user-defined)-20
converting nodes}-15
Create Nodes check bd<
creating

DSL blocks,3-6

fuse maps5-27

PCB netlists5-29
current constrainf-19

D

defining pin names}-6
DeMorgan
equationsA-4
optimization methoch-11
design flow,1-2
device
accessing internal points2
constraints5-18
maximum numbe’-20
programmingl-5
selection1-5, 5-26
Device Templates buttoh;19
device templates constraifi]8
dig_prim.lib,3-2
dig_prim.slb,3-2
directed partitioning

16V8HD, 22VP10, and 16VP10 devicéd7

AMD MACH devices,8-2, 9-5

controlling equation sizé;10

FIT_AS_OUTPUT propertyg-6

fitting signals togethef-13

fitting to a single devices-16

fitting to multiple devices-17

maintaining pin assignments]15

mixing automatic and directed modéd/

P1800 deviced;16

PLD utilization,6-5

specifying devicesy-14

specifying footprintsg-18

synthesis control properties9
document file

MACHS, 9-21

reduced design equatiods3

don’t care generatioh;11
DSL blocks 3-4
changing the interfacé;8
creating 3-6
placing,3-5
procedures3-5
DSL Model Editor3-7

E

editing a DSL Model3-7
equation
display,A-5
extensionsA-3
exclusive-OR synthesis;12

F

FANOUTS property (MACH5)9-13
file extensionsB-1
fitting, 1-4

introduction 5-14

starting,5-25
FLOAT_NODES property8-34
FORCE_INTERNAL_FB property8-38
FORCE_LOCAL_FB property (MACH58-11
frequency

constraintb-19

priority, 5-24
Fuse Map Generator commasel/
fuse maps

creating 5-27

Fuse Map Generator commabel7

G

generic logic symbols-2

H

HI symbol,3-16
hidden node/-2
HIGH property (MACH5)9-19

I/0 models4-5

Index-3

I/O parameterd-5
INCLUDE statement3-12
interface nodes

naming & labeling3-14
internal nodes3-13

J

JEDEC file 4-6, 6-12, B-2

L

labeling interface node8;14
library, 5-7, 5-8

LO symbol,3-16

LOCAL_TOGGLE_FEEDBACK property (MACH5Y-

14
logic
constants3-16
minimization,5-12
symbols 3-2
Logic Family button5-19
logic family constraints)-18
LOW property (MACH5)9-19
LOW_TRUE port,3-15

M

MACH_UTILIZATION property (MACH5),9-16
MACH_ZERO_HOLD_INPUT property8-47
Manufacturer buttorg-19

manufacturer constraints;18

markers4-11

Max Current Usage text bob19

Max Devices text box3-20

Max Frequency text bok;19

Max Prop Delay text bo%;-19

MED_HIGH property (MACH5)9-19
MED_LOW property (MACH5)9-19

N

naming restrictions3-16
Navigate/Push commangtp
netlist

PCB,5-29
node collapsings-12
node naming restrictions;14

nodes

active-low,3-15
non-programmable logid;3
Number of Pins priority5-23

O

optimization 5-10
command>b-10
DeMorganizationb-11
don't care generatioh;11
exclusive-ORb-12
logic minimization 5-12
node collapsingy-12
register synthesi§;11
selecting method;-13
XOR synthesis)-12
Optimizer command-10
Options command;7, 5-8, 5-9
compiler options
Create Nodes text box9
Output Warnings checkbo5:8
Product Term text bo%;9
optimizer options
Optimization Method list-13

P

Package Type buttob;19
package type constraints]8
parameter
Edit Parameter dialog box contrdis]9, 5-23
partitioning,1-4
criteria,A-6
introduction 5-14
starting,5-25
PCB netlists
creating 5-29
physical nodes3-15
PIL (Physical Implementation Languag@é,
pin naming 3-6
pinout
diagramsA-7
preserving8-27
PLDs
change designs with;30
designing with1-3, 3-1
simulation,1-3
symbols 3-2

Index-4

PLogic,4-5

PLSyn
design flow,1-2
product overviewyviii
standard featuresxiii
starting 5-5

plsynlib.avl,5-16

Price priority,5-23

priorities, 1-4, 5-23
frequencyb-24
number of pins$-23
price,5-23
propagation delay-24
size,5-24
supply current-24
user-defineds-24

Probe markers
using,4-11

procedures
DSL block,3-5

product overviewyviii

Product Term text bo%;9

programmable logic
design method4;2
designing with3-1
Interface nodes}-14
internal nodes3-13
node name restriction$:14
simulation 4-1

Prop Delay priority-24

propagation delay constraibt19

R

reduced design equatiors3
register synthesi$;11

S

schematic

back-annotation pagg28
selecting device$;26
shadow node7-3
SIGNATURE property8-43
simulation,1-3

A/D interface 4-4

setting up and starting;3

test vectorsj-6

timing, 1-5, 4-6

with programmable logid-1
Size priority,5-24
SLEW_RATE property (MACH5)9-20
solutions listA-6
source code

using existing DSL sourc8;9
starting PLSyn5-5
supply current priority5-24
symbols

74xx series3-3

generic logic3-2

PLDs,1-3, 3-2

T

Temperature button;19

temperature constrainfs]18

test vectors4-6

timing simulations]-5, 4-6

Tools menu
Compile Library command:8
Compiler command-7
Fuse Map Generator commabel7
Optimizer command-10
Options command-7, 5-8, 5-9
Update Schematic commariel8

U

unary node7-4

Update Schematic commariel8
updating the schematit:28
USE statemen8-12

User 1 priority 5-24

User 1 text box;-20

User 2 priority 5-24

User 2 text box5-20

using Probe markeré;11

W

wire list, A-7

X

XOR synthesis)-12

	Contents
	Figures
	Tables
	Before You Begin
	Welcome to MicroSim
	MicroSim PLSyn Overview
	How to Use this Guide
	Typographical Conventions

	Related Documentation
	Online Help

	The PLSyn Features In Your Configuration

	The Programmable Logic Design Process—An Overview
	Chapter Overview
	Steps for Designing Systems with Programmable Logi...
	Design
	Simulate
	Set Constraints and Priorities
	Fit and Partition
	Select Device
	Simulate with Timing
	Program Device

	Primer: How to Define Programmable Logic
	Chapter Overview
	Implementing a 3-to-8 Decoder with Programmable Lo...
	Design Phase: Defining Programmable Logic using Sc...
	Converting 74LS Symbols to Programmable Logic
	Verifying Functionality using Simulation

	Implementation Phase: Fitting and Partitioning the...
	Setting Constraints
	Setting Priorities
	Partitioning and Fitting
	Verifying Timing Behavior using Simulation
	Creating Device Programming Files
	Back Annotating the Schematic

	Using a DSL Block to Define the Programmable Logic...
	Before You Begin
	Loading the Design
	Adding a DSL Block
	Defining DSL Source Code
	Equivalent Ways to Define the Decoder with DSL

	Designing with Programmable Logic
	Chapter Overview
	The Different Ways to Specify Programmable Logic i...
	Using Programmable Logic Symbols
	Generic Logic Symbols
	74xx Series Logic Symbols

	Using DSL Blocks
	What Are DSL Blocks?
	What Are DSL Procedures?
	Creating a DSL Block in Your Schematic
	Using the MicroSim Text Editor to Define DSL�Proce...
	Changing the DSL Block Interface
	Using Existing DSL Source Code
	Structuring DSL Source Files
	Calling DSL Procedures and Functions from within a...

	Understanding Programmable Logic Nodes
	Labeling Nodes
	Creating Active-Low Interface Nodes
	Converting Internal Nodes to Interface Nodes
	Creating Physical Nodes
	Assigning a Logic 0 or 1 to an Input

	Guidelines for Entering Programmable Logic

	Simulating Programmable Logic Designs
	Chapter Overview
	Introduction to Simulating with PLogic or PSpice A...
	Setting Up Simulations
	Displaying the Dialog Box for Simulation Setup
	Defining Simulation Setup Options for Programmable...

	Starting Simulations
	How the Simulator Uses Programmable Logic I/O Mode...
	Simulating with Timing
	Generating Test Vectors
	Enabling Test Vector Generation
	How the Simulator Responds
	Using the “Sample Window” Control
	Example: How the Simulator Creates Test Vectors
	Troubleshooting Test Vector Differences

	Using Probe Markers

	Creating the Physical Implementation
	Chapter Overview
	Overview of the Physical Implementation Process
	If You Want More Control

	Where to Find Status and Design Information
	Activating and Loading PLSyn
	Activating PLSyn
	Loading a Different Design
	The PLSyn Main Window

	Compiling the Logic
	Manually Compiling Logic
	Compiling DSL Libraries
	Responding to Compile-Time Status and Errors
	Controlling Node Generation During Compilation
	Resolving “Out of Memory” Conditions

	Optimizing the Logic Equations
	How the PLSyn Optimizer Synthesizes Logic Equation...
	Choosing the Optimization Method

	Overview of Fitting and Partitioning Logic
	If You Don’t Have the Partitioning Option
	How the PLSyn Fitter Works

	Limiting the PLD Parts Available for Search
	Constraining Devices
	Setting Up User-Defined Constraints
	How PLSyn Calculates Maximum Propagation Delay
	The Default Constraints File

	Prioritizing the Solutions
	Using Constraints and Priorities Together

	Running the PLSyn Fitter and Partitioner
	Selecting Devices
	Creating Fuse Maps
	Including Test Vectors
	The Implementation-Specific Physical Information F...

	Updating the Schematic
	Creating PCB Netlists
	When You Change the Design

	Controlling the Fitting Process Using the .pi File...
	Chapter Overview
	Introduction to the .pi File
	Why Use the .pi File?
	Using the Default .pi File
	Referring to Nodes in Your Design

	Controlling PLD Utilization
	Fitting a Node as an OUTPUT or NODE
	Controlling How Signals Are Fit Together
	Disabling Outputs for Test
	Controlling Synthesis
	Controlling the Size of Equations
	Specifying Devices without Specifying Signals
	Specifying JEDEC File Names
	More Examples Using the .pi File
	Forcing Signals to be Fit Together in the Same Dev...
	Using Specific Devices
	Maintaining Pin Assignments
	Fitting the Design into One Device
	Fitting the Design into Multiple Devices
	Mixing Automatic and Directed Partitioning
	Refitting a Design into the Same Footprint

	PLD Device-Specific Fitting
	Chapter Overview
	Accessing Internal Points in a PLD Device
	The Kinds of Nodes
	Unary Nodes in the P330 and P331

	Fitting Specific Device Architectures
	22V10, 750, and 2500: Handling Synchronous Preset
	P22V10I: Assigning Combinatorial Output During Fee...
	P750B AND P2500B: Controlling Clock Source
	P1800: Controlling Quadrant- Based Architectures
	P16V8HD, P22VP10, and P16VP10: Accessing the Open-...

	MACH 1-4 Device-Specific Fitting
	Chapter Overview
	Designing with MACH Devices
	When You Have Fitting Problems

	Summary of MACH Devices
	Output Enable Functions
	Register Reset/Preset Functions
	Packaging

	Using Standard Clock Functions
	Using Complex Clock Functions
	Clock Limitations

	Implementing Hazard- Free Combinatorial Latches
	Basic Latch Circuit
	Creating a Hazard-Free Latch

	Specifying Reserve Capacity
	Targeting PAL Blocks
	Using Signal Groups
	Using Device Sections

	Constraining the Size of Combinatorial Nodes
	Making Adjustments
	Optimizing MACH 4xx Devices Using MAX_XOR_PTERMS
	A Few Considerations
	Other Optimizing Parameters

	Understanding Pin Naming and Numbering
	Achieving Satisfactory Pinouts
	MACH 2xx, 4xx: Using Input Registers
	Understanding Input Register Pin Names
	MACH 2xx and 4xx Compared
	Input Registration
	Finding Signals Fit as Unary
	Forcing a Function to be Fit as Unary
	Preventing a Function from Being Fit as Unary

	Preserving Pinouts when Refitting
	Plan for Refitting
	Method 1: Creating a Two-Level .pi File
	Method 2: Floating Nodes

	When Fitting into One Device Fails
	Using the “Default” Signal Reference
	Using a Second Device

	Accessing the MACH Internal Feedback Path
	MACH 215, 4xx: Fitting Asynchronous Functions
	PTERM Clock and RESET and PRESET
	More Than One RESET/PRESET Pair per PAL Block

	MACH 4xx: Using XOR T�Equations
	MACH 4xx: Controlling Asynchronous Mode
	MACH 4xx: Controlling T-Flop Synthesis
	Normal Operation
	DFF-Only Fitting
	Using the T-Equation

	MACH 4xx: Controlling Power-On Reset
	What Is a Logical Reset?
	The Nominal Case
	Exception Cases

	MACH 230 and 435: Possible Pin Incompatibility Bet...
	MACH 445 and 465: Configuring for Zero- Hold Time
	MACH 445 and 465: Accessing Signature Bits
	MACH 1xx and 2xx: Driving or Floating Unused Outpu...
	Forcing Outputs Driven
	Forcing Outputs Floating

	The MACH Report File
	Obtaining a Report File
	Contents of the Report File
	Failure Disclaimers
	Summary Statistics
	Device Resource Utilization
	Partitioner Report
	Clock Assignments
	Signal Directory
	Resource Assignment Map

	MACH 5 Device-Specific Fitting
	Chapter Overview
	Comparing the MACH 5 to Other MACH Architectures
	MACH1xx/2xx/3xx/4xx
	MACH5xx

	Using the .pi File to Control MACH 5 Fitting
	Routing in a Segment and Block
	Assigning Pins and Nodes
	Placing a Signal on an Input Register or Latch
	Using Dual Feedback
	Forcing the Feedback Path to be Local
	Specifying Fanout
	Implementing Toggle Register Feedback
	Implementing Dual- Edge Clocking
	Specifying Reserve Capacity
	Constraining the Size of Combinatorial Nodes
	Making Adjustments
	A Few Considerations
	Other Optimizing Parameters

	Controlling Power Levels
	Controlling Slew Rates
	The Document File
	The Report File
	Heading
	Summary Statistics
	Power Resource Utilization
	Device Resource Utilization
	Partition Groups
	Signal Directory
	Fanout Table
	Power Table
	Block Configuration Tables

	ATV5000 Device-Specific Fitting
	Chapter Overview
	Designing with the ATV5000
	Constraining the Size of Combinatorial Nodes
	The Effect of MAX_PTERMS
	The Effect of MAX_SYMBOLS

	Specifying Device Utilization
	Using the Flip-Flop Clock Option
	Enabling Clocking
	Controlling the Clock Source

	Using the I/O Pin Latches
	Identifying Pins and Nodes
	Targeting Quadrants in the ATV5000
	Using the GROUP Construct
	Using the SECTION Construct

	Placing Node Signals on Buried Logic Cells
	Understanding RU Conversion
	Understanding Regionalization
	How PLSyn Does Regionalization
	Signal Regionalization
	PTERM Regionalization

	The Report File
	Obtaining Report File
	Heading
	Failure-to-Partition Disclaimer
	Partitioner Report
	Signal Directory
	Signals Universalized on Sum Term B
	Signals Regionalized on Input Pins
	Function Placement Report
	Input Signal Placement Report
	Failure-to-Fit Disclaimer

	The Documentation File
	Appendix Overview
	Summary of Documentation File Contents
	Reduced Design Equations
	Equation Extensions Used in the .doc File
	DeMorgan Equations
	Equation Display

	Partitioning Criteria
	Solutions List
	Fuse Map Files
	Pinout Diagrams
	Possible Devices List
	Wire List

	Summary of Files
	Appendix Overview
	Files Used by PLSyn

	AMD MACH Device Tables
	Appendix Overview
	Pin Name Tables
	MACH 1xx and 2xx: Fuse Commands for Driving Output...

	Index

