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Welcome to MicroSim
Welcome to the MicroSim family of products. Whichever 
programs you have purchased, we are confident that you w
find that they meet your circuit design needs. They provide a
easy-to-use, integrated environment for creating, simulating
and analyzing your circuit designs from start to finish.
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PSpice
Optimizer

MicroSim
Parts

models
MicroSim PLS yn 
Overview
MicroSim PLSyn is a programmable logic synthesis program
that allows you to synthesize all or any portion of your desig
into PLD and/or CPLD parts. 

PLSyn is fully integrated with other MicroSim programs. Thi
means you can do all of the following within the same 
environment:

• Design your circuit with MicroSim Schematics.

• Synthesize programmable logic with MicroSim PLSyn.

• Simulate with MicroSim PSpice A/D (for mixed digital and
analog simulation) or MicroSim PLogic (for digital logic 
and timing simulation).

• Analyze simulation results with MicroSim Probe.

MicroSim
Schematics

MicroSim
PCBoards

packages
footprints
padstacks

SPECCTRA
Autorouter

Gerber
files

drill
files

reports
MicroSim
Probe

MicroSim
PSpice A/D

MicroSim
PLSyn

PLD
devices
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How to Use this Guide
This guide is designed so you can quickly find the informatio
you need to use PLSyn, including:

• how to create and edit designs which use PLDs (schema
and language-based), and 

• how to optimize, partition, and fit devices.

This guide assumes that you are familiar with Microsoft 
Windows (NT or 95), including how to use icons, menus, an
dialog boxes. It also assumes you have a basic understand
about how Windows manages applications and files to perfo
routine tasks, such as starting applications and opening, an
saving your work. If you are new to Windows, please review
your Microsoft Windows User’s Guide.
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Typographical Conventions
Before using PLSyn, you need to understand the terms and
typographical conventions used in this documentation.

This guide generally follows the conventions used in the 
Microsoft Windows User’s Guide. Procedures for performing an
operation are generally numbered with the following 
typographical conventions.

Notation Examples Description

C + r Press C+r A specific key or key stroke 
on the keyboard.

monospace 
font

Type VAC... or

dig_prim.slb

Commands/text entered from 
the keyboard, or file names.

Feature available in systems 
with the partitioning option 
only

Tip providing advice or 
different ways to do things.

Cautionary message.

Partitioning
Option
Required

To improve 
accuracy...

Be careful...
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 schematic capture front-end program 
croSim programs and options.

CB layout editor that lets you specify 
 well as the components, metal, and 

 Editor, and the Parts utility, which are 
you create, simulate, and test analog and 
 examples on how to specify simulation 
esults, edit input signals, and create 

pice Basics, which are circuit analysis 
ulate, and test 

h is an analog performance 
u fine tune your analog circuit designs.

etween MicroSim Schematics and 
e A/D to enter designs that include 
ray devices. 

s a filter synthesis program that lets you 
tive filters.
Related Documentation
Documentation for MicroSim products is available in both ha
copy and online. To access an online manual instantly, you 
select it from the Help menu in its respective program (for 
example, access the Schematics User’s Guide from the Hel
menu in Schematics).

Note The documentation you receive depends on the 
software configuration you have purchased.

The following table provides a brief description of those 
manuals available in both hard copy and online.

This manual... Provides information about how

MicroSim Schematics 
User’s Guide

MicroSim Schematics, which is a
with a direct interface to other Mi

MicroSim PCBoards
User’s Guide

MicroSim PCBoards, which is a P
printed circuit board structure, as
graphics required for fabrication.

MicroSim PSpice A/D & Basics+ 
User’s Guide

PSpice A/D, Probe, the Stimulus
circuit analysis programs that let 
digital circuit designs. It provides
parameters, analyze simulation r
models.

MicroSim PSpice & Basics 
User’s Guide

MicroSim PSpice & MicroSim PS
programs that let you create, sim
analog-only circuit designs.

MicroSim PSpice Optimizer 
User’s Guide

MicroSim PSpice Optimizer, whic
optimization program that lets yo

MicroSim FPGA 
User’s Guide

MicroSim FPGA—the interface b
XACTstep—with MicroSim PSpic
Xilinx field programmable gate ar

MicroSim Filter Designer 
User’s Guide

MicroSim Filter Designer, which i
design electronic frequency selec
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This online manual... Pr

MicroSim PSpice A/D
Online Reference Manual

R e 
s d 
a  
c

MicroSim Application Notes 
Online Manual

A d 
u nt 
a

Online Library List A
li

MicroSim PCBoards Online 
Reference Manual

R s, 
p the 
n
c

MicroSim PCBoards Autorouter 
Online User’s Guide

In
(C
The following table provides a brief description of those 
manuals available online only.

Online Help
Selecting Search for Help On from the Help menu brings up
extensive online help system. 

The online help includes:

• step-by-step instructions on how to use PLSyn features

• DSL language reference

• PIL language reference

• device lists (by manufacturer and by template)

• Technical Support information

Every dialog box also includes a help button which, when 
selected, displays a description of the dialog box and each 
control.

ovides this...

eference material for PSpice A/D. Also included: detailed descriptions of th
imulation controls and analysis specifications, start-up option definitions, an
 list of device types in the analog and digital model libraries. User interface
ommands are provided to instruct you on each of the screen commands.

 variety of articles that show you how a particular task can be accomplishe
sing MicroSim‘s products, and examples that demonstrate a new or differe
pproach to solving an engineering problem.

 complete list of the analog and digital parts in the model and symbol 
braries.

eference information for MicroSim PCBoards, such as: file name extension
adstack naming conventions and standards, footprint naming conventions, 
etlist file format, the layout file format, and library expansion and 
ompression utilities.

formation on the integrated interface to Cooper & Chyan Technology’s 
CT) SPECCTRA autorouter in MicroSim PCBoards.
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Partitioning
Option
Required

Your configuration depends on 
which of the design modules you 
purchased: PLDs, AMD MACH, 
and/or Atmel V-Series.
The PLSyn Features In 
Your Confi guration
PLSyn, running with other MicroSim programs, provides the
following features: 

• Multiple design entry modes.

• Schematic entry with support for hierarchical design.

• Design Synthesis Language (DSL) support of arithmetic
operators and arrays, procedure and function library linki

• Device-independent design entry.

• Integrated simulation at the system level to detect proble
areas in the design; you can simulate the functionality of
your design while it is still in the design phase.

• Compilation, optimization, and device selection.

• Logic consolidation; optimization and reduction of your 
design to the smallest set of gates using industry-standa
methods.

• Multiple equation reduction levels; automatic 
DeMorganization, automatic flip-flop synthesis, XOR 
synthesis, don’t care generation, and node collapsing.

• Automatic or manual placement of input and output signa
in the selected programmable logic devices.

• Automatic partitioning of the design across as many as 2
devices.

• Libraries with up to 3,500 PLDs from twelve manufacture
and 100+ architectures. 

• Ability to test programmable devices by automatically 
generating test vectors from the functional simulation 
results and downloading them to the programmer with th
fuse map file.

• On-line reference to the complete list of devices support
by PLSyn.



The Pro grammable Lo gic 
Design Process—An 
Overview
ss, 
s 
1

Chapter Overview
This chapter introduces the programmable logic design proce
and terms and concepts used throughout this manual. Topic
include:

• Design entry, page 1-3

• Functional simulation, page 1-3

• Constraints and priorities definition, page 1-4

• Fitting and partitioning process, page 1-4

• Device selection, page 1-5

• Timing simulation, page 1-5

• Device programming, page 1-5
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 Because the design phase is 
separate from the 
implementation phase, you can 
design and simulate your system 
before choosing which PLD 
part(s) you want to use.
Steps for Desi gnin g 
Systems with 
Programmable Lo gic
Figure 1-1 illustrates the typical design flow for synthesizing
programmable logic. 

Figure 1-1 PLD Synthesis Design Flow

Design

Simulate

Define
Constraints &

Priorities

Implementation
Phase

Design Phase

Fit/Partition

Select
Device

Simulate
with

Timing

Program
Device

Layout
the 

PCB
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Schematics

Example: Your design might be a 
large system which contains 
discrete PCB-level parts and one 
or more PLDs. Or, it might be a 
design of a reusable system 
which you want to implement 
entirely in a PLD.

PSpice A/D

PLogic

Probe
Design 
You can program all or any part of your design into PLD par
To start, this means you need to define the functionality targe
for PLDs as programmable logic in your schematic.

Programmable logic takes the form of either:

• programmable logic symbols, such as gates, flip-flops, shift
registers, and counters, or

• Design Synthesis Language (DSL) blocks, which describ
programmable logic in a hardware description language

Your schematic can also include logic that is not targeted fo
PLDs. This is called non-programmable logic which takes the 
usual form of discrete parts. 

Your schematic can contain any combination of programma
logic symbols, DSL blocks, non-programmable logic, and ev
analog parts.

Simulate 
You can simulate your design before you know which PLD 
architectures (part types) you want to use. Before running th
simulation, PLSyn automatically compiles all of your 
programmable logic into logic equations which are then used
the simulator.

Because simulations at this stage are before implementation
they do not include timing information. However, functional 
simulations can save a lot of time early in the design proces
because the more time-consuming steps of optimization and
fitting are not required until your design is finished.
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PLSyn

 See The PLSyn Features In 
Your Configuration on page xxiii 
for more information.

Example: You can place more 
importance on lower power than 
total price

PLSyn

Note You must have the 
partitioning feature to fit a 
design into multiple devices.

Partitioning
Option
Required
Set Constraints and Priorities
By default, the PLSyn fitter considers every device in the 
library. The number of devices you have available depends 
the design module options you have purchased.

Before you begin the fitting/partitioning process, you can 
constrain the parts that the PLSyn fitter considers by device 
properties such as architecture, logic family, package type, 
speed, etc. This helps narrow the architecture-set from whic
PLSyn can choose, which results in faster completion of the
fitting/partitioning process. 

You can also have PLSyn rank the solutions by defining the
relative merit of device properties like price, number of pins,
size, propagation delay, and frequency, before running the fit
These are your solution priorities.

Fit and Partition
 After you have completed the functional design and set the
fitting constraints and priorities, you are ready to fit your 
programmable logic into PLD parts. Fitting is the process of
mapping a logic design into physical devices.

PLSyn finds and displays a list of up to ten solutions which 
implement your design’s programmable logic while abiding t
your constraints. PLSyn lists the best solutions, ranked by y
assigned solution priorities. 

For each solution it finds, PLSyn displays the generic 
architecture, or template, for the device, along with its cost, 
speed, and power consumption. 

If your PLSyn package includes the partitioning feature, PLS
automatically allocates or partitions logic into two or more 
devices (up to a maximum of twenty). PLSyn can also partiti
logic between devices with different architectures. If so, PLS
shows each architecture in the solution list.

PLSyn’s fitting and partitioning process works automatically
You can also direct the process by using the physical 
information file which contains statements in the Physical 
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PLSyn

PSpice A/D

PLogic

Probe

PLSyn
Information Language (PIL). Using PIL, you can specify exa
part numbers, put groups of logic into specific devices, and 
specify device pinouts. 

Select Device
After the PLSyn fitter has found the solutions that implemen
your design, the next step is to choose one of the architectu
and the corresponding physical part(s) you want to use. 

When you select an architecture in the solution list, PLSyn 
displays a list of all part numbers meeting the constraints yo
have specified. These appear in the Solution Detail at the bot
of the PLSyn window. All you have to do is select which one(
to use.

Simulate with Timin g
Any simulations that you perform after you have selected act
PLD part numbers, include timing information specific to thos
parts. This allows you to check the device’s timing within you
system and find potential problems such as setup/hold time
violations or worst-case timing hazards which involve the PL
device.

Program Device
As the final step, you need to generate the fuse maps that y
device programmer needs to program the PLDs. PLSyn 
generates these as JEDEC files, one for each PLD device in 
implementation.
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Chapter Overview
This chapter guides you through the steps needed to synthe
a PLD device for a simple 3-to-8 decoder.

Implementing a 3-to-8 Decoder with Programmable Logic on 
page 2-2 describes the sample circuit.

Design Phase: Defining Programmable Logic using Schema
Symbols on page 2-3 walks you through the steps needed to 
convert existing schematic symbols to programmable logic.

Implementation Phase: Fitting and Partitioning the Design on 
page 2-5 walks you through the steps needed to fit, select an
program a PLD device subject to the constraints and prioriti
you define.

Using a DSL Block to Define the Programmable Logic on 
page 2-10 presents a way of defining the programmable logic
that is equivalent to that using schematic symbols.
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Note You can mix both 
programmable logic symbols 
and DSL blocks on your 
schematic. 
Implementin g a 3-to-8 
Decoder with 
Programmable Lo gic
Figure 2-1 illustrates a simple 3-to-8 decoder, consisting of 
three 74LS04 inverters and eight 74LS11 3-input AND gate

Figure 2-1 3-to-8 Decoder Schematic

Assume that you want to target all of the decoder for PLD 
implementation. You have two alternative but equivalent 
methods from which to choose:

• Convert discrete components to programmable logic usi
schematic symbols.

• Create Design Synthesis Language (DSL) blocks to defi
functionality using a hardware description language.
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In the remainder of this chapter, you will see how to use both
these methods. You will also learn how to set up and run the
physical implementation process, which is the same regardl
of how you specify the programmable logic.

Design Phase: Definin g 
Programmable Lo gic 
usin g Schematic 
Symbols

Before you be gin

Copy the following files from the \ MicroSim root 
directory\examples\plsyn\decoder  directory to your 
working directory:

decoder.sch schematic file

decoder.stl stimulus library file

Loadin g and simulatin g the desi gn

To load the schematic

1 In the MicroSim program group, double-click the 
Schematics icon to start Schematics.

2 From the File menu, select Open .

3 Move to the directory containing decoder.sch .

4 In the File Name list box, select the schematic file that yo
are interested in.
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Figure 2-2 Results of Decoder 
Simulation
Once the circuit is loaded, you should run a simulation to ens
that the circuit is working properly before you fit it into a PLD
The schematic is already configured to perform an 800 nsec
simulation. 

To simulate

1 From the Analysis menu, select Simulate.

Next you can view the results in Probe. This schematic has b
set up to start Probe automatically and to display the signals
which have markers attached. The resulting signals shown i
Figure 2-2 indicate that the decoder is in fact working correct

Convertin g 74LS Symbols to 
Programmable Lo gic
There are two ways to enter programmable logic symbols, us
either:

• pre-defined programmable logic symbols found in the 
dig_prim.slb  symbol library, or

• 74xx symbols and then setting their IMPL attributes to 
PLSYN. 

Since the decoder is already defined with discrete logic, the
second method (defining the IMPL attribute) is the most 
convenient way to turn the existing design into a PLD desig

To include devices in the pro grammable lo gic

1 Select all 74LS symbols on the schematic. Either:

• draw a box around each symbol, or 

• S+click on each 74LS part.

2 From the Edit menu, select Attributes.

3 Click Yes to the prompt: Globally edit attributes of all 
selected items?
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As an alternative, you can 
change each part individually 
(rather than globally) by double-
clicking each 74LS device and 
setting the value of each IMPL 
attribute to PLSYN.

Note If you changed the 
default color settings, your 
colors may differ from this 
example.

Although you have just made the 
entire decoder design 
programmable logic, you can 
also specify only a portion of a 
design as programmable logic.

It’s also easy to change a symbol 
back into a non-programmable 
logic symbol. Just edit the 
symbol’s IMPL attribute and 
clear its value so that it is blank.
4 In the Attribute Name text box, type IMPL; in the Value 
text box, type PLSYN.

This sets the value of the IMPL attribute to PLSYN for all 
selected parts that have an IMPL attribute (in this case, all 
parts).

5 Click OK.

Notice that the reference designator for each logic device 
changes to PLSYN_U1, PLSYN_U2, ..., and the color chang
from green to blue, by default.

Verif ying Functionalit y usin g 
Simulation
At this point, you can re-run the simulation to verify that the 
programmable logic representation matches the discrete de
representation. The programmable logic is compiled for you
automatically before the simulation starts.

Implementation Phase: 
Fittin g and Partitionin g 
the Desi gn
You are now ready to create the physical implementation. To
this, you must run PLSyn.

To activate PLS yn

1 From the Tools menu, select Run PLSyn.

PLSyn starts with the current design file loaded. 
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Settin g Constraints
Constraints allow you to choose the types of devices into wh
PLSyn must fit the design. You can narrow the search for 
solutions by selecting criteria such as device template 
(architecture), logic family, manufacturer, package type, pow
speed, and temperature. 

By default, PLSyn considers all devices. Suppose you want
narrow the solution search by selecting specific device 
templates: P16V8A and P22V10.

To constrain the solution to the P16V8A and 
P22V10 device templates

1 From the Edit menu, select Constraints.

PLSyn displays a list of constraints that you can enable.
Some constraints, such as Device Template, also requir
that you select from a list of values. 

2 Click Devices. 

3 Click None to deselect all items.

4 Scroll until P16V8A is visible and click on it.

5 Scroll and find P22V10.

6 Hold down the C key and click P22V10.

7 Click OK.

You can also constrain the device search by telling PLSyn t
look only for one logic family of devices. By default, all three
logic families—CMOS, ECL, and TTL—are included in the 
search. 

Suppose that you don’t want to use ECL. 

To exclude the ECL lo gic famil y from the solution

1 Click Logic Families. 

2 Hold down the C key and click ECL. This leaves CMOS, 
OBS, and TTL highlighted.
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3 Click OK to return to the constraints selection dialog 
box.

4 Click OK to exit constraints specification.

Settin g Priorities
Solution priorities allow you to determine the ranking of the 
solutions found during the fitting and partitioning process 
according to factors such as price, speed, power consumpti
and pin count. They also determine the ordering of alternate
devices for a given solution. 

By default, price has the highest priority. 

To indicate a preference for faster parts

1 From the Edit menu, select Priorities.

2 In the Prop Delay text box, type 10.

3 In the Price text box, type 5. 

4 Click OK.

Partitionin g and Fittin g
You are now ready to start the fitting and partitioning proces
During the fitting process, PLSyn finds and displays a list of 
to 10 solutions which implement the programmable logic 
according to your constraints. PLSyn lists the best solutions
ranked according to solution priorities that you just assigned

To begin the fittin g process

1 From the Tools menu, select Fitter/Partitioner.

PLSyn first checks the netlist to make sure that the design h
not changed. Then PLSyn automatically compiles the design
not already compiled), optimizes the design, and starts the 
fitting process. 
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PLSyn scans the available file to find devices which match yo
constraints. PLSyn then searches for the devices which actu
fit your design’s programmable logic. When this process is 
complete, PLSyn displays the solutions in the solution list at 
top of the PLSyn window. 

This design fits into either of the two templates which you 
selected earlier: P16V8A and P22V10. P16V8A is listed firs
because it is the best device meeting the specified priorities.   
Further, the best P16V8A is a GAL16V8C-5LP, shown in the 
solution detail list. 

To select a different part number 

For example, suppose you want to use a leadless chip 
carrier,

1 Click Browse to view the list of alternate parts.

2 Select the PALCE16V8H-5JC/5.

3 Click OK to keep the selection. 

The PALCE16V8H-5JC/5 is now the physical device 
which implements the decoder (although a rather 
expensive implementation!). 

Verif ying Timin g Behavior usin g 
Simulation
If you now simulate the design, the simulator includes the 
timing specifications for the PALCE16V8H-5JC/5. This 
allows you to check the timing behavior for both:

• the device itself, and 

• the device operating within your entire system.
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The JEDEC file is the input to 
your device programmer.

Alternatively, you could go back 
to the schematic and set the 
switch to generate test vectors in 
the PLSyn Setup dialog box (see 
page 4-3), then re-simulate to 
include the test vector in the 
JEDEC file. 

Figure 2-3 Back-Annotated 
Schematic Page
Creatin g Device Pro grammin g 
Files
You are now ready to run the Fuse Map Generator to create
device programming file in JEDEC format. 

To generate fuse maps

1 From the Tools menu, select Fuse Map Generator.

PLSyn displays a warning message that no test vectors 
be included in the fuse map file at this time. For now, this
fine. 

2 Click Yes when prompted to continue.

This creates a file named decoder.j1 . 

To view the JEDEC file name and other useful 
information

1 Select Examine Doc File in the File menu.

Back Annotatin g the Schematic
You can now back annotate the schematic to include the 
physical device(s) that you selected. 

To back-annotate the schematic 

1 In PLSyn, from the Tools menu, select Update Schemat

Schematics places the selected PLD(s) on a new schematic 
along with the appropriate input/output ports.   

To view the PLD part as shown in Fi gure 2-3

1 In Schematics, from the Navigate menu, select Next Pag

2 Click YES to the prompt: Save changes to current page?
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Physical implementation is the 
same no matter how you set up 
the programmable logic in your 
schematic. If, after having 
defined the DSL block, you want 
to implement the design, follow 
the instructions in Implementing 
a 3-to-8 Decoder with 
Programmable Logic on 
page 2-2.

Figure 2-4 The decoder1.sch 
Example Schematic
Usin g a DSL Block to 
Define the 
Programmable Lo gic
The following steps describe how to implement the 3-to-8 
decoder with a DSL procedure which is equivalent to the 
programmable logic symbols you used in the previous examp

Before You Be gin
Copy the following files from the \ MicroSim root 
directory\examples\plsyn\decoder1  directory to your 
working directory:

decoder1.sch schematic file

decoder1.stl stimulus library file

Loadin g the Desi gn
The schematic file, decoder1.sch , contains only digital 
stimulus and global output ports. The analysis setup is also 
configured to perform an 800 nsec simulation. 

To load the schematic

1 From the File menu, select Open.

2 Move to the directory containing decoder1.sch .

3 In the File Name list, select the schematic file that you a
interested in. 
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Figure 2-5 Connecting the 
DSL Block

Figure 2-6 Finished DSL Block
Addin g a DSL Block
DSL blocks are simply hierarchical blocks which reference DS
source code files instead of schematic files. 

To add a DSL block

1 From the Draw menu, select Block.

2 Place one block on the schematic page between the inp
and the outputs, as shown in Figure 2-3. 

3 From the Draw menu, select Wire and connect each 
stimulus input directly to the block.

4 Repeat step 3 for each global output port, as shown in 
Figure 2-3. Each connection to the block creates a pin.

a Rename the DSL block’s pins as shown in Figure 2-3
double-click the pin name (for example, P1) to bring u
the Change Pin dialog box.

b Enter a new pin name.

c Click OK. 

d Repeat steps a-c for each of the input and output pin

Definin g DSL Source Code
You are now ready to enter the DSL source code for the blo

To define DSL source code 

1 Double-click the block to push into it. 

2 Enter the DSL source code file, decod3x8.dsl , in the 
Setup Block dialog box, then click OK.

Schematics displays the MicroSim Text Editor. Because
you are defining a new block, the PROCEDURE header and END 
statements are defined for you as follows. 

PROCEDURE decod3x8( INPUT A, B, C;
  OUTPUT D0, D1, D2, D3, D4, D5, D6, D7);

END decod3x8;
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Notice that the INPUT and OUTPUT nodes in the procedu
header correspond to the pin names of the DSL block.

3 Type the entire TRUTH_TABLE statement between the 
PROCEDURE header  and END statement as shown:

This simple construct sets a single bit in the D7.. D0 outp
based on the three inputs’ integer value. 

4 From the File menu, select Save. 

5 From the File menu, select Close to exit the MicroSim Te
Editor.   

To verif y that the DSL version of the decoder 
performs exactl y as the lo gic s ymbol version

1 From the Analysis menu, select Simulate.

Equivalent Wa ys to Define the 
Decoder with DSL
Try experimenting with the different features of DSL. For 
example, you could also implement the decoder using the 
following CASE statement:

CASE [C,B,A]
  WHEN 0 => [D7..D0] = 00000001b;
  WHEN 1 => [D7..D0] = 00000010b;
  WHEN 2 => [D7..D0] = 00000100b;
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  WHEN 3 => [D7..D0] = 00001000b;
  WHEN 4 => [D7..D0] = 00010000b;
  WHEN 5 => [D7..D0] = 00100000b;
  WHEN 6 => [D7..D0] = 01000000b;
  WHEN 7 => [D7..D0] = 10000000b;
END CASE;

Or, you could use the following (somewhat crude, but still 
effective) set of equations:

D0 = /(A + B + C);
D1 = A * /(B + C);
D2 = B * /(A + C);
D3 = A * B * /C;
D4 = /(A + B) * C;
D5 = A * /B * C;
D6 = /A * B * C;
D7 = A * B * C;

With a little experimentation, you should find that DSL is bot
easy-to-learn and powerful enough to describe complex blo
of logic. 
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Chapter Overview
This chapter describes in detail how to specify programmab
logic using Schematics. 

The Different Ways to Specify Programmable Logic in 
Schematics on page 3-2 introduces the two equivalent 
mechanisms you can use to define programmable logic.

Using Programmable Logic Symbols on page 3-2 describes 
where to find programmable logic symbols and how to conv
discrete logic symbols to programmable logic.

Using DSL Blocks on page 3-4 explains how to place and define
functional blocks describing programmable logic using a 
hardware description language.

Understanding Programmable Logic Nodes on page 3-13 
explains how to define the internal and interface nodes 
connecting to programmable logic.

Guidelines for Entering Programmable Logic on page 3-16, lists 
the do’s and don’ts that you should follow to avoid problems
during the physical implementation phase.
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Note IMPL is short for 
“implementation.”

For a complete list of symbols, 
refer to the Programmable Logic 
Symbol Reference in PLSyn 
online help.
The Different Wa ys to 
Specif y Programmable 
Logic in Schematics
You can define programmable logic in two ways using:

• logic symbols (such as gates and flip-flops)

• DSL (Design Synthesis Language) blocks

You can place programmable logic symbols and DSL blocks
anywhere on your schematic—that means on any page and
any level of the hierarchy.

Usin g Programmable 
Logic Symbols
Logic symbols used as programmable logic have their IMPL
attribute set to the value PLSYN. The available logic symbols 
fall into two classes:

• Generic logic symbols

Example: NAND4, JKFF

• 74xx series symbols

Example: 74LS04 or 74HC107

Generic Lo gic Symbols
The dig_prim.slb  symbol library contains ready-to-use 
programmable logic symbols, including gates, enabled gate
flip-flops, and latches. Each symbol already has its IMPL 
attribute set to PLSYN.    
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Figure 3-1 7400 Symbol as 
Programmable Logic
74xx Series Lo gic Symbols
You can also convert the common 74xx series logic symbol
found in the 74xx.slb  symbol libraries to programmable logic

To convert one 74xx series lo gic s ymbol to 
pro grammable lo gic

1 Double-click the symbol. 

2 Click the IMPL= entry.

3 In the Value text box, type PLSYN.

4 Click Save Attr.

5 Click OK.

To convert several 74xx series lo gic s ymbols to 
pro grammable lo gic all at once

1 Select the 74xx symbols.

2 From the Edit menu, select Attributes.

3 Click Yes to the prompt: Globally edit attributes of all 
selected items?

4 Click the IMPL= entry.

5 In the Value text box, type PLSYN.

6 Click Save Attr.

7 Click OK.

Schematics automatically updates the symbol’s reference 
designator and changes its color to blue (by default), to sho
that it is programmable logic.

Note Some of the 74xx symbols cannot be converted to 
programmable logic. These symbols do not have 
the IMPL attribute. Adding an IMPL attribute will 
not work because PLSyn does not know the 
symbol’s logic function.
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ic This section describes how to 
define and edit DSL blocks within 
Schematics. For information on 
DSL language syntax, refer to 
the PIL Reference in PLSyn 
online help.

Note DSL files must have the 
.dsl extension.
You can also change programmable logic symbols back to 
discrete PCB devices.

To revert to non -pro grammable lo gic

1 Select the symbol(s) and bring up the Edit Attributes dialo
box as described in the above two procedures.

2 Click the IMPL= entry.

3 Clear (set to blank) the Value text box.

4 Click Save Attr.

5 Click OK.

Usin g DSL Blocks
In addition to logic symbols, you can define programmable log
using DSL (Design Synthesis Language) blocks on your 
schematic. 

What Are DSL Blocks?
DSL blocks are hierarchical blocks which have a language-
based definition instead of a symbolic definition. DSL logic 
expressions and constructs take the place of discrete logic 
symbols. So, instead of referencing a schematic file (.sch ), 
DSL blocks reference a DSL source code file (.dsl ).
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What Are DSL Procedures?
Each DSL block you place corresponds to a single procedure 
within the source code file. Procedures contain language 
constructs such as simple logic expressions, truth-tables, or
state-machine definitions. The signals coming into the DSL 
block define the inputs to the procedure. Likewise, the outpu
of the procedure define the output signals of the DSL block.

A DSL block has a PLMODEL attribute which defines the 
procedure name.

Example: The HB1 DSL block shown in Figure 3-2 reference
the adder5.dsl DSL source code file which contains the 
ADDER5 procedure referenced by the block’s PLMODEL 
attribute.

Figure 3-2 Relation of PLMODEL Attribute and DSL 
Procedure Name

PROCEDURE ADDER5( INPUT A[4..0], B[4..0];
OUTPUT  SUM[4..0]);
SUM = A .+. B;

END ADDER5;

DSL block

adder5.dsl
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You can change the size of the 
block by selecting the block, then 
using S right-click on one 
of the corners to drag it to the 
desired size.

Note Pin names must not be 
one of the DSL keywords, 
such as INPUT or OUTPUT. 
For the list of DSL keywords, 
refer to the DSL Reference in 
PLSyn online help.

The ERC attribute defines the 
electrical purpose of the pin.

Note The .dsl file cannot 
have the same name as the 
schematic file. (It is reserved 
for system use.) For example, 
a schematic named 
decoder.sch cannot reference 
a file named decoder.dsl.
Creatin g a DSL Block in Your 
Schematic

To create a DSL block

1 In Schematics, from the Draw menu, select Block.

2 Click to place the block on the schematic page. 

3 Connect wires or buses directly to the block. Each 
connection automatically creates a pin at the junction.

4 Define the names and types of each pin.

a Double-click the pin name. 

b Enter a new pin name.

When naming a bus connection, use the Schematics 
label syntax, for example, A[4-0]. 

c If necessary, select the correct ERC value for the pin

By default, the pins on the left are given an ERC 
attribute of input  and pins on the right are given an 
ERC of output . Do not set the ERC attribute to DON’T 
CARE;  this is not allowed for a DSL block. 

5 Push into the DSL block. Either:

• double-click the block, or 

• from the Navigate menu, select Push.

Because this is a new block, you are prompted for the na
of the file containing the DSL source code.

6 Enter the name of the DSL source file (using the .dsl  
extension) that you want to create or reference. 
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7 If you have not yet created the DSL procedure for this bloc
then do one of the following:

• If the DSL file does not exist, Schematics activates th
MicroSim Text Editor automatically. Specify the new
DSL procedure and save the .dsl  file.

• If the DSL file does exist but you still need to specify
the procedure, activate the MicroSim Text Editor from
the MicroSim program group, open the .dsl  file, 
specify the new DSL procedure, and save the file.

See the next section for information on defining DSL 
procedures.

Usin g the MicroSim Text Editor 
to Define DSL Procedures
When given a file name with the .dsl  extension, Schematics 
displays the MicroSim Text Editor which you can use to:

•  Define the body of the DSL procedure.

• Add other procedures or functions. 

For new DSL procedures, Schematics automatically creates
procedure template with input and output ports corresponding
the DSL block’s pin names and attributes. 

Figure 3-3 The DSL Procedure Template
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If the block’s PLMODEL attribute is undefined, Schematics 
defines it for you using the DSL file name (excluding the .dsl  
extension). 

Schematics also automatically translates the bus label forma
the DSL array format. 

Example: In the procedure header shown in Figure 3-3, the 
format A[4-0] is translated to the array format A[4..0]. 

Changing the DSL Block 
Interface
The pins on the DSL block must match the number, name, a
signal direction of the port nodes used in the DSL procedure
This means that if you add or delete pins, or change the widt
a bus on your DSL block, you must update the procedure’s p
nodes corresponding to the changed pins. 

Example: If you change a port’s direction from an output to a
input, you must change the ERC value of the corresponding
DSL block pin to INPUT. 
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For detailed instructions (menu 
options and mouse moves), see 
the following procedures:

• To create a DSL block on 
page 3-6.

• To change the pin properties 
in Schematics on page 3-9.
To chan ge the pin properties in Schematics

1 In Schematics, double-click the pin name in the DSL bloc

2 Change values in the Pin Name text box or Pin Attibutes
frame as needed.

To chan ge the pin properties in the MicroSim Text 
Editor

1 In Schematics, double click the DSL block.

2 Modify the procedure header to match the new interface

Usin g Existin g DSL Source Code
You can create a DSL file ahead of time and then associate
with any DSL block you create thereafter. 

To associate an existin g DSL file with a new DSL 
block

1 Check the port node names in the DSL procedure you p
to use with the new DSL block.

2 Place a block.

3 Add a pin for each of the port nodes in the DSL procedu

4 For each pin, change its name and ERC (if needed) to ma
the corresponding port node in the DSL procedure.

5 Add a PLMODEL attribute to the block and assign the DS
procedure’s name as its value.

a Select the DSL block.

b From the Edit menu, select Attributes.

c In the Name text box, type PLMODEL.In the Value tex
box, type the DSL procedure name.
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d Click Save Attr.

e Click OK.

6 Push into the block, and when prompted, enter the name
the existing DSL source code file.

Structurin g DSL Source Files 
When organizing your DSL procedures, you can have

• one procedure per file, or

• multiple procedures per file.

Example: A sin gle DSL procedure in each file

In Figure 3-4, if you were to make a change only to file2.dsl , 
file1.dsl is not recompiled.

Figure 3-4 A Source Code File for Each DSL Block

PROCEDURE A( INPUT ...; OUTPUT ... );
...

END A;

PROCEDURE B( INPUT ...; OUTPUT ... );
...

END B;

file1.dsl
PLMODEL=A

file2.dsl
PLMODEL=

DSL 
Block

DSL 
Block

file2.dsl

file1.dsl

Schematic
page
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Example: More than one DSL procedure in a 
sin gle file

From a maintenance point of view, this method is easier to 
manage because there are fewer files.

Figure 3-5 Single DSL Source Code File with More Than On
Procedure

PROCEDURE A( INPUT ...; OUTPUT ... );
...

END A;

PROCEDURE B( INPUT ...; OUTPUT ... );
...

END B;

file3.dsl
PLMODEL=A

file3.dsl
PLMODEL=B

DSL 
Block

DSL 
Block

Schematic
page

file3.dsl
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For information on the use of the 
INCLUDE and USE statements, 
refer to the DSL Reference in 
PLSyn online help.
To create a pre-compiled DSL 
file, manually compile the file 
from PLSyn using Compile 
Library from the Tools menu.
Callin g DSL Procedures and 
Functions from within a 
Procedure
Like other programming languages, DSL allows a procedure
contain calls to other procedures and functions. 

You must define called procedures and functions before they are 
called from the main DSL procedure. There are several way
do this:

• Add the called procedure or function directly to the sourc
code before the calling procedure.

• Include another DSL source file into your source before t
calling procedure by using the INCLUDE statement.

• Reference a pre-compiled DSL file (for example, a librar
of commonly used DSL procedures) from your source by
using the USE statement before the calling procedure.
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For more information on the .pi 
file, see Chapter 6, Controlling 
the Fitting Process Using the 
.pi File and refer to the PIL 
Reference in PLSyn online help.
Understandin g 
Programmable Lo gic 
Nodes
As you enter a programmable logic design, the nodes which
connect to programmable logic symbols or DSL blocks are o
two types.

Internal nodes These connect programmable logic to 
other programmable logic.

Interface nodes These are at the boundary of the 
programmable logic, and connect to all other schematic 
symbols, such as global ports, non-programmable logic, and
analog devices. 

After you have performed the physical implementation of yo
design, interface nodes correspond to physical pins on a PL

Labelin g Nodes
You are not required to label the programmable logic nodes
Schematics. Schematics automatically generates a unique n
such as NPL_0013.

However, to reference a node in your design’s Physical 
Information (.pi ) file, you should label the node so that you’l
know how to refer to it. Once labeled, PLSyn carries the nam
throughout the physical implementation process by PLSyn.

To label an y node

1 Double-click the wire.

2 Enter a name. 
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For a listing of DSL keywords, 
refer to the DSL Reference in 
PLSyn online help.

For more information, see Back 
Annotating the Schematic on 
page 2-9.
Node namin g restrictions

Programmable logic node names must adhere to the followi
naming conventions:

• The first character must be alphabetic (a-z , or A-Z ).

• Remaining characters can be any combination of alphab
(a-z , A-Z ), numeric (0-9 ), and underscore (_) characters.

• Names cannot be any of the DSL keywords.

Node names are case-insensitive which means upper-case and
lower-case letters are treated alike.

Labelin g interface nodes

For interface nodes, you can insure that the node label will 
persist with the PLD implementation.

To force the label to appear in the back-annotated 
PLD symbol

1 Attach a global port to the interface node, as shown in 
Figure 3-6.

2 Label the global port. 

Figure 3-6 Programmable Logic Interface Node Labeled wit
a Global Port

Non-programmable
logic Programmable

logic
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The LOW_TRUE port symbol is 
contained in the dig_prim.slb 
symbol library.

You could use this method to 
make an internal node available 
for testing. See Figure 3-6 on 
page 3-14 for an example.

For more information on physical 
nodes, refer to the DSL 
Reference in PLSyn online help.
Creatin g Active-Low Interface 
Nodes

To create active-low inputs or outputs to your 
pro grammable lo gic

Place a LOW_TRUE port (instead of a global port). 

Note The LOW_TRUE port creates interface nodes in 
the same manner as the global port. Therefore, 
you cannot use the LOW_TRUE port to create 
active-low internal nodes.

Convertin g Internal Nodes to 
Interface Nodes
When PLSyn runs an optimization, internal programmable log
nodes are automatic candidates for removal known as node
collapsing. To avoid this, you can change an internal node to
an interface node, and have the node appear at a physical P
pin.

To convert an internal node to an interface node

1 Attach a global port.

2 Assign a label.

Creatin g Physical Nodes

To create a ph ysical node at the schematic level

Place the PHYNODE/PL symbol and connect it to a wire. 
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The LO and HI symbols are 
contained in the port.slb 
symbol library.
Assi gnin g a Logic 0 or 1 to an 
Input
You can assign constant 0 or 1 to a programmable logic sym
by using the LO and HI symbols in one of the ways describe
below.

Alone If you attach a LO or HI symbol directly to an input
pin of a programmable logic symbol (or to an unlabeled wire
connected to an input pin), PLSyn treats that input as a logi
constant 0 or 1. 

Example: Use the HI symbol to tie an unused input on an AN
gate high, or to tie the J and K inputs of a flip-flop high to crea
a T flip-flop.

Attached to an interface node If a LO or HI symbol 
is attached to an interface node, the LO or HI behaves like a
stimulus during simulation. PLSyn still creates a physical dev
pin.

Guidelines for Enterin g 
Programmable Lo gic
Do this

• Always begin the names of the following objects with an
alphabetic character (a-z  or A-Z ):

• Schematic (.sch ) and DSL source (.dsl ) file names

• Programmable logic interface and internal nodes

• DSL block pins

The remainder of the name can contain numbers (0-9 ) or 
the underscore (_). 
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For a listing of DSL keywords, 
refer to the DSL Reference in 
PLSyn online help.
Note Do not use any other punctuation characters in the 
name.

• Make sure that each independent collection of 
programmable logic has at least one input interface and o
output interface node. That is, at least one input and one
output signal must connect either to a global port or to n
programmable logic.

Don’t do this

• Label any programmable logic node (interface or interna
the same as any of the DSL keywords. For example, you 
use OUT, but not OUTPUT. 

• Tie output interface nodes together. That is, the same no
may not be driven by two or more programmable logic 
output pins.

• Connect the analog ground node (node 0) to any 
programmable logic interface. Use the digital constant 
sources LO and HI  instead.

• Make a port label an integer.

• Use punctuation marks (except for underscore characters
names. See Do this above for naming conventions.

• Name the DSL file or procedure the same name as any of
programmable logic symbols contained in digprim.slb .



Simulatin g Programmable 
Logic Desi gns
 
cs 

For more informa
A/D, refer to you
PSpice A/D Us
4

tion on PSpice 
r MicroSim 
er’s Guide.
Chapter Overview
This chapter describes how to simulate your programmable
logic design both before and after PLD implementation. Topi
include:

Introduction to Simulating with PLogic or PSpice A/D on 
page 4-2

Setting Up Simulations on page 4-3

Starting Simulations on page 4-4

How the Simulator Uses Programmable Logic I/O Models on 
page 4-5

Simulating with Timing on page 4-6

Generating Test Vectors on page 4-6

Using Probe Markers on page 4-10
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Introduction to 
Simulatin g with PLo gic 
or PSpice A/D
Once you have entered a design which includes programma
logic, you can simulate both before and after you have chose
physical implementation. The purpose of the simulation 
depends on the development stage of your design.

Verif y function before implementation At this 
stage, simulations do not include timing. Instead, this is a go
time to verify that your design is behaving as you expect it to
operate.

Verif y timin g after implementation At this stage, 
after having selected the PLD devices, simulations 
automatically include timing information for the devices such 
propagation delays and setup times. You can verify not only 
timing of each PLD, but also the timing of the entire circuit 
including the PLD(s).
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PLogic simulation setup

PSpice A/D simulation setup
Settin g Up Simulations
Simulation setup for circuits containing programmable logic 
similar to that for any other circuit. The way you navigate to t
setup options depends on which simulator you have: PLogic
PSpice A/D. 

Displa ying the Dialo g Box for 
Simulation Setup

If you have PLo gic

To displa y the Anal ysis Setup dialo g box

1 In Schematics, from the Analysis menu, select Setup. 

If you have PSpice A/D

To displa y the Di gital Setup dialo g box

1 In Schematics, from the Analysis menu, select Setup.

2 Click Digital Setup. 



4-4 Simulating Programmable Logic Designs

cify 
 
nd 

ble 
e 

iles 
n 
ot 
ou 
we 

Refer to your MicroSim PSpice 
A/D User’s Guide for detailed 
information on how to specify the 
delay, A/D interface level 
(PSpice A/D only), and flip-flop 
initialization for your design as a 
whole.

Note The power and ground 
nodes and the A/D interface 
settings only apply to mixed-
signal simulations with 
PSpice A/D. These options 
have no effect on digital-only 
simulations. 
Definin g Simulation Setup 
Options for Pro grammable Lo gic
Besides the usual simulation setup options, you can also spe
simulation setup specific to the programmable logic part of your
design. This includes options for delay, A/D interface level, a
power supplies.

To displa y the dialo g box for pro grammable lo gic 
settin gs

1 From within the simulation setup dialog box, click 
Advanced. 

In addition to the usual settings for the simulator, you can ena
the capture of test vectors for the fuse map (JEDEC) file. Se
Generating Test Vectors on page 4-6 for more information.

Startin g Simulations
There are two ways to start a simulation, either from 
Schematics, or from the simulator (PSpice A/D or PLogic).

Using Schematics, the netlister generates a netlist and comp
the programmable logic. Although you can run simulations o
circuit files previously generated by Schematics, they might n
reflect the current state of your design. To insure that what y
are simulating is always in sync with your schematic design, 
recommend that you always start your simulations from 
Schematics.
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Table 4-1 PLSyn I/O Models

* These models are located in 
the dig_io.lib symbol library.

I/O Model Name*

PLSYN_IO_DEFAULT

PLSYN_IO_TTL

PLSYN_IO_CMOS

PLSYN_INT_IO_ECL

PLSYN_EXT_IO_ECL
To start a simulation from within Schematics

Select Simulate in the Analysis menu. 

How the Simulator Uses 
Programmable Lo gic I/O 
Models
I/O models define the digital and analog characteristics of 
digital input and output pins. As with all other digital devices
your programmable logic also uses I/O models. If a digital pin
connected to other digital devices, the simulator refers to the
O model to obtain the pin’s output resistance, as well as its in
or output capacitance. 

If your package includes PSpice A/D, you can simulate anal
devices along with your programmable logic. If a digital pin i
connected to analog devices, PSpice A/D refers to the I/O mo
to obtain the name of an interface subcircuit (either AtoD or 
DtoA) to insert between the devices.

When you simulate programmable logic, the simulator attem
to use the I/O model appropriate for the technology. Table 4
lists the I/O models used by PSpice A/D and PLogic for 
programmable logic. 

The simulator determines the correct technology if: 

• You have constrained the physical implementation to on
technology.

• The fitting process is complete and you have selected P
part numbers. 

If the simulator cannot determine the technology of the 
programmable logic (for example, you have selected two or
more technologies in your device constraints), the simulator
uses IO_DEFAULT_PLSYN, which has 74LS characteristics
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For more information on how 
PSpice A/D treats unspecified 
propagation delays, refer to your 
MicroSim PSpice A/D User’s 
Guide.
Note If your design is partitioned into two or more 
devices, the simulator automatically uses the 
appropriate I/O model at the logical boundaries of 
each device.

Simulatin g with Timin g
After you have performed the physical implementation and 
selected PLD devices, any simulations that you run will inclu
timing information for those devices. This timing information i
obtained from PLSyn’s device library. The simulator uses the
timing values:

The device library contains maximum-rated values for tPD and 
tCO, and minimum values for tS. The simulator calculates 
minimum and typical values from the maximum propagation
delay values. 

Generatin g Test Vectors
In the PLSyn context, the term test vectors refers to the section 
of the JEDEC file used by device programmers to validate th
device after it has been programmed. Each line of the JEDE
file’s test vector section contains input signals (which stimula
the programmable logic) and the expected output signals. 
Device programmers apply the input signals and compare th
results to the expected outputs specified in the JEDEC file.

tPD combinatorial propagation delay

tCO clock-to-output propagation delay

tS setup time
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Unit delay mode effectively turns 
off the simulator’s inertial delay 
behavior which causes short 
pulses to be swallowed. 
Because device programmers 
do not support inertial behavior, 
this helps avoid test vector 
mismatches.
Enablin g Test Vector Generation
If you enable test vector generation during the simulation, 
PLSyn collates and formats the input and output signals for e
PLD in the solution into test vectors. PLSyn adds these vect
to the JEDEC file(s) when the fuse map is created after you have 
fitted and performed device selection.

If you have PLo gic

To enable test vector generation

1 In Schematics, from the Analysis menu, select Setup.

2 Select (✓) the Capture Test Vectors check box.

If you have PSpice A/D

To enable test vector generation

1 In Schematics, from the Analysis menu, select Setup.

2 Click Digital Setup.

3 Select (✓) the Capture Test Vectors check box.

How the Simulator Responds
With test vector generation enabled, the programmable logi
portion of the design runs in unit delay mode. This avoids te
vector mismatches during device programming. 

Note Any time you re-fit or select a different solution, you 
must re-simulate in order to generate the test 
vectors for the new device(s).
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See page 4-3 for information on 
how to get to the setup dialog 
box for your simulator.

Table 4-2 Test Vectors for 
Case 1

Note In JEDEC files, 0, and 1 
are input values; L and H are 
output values. 

Time Sample 
Taken

I1 I2 O1

10 0 0 L

11 1 0 L

20 1 1 H

30 0 1 L
Usin g the “Sample Window” 
Control
The Sample Window value (specified in the simulation setup
dialog box) defines the interval during which the simulator 
considers input changes to occur at the same time. 

Set this value when signals, considered part of the same inp
vector, arrive at the boundary of the programmable logic at 
slightly different times. This is useful, for example, in mixed 
analog/digital designs.

Example: How the Simulator 
Creates Test Vectors

Case 1

Consider the following case, 

with inputs and outputs as follows.

With Sample Window set to zero, the simulator creates test 
vectors by recording the value of all inputs and outputs 
whenever any input changes. The vector consists of all prio
input values, along with the current output value. In other wor
the simulator assumes that any input change propagates to
output by the time the next input change occurs. Table 4-2 
shows the test vectors that the simulator creates using this lo

1
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Table 4-3 Test Vectors for 
Case 2

Time Sample 
Taken

I1 I2 O1

10 0 0 L

11 1 0 L

20 1 1 H

30 0 1 H

Table 4-4 Test Vectors for 
Corrected Case 2

Time Sample 
Taken

I1 I2 O1

10 0 0 L

20 1 1 H

30 0 1 H
The simulator takes one final sample at the end of the 
simulation. As you can see, these test vectors are correct, e
though the input changes do not arrive simultaneously.

Case 2

Unfortunately, this approach produces the wrong results in t
following case, 

with inputs and outputs shown below.

With Sample Window set to zero, the simulator produces th
vectors shown in Table 4-2. At time 11, the output value of L is
incorrect. The result of I1 changing to 1 had not yet propaga
to the output.

Corrected Case 2

The sampling window allows you to treat staggered inputs a
they had arrived simultaneously. A sampling window begins
when any input changes and ends after the sample time exp
The inputs in the test vector consist of the input values at the 
of the sampling window. 

In case 2, a sampling window at least 1 unit in the duration, 
corrects the problem.

3
O1
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Collapsed nodes happen when 
PLSyn removes an internal 
signal node by substituting the 
node’s equation into any 
equation that references the 
node.
Table 4-2 shows the test vectors.

Troubleshootin g Test Vector 
Differences
Sometimes, when the device programmer tests the device, 
results produced by the part are different from the expected
output results produced by the simulator. If this occurs, the 
following hints can help you solve the problem.

• Try specifying a non-zero sampling window as described
the previous section. Use a value greater than the 
propagation delay (tmin) of the device.

• Make sure that the initial value of the clock stimulus is 
inactive for the type of flip-flop you are using. Why? In th
simulator, the flip-flop primitive requires the entire clock 
edge (for example, 0 → 1) to register the data. However, in
the programmer, the flip-flop registers its input if the first
vector contains a value of 1 for the clock. 

Usin g Probe Markers
To view logic levels, you can place markers on both 
programmable logic interface nodes and nodes internal to th
programmable logic in the schematic. If you’ve configured yo
system to automatically run Probe after simulation, waveform
results immediately display in the Probe window. 

A caution about collapsed nodes

When optimizing a design, PLSyn reduces the logic equatio
which can result in collapsed nodes. Collapsed nodes are n
available in Probe, even if you have placed markers on them

Note Results at interface nodes are still available. 
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Chapter Overview
This chapter describes how to create the physical 
implementation of your programmable logic using PLSyn. 

Overview of the Physical Implementation Process on page 5-3 
reviews the steps you must follow to implement the 
programmable logic.

Where to Find Status and Design Information on page 5-4 talks 
about the log and document files that PLSyn generates.

Activating and Loading PLSyn on page 5-5 explains how to 
activate PLSyn.

Compiling the Logic on page 5-7 explains how PLSyn converts
the programmable logic symbols and DSL blocks to logic 
equations.

Optimizing the Logic Equations on page 5-10 describes the 
kinds of algorithms PLSyn uses to reduce the logic equation

Overview of Fitting and Partitioning Logic on page 5-14 
explains how to run the PLSyn fitter and how it works.
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Limiting the PLD Parts Available for Search on page 5-16 
explains how to use the available file to specify a preferred 
device set.

Constraining Devices on page 5-18 explains how to narrow the 
search by manufacturer, logic family, speed, and/or part typ

Prioritizing the Solutions on page 5-23 explains how to use 
PLSyn to rank the solution set by speed, cost, power 
consumption, and pin count preferences.

Running the PLSyn Fitter and Partitioner on page 5-25 explains 
how to start the PLSyn fitter.

Selecting Devices on page 5-26 explains how you can select a
different device from the solution list.

Creating Fuse Maps on page 5-27 explains how to generate fuse
maps to program the devices.

Updating the Schematic on page 5-28 explains how to back-
annotate the schematic with the selected PLD implementati

Creating PCB Netlists on page 5-29 provides tips when 
preparing to generate a netlist for board layout.

When You Change the Design on page 5-30 provides tips when 
trying iterative what-if implementations.
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Overview of the Ph ysical 
Implementation Process
After you have described your design in Schematics, you ar
ready to create the physical implementation of your 
programmable logic using PLSyn. 

To have PLS yn determine solutions for the 
physical implementation automaticall y

1 If needed, customize the available file (.avl) with user-
defined properties that you want to constrain.

2 Define the selection constraints using Constraints in the E
menu.

3 Define the solution priorities using Priorities in the Edit 
menu.

4 Run the PLSyn fitter using Fitter/Partitioner from the Too
menu. PLSyn automatically compiles and optimizes the 
programmable logic in your design.

5 Select the PLD device(s) you want to use.

6 Create the fuse maps using Fuse Map Generator in the T
menu.

7 Back-annotate the schematic with the PLD device(s) usi
Update Schematic in the Tools menu.
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See Compiling the Logic on 
page 5-7 and Optimizing the 
Logic Equations on page 5-10 
for more information on what 
PLSyn does when compiling and 
optimizing your design. 

For more information on the 
using the .pi file, refer to 
Chapter 6,Controlling the 
Fitting Process Using the .pi File 
and the PIL Reference in PLSyn 
online help.

For MACH devices, PLSyn also 
produces a report file. For more 
information, see The MACH 
Report File on page 8-52.

For a detailed description of 
documentation file contents, see 
Appendix A, The 
Documentation File.
If You Want More Control
As described above, you can leave the synthesis details to 
PLSyn. But if you want more control, you can:

• Manually run the PLSyn compiler.

• Manually run the PLSyn optimizer.

• Direct the fitting/partitioning process by specifying contro
in the physical implementation file (.pi ).

Where to Find Status 
and Desi gn Information
To document your design, or, if your design fails to fit, PLSy
furnishes tools that can help you solve any problems:

Message Viewer The Message Viewer displays warning
and error messages that occur when PLSyn (or another 
MicroSim program) encounters a problem. You can access h
text that relates directly to each message. For some messag
you can also jump to the point in your design where the probl
was detected.

Log file The log file (design_name.log ) contains status 
and error messages from each of the implementation proces

Documentation file The documentation file 
(design_name.doc ) contains detailed information about you
design, such as the logic equations and device pinouts. PLS
automatically creates this file after the optimization phase, a
updates this file after you generate the fuse map file(s). 
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Activatin g and Loadin g 
PLSyn
This section describes how to:

• Start PLSyn.

• Load a design.

• Interpret the PLSyn window.

Activatin g PLSyn
Start the PLSyn program either from:

• Schematics, or

• the PLSyn program icon in Windows.

From Schematics

To activate PLS yn from Schematics

1 In the Schematic Editor, from the Tools menu, select Ru
PLSyn.

If your design is already open in Schematics, then you can s
the physical implementation phase of your design once the 
PLSyn main window displays. If not, you must load a design
directly into PLSyn as described in Loading a Different Design 
on page 5-6.

From the Windows Pro gram Mana ger

In the Windows program manager, there is a program group 
contains Windows icons for all installed MicroSim programs
including PLSyn.
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Solution List

Figure 5-1 Main PLSyn 
Window

Solution Detail List
To activate PLS yn from the Windows Pro gram 
Manager

1 In the MicroSim program group, double-click the PLSyn 
icon.

PLSyn activates without a design. See Loading a Different 
Design for further instructions.

Loadin g a Different Desi gn
Once you have activated PLSyn, you can change to a differ
design at any time.

To load an existin g desi gn

1 From the File menu, select Open.

2 Select a schematic (.sch ) or DSL source (.dsl ) file.

The PLSyn Main Window
Once loaded, PLSyn’s main window appears as shown in 
Figure 5-1.

The top area, called the solution list, displays architectures 
chosen by the PLSyn fitter. The bottom area, called the solution 
detail list, displays a list of alternative part numbers available
for the architecture you selected in the solution list above. 

During fitting, this window contains a list of the device 
templates PLSyn is considering. 
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For more information on fitting 
and partitioning, see Overview 
of Fitting and Partitioning Logic 
on page 5-14 and the sections 
that follow.

Another way to automatically 
compile the programmable logic 
is as follows:

1 In Schematics, from the 
Analysis menu, select Create 
Netlist.
Compilin g the Lo gic
The PLSyn compiler converts all of your design’s 
programmable logic (logic symbols and DSL blocks) into 
equivalent logic equations. PLSyn writes the compiled logic 
an internal file named design_name .afb which the 
simulator and the PLSyn optimizer use later on.

You can compile programmable logic at different stages of 
design development: 

• Automatically during the fit and partition process.

• Manually to verify the syntax of the programmable logic.

• Manually to compile DSL files that include the USE 
statement to reference other DSL files—also known as a
library compile.

Note You must manually compile DSL files that contain 
the USE statement before running a general 
compilation of your design, or before starting the fit 
and partition process. This is explained in more 
detail in the following two sections.

Manuall y Compilin g Logic

To manuall y compile all pro grammable lo gic in 
your desi gn

1 Pre-compile any DSL files that include the USE stateme
(see Compiling DSL Libraries on page 5-8).

2 From the Tools menu, select Compiler.

To ensure that the schematic matches the PLSyn database
PLSyn first checks to see if any of the programmable logic, 
its interfaces, has changed since the last generated netlist. I
programmable logic portion of your design has changed, PLS
automatically regenerates the netlist.
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Compilin g DSL Libraries
Whenever your design includes DSL blocks that include the
USE statement, you must load each DSL file and run a libra
compile before any other manual or automatic compilations ta
place.

To compile DSL blocks that include the USE 
statement

1 From the File menu, select Open, and then select the na
of the DSL file you want to compile.

2 From the Tools menu, select Compile Library.

Respondin g to Compile-Time 
Status and Errors
During compilation, PLSyn displays a status window which 
shows the compiler’s progress. You can abort the compilation
any time.

To abort the compilation

1 In the status window, click Cancel. 

If there are compile-time errors, PLSyn displays the message
the Message Viewer. In addition, PLSyn keeps a written log

To control whether PLS yn writes compiler errors 
to the lo g file

Do the following before starting the compile:

1 From the Tools menu, select Options.

2 Select (✓) the Output Warnings check box.

3 Click OK.

After you have corrected any errors in your DSL blocks, you
must restart the compiler. 
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Controllin g Node Generation 
Durin g Compilation
You can control whether the PLSyn compiler creates interna
nodes for carry bits for arithmetic and relational operators.

To allow PLS yn to create internal nodes

Do the following before starting the compile:

1 From the Tools menu, select Options.

2 Select (✓) the Create Nodes check box.

3 Click OK.

Resolvin g “Out of Memor y” 
Conditions
If you encounter an “Out of Memory” message, you can redu
memory requirements by setting the maximum number of 
product terms any equation form can have. 

To limit the number of product terms

Do the following before starting the compile:

1 From the Tools menu, select Options.

2 In the Product Term text box, type an integer value for th
maximum number of allowed product terms ranging from
64 to 5012. The default is 1024.

3 Click OK.

As a rule of thumb, lower the Product Term value by a factor
two. If you continue to get an “Out of Memory” message, low
the value again.
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Note Optimization is only 
needed prior to fitting and 
partitioning, not prior to 
running simulations. 

For more information on fitting 
and partitioning, see Overview 
of Fitting and Partitioning Logic 
on page 5-14 and the sections 
that follow.

If you experience an “Out of 
Memory” message, try limiting 
the maximum number of product 
terms allowed in an equation 
form and restart the optimization. 
For more information, see 
Resolving “Out of Memory” 
Conditions on page 5-9.
Optimizin g the Lo gic 
Equations
PLSyn performs optimization prior to fitting to compact your
design’s programmable logic into as few equations and node
possible. This allows your design to fit into the fewest and 
smallest possible devices. 

PLSyn writes the optimizer output to a file named 
design_name.fb  which the fitter and partitioner use later on

Though you would usually have PLSyn run the optimizer 
automatically in the fit and partition process, you can also 
manually run the optimizer.

To manuall y optimize all pro grammable lo gic in 
your desi gn

1 Make sure your design is compiled (see Compiling the 
Logic on page 5-7).

2 From the Tools menu, select Optimizer.

During optimization, PLSyn displays a status window which 
shows the optimizer’s progress. You can abort the optimizat
at any time.

To abort the optimization 

1 In the status window, click Cancel. 
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How the PLS yn Optimizer 
Synthesizes Lo gic Equations
In addition to compacting the logic, the optimizer also produc
multiple, functionally-equivalent equation sets to accommoda
the wide variety of device architectures available on the mark
This means that for each potential device solution, the PLSy
fitter is able to select the set of equations that best uses the
characteristics of that particular architecture.

The optimizer employs several techniques to synthesize the
equations. 

DeMorganization DeMorganization allows the PLSyn 
fitter to invert signals internal to a device while maintaining th
signal polarity and functionality as described by the logic 
design. The ability to tailor equations internally to the device
lets you create a functional design that is independent of the
signal polarity capabilities of a particular device. It also gives
maximum flexibility to the fitter so that PLSyn can place large
more complex designs into fewer devices.

Register s ynthesis The optimizer synthesizes flip-flop 
types to optimize equation placement within a device. For 
example, you can describe logic in terms of J-K flip-flops. Th
optimizer also synthesizes the D equation so that the PLSyn
fitter can place the equation in a device with D flip-flops.

Don’t care generation You can express Don’t Care 
conditions using the DSL If/Then/Else, Case, Truth Table, a
State Machine statements. You can also assign Don’t Care 
conditions to signals within procedures and functions. When
output values are unspecified, the optimizer assumes a Don’t 
Care condition. This allows the optimizer to assign either a ze
or one value, depending upon which value generates the m
optimal equation. 

Exclusive-OR (XOR) s ynthesis Whenever possible, 
the optimizer maintains exclusive-OR representations of all 
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equations. The partitioner can then use the exclusive-OR 
representation in devices with that capability. In devices witho
exclusive-OR capability, the partitioner uses the sum-of-
products representation.

Node collapsin g The optimizer minimizes the use of 
intermediate nodes. The optimizer removes nodes by collaps
their equations into any equations that reference them. 

Logic minimization There are three final reduction 
algorithms available: Espresso, Espresso/Exact, and Quine
McCluskey. You can set the method from the Tools/Options
dialog. The Espresso algorithm is the fastest method and usu
produces results as good as the other two algorithms. The 
Espresso/Exact and Quine-McCluskey methods are slower 
use more dynamic memory but may result in smaller equatio
Due to the speed and memory use issues, these optional 
reduction techniques should be restricted to designs with 
relatively small equations where optimal equation minimizatio
is critical. The default reduction technique is Espresso.
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You can also control optimization 
using the .pi file. See 
Chapter 6, Controlling the 
Fitting Process Using the .pi 
File and the PIL Reference in 
PLSyn online help.
Choosin g the Optimization 
Method
You can control the optimization algorithm PLSyn uses to 
reduce the logic equations, choosing from:

• Espresso

• Espresso/Exact

• Quine-McCluskey

Espresso is the default reduction technique.

To chan ge the optimization al gorithm

1 From the Tools menu, select Options.

2 From the Optimization Method list, select the algorithm 
name.

3 Click OK.

The Espresso technique is fast and generally produces very g
equations. The Espresso/Exact and Quine-McCluskey meth
are slower and use more dynamic memory but may result in
smaller equations. Due to the speed and memory use issues
should restrict using these optional reduction techniques to 
designs with relatively small equations where optimal equati
minimization is critical. 
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For information on using the .pi 
file see Chapter 6, Controlling 
the Fitting Process Using the 
.pi File and refer to the PIL 
Reference in PLSyn online help.
Overview of Fittin g and 
Partitionin g Logic
During the fitting and partitioning process, PLSyn searches 
library of parts for the PLD device architecture(s) which can
implement, or fit, the programmable logic in your design. 

There are two ways you can proceed with the fitting/partitioni
process:

• Completely automatic, letting PLSyn determine how to be
fit the logic.

• Using the .pi  file to control how logic is fit; for example, 
into specific part numbers, with specific grouping of the 
logic into specific devices, and with specific pinouts for 
individual nodes. 

This rest of this chapter describes how to use PLSyn to 
automatically fit and partition the programmable logic.

If You Don’t Have the Partitionin g 
Option
Systems with the partitioning option allow PLSyn to fit your 
design into multiple PLD devices. If you do not have the 
partitioning feature, all of your programmable logic must fit int
a single device. The discussions which mention more than o
device in a solution do not apply to you. 
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Note If any of the DSL blocks 
contain USE statements to 
refer to other DSL blocks, you 
must first manually compile 
these DSL files using the 
Compile Libraries option in 
the Tools menu. For more 
information, see Compiling 
DSL Libraries on page 5-8.

Solutions, or architectures, are 
sometimes referred to as 
templates. For example, in the 
dialog box that PLSyn displays 
when you select Constraints in 
the Edit menu, you’ll see a 
constraint named Device 
Templates.
How the PLS yn Fitter Works
Figure 5-2 shows how the PLSyn fitter and partitioner relate
other PLSyn functions, data, and programmable logic. The 
shaded objects indicate functions that must occur before PLS
can fit and partition the design: define, compile, and optimiz
the programmable logic.

Figure 5-2 PLSyn Functional Architecture

If needed, PLSyn automatically compiles and optimizes the 
programmable logic before starting the fitting process.

There are two ways you can narrow the device search to the
devices that interest you, and thereby speed up the fitting 
process:

• Edit the available parts file (.avl ).

• Define constraints, such as device architecture, 
manufacturer, technology, speed, power consumption, a
temperature. 

PLSyn begins the search by scanning the list of available pa
contained in the available parts file (.avl ), then filtering the 
search further by the constraints you have defined. When th
search is complete, PLSyn displays a list of up to ten solutio
(architectures), ranked by the priorities which you defined 
earlier. For a given architecture, you can then select the exa
part numbers that you want to use.

Available
File

Constraints Priorities

Fitter/Partitioner

Compiler/

DSL

Optimizer
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Partitioning
Option
Required
If your system includes the partitioning option, and if needed
PLSyn automatically fits your programmable logic into more
than one device, up to a maximum of twenty. PLSyn can als
partition into different architectures. If so, PLSyn displays ea
architecture in the Solution Detail list.

Limitin g the PLD Parts 
Available for Search
The available file (.avl ) contains the list of only those device
that you want PLSyn to consider as potential solutions. This 
contains information on:

• available device types

• device manufacturer names

• logic families

• package types

• temperatures

• prices 

The default available file, plsynlib.avl , resides in the bin  
subdirectory under your MicroSim root directory. When 
shipped, this file contains every part in the master device libra

Because limiting architectures, not devices, is what speeds 
the fitting process, we recommend that you avoid editing the
.avl  file unless you plan to constrain the device search usin
user-defined properties. In this case, we recommend that yo
create a new .avl  file using plsynlib.avl  as a starting point. 
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You can enforce constraint-
checking on the user-defined 
fields by defining the User1 and 
User2 constraint controls. See 
Constraining Devices on 
page 5-18 and Setting Up User-
Defined Constraints on 
page 5-20.
To create and use a custom available file

1 Copy plsynlib.avl  to a different file name with the .avl  
extension. 

2 Using any text editor, open the file, make modifications 
according to the restrictions explained after this procedu
and save it.

3 In PLSyn, from the Edit menu, select Constraints.

4 In the Available File text box, enter the file name.

Each line in the file is a complete record of a device. The on
changes you should make to the available file are to:

• Delete the entire line containing a device to remove that
device from consideration.

• Update the last three fields on a line, which are (listed in
order of appearance):

• part price (in cents), 

• a user-defined numeric property

• a second user-defined numeric property

Note Do not change any other fields or the format of the 
available file. 
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Constrainin g Devices
Constraints allow you to narrow the list of devices that the 
PLSyn fitter considers when searching for solutions. The fitt
compares your constraints against each part in the available 
and only those matching the specified constraints are conside
for fitting. 

Note If your constraints are too narrow, the PLSyn fitter 
and partitioner may not be able to implement your 
design.

To edit the constraints for your current desi gn

1 From the Edit menu, select Constraints.

2 Enable the constraints you want PLSyn to consider as 
follows:

• For Device Templates, Logic Family, Manufacturer, 
Package Type, or Temperature, click the button to th
right of the constraint and select the items you want 
considered. See Table 5-1 for a description of each of 
these.

• For all other constraints, type an appropriate value in
the corresponding text box as described in Table 5-1.

3 Clear any constraints you don’t want PLSyn to consider 
(✓removed).

4 Click OK.
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Table 5-2 Temperature 
Rating Abbreviations

Temperature 
Abbreviation Meaning

883B MIL-STD-883B

COM 0 to +75 °C

EXT -40 to 85 °C

MIL -55 to 125 °C
Table 5-1 Device Selection Constraints Dialog Box 
Controls

Control Name Meanin g

Device 
Templates

List of the architectures that are available in 
your package. PLSyn considers only the 
selected architectures. For more information, 
refer to the the Device Lists in PLSyn online 
help.

Logic Family List of available logic families. PLSyn 
considers only the selected logic families. For
more information, refer to the the Device 
Lists in PLSyn online help.

Manufacturer List of available manufacturers. PLSyn 
considers only the selected logic families. For
more information, refer to the the Device 
Lists in PLSyn online help.

Package Type List of footprints or package types available 
for partitioning. PLSyn considers only the 
selected footprints. For more information, 
refer to the the Device Lists in PLSyn online 
help.

Temperature List of available temperature ratings. PLSyn 
considers only the selected temperature 
ratings. Table 5-2 lists the valid temperature 
rating abbreviations.

Max Prop Delay Highest allowable value for propagation delay
in nanoseconds. See How PLSyn Calculates 
Maximum Propagation Delay on 
page 5-22 for more information.

Max Frequency Highest allowable frequency value in MHz. 
Default is 10 MHz.

Max Current 
Usage

Highest allowable value for power supply 
current in mAmps. Default is 10 mA.
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Option
Required
Settin g Up User-Defined 
Constraints
Enabling user-defined constraints requires:

• Associating a property and value for each device listed i
your available file.

• Defining the comparison that must be satisfied to include
that device in the fitting/partitioning process.

User 1 Comparison criteria used on the first user-
defined property in each device statement in 
the available file. Defined as a pair of a values:

• relational operator (e.g., <, <=, =, etc.) 

• target number between 0 and 255

See Setting Up User-Defined Constraints 
on page 5-20

User 2 Comparison criteria used on the second user
defined property in each device statement in 
the available file. See User1 above and 
Setting Up User-Defined Constraints on 
page 5-20

Max Devices Highest allowable number of devices into 
which the partitioner can allocate 
programmable logic, ranging from 1 to 20.

Available File The name of the available file. Default is 
plsynlib.avl.

Table 5-1 Device Selection Constraints Dialog Box Contro
(continued)

Control Name Meanin g



Constraining Devices 5-21

er 
fter 

e 

e 

 
lues 

ld. 
ess 

For more information on the 
available file format, see 
Limiting the PLD Parts 
Available for Search on 
page 5-16.
To set up user-defined constraints

1 In your .avl  file, use a standard text editor to enter the 
value of a numeric property in each device line either aft
the price property (referred to as the User1 property) or a
the first user-defined property (referred to as the User2 
property). 

You can have at most two user-defined properties.

2 In PLSyn, when defining constraints (by selecting 
Constraints in the Edit menu), select (✓) the corresponding 
User1 or User2 check box.

3 Select a relational operator from the drop-down list to th
right of the User1 or User2 constraint that you selected.

4 Type the target value for comparison in the text box to th
right of the relational operator you just selected.

Example

A common application for the user-defined fields is device 
defect rate. If your production group has failure statistics on
devices that range from 0 to 100, then you can enter those va
into your available file. 

Suppose that each device statement in your .avl  file contains 
device defect rate values in the field after price—the User1 fie
Then you can enforce device selections with a failure rate of l
than 10% by:

1 In PLSyn, from the Edit menu, selecting Constraints.

2 Selecting (✓) the User1 check box.

3 Selecting < for the relational operator.

4 Typing 10 in the text box.
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How PLS yn Calculates Maximum 
Propa gation Dela y

Combinatorial (non-re gistered) devices The 
maximum propagation delay is the worst case tPD, as published 
by the manufacturer.

Registered devices The maximum propagation delay is
the sum of the tS and tCO (setup time and clock-to-output delay

Devices with both combinatorial and re gistered 
outputs The maximum propagation delay is the larger of
the two cases described above.

The Default Constraints File
When fitting a new design, PLSyn initializes the constraints 
values contained in the default constraints file, default.cst . 
This file resides in the bin  subdirectory under your MicroSim 
root directory.

To customize the set of default constraints

1 Choose a constraints file created for an existing design 
(residing in your working directory).

2 Make a copy of that file and save it to the bin  subdirectory 
with the name default.cst .
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Partitioning
Option
Required
Prioritizin g the 
Solutions
When PLSyn finds a solution which fits your programmable 
logic, it ranks the solution to determine whether it is better or 
worse than other solutions it has found. If the solution is with
the ten best, PLSyn positions it in the solutions list according
its relative merit. 

The ranking is based on priorities that you define.

To define rankin g priorities

1 From the Edit menu, select Priorities.

2 Select (✓) the check boxes for the priorities you want to us
to rank the solution. See Table 5-1 for a description of ea
one.

3 Enter weighting factors from 1 to 10 for the criteria that yo
enabled where 10 indicates most important.

Note Disabled criteria are not considered in the ranking 
of solutions. 

Table 5-3 Solution Priorities Dialog Box Controls

Control Name Meanin g

Price Minimize the total price of the solution. Use a 
high priority to indicate a preference for 
lower-cost solutions. In multiple-template 
solutions, PLSyn considers the total price of 
all devices in the solution. 

If you have the partitioning option, then 
PLSyn can opt for cheaper, multiple-device 
solutions instead of more costly, single-device
solutions.

Number of Pins Minimize the total pin count. Use a high 
priority to indicate a preference for a lower pin 
count. In multiple-template solutions, PLSyn 
considers the pin count of all devices.
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In multiple-device solutions, PLSyn uses all of the criteria 
where appropriate. 

Example: The price given for a particular solution is the sum
the prices of all parts in the solution.

Size Minimize total size. Use a high priority to 
indicate a preference for physically smaller 
parts. In multiple-template solutions, PLSyn 
considers total size.

Prop Delay Maximize speed. Use a high priority to 
indicate a preference for faster parts. In 
multiple-template solutions, PLSyn considers 
the device with the longest propagation delay.

Frequency Maximize clock speeds. Use a high priority to
indicate a preference for parts with higher 
maximum clock speeds. In multiple-template 
solutions, PLSyn considers the device with the
lowest frequency rating.

Supply Current Minimize power consumption. Use a high 
priority to indicate a preference for parts with 
lower power supply consumption. In multiple-
template solutions, PLSyn uses the sum of the
individual lcc values.

User 1 Use in conjunction with a USER1 constraint 
as follows:

• If USER1 > 0 is the constraint, then PLSyn 
considers a solution to be better that has a
USER1 value that is higher than another 
USER1 value. Example: 99 is better than 4

• If USER1 < 1 is the constraint, then PLSyn 
considers a solution to be better that has a
USER1 value that is lower than another 
USER1 value. Example: 4 is better than 99

User 2 See User1

Table 5-3 Solution Priorities Dialog Box Controls 

Control Name Meanin g
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Usin g Constraints and Priorities 
Together
While constraints eliminate devices, priorities eliminate 
solutions. Used together, you can effectively focus the fitting
partitioning process to find the devices that best meet your 
needs.

Example: You can enable a constraint to eliminate devices w
propagation delays greater than 50 nsec, and then specify a
priority that indicates a preference, but not a requirement, for 
low-power devices.

Runnin g the PLS yn 
Fitter and Partitioner
To start the fittin g/partitionin g process

1 From the Tools menu, select Fitter/Partitioner. 

As PLSyn tries solutions, it updates the number of attempte
and found solutions on the status line.   If a successful solut
ranks within the top ten, PLSyn places it in the solution list. 

Depending on the amount of programmable logic in your 
design, and the number of architectures PLSyn has to consi
the fitting/partitioning process can take from less than a minu
to several minutes or even hours. Therefore, select your 
constraints carefully.

The fitting/partitioning process can fail because:

• PLSyn can’t find any parts in the available file which mee
your constraints. 

• PLSyn can’t fit your logic into the architectures which did
meet your constraints. 

If this happens to you, try relaxing the constraints, thereby 
allowing PLSyn to consider additional device architectures. 
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Selectin g Devices
After PLSyn has found the solution(s) which will implement 
your design, you can select part numbers for each architectu
the solution list. 

PLSyn uses the solution and part numbers that you choose 

• update the schematic.

• perform timing simulations, and

• generate fuse maps.

You can explore different implementations by changing you
selection to different part(s) or even a different solution. 

To select the PLD implementation

1 Select the solution (architecture) you want from the soluti
list.

A list of part numbers corresponding to the selected 
architecture appears in the solution detail list. 

2 Select part numbers for the chosen solution. Either:

• double-click the device name in the list, or

• select the device and click Browse. 

3 Select a different part and click OK. 
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The JEDEC file has a special 
format used by your device 
programmer to determine which 
of the PLD fuses to blow. 

For more information, see 
Generating Test Vectors on 
page 4-6.
Creatin g Fuse Maps
After you have selected the PLD device(s) to implement you
programmable logic, you can use PLSyn to create fuse map
PLSyn creates one fuse map file, called a JEDEC file, for ea
device in the solution. 

To create fuse maps

1 From the Tools menu, select Fuse Map Generator. 

This command generates as many files as there are devices i
solution named design_name.j n, where n is an integer from 
one to the number of devices. 

After creating the fuse map file(s), PLSyn updates the 
documentation file with the names of the JEDEC files create
for each device architecture. Each JEDEC file also contains 
name of the device architecture in its header. The remainde
the device programming is handled by your device programm

Includin g Test Vectors
The JEDEC file also includes any test vectors created durin
simulation, which the device programmer uses to validate th
programming. If you have not run a simulation which genera
test vectors, you will see a warning message, but you can 
continue creating the fuse map file without test vector 
information. 
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You will find this feature useful, 
for example, when you must 
change the functionality of your 
design after having laid out the 
printed circuit board.

For general information, see 
Chapter 6, Controlling the 
Fitting Process Using the .pi 
File and refer to the PIL 
Reference in PLSyn online help.

For more information on PCB 
layout, see Creating PCB 
Netlists on page 5-29.

Note If Schematics cannot 
find the PLD symbols, you 
need to add the PLD symbol 
libraries to your library 
configuration (using the Editor 
Configuration option in the 
Options menu). These library 
files are named pld_xxx.slb, 
where xxx is the three 
character manufacturer 
abbreviation. 
The Implementation-Specific 
Physical Information File (.npi)
When you generate fuse maps, PLSyn creates a new physi
information file named design_name.npi . This file contains 
the Physical Information Language (PIL) representation of yo
design’s current implementation (target device(s) and pinout 
information) so that PLSyn can exactly duplicate the fitting a
partitioning of your design in subsequent iterations. 

To recreate the implementation

1 In your design directory, copy the design_name.npi  file 
to the design_name.pi  file.

2 In PLSyn, from the Tools menu, select Fitter/Partitioner 
refit the design.

Note Groups and fixed groups to which the PLSyn fitter 
assigned a NAME property retain the given NAME 
in the .npi file. 

Updatin g the Schematic
After you have selected a solution and PLD part number(s), y
can back annotate your schematic with symbols for those pa
This is useful if when you want to create a PCB layout from yo
schematic. 

To update your schematic

1 From the Tools menu, select Update Schematic.

Schematics adds a page to your schematic, and places a sy
for each PLD in the selected implementation. 

The PLD symbols use pin names which don’t always match 
pin-names found in the manufacturer’s data books. Howeve
the pin numbers and functionality are the same.

The used pins connect to either a:
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For more information on 
interface nodes, see 
Understanding 
Programmable Logic Nodes 
on page 3-13.

For more information, see 
Updating the Schematic on 
page 5-28.

For information on generating a 
PCB netlist, refer to your 
MicroSim Schematics User’s 
Guide.
• global port, or

• off-page port. 

A global port connects a pin to its corresponding programma
logic interface node, which resides elsewhere on the schema
If you have attached a global port to the programmable logic
interface node, the PLD symbol’s global port label is the sam
as the interface’s global port label. Otherwise, the PLD 
symbol’s global port label is in the form of REFDES: pin 
name corresponding to the programmable logic symbol or DS
block.

For an internal node in the programmable logic, the PLSyn fit
places an off-page port on the PLD pin. The fitter may do th
for a variety of reasons; for example, to use a feedback path
within a device, or to connect internal logic from one PLD to
another. 

Note Each time you update your schematic from PLSyn, 
Schematics deletes then recreates the page 
containing the PLD symbols. Because of this, you 
should make few or no additions or changes to this 
page.

Creatin g PCB Netlists
After you have updated your schematic, you can create a P
layout. You do not have to make any further changes to you
schematic.

Note Schematics only netlists non-programmable logic 
symbols including the back-annotated PLD 
symbols, and analog devices.
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For more information, see The 
Implementation-Specific 
Physical Information File (.npi) 
on page 5-28 and Specifying 
JEDEC File Names on 
page 6-12.
When You Chan ge the 
Design
When you make changes to your design, Schematics and PL
determine whether any changes have been made to the 
programmable logic or its interfaces. If changes have occurr
you must start the physical implementation process over at 
compilation step. That means PLSyn will overwrite the origin
solution with the new solution.

You can freeze your latest implementation by copying the .npi  
file to the .pi  file after having generated the fuse maps. On 
subsequent runs, PLSyn will create a physical implementati
including device numbers and pin-outs, exactly as specified
the .pi  file. 
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Chapter Overview
This chapter introduces the .pi  file and ways of using it to 
control the fitting process. Topics include:

Introduction to the .pi File on page 6-2

Controlling PLD Utilization on page 6-5

Fitting a Node as an OUTPUT or NODE on page 6-6

Controlling How Signals Are Fit Together on page 6-6

Disabling Outputs for Test on page 6-8

Controlling Synthesis on page 6-9

Controlling the Size of Equations on page 6-10

Specifying Devices without Specifying Signals on page 6-11

Specifying JEDEC File Names on page 6-12
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Introduction to the .pi 
File
Though PLSyn can handle the physical implementation of yo
design automatically, you can also use the physical informat
file (.pi  file), to exercise control over implementation during
the optimization and fitting/partitioning process. 

Why Use the .pi File?
With PLSyn, programmable logic designs are completely dev
independent. This means, for example, that you don’t need 
make pin assignments with a DSL source file. However, you
might need to control the mapping from design to device. Fo
example, you might need to:

• Group signals together to make sure they are fit on the sa
device, while letting the PLSyn fitter and partitioner selec
devices and perform pin assignments automatically.

• Specify a device, letting the PLSyn fitter and partitioner 
perform pin assignments.

• Specify a device and some or all pin assignments.

• Control equation sizes.

The .pi  file lets you do any of these and more.



Introduction to the .pi File 6-3

, 

ts 

t to 

 

nt 

 of 
 

e. 

For more information on nodes, 
see Understanding 
Programmable Logic Nodes 
on page 3-13
Usin g the Default .pi File
When you create a design for programmable logic synthesis
PLSyn copies the file default.pi  (in the bin  subdirectory 
under the MicroSim root directory) to a file named 
design_name.pi  in your design directory. The default file 
contains the Physical Information Language (PIL) statemen
PLSyn needs to optimize and partition most designs 
automatically. You can add statements to this file or change i
suit your needs.

Referrin g to Nodes in Your 
Design
Much of what goes into your .pi  file controls the properties and
placement of signals, which you identify by node name. In 
general, label the nodes that you plan to reference within the .pi  
file. 

Here are a few considerations when working with the differe
node types.

Interface nodes

Use the associated label on your schematic directly in the .pi  
file. 

Internal nodes

PLSyn transforms node names which are internal to a group
programmable logic (including NODES statements inside of
DSL blocks), into unique names by adding prefixes to the nam
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Procedure/Function Invocation

u1:proc(data3, clock3, q3);

proc(data1, clock1, q1);

proc(data2, clock2, q2);

If you are in doubt, refer to the 
equation section in the 
documentation file (.doc) for the 
list of actual node names PLSyn 
uses.
The new name has the form

proc_name . instance_name . local_name

where

By default, the DSL compiler assigns 1 as the first 
instance_name, 2 as the second instance_name, and so on. 
You can also define the instance_name in your DSL source.

To define the instance name of a DSL procedure 
or function

1 In your DSL source, specify the instance_name  in the 
procedure invocation statement as follows:

instance_name : procedure_name ( signal_list )

Example

Consider this DSL procedure:

PROCEDURE proc( INPUT d, clk; OUTPUT y );
NODE dff CLOCKED_BY clk;
dff = d;
y = dff;

END proc;

The following table shows the nodes names the compiler 
generates given the DSL procedure invocation.

proc_name is the name of the procedure or 
function

instance_name is the name assigned to this instanc
of the procedure or function

local_name is the name of the INPUT or 
OUTPUT parameter or local NODE
within the procedure or function.

Generated Nodes

proc.u1.d, proc.u1.clk, proc.u1.y, proc.u1.dff

proc.1.d, proc.1.clk, proc.1.y, proc.1.dff

proc.2.d, proc.2.clk, proc.2.y, proc.2.dff
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A fitting. There is no equivalent 
ALs.

See also Specifying Reserve 
Capacity on page 8-9 for 
information on the 
MACH_UTILIZATION property.
Controllin g PLD 
Utilization 
For some designs, you should reserve PLD resources for fu
logic expansion. 

To keep specific pins free

1 Use the NO_CONNECT construct.

To control the percenta ge of inputs, outputs, and 
product terms that can be used

1 Use the properties summarized in Table 6-1.

Example

Suppose you are targeting a P22V10 architecture having defi
the following utilization properties in your .pi  file: 

{PLD_INPUT_UTILIZATION 90};

{PLD_OUTPUT_UTILIZATION 80};

{PLA_PTERM_UTILIZATION 95};

PLSyn will use only 19 of the 22 available array inputs, and on
8 of the 10 available outputs. 

*. The default percentage for each of these properties is 100%
fully utilized.

Table 6-1 PLD Utilization Properties

Property Syntax * Meanin g

{ PLD_INPUT_UTILIZATION % }; Sets the maximum p
device that may be u

{ PLD_OUTPUT_UTILIZATION % }; Sets the maximum p
macrocells on a devi

{ PLA_PTERM_UTILIZATION % }; Sets the maximum p
terms used during PL
control property for P
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If a PLA such as the S6001 is the target device, PLSyn will u
only 60 of the 64 product terms.

Fittin g a Node as an 
OUTPUT or NODE
To control whether a node is fit as an OUTPUT or 
as a NODE

1 Use the FIT_AS_OUTPUT property.

FIT_AS_OUTPUT has no effect on output signals, which are
already destined to be fit on a visible output pin of a device. F
node signals, this property alerts the PLSyn fitter to place th
node signal on an output pin. 

Controllin g How Si gnals 
Are Fit To gether
Early in the fitting process, the PLSyn decides which signals
fit together as one inseparable block of functionality. For PLD
this means signals are fit in the same output macrocell. Sign
can be fit together if a NODE is the only signal feeding anoth
NODE or OUTPUT that has no register or latch equations.

To control how si gnals are fit

1 Use the NO_COLLAPSE and FIT_WITH properties.

NO_COLLAPSE The NO_COLLAPSE property tells 
PLSyn to fit this signal individually, separate from the fitting o
any other signal. 
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FIT_WITH The FIT_WITH property lets you specify two 
signals to be fit together. The FIT_WITH property is allowed o
any .pi  output, and takes one argument. For example, to sa
that signal node_x  should be fit with x , you would need to add 
the following statement to the .pi  file:

node_x {FIT_WITH x};

Example

SOURCE FILE

INPUT d, e, clk, oe;
NODE d_node CLOCKED_BY clk;
NODE e_node CLOCKED_BY clk;
OUTPUT out, e_out, not_e_out ENABLED_BY oe;

d_node = d;
e_node = e;
out = d_node;
not_e_out = e_node;
e_out = e_node;

PHYSICAL INFORMATION FILE

d_node {NO_COLLAPSE}
e_node {FIT WITH ‘e_out’}
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Disablin g Outputs for 
Test
In some cases, you might want to disable an output only 
during testing, but otherwise leave the output enabled 
during normal operation. 

To indicate that an output is disabled onl y durin g 
testin g

1 Use the DISABLED_ONLY_FOR_TEST property. 

When the output is enabled, PLSyn treats the input and output
of a buffer as functionally different. When the output is disabled 
(using the DISABLED_ONLY_
FOR_TEST property), PLSYN: 

• Programs the enable equation.

• Treats the signal on the input of the tri-state buffer as 
equivalent to the signal on the output of the tri-state buff
(for feedback purposes).

Example

The following PIL statement disables a single output:

out_x {DISABLED_ONLY_FOR_TEST};

If the output signal out_x  has an enable, the PLSyn fitter 
programs the enable equation. If out_x  is given only a single 
signal (e.g., node_y ), then out_x  and node_y  are 
interchangeable (for feedback purposes). 

Example

The following PIL statement disables all outputs:

{DISABLED_ONLY_FOR_TEST};
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Note Because PLSyn 
automatically optimizes your 
design by default, there is 
generally little reason to use 
these properties. 
Controllin g Synthesis
To control DeMor gan synthesis of data equations 
in PLS yn:

Use the DEMORGAN_SYNTH property where data equatio
are the D, JK, SR, T, XOR left and XOR right equations. 

Cautions when usin g the DEMORGAN_SYNTH 
propert y

When using DEMORGAN_SYNTH, do not do the following:

• Control DeMorganization of control equations, such as 
ENABLE, CLOCK, RESET, or PRESET.

• Control DeMorganization of the J equation of a JK flip-flo
with no corresponding DeMorganization of the K equatio

To control flip-flop s ynthesis

1 Use the FF_SYNTH property.

To control XOR to Sum-of-Products s ynthesis

1 Use the XOR_TO_SOP_SYNTH property.
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Table 6-2 Synthesis Control P

Property Va

DEMORGAN_SYNTH A

FO

O

FF_SYNTH A

O  

XOR_TO_SOP_SYNTH A

FO

O

Table 6-2 summarizes the settings and meanings for all three
these properties.

Controllin g the Size of 
Equations
Controlling the size of equations can have a major impact on
success of the PLSyn fitter and the number of solutions it 
generates. 

To control the size of equations

1 Use the MAX_PTERMS and MAX_SYMBOLS properties

roperties

lue Action

UTO (default) The optimizer will automatically select the 
best DeMorganization choice. 

RCE Force the optimizer to DeMorganize the 
primary equation (use the offset).

FF Prevent the optimizer from DeMorganizing 
the primary equation (use the onset).

UTO (default) The optimizer will automatically do flip-flop 
synthesis to meet the needs of the target 
device. 

FF Require the target device to have the flip-flop
type given in the design.

UTO (default) The optimizer will automatically select 
between the XOR equation and the sum-of-
products equation.

RCE Force the optimizer to use the sum-of-
products equation.

FF Force the optimizer to use the XOR equation.
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If you know that you want to use devices with macrocells tha
have eight or fewer PTERMs, then you want to keep the 
optimizer from collapsing nodes into equations with more th
eight PTERMs using these PIL statements:

{MAX_PTERMS 8};

{MAX_SYMBOLS 16};

Specif ying Devices 
without Specif ying 
Signals
To specif y the devices to use without specific pin 
information

1 Use the DEVICE property without a signal list.

Example

The following PIL statements will fit a design into two 
MACH210 devices and a MACH130 device:

DEVICE
TARGET 'PART_NUMBER AMD MACH210-15JC';

END DEVICE;

DEVICE 
TARGET 'PART_NUMBER AMD MACH210-15JC';

END DEVICE;

DEVICE
TARGET 'PART_NUMBER MACH130-15JC';

END DEVICE;
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Specif ying JEDEC File 
Names
PLSyn automatically creates JEDEC files and saves them in
your design directory, using names of the form 
design_name.j n where n is a number from one up to the 
number of devices. 

To specif y a name for each JEDEC file

1 Use the FUSEMAP_FILE property within a DEVICE 
construct of the form:

{ FUSEMAP_FILE  ' file name '  } ;

Example

DEVICE
{ FUSEMAP_FILE 'mypal.jedec' } ;

.

.

.
END DEVICE ;
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More Examples Usin g 
the .pi File

Forcin g Signals to be Fit 
Together in the Same Device

Scenario

You have a design that implements a counter, and the outp
signals are heavily interdependent. For timing reasons you w
them to be fit together in the same device, but want the 
automatic device selection and partitioning to determine the b
device according to your priorities. 

Solution

GROUP
q0..q5, carry;

END GROUP;

which tells PLSyn to fit the signals that are members of the 
GROUP, q0..q5  and carry  together in the same device. 
There are no limitations imposed by the GROUP on the dev
to use. In addition, other groups and ungrouped signals can f
the same device with this group.
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Using the GROUP construct 
instead would specify that the 
signals o[0..6] and carry must fit 
together into the same device.
Usin g Specific Devices

Scenario

You are prototyping a small design, and have several 
reprogrammable P16V8As that you know that you want to u
during the debugging stage. 

Solution

DEVICE
TARGET 'PART_NUMBER AMD PALCE16V8H-10JC/4';
o [0..6];
carry;

END DEVICE;

The DEVICE construct specifies that no other groups can be
into the same device. This means that you can give device-
specific information in fixed groups. One kind of device-
specific information is the device to TARGET or fit this fixed
group into. Here, the target device is named by its 
PART_NUMBER.
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Maintainin g Pin Assi gnments

Scenario

You have an existing design in which you have changed so
logic and you want to refit the design into the same device. T
device is a P20V8 in a JLCC package, and you want to main
the pin assignments. 

Solution

DEVICE
TARGET 'TEMPLATE P20V8 JLCC-28-P28';
INPUT clk:2, in1:3, in2:4, in3:5, in4:6; 
out1:18, out2:19,out3:20, out4:21; 
NO_CONNECT 7..13, 15, 22..27;

END DEVICE;

where, the target device is named by its TEMPLATE P20V8
and its footprint JLCC-28-P28.

A template is a device architecture and the footprint is a cert
pinout configuration consisting of three things:

• The type of package (e.g., DIP, SOIC, or JLCC).

• The number of pins in the package.

• The mapping of physical pins to logical, or virtual, pins. 

Example

DIP-24-STD indicates a 24 pin DIP package with the standa
pinout mapping (pin 12 as ground and pin 24 as VCC). Mos
parts use a standard pin mapping, abbreviated as STD. An 
example of a non-standard pin mapping is the 4.5ns P16L8 fr
AMD, which uses extra power and ground pins in a 28-pin DI
The footprint for such a device is a DIP-28-A28.

Signals used as inputs to the device are marked with INPUT
the .pi  file. The signals in the fixed group are assigned to pi
by appending : pin_name  to the signal name, such as clk:2 . 
If device pins must be left free, use the NO_CONNECT 
property. The pin names in the pin assignments and no-conn
pins are the actual physical pin names for the targeted devic
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Fittin g the Desi gn into One 
Device

Scenario

You want to fit your entire design into one AMD 
PAL16R6B4CJ. 

Solution

DEVICE
TARGET 'PART_NUMBER AMD PAL16R6B4CJ';
DEFAULT;

END DEVICE;

The DEVICE specification is marked as the DEFAULT group
The default group is the group that contains all the output sign
that you have not mentioned elsewhere in the .pi  file. 

Specifying a default group is optional. Here, it provides a qui
way to put all the signals in the design into the same device. Y
can also specify DEFAULT at the global level, outside of an
group or DEVICE specification. This means PLSyn will 
automatically fit and partition all unmentioned signals.
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Fittin g the Desi gn into Multiple 
Devices

Scenario

You have a design that will take two AMD parts. 

Solution

DEVICE
TARGET 'PART_NUMBER AMD PAL16R6B4CJ'; 
out1..out5;

END DEVICE;

DEVICE
TARGET 'PART_NUMBER AMD PAL16R6B4CJ'; 
out6..out10;

END DEVICE;

Mixin g Automatic and Directed 
Partitionin g

Scenario

Assume that your design is similar to the design of the last 
example. However, it has several critical functions that you 
want placed into fast PLDs. 

Solution

DEVICE
TARGET 'PART_NUMBER AMD PAL16R6B4CJ'; 
out1..out5;

END DEVICE;

DEVICE
TARGET 'PART_NUMBER AMD PAL16R6B4CJ'; 
out6..out10;

END DEVICE;
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Note The contents of this .pi file are the same as the 
previous example. In this case, nothing needs to 
be said in the .pi file about the critical functions. If 
you prioritize for speed during partitioning, PLSyn 
will automatically find the fastest device or 
combination of devices available that will fit the 
critical functions.
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Refittin g a Design into the Same 
Footprint

Scenario

Your board is already in production, but a logic flaw indicate
that you have changed the logic implemented in your PLD. T
causes your design to outgrow the P20R8 you were using. Y
need to refit the design into another architecture, but must k
the pinout the same. 

Solution

DEVICE
TARGET 'FOOTPRINT DIP-24-STD';
INPUT clk:1, oe:13, in1:2, in2:3, in3:4, in4:5;
INPUT in5:6, in6:7, in7:8, in8:9, in9:10, in10:11; 
INPUT in11:14, in12:23;
out1:15, out2:16, out3:17, out4:18;
out5:19, out6:20, out7:21, out8:22; 

END DEVICE;

The fixed group is targeted to FOOTPRINT DIP-24-STD. 
Targeting a device to a footprint causes automatic device 
selection and fitting across devices that match the footprint.
Depending on the form of the actual equations, there are up
79 architectures that can potentially fit this example. 

For this example, the P20R8 architecture and P312 architec
in a DIP package both have the same footprint, so you can 
the P312 instead of the outgrown P20R8. The old pin 
assignments are enforced, regardless of which architecture 
choose. This means that the board layout is preserved. 

Note You can narrow the search by setting constraints 
and priorities to optimize the fit for price, speed, or 
other factors. 
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Chapter Overview
This chapter describes how to control the fitting process for 
specific PLD device architectures using the .pi  file.

Accessing Internal Points in a PLD Device on page 7-2 
describes the different kinds of internal nodes and how to 
reference them in your .pi file.

Fitting Specific Device Architectures on page 7-11 describes 
control mechanisms for the 22V10, 750, 2500,P22V10I, P750
P2500B, P1800, P16V8HD, P22VP10, and P16VP10, 
including:

• Handling synchronous preset

• Assigning combinatorial output during feedback

• Controlling clock source

• Controlling quadrant-based architectures

• Accessing the open-drain output



7-2 PLD Device-Specific Fitting

 of 

ons. 
 

 pin 
en 

ou 
Accessin g Internal 
Points in a PLD Device
To reference si gnals internal to a PLD device

1 Use the node name convention corresponding to the kind
node: hidden/buried, shadow, unary. 

This section describes the node types and naming conventi
See Table 7-1 on page 7-6 for a summary of the node naming
conventions that apply to specific PLD device architectures.

The Kinds of Nodes

Hidden nodes

A hidden node is a node that does not terminate in a physical
connection. Shadow and buried nodes are examples of hidd
nodes, typically used to hold functions used only within a 
device.

Node signals are signals that you place on hidden nodes. 
However, node signals are not restricted to hidden nodes; y
can also place them on visible pins. 

Figure 7-1 Hidden Node
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Shadow nodes

You can create a shadow hidden node (known simply as a 
shadow node or shadow) by disabling the output buffer of a
normal output macrocell. The shadow node terminates with 
internal feedback to the array, and is therefore not visible 
outside the device as shown in Figure 7-2. 

Figure 7-2 Shadow Node

Buried nodes

A buried node is a hidden node where some external pin num
is associated.
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Unary nodes

Unary nodes are nodes with a single input. Usually the node
registered. There are two basic types of unaries. The most 
common is a registered input pin, also called an input unary
second type is a clocked feedback path, called a feedback u

Input unar y

An input unary is a hidden unary in an input macrocell, i.e., 
clocked input pin, as shown in Figure 7-3.

Figure 7-3 Input Unary

Feedback unar y

A feedback unary is a hidden unary path through the feedba
register of an output macrocell, as shown in Figure 7-4. 

Figure 7-4 Feedback Unary
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Note MACH devices use a 
different naming convention. 
For more information, see 
Understanding Pin Naming 
and Numbering on page 8-17.
To select a node or unar y path

1 In your .pi  file, use the label associated with the node o
unary using the following labeling convention:

where ## is the manufacturer-specified pin number in the prima
package, usually DIP.

Example

There are a large number of devices that have general-purp
registers. This example shows how you can define DSL tha
allows the fitter to take advantage of these general-purpose
registers. 

The following DSL statements reflect a clocked input defined
a unary node:

INPUT i_unclocked, clk;
NODE i CLOCKED_BY clk;

i = i_unclocked;

This approach provides certain advantages over a standard
clocked input. 

• The design references both the clocked (i ) and unclocked 
(i_unclocked ) versions of the signal. 

• Reference the hidden node in the .pi  file. 

• Map this description into any device with a register. 

hidden node NODE##

unary node UNARY_OF_## 

buried node BURIED_OF_##
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Table 7-1 Node Descr

Architecture Pin De

P16V8HD Input

Feed

P204R Shad

P23S8 Burie

P241R Shad

P2500 Shad

Burie

P29M16 Shad

Input 

P29MA16 Shad

Input 

P312 Input

Shad
iptions and Labels by Device Architecture

scription Pin Label

 unaries UNARY_OF_2...UNARY_OF_9

back unaries UNARY_OF_13...UNARY_OF_16

UNARY_OF_19...UNARY_OF_20

UNARY_OF_22...UNARY_OF_23

ow nodes  SHADOW_OF_12...SHADOW_OF_19

d nodes BURIED_OF_13...BURIED_OF_18

ow nodes SHADOW_OF_4...SHADOW_OF_9
SHADOW_OF_14...SHADOW_OF_23

ow nodes SHADOW_OF_4...SHADOW_OF_9
SHADOW_OF_11... SHADOW_OF_16
SHADOW_OF_24... SHADOW_OF_29
SHADOW_OF_31... SHADOW_OF_36

d nodes BURIED_OF_4...BURIED_OF_9
BURIED_OF_11...BURIED_OF_16
BURIED_OF_24...BURIED_OF_29
BURIED_OF_31...BURIED_OF_36

ow nodes SHADOW_OF_3, SHADOW_OF_4
SHADOW_OF_9, SHADOW_OF_10
SHADOW_OF_15, SHADOW_OF_16
SHADOW_OF_21, SHADOW_OF_22

unaries UNARY_OF_3...UNARY_OF_10
UNARY_OF_15...UNARY_OF_22

ow nodes SHADOW_OF_3, SHADOW_OF_4
SHADOW_OF_9, SHADOW_OF_10
SHADOW_OF_15, SHADOW_OF_16
SHADOW_OF_21, SHADOW_OF_22

unaries UNARY_OF_3...UNARY_OF_10
UNARY_OF_15...UNARY_OF_22

 unaries UNARY_OF_3...UNARY_OF_10

ow nodes SHADOW_OF_2, SHADOW_OF_11
SHADOW_OF_14...SHADOW_OF_23
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itecture (continued)

HADOW_OF_7
ADOW_OF_12 

ADOW_OF_17
ADOW_OF_27
ADOW_OF_32
ADOW_OF_37

RY_OF_3
RY_OF_20

RY_OF_23
RY_OF_40

Y_OF_3
RY_OF_20

RY_OF_23
RY_OF_40

RY_OF_7
Y_OF_14

ARY_OF_20
RY_OF_28

ARY_OF_6
Y_OF_14
Y_OF_14

.SHADOW_OF_23

ADOW_OF_17

ADOW_OF_23

URIED_OF_23

HADOW_OF_23
Table 7-1 Node Descriptions and Labels by Device Arch

Architecture Pin Description Pin Label

P324 Shadow nodes SHADOW_OF_4...S
SHADOW_OF_9...SH
SHADOW_OF_14...SH
SHADOW_OF_24...SH
SHADOW_OF_29...SH
SHADOW_OF_34...SH

Input unaries UNARY_OF_2, UNA
UNARY_OF_18...UNA
UNARY_OF_22, UNA
UNARY_OF_38...UNA

UNARY_OF_2, UNAR
UNARY_OF_18...UNA
UNARY_OF_22, UNA
UNARY_OF_38...UNA

P332 Input unaries UNARY_OF_1...UNA
UNARY_OF_9...UNAR

Feedback unaries UNARY_OF_15...UN
UNARY_OF_23...UNA

P336/P337 Input unaries UNARY_OF_1...UN
UNARY_OF_9...UNAR
UNARY_OF_9...UNAR

P32VX10 Shadow nodes  SHADOW_OF_14..

P448 Shadow nodes SHADOW_OF_13
SHADOW_OF_15...SH
SHADOW_OF_19
SHADOW_OF_21...SH

P750 Buried nodes  BURIED_OF_14...B

Shadow nodes SHADOW_OF_14...S

S105 Hidden nodes NODE29...NODE34

S167/S168 Hidden nodes NODE25...NODE30
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Table 7-1 Node Descriptions

Architecture Pin Description

S30S16 Input unaries

Hidden nodes

Shadow nodes

Shadow nodes

S405/S415 Hidden nodes

S506 Hidden nodes

S507 Hidden nodes

S6001/S6002 Hidden nodes

Shadow nodes

Input unaries

Feedback unarie

The architectures which have 
unary nodes are the P16V8HD, 
P29M16, P29MA16, P312, 
P324, P330, P331, P332, 
S30S16, S6001, ATV5000, and 
the MACH2xx parts. 

For more information on the 
MACH2xx parts, see Chapter 8, 
MACH 1-4 Device-Specific 
Fitting.

For more information on the 
ATV5000 parts, see Chapter 10, 
ATV5000 Device-Specific 
Fitting.
Unary Nodes in the P330 and 
P331
The P330 and P331 architectures have unusual types of hid
unaries. In addition to the clocked input paths (input unaries
they have clocked feedback paths in the output macrocells.
Neighboring macrocells can share the clocked feedback pa
which can result in a large number of hidden paths. 

In the P330 and P331, you can build two types of unaries w
these kinds of paths: local unary and shared unary

 and Labels by Device Architecture (continued)

Pin Label

UNARY_OF_21...UNARY_OF_24

NODE29...NODE32

SHADOW_OF_8...SHADOW_OF_9

SHADOW_OF_15...SHADOW_OF_20

NODE29...NODE36

NODE25...NODE40

NODE25...NODE32

NODE25...NODE32

SHADOW_OF_14...SHADOW_OF_23 

UNARY_OF_2...UNARY_OF_11

s UNARY_OF_14...UNARY_OF_23
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Local unar y The local unary has a path through the 
feedback multiplexer, as shown in Figure 7-5. 

Figure 7-5 P33x Local Unary

Shared unar y The shared unary has a path through a 
shared multiplexer, as shown in Figure 7-6. 

Figure 7-6 P33x Shared Unary
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Table 7-2 Node Descriptions a

Architecture Pin Description

P330 Hidden nodes

Input unaries

Local feedback u

Shadow nodes

Shared feedback

P331 Shadow nodes

Local feedback u

Shared feedback
To select a node or unar y path in a P330 or P331

1 In your .pi  file, use the label associated with the node o
unary according to the following labeling convention:

where ## is the manufacturer-specified pin number in the 
primary package, in this case, DIP.

Table 7-2 summarizes the node labels for the P330 and P33

hidden node NODE##

standard unary node UNARY_OF_##

local unary node LOCAL_OF_##

shared unary node SHARED_OF_##

shadow node SHADOW_OF_## 

nd Labels for P330 and P331

Pin Label

NODE29...NODE32

UNARY_OF_3...UNARY_OF_7
UNARY_OF_9...UNARY_OF_14

naries LOCAL_OF_15...LOCAL_OF_20
LOCAL_OF_23...LOCAL_OF_28

SHADOW_OF_15...SHADOW_OF_20
SHADOW_OF_23...SHADOW_OF_28

 unaries SHARED_OF_15...SHARED_OF_20
SHARED_OF_23...SHARED_OF_28

SHADOW_OF_15...SHADOW_OF_20
SHADOW_OF_23...SHADOW_OF_28

naries LOCAL_OF_15...LOCAL_OF_20
LOCAL_OF_23...LOCAL_OF_28

 unaries SHARED_OF_15...SHARED_OF_20
SHARED_OF_23...SHARED_OF_28
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Fittin g Specific Device 
Architectures

22V10, 750, and 2500: Handlin g 
Synchronous Preset
PLSyn supports several device architectures that have a 
synchronous reset. If PLSyn has DeMorganized the D equat
on a device, then the asynchronous reset is now an asynchro
preset and the synchronous preset is a synchronous reset. G
this anomaly and the priority PLSyn places on insuring the sa
functionality for various implementations, PLSyn does not fit
preset equation onto any synchronous preset.

In some architectures, however, you can still use the common set 
(set or preset). A synchronous preset is like an extra AND ro
input to the OR, but available only when the output is register

Usin g set and preset for the 22V10 and 750

For the 22V10 (which includes the P22V10, P22VP10, and 
P22V10I) and the 750 (which includes the P750B), the 
synchronous preset row is common to all macrocells in the 
device.

To use set or preset in the 22V10 and 750 
architectures

1 Use the COMMON_SET_PTERM property in your .pi  
file.
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Example

SOURCE FILE

INPUT clk, reset1, reset2;
OUTPUT a[10] CLOCKED_BY clk;

IF (reset1*reset2) THEN
a = 0;

ELSE     
a = a .+. 1;

END IF;      

PHYSICAL INFORMATION FILE

DEVICE

{COMMON_SET_PTERM 'reset1*reset2';};

TARGET 'TEMPLATE P22VP10 DIP-24-STD';

a;

END DEVICE;

The common set PTERM is reset1*reset2 . This term sets 
the output low, so PLSyn automatically uses the DeMorgan 
meet this common set PTERM requirement.

Usin g set and preset for the 2500

The 2500 architecture (which includes the P2500) has eight
synchronous preset rows shared by 2 or 4 macrocells. 

To use set or preset in the 2500 architecture

1 Use the SET_PTERM property in your .pi file.

If no pin assignments are given, PLSyn automatically 
determines macrocell pairing to meet the SET_PTERM 
requirements.
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Example

SOURCE FILE

INPUT clk, reset1, reset2;
OUTPUT a[10] CLOCKED_BY clk;

IF (reset1*reset2) THEN
a = 0;

ELSE
a = a .+. 1;

END IF;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'ATM ATV2500H-25DC';
a {SET_PTERM' reset1* reset2 ';

.

.

.
END DEVICE;

Note If you specify the pin numbers for macrocells that 
share a synchronous preset term, all of the 
macrocells must have the same SET_PTERM 
requirements.

P22V10I: Assi gnin g 
Combinatorial Output Durin g 
Feedback
Using the P22V10I device, you can assign a combinatorial 
output while feeding back a registered version of the signal.

To assi gn combinatorial lo gic to the P22V10I 
architecture

1 Describe the DSL logic as follows:

• Assign the logic to an internal combinatorial node.

• Assign the internal combinatorial node to an internal
registered node.
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• Assign the internal combinatorial node to a 
combinatorial output. If needed, you can define this 
output to have an output enable.

2 In your .pi  file, attach the COM_OUT_REG_FB property
to the output signal.

Example

SOURCE FILE

INPUT clk, in1 in2;
OUTPUT out1, out2;
PHYSICAL NODE before_feedback;
NODE after_feedback CLOCKED_BY clk;

before_feedback = in1;
out1 = before_feedback;
after_feedback = before_feedback;
out2 = after_feedback * in2;

PHYSICAL INFORMATION FILE

DEVICE
TARGET ‘TEMPLATE P22V10I DIP-24-STD’;

"Force the Combinatorial 
"Output/Registered Feedback mode
"using out1 as the output and
"after_feedback as the 
"registered feedback mode

out1 {COMB_OUT_REG_FB after_feedback};
END DEVICE;

P750B AND P2500B: Controllin g 
Clock Source
The Atmel P750B and P2500B architectures can provide the
clock for the registers from two locations:

• A dedicated clock pin.

• A row in the fuse array.
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To control the clock source for the P750B and 
P2500B architectures

1 Add a CLOCKED_BY_xxx property to the output or nodes
that you wish to control, in your .pi  file as follows:

Note Do not use the CLOCKED_BY_PIN property when 
the signal is clocked by an equation (for example, 
CLOCKED_BY (a*b)).

Example

SOURCE FILE

INPUT clk, in1;
OUTPUT out1 CLOCKED_BY clk;
out1 = in1;

PHYSICAL INFORMATION FILE

DEVICE
TARGET ‘TEMPLATE P750B DIP-24-STD’;
out1 {CLOCKED_BY_PIN};"Force the

"clock to come from the clock pin
END DEVICE;

Example

SOURCE FILE

INPUT clk, in1;
OUTPUT out1 CLOCKED_BY clk;
out1 = in1;

PHYSICAL INFORMATION FILE

DEVICE
TARGET ‘TEMPLATE P750B DIP-24-STD’;
out1 {CLOCKED_BY_ROW};"Force the clock

"to come from the product term
END DEVICE;

CLOCKED_BY_PIN The register must be clocked by 
the signal on the dedicated clock 
pin.

CLOCKED_BY_ROW The register must be clocked by 
the internal clock product term.
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Note If you do not specify CLOCKED_BY_PIN or 
CLOCKED_BY_ROW, the fitter will attempt to us 
CLOCKED_BY_PIN first, then will try to use 
CLOCK_BY_ROW.

P1800: Controllin g Quadrant-
Based Architectures
The P1800 device architecture is different from other PLDs 
because it has quadrants. Within a quadrant, local macrocells 
and the pre-enable feedback of global macrocells feed only
same quadrant and do not feed the other three quadrants (t
input pins and the post-enable feedback of the global macroc
feed the entire device.)

Assi gnin g pins and nodes 

You can assign a signal to a pin in much the same way as a
other device using the .pi  file. Unless it is in a SECTION, an 
OUTPUT in a P1800 DEVICE must have a pin assignment. 
output signal without a pin assignment is ambiguous since t
fitter needs to know (at a minimum) the quadrant you want. 

Table 7-2 lists the sixteen shadow nodes in the P1800 
architecture which can accept node signal assignments. 

As you make pin or node assignments, be aware of the 
requirements imposed by the quadrants of the P1800. For 
example, if signal x needs signal y, and signal x is assigned 
local macrocell output pin, then y must be fit in the same 
quadrant or the signal x must be brought in on a global input 

Table 7-3 Node Descriptions and Labels for P1800

Architect
ure

Pin 
Descripti
on

Pin
Label

P1800 Shadow SHADOW_OF_10...SHADOW_OF_13
SHADOW_OF_23...SHADOW_OF_26
SHADOW_OF_44...SHADOW_OF_47
SHADOW_OF_57...SHADOW_OF_60
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Subgroups: Tar getin g quadrants

To indicate a tar get quadrant in a P1800 device

1 Use the SECTION construct in your .pi  file.  

You can target the SECTION to any one of the four quadran
labeled A, B, C, and D (the target string should contain the wo
quadrant  followed by the quadrant letter (for example, 
TARGET ‘Quadrant B’; ). You can include OUTPUTS 
without pin assignments in the SECTION construct.

Example

DEVICE
TARGET 'TEMPLATE P1800 JLCC-68-STD';
SECTION

TARGET 'Quadrant A';
a:3; " Place a on pin 3

" of quadrant A
END SECTION;
b:34, c:SHADOW_OF_44;

" b on pin 34,
" c on pin 44's shadow

SECTION
TARGET 'Quadrant D';
d1, " Place d1 ANYWHERE

" in quadrant D.
d2:57; " d2 goes on pin 57

" of quadrant D.
END SECTION;

END DEVICE;

P16V8HD, P22VP10, and 
P16VP10: Accessin g the Open-
Drain Output
The P16V8HD, P22VP10, and P16VP10 architectures supp
open-drain outputs. Unlike normal totem-pole outputs, an op
drain output only drives Vol. Whereas Voh is driven on a totem-
pole output, nothing is driven from an open-drain output. Th
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voltage level of an open-drain output depends on external 
loading and pull-up circuitry.

In your .pi  file, you can direct outputs to be open drain by 
attaching the OPEN_DRAIN property to the output signals, 
provided those outputs support open drain.

To express this functionality, the enable equation of an outp
(in this case x) must be of the form:

/ internal_name_for_x  * enable_equation

This means that the output is enabled only if the data is low a
the enable equation is true. The value internal_name_for_x is 
any signal just prior to the enable buffer of the output on the
device. The enable equation is independent of the open-dra
functionality.

PLSyn provides a function that you can use to create open-d
output signals of the proper form:

FUNCTION open_drain(d, oe);
NODE out ENABLED_BY /d*oe;
out = d;
return out;

END open_drain;

Example

SOURCE FILE

USE 'dfeature' ;
LOW_TRUE INPUT oe;
INPUT i, j, clk;
NODE 1_x CLOCKED_BY clk;
OUTPUT x;

i_x = i*j;
x = open_drain(i_x, oe);

PHYSICAL INFORMATION FILE

DEVICE
TARGET ‘PART_NUMBER amd PALCD16V8HD-15PC’;
x {OPEN_DRAIN};
END DEVICE;

Once an output is in the proper form for an open-drain 
configuration, the simulator can simulate the functionality 
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correctly and test vectors sent to the device programmer are 
be correct. 

PLSyn generates two enable equations:

• open-drain capable devices

• all other devices 

In the example given above, the enable equation for open-d
outputs is oe , and the enable equation for other outputs is /
i_x*oe . To maintain device independence, you can fit an 
output onto parts without the open-drain capability at the cos
increased enable equation complexity. Consider timing and 
parametric design issues independently of PLSyn’s open-dr
synthesis capability.

You can also use the open-drain function to aid in the design
buses. 

Example

SOURCE FILE

USE 'dfeature';

" Declare the inputs
INPUT input_bus1[4];
INPUT input_bus2[4];
INPUT clk;

" Declare the two buses and the
" associated wired bus
NODE internal_bus1[4] CLOCKED_BY clk;
NODE internal_bus2[4] CLOCKED_BY clk;
OUTPUT bus1[4];
OUTPUT bus2[4];
WIRED_BUS combined_bus[4] : bus1, bus2;

" Declare an output that will refer to
" the wired bus
OUTPUT and_all;

" Make assignments to the two buses
internal_bus1 = input_bus1;
internal_bus2 = input_bus2;
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" Declare each bus to have
" open-drain outputs 
bus1[0] = open_drain (internal_bus1[0], 1);
bus1[1] = open_drain (internal_bus1[1], 1);
bus1[2] = open_drain (internal_bus1[2], 1);
bus1[3] = open_drain (internal_bus1[3], 1);
bus2[0] = open_drain (internal_bus2[0], 1);
bus2[1] = open_drain (internal_bus2[1], 1);
bus2[2] = open_drain (internal_bus2[2], 1);
bus2[3] = open_drain (internal_bus2[3], 1);

" Reference the wired bus and_all = 
" combined_bus[0]*combined_bus[1]*
" combined_bus[2]*combined_bus[3];

PHYSICAL INFORMATION FILE

bus2 {OPEN_DRAIN };
bus1 {OPEN_DRAIN };
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Chapter Overview
This chapter describes how to control the fitting process for 
specific MACH 1-4 device architectures. Topics include:

• When to design with MACH devices, page 8-2

• Summary of MACH device properties, page 8-3

• Tips and device details, pages 8-10 through 8-49

• The report file, page 8-52

See Appendix C, AMD MACH Device Tables for detailed 
information on:

• Device-specific pin names

• Fuse commands for forcing outputs to be driven
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For additional device-specific 
information, refer to the MACH 
Family Data Book from AMD.

See Chapter 6, Controlling the 
Fitting Process Using the .pi 
File and the PIL Reference in 
PLSyn online help for more 
information on the .pi file.

For more information, see The 
MACH Report File on 
page 8-52.
Designin g with MACH 
Devices
MACH devices, summarized in Table 8-1 on page 8-3, are 
handled like any other PLD with full support for automatic 
device selection and partitioning. As with PLDs, you can als
control implementation using the .pi  file. 

When You Have Fittin g Problems
If your design fails to fit, there are several tools to help you fin
the problem(s). These include the:

• Log file

• Report file

Usin g the lo g file

The PLSyn fitter generates the log file (.log ) every time it runs. 
The log file is the first place to look when you have fitting 
problems. 

If a fitting run fails, the log file contains information that 
explains why the design did not fit. If you are using group an
pin assignments in the .pi  file, the log file contains any 
messages regarding the validity of these assignments. 

Usin g the report file

When you specify a MACH device in the .pi  file, the PLSyn 
fitter generates a device-specific report file (.rpt )., whether the 
fitter succeeds in fitting or not. If the fitter fails, the report file
contains valuable information that shows which resources 
presented the most problems in fitting. Use this information 
help you decide how to change the design or the .pi  file to 
make the design fit easier. 
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Input
Regs

Input
s

Clks

 0  4  2

 0  4  2

 32  6  2+32

 0  4  4

 0  4  4

 0  2  4

 0  2  4

 64  2 4+128

8 128 14 4+256
Summar y of MACH 
Devices
Table 8-1 summarizes the properties of MACH devices.

Output Enable Functions

MACH 1xx These devices have 12 or 16 outputs per bloc
There are two OE PTERMs for the top half of the block, and tw
OE PTERMs for the bottom half of the block. Each output 
selects its OE from either of the two available PTERMs or a
constant: 1 or 0.

MACH 2xx These devices have 6 or 8 outputs per block.
There are two OE PTERMs per PAL block.    Each output 
selects its OE from either of the two available PTERMs or a
constant: 1 or 0.

*. For speed values, see the MACH Family Data Book from AM

Table 8-1 MACH Device Properties*

Device
Pin
s

Blk
s

Array
Input
s

Max
Pterms

OMCs BMC

MACH 110  44  2  22  12  32  0

MACH 210  44  4  22  16  32  32

MACH 215  44  4  22  12  32  0

MACH 120  68  4  26  12  48  0

MACH 220  68  8  26  16  48  48

MACH 130  84  4  26  12  64  0

MACH 230  84  8  26  16  64  64

MACH 435  84  8  33  20  64  64

MACH 465 208 16  34  20 128 12
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MACH 215, MACH 4xx These devices have one OE 
PTERM per output. You can program them independently as1, 
0, or any product of signals in the block.

Register Reset/Preset Functions

MACH 1xx, MACH 2xx These devices have one reset 
and one preset in each block. The reset and preset apply to
registers in the block. 

Note Note, a registered function without a reset (or 
preset) is the same as RESET_BY 0. This will not 
fit in the same block with other functions with non-
zero reset expressions.

MACH 215 This device has a reset and preset PTERM fo
each output register. The input registers do not have reset 
capabilities.

MACH 4xx These devices have one reset and one prese
each block. These apply to the macrocells but not to the inp
registers. The macrocells have an asynchronous option whi
allows for a local reset or preset, but not both, for individual 
functions.

Packaging
All like pin-count packages are pin compatible. For example
when a MACH 110 design exceeds the capacity of the devic
you can generally substitute a MACH 210.
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Note For all MACH devices, 
the clock signals are also 
signal inputs to the switch 
matrix. You can route these to 
the blocks.

If your design needs a clock 
which is more complex, you can 
define a clock using a complex 
logic function. See Using 
Complex Clock Functions on 
page 8-6.
Usin g Standard Clock 
Functions

MACH 1xx, MACH 2xx: S ynchronous Clock 
Functions

These devices support pin clock only.

MACH 215, 3xx, 4xx: As ynchronous Clock 
Functions

Although both the MACH 215 and MACH 4xx support 
asynchronous functions, some functions or groups of functio
fit only in the MACH 215. These are:

• Functions that are clocked by a PTERM and have a reset
preset. 

• Groups of functions that have more than eight distinct pa
of reset and preset equations. 

MACH 215 This device supports pin clock or clock by 
PTERM. 

You can clock the output macrocells by:

• pin 13, or 

• a local PTERM, or 

• the inverse of either of those signals. 

You can clock the input registers by:

• pin 13, or

• pin 35, or 

• the inverse of either of those signals.
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See device manufacturer 
literature for specifics.
MACH 3xx and 4xx These devices support clock by pin
or clock by PTERM. You can set the pin clock mode from:

• any of four clock pins, or 

• the inverse of those signals. 

Not all possible clock signal and inverse combinations are 
available in a given block. 

Usin g Complex Clock 
Functions
When a design requires a clock expression that can’t be 
implemented directly in the clock resources of a MACH devic
you can place the clock logic in a separate NODE or OUTPU
The PLSyn fitter automatically wires the function to the clock
resources of the device. 

MACH 1 and 2 You can use the complex clock output in
the MACH 1 & 2 families either internally or externally as the
clock. The only exception is if the MACH 215 clock pin is 
unavailable. Then PLSyn routes the clock signal to the PAL
blocks where it is needed and connects it using the clock 
PTERM.

MACH 3 and 4 You can use a function generated in the 
MACH 3 & 4 families either internally or externally as the 
clock. The PLSyn fitter defaults to using the clock signal 
internally to save the pins used in external routing. To preve
the clock from taking an I/O pin, you can declare the clock 
function to be a node.

If you need the faster timing provided by an external clock p
connection, simply place the clock signal on a clock pin in th
.pi  file.
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Note This costs some extra 
delay. 
Example

The following source file can fit into any MACH device.

input i;
input c1, c2;
output ck;
output a clocked_by ck;
a = 1;

Clock Limitations
• The synchronous MACH parts (MACH 1x0 and MACH 

2x0) can only be clocked by pin.

• The synchronous MACH parts (MACH 215 and MACH 3
& 4 families) can clock by a single PTERM, and can inve
clock signals in most cases. 

In either case, the PLSyn fitter allows you to generate and us
more complex clock than the part supports directly. For 
example, you can use the sum of two or more PTERMs, or 
single PTERM on an asynchronous part.

To use a more complex clock than the part 
supports

1 Create an output node with a data equation that is the cl
function you want generated.

2 Use the output node as the clock signal.
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Implementin g Hazard-
Free Combinatorial 
Latches
You may need to implement combinatorial latches in MACH
devices. A combinatorial latch is a simple combinatorial 
function in which the output is derived from inputs and 
feedbacks. A seemingly correct latch design can be subject
hazard conditions that might cause latch failure. By inserting
redundancy into the latch equation, you can protect against 
hazard conditions.

Basic Latch Circuit
The basic transparent DLatch expression looks like the 
following:

INPUT Data;
INPUT LatchEnable;
NODE DLatch;
DLatch = LatchEnable * Data 

+ /LatchEnable * DLatch;

Creatin g a Hazard-Free Latch
A Karnaugh map reveals that it is possible to lose data when
LatchEnable goes from 1 to 0 while asserting Data. 

To create a latch that protects a gainst losin g data

1 Add a Cover Term to the DLATCH equation by 
encapsulating the combinatorial latch function in a DSL 
procedure.

2 Add the NO_REDUCE option to the output to prevent 
PLSyn from reducing out the Cover Term.
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The procedure to do this is as follows:

PROCEDURE DLatch(INPUT Data, LatchEnable; 
OUTPUT DLatchOut NO_REDUCE);
DLatchOut = LatchEnable * Data 
+ /LatchEnable * DLatchOut 
+ Data * DLatchOut; "Cover Term

END Dlatch;

Specif ying Reserve 
Capacit y
There are two reasons to reserve resources in a device:

• Allow for expansion of logic.

• Simplify and speed up the fitting process. Simply put, it i
easier to place and route a solution at 80% utilization than
100% utilization. If design iteration speed is more importa
than density (for example, you’re early in the design cycle
set the utilization factor to a lower value.

To specif y the amount of reserve capacit y to 
leave available in a device

1 Use the MACH_UTILIZATION property in your .pi  file 
using the syntax

{MACH_UTILIZATION percent };

where % is the percentage of device resources to be us
The range of values is 0 to 100.

This affects the use of pins, PTERMs, and macrocells. PLSy
distributes the unused resources throughout the device. 
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Although in MACH devices there 
is no timing advantage to placing 
signals in the same PAL block, 
doing so may make PCB layout 
easier by keeping related signals 
together.
Targetin g PAL Blocks
You can specify which nodes, outputs and biputs you want 
placed together in the same PAL block. There are two ways
do this:

• Signal groups

• Device sections

Usin g Signal Groups
Use this method if you don’t care whether PLSyn fits one sign
group into the same PAL block as another signal group.

To group si gnals into a PAL block.

In your .pi  file, use the GROUP property inside of a DEVICE
construct.

Example

SOURCE FILE

INPUT i[8];
OUTPUT ogroup1[8];
OUTPUT ogroup2[8];
ogroup1 = i;
ogroup2 = i;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH110-15JC';

GROUP
ogroup1; "all ogroup1 signals will

"go into the
END GROUP; "same PAL block
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Table 8-2 MACH PAL Block 

Names

Note MACH 5 devices have 
4 PAL blocks (A-D) for each 
segment. The number of 
segments varies with specific 
devices in the M5 family.

Architecture
PAL Block 
Name

MACH110 A..B
MACH120 A..D
MACH130 A..D
MACH210 A..D
MACH211 A..D
MACH211sp A..D
MACH215 A..D
MACH220/221 A..H
MACH230/231sp A..H
MACH435 A..H
MACH465 A..P
MACH5xx A..D
GROUP
ogroup2; "all ogroup2 signals

"may or may not
END GROUP; "also go into ogroup1's 

"PAL block
END DEVICE;

Usin g Device Sections
Use this method if you want PLSyn to:

• restrict the set of signals in each device section to a different 
PAL block, and/or

• target the signals in a device section to a specific PAL blo

To fit all si gnals in a device section into one PAL 
block.

In your .pi  file, use the SECTION property inside of a 
DEVICE construct.

To tar get the si gnals in a section to a specific PAL 
block

Use the TARGET property in your .pi  file of the form

TARGET ' pal_block_name ';

Table 8-2 lists the names of the PAL blocks for the MACH 
family.
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SOURCE FILE

INPUT i[8];
OUTPUT ogroup1[8];
OUTPUT ogroup2[8];
ogroup1 = i;
ogroup2 = i;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH110-15JC';
SECTION

TARGET 'A';
ogroup1;   "all ogroup1 signals

"will go into PAL
"block A

END SECTION;

SECTION
TARGET 'B';
ogroup2; "all ogroup2 signals

"will go into PAL
"block B

END SECTION;
END DEVICE;
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Constrainin g the Size of 
Combinatorial Nodes
You can constrain the size of combinatorial nodes PLSyn 
collapses during the optimization process, thereby affecting h
the logic fits into MACH devices.

To constrain the size of combinatorial nodes

Use the MAX_PTERMS property in your .pi  file using the 
syntax:

{MAX_PTERMS p};

where p is the maximum number of PTERMs to which the 
optimizer can collapse.

The PLSyn optimizer collapses combinatorial nodes up to a s
specified by MAX_PTERMS. 

Makin g Adjustments
If the value is low, then PLSyn typically implements the desig
as a larger number of smaller equations. This makes placem
easier because smaller functions do not place demand on th
PTERM allocation mechanism. However, more smaller 
functions can require more routing resources and can requir
more overall macrocell logic. 

At the other end, fewer larger functions can ease the routing
requirements, but be harder to place because the demand f
PTERMs can cause conflicts when attempting to place functio
together in a PAL block.
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Table 8-3 shows the minimum and maximum number of 
PTERMs along with a suggested value. For optimal fitting, yo
should try a number of values to determine the best value fo
given design.

Usin g higher MAX_PTERMS generall y results in

• More node collapsing 

• Larger functions 

• Faster implementation 

• May increase routing requirements

Usin g lower MAX_PTERMS generall y results in

• Less node collapsing 

• Smaller functions 

• Slower implementation 

• May increase routing requirements

To see the exact effect of chan ging the optimizin g 
parameters

1 Open the .doc  file after optimizing and check the number
of nodes. The number of nodes generally goes down as
MAX_PTERMS parameter goes up.

*. Will vary with the design.

Table 8-3 Minimum and Maximum Number of PTERMS

Family

Minimum 
Number of 
PTERMs per 
Output

Maximum 
Number of 
PTERMs per 
Output

Suggested 
Number of 
PTERMs per 
Output

MACH 1XX 4 12 8

MACH 2XX 4 16 8 or 12*

MACH 435 5 20 10 or 15
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For exact usage, see the PIL 
Reference in PLSyn online help.

Note The MACH 1xx/2xx 
devices do not support XOR.
Note You can use any optimization property (for 
example MAX_PTERMS or MAX_SYMBOLS) in 
GROUPs, SECTIONS, or with any individual 
signals. 

Optimizin g MACH 4xx Devices 
Usin g MAX_XOR_PTERMS
In addition to the MAX_PTERMS property, you can adjust 
MAX_XOR_PTERMS for MACH 4xx devices. The 
MAX_XOR_PTERMS value is typically one less than the 
MAX_PTERMS value to allow for the single PTERM which is
placed on the XOR row.

The following table shows suggested values for 
MAX_XOR_PTERMS and MAX_PTERMS.

A Few Considerations
• Either High or Low MAX_PTERMS can cause greater 

routing demand.

• Lower MAX_PTERMS can produce more internal nodes
which PLSyn must route to the equations where they are
used.

• Higher MAX_PTERMS allow PLSyn to collapse a node 
into multiple equations. This results in placing the signal
needed to generate the node in multiple places. 
Furthermore, large equations can require PLSyn to route
large number of signals into the block where the equation
placed, producing a locally high routing demand.

Larger  ↔  Smaller 

Property Faster   ↔  Slower

MAX_XOR_PTERMS 19 14 9 4

MAX_PTERMS 20 15 10 5 
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For more information, refer to the 
PIL Reference in PLSyn online 
help.
Other Optimizin g Parameters
Other optimizing parameters suitable for MACH devices are
listed below with suggested values. 

For the MACH 4xx

For MACH 1xx/2xx devices

Note Within this range of suitable parameters there are 
trade-offs on equation size and speed.

MAX_PTERMS 10

MAX_XOR_PTERMS 9

MACH_UTILIZATION 100

MAX_SYMBOLS 20

POLARITY_CONTROL TRUE

XOR_POLARITY_CONTROL TRUE

MAX_PTERMS 8

MACH_UTILIZATION 100

MAX_SYMBOLS 20

POLARITY_CONTROL TRUE
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For more description of the 
internal node types, see 
Accessing Internal Points in a 
PLD Device on page 7-2. 
However, note that MACH 
devices reference internal nodes 
differently than other kinds of 
PLDs.
Understandin g Pin 
Namin g and Numberin g
In the MACH family, you can assign signals to pins and intern
nodes:

To reference MACH device pins

1 Use the following notations:

where X is the PAL block ID and ##  is the macrocell 
number.

The macrocells and input registers are sequentially number
through the device in the same order as the macrocell name
(A00 - H15). Depending on the device and PAL block, these
numbers are sequenced in either the same order as the 
neighboring physical pin numbers, or reverse order. 

For a list of device-specific pin names and numbers, see 
Appendix C, AMD MACH Device Tables.

Physical pins input pins

input-clock pins

input/output pins

Internal nodes shadow node

buried node

unary node

MACROCELL_X## physical pins
shadow node
buried node

IN_REG_X## unary node
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Using a shadow node rather than 
a biput pin allows the physical 
pin and its pin feedback path to 
be used as an input. 

For more information on using 
unary nodes in MACH devices, 
see MACH 2xx, 4xx: Using 
Input Registers on page 8-23.
Usin g the MACROCELL_ X## notation

For ph ysical pins A physical pin (input, input-clock, or 
input/output) connects to either an input or biput macrocell. 
Reference physical pins by the block ID and pin number in t
package diagram found in your data book.

For buried nodes A buried node is a macrocell within the
device which cannot be connected to an I/O pin. In the MAC
2xx parts, these are the odd numbered macrocells.

For shadow nodes Shadow nodes are biput macrocells
that, when disconnected from an I/O pin, are treated as a bu
node with the pin as an input. In the MACH 1xx and 2xx par
all I/O pins have corresponding shadow nodes.

Usin g the IN_REG_X## notation

The IN_REG_X## notation is reserved for unary nodes. Most 
often they are input registers. In the MACH 215 and MACH 4xx, 
input registers are available on all I/O pins.
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als It may help to sort the .pi file first 
to get signals with like names 
together, since they often are 
grouped together.

See Using Signal Groups on 
page 8-10 for more information.
Achievin g Satisfactor y 
Pinouts
The general approach is to first fit the design unconstrained
prove that there is a solution; then mold that solution into a 
pinout that meets the board layout requirements. 

To achieve acceptable pinouts 

1 Generate an unconstrained solution: run the PLSyn fitte
and fuse map generator to produce an .npi  file.

2 Copy the .npi  file to the .pi  file. 

3 In the .pi  file, strip the pin assignments.

4 Take out the NO_CONNECT information.

5 Use the GROUP statement to control which sets of sign
you want to fit together in localized or sequential pins. 

Note Leave the INPUT signals for later. Not every 
function must be in a group. 

The .pi  file will look similar to this:

DEVICE
TARGET 'PART_NUMBER AMD MACH130-15JC';  

INPUT B20M; 
INPUT NACKI0; 
INPUT NACKI1;
 ...   

TXC;  

GROUP 
COL1; 
CRS1; 

END GROUP;  

GROUP 
COL2; 
CRS2; 

END GROUP;  
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 See Table 8-2 on page 8-11 for 
the names of the PAL blocks. 
See Using Device Sections on 
page 8-11 for information on how 
to use the SECTION and 
TARGET properties.

Reminder: If you have outputs in 
different PAL blocks that must be 
adjacent, you can have them 
either:

• span the boundary of 
adjacent PAL blocks, or

• wrap-around between the last 
PAL block and the first. 
GROUP 
NACKO0; 
NACKO1; 
NACKO2; 

END GROUP;  

...   
END DEVICE;

6 Run the PLSyn fitter on the grouped .pi  file to see which 
groups go best with other groups (for example, similar 
signal, OE, and RESET requirements). 

7 If this fails to fit, check the log file to find the group which
violates the constraints of a PAL block, and either:

• dissolve the group, or

• divide it into two groups.

8 When PLSyn successfully completes the fit, copy the ne
.npi  file to a .pi  file and make that your current .pi  file.

9 If it is necessary to swap the contents between two PAL
blocks, then target the PAL blocks.

a Refer to a pinout table for the device and determine 
where the PAL block divisions occur. 

b Divide the current .pi  file into PAL block groups 
using the SECTION construct with TARGET 
statements. (Save the inputs for later.)

c Strip the pin numbers and reassign the groups as 
required.
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The .pi  file will look like this:

DEVICE
TARGET 'PART_NUMBER AMD MACH130-15JC';  

INPUT B20M; 
INPUT NACKI0; 
INPUT NACKI1; 
...   
TXC;  

SECTION
TARGET 'A'; 
NACKO0; 
NACKO1; 
NACKO2; 

END SECTION;

SECTION
TARGET 'B'; 
COL1; 
CRS1; 
COL2; 
CRS2; 

END SECTION;  

...   
END DEVICE;

d Run the PLSyn fitter. 

e If the fit fails, consult the log file and make adjustmen
as required. One thing you can try is to rotate the PA
block assignments (A to B, B to C, ... H to A).

f Repeat steps d and e until the PAL block assignments 
are satisfactory.

10 Copy the .npi  file to a new .pi  file.
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The intent here is to handle 
inputs last. Since inputs have 
only routing constraints, fitting 
them last leaves more 
possibilities for the 
programmable logic functions 
which have routing, PTERM 
allocation, and control function 
constraints.
11 Find suitable pin assignments within the PAL blocks.

a Add comments to the .pi  file to show where the PAL 
block’s limits are. 

b Separate all of the inputs and strip off their pin numbe

Be sure, however, to leave room for sequential 
assignments of input groups. You might find it helpfu
to leave biputs available adjacent to the dedicated inp
pins so that input groups can fit across dedicated inp
and onto the biputs. Remember that clock signals m
go on clock/input pins. 

c Strip the pin numbers off of one PAL block. 

d Pick one group of signals and assign it the desired p
assignment. 

e Run the PLSyn fitter. 

f If it fails, be sure to check the log file. Try the following

• Shift the signals by one pin.

• Try walking an unassigned pin through the 
group. 

• Try assigning the other pins, and see where the 
group ends up. 

g When you finish one PAL block, repeat steps c-f for th
next PAL block. 
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For a list of pin names, see 
Appendix C, AMD MACH 
Device Tables.
MACH 2xx, 4xx: Usin g 
Input Re gisters
The MACH 2xx and 4xx devices can register signals betwee
the I/O pin and the switch matrix. The MACH 215 and MACH
4xx have a dedicated register for each I/O pin. The other MAC
2xx devices use the buried macrocell adjacent to the pin to 
perform the registration. 

The PLSyn fitter attempts to use these input registers as ofte
possible because their use saves both routing resources an
propagation delay. 

Understandin g Input Re gister 
Pin Names 
The MACH 4xx and MACH 215 have dedicated hardware fo
the input register function. These are called unary pins beca
they support a function of exactly one signal. The naming 
convention for these pins is IN_REG_X## where X is the PAL 
block ID and ## is the macrocell number.

To register the pin signal in the MACH 2x0 devices, the sign
is routed through the adjacent buried register. This effective
takes one buried register macrocell and reduces the numbe
nodes which the part can fit internally.

The MACH 2x0 devices register I/O pin signals on nodes nam
MACROCELL_X## where X is the block ID and ## is the 
macrocell number. 

Note Assigning a signal to that pin is not enough to force 
use of the input register mode. The assignment is 
ambiguous and PLSyn interprets it as an internal 
node assignment. 
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With conventional routing, the 
input goes into the switch matrix 
and is brought to the PAL block 
array, then fit as any other node.
MACH 2xx and 4xx Compared
The MACH 4xx devices have separate input register resourc
Because this simplifies the fitting of unary functions, these 
assignments are simple and direct. You can assign manually
unary function to IN_REG_X##, or let the PLSyn fitter do this 
automatically. The MACH 4xx is also able to automatically u
these resources to register the feedback of an output functio

The MACH 215 does have separate hardware for input regist
but because of its general architecture, the PLSyn fitter hand
it as it would MACH 1xx/2xx devices, sharing the same 
restrictions.

Input Re gistration
The input register configuration has several advantages ove
conventional routing:

• It saves one PAL block input and four PTERMs needed 
generate the function in the standard configuration. 

• It also saves propagation time of one pass through the a
for the signal generated.

In PLSyn, there is no INPUT CLOCKED_BY construct, so the
fitter look for nodes that have a single signal as the D equati
These are unary functions because they are functions of one 
signal. Whenever possible, the PLSyn fitter automatically fit
unaries in input registers.

If you are using the MACH 2xx, you might need to detect, forc
or prevent use of input registers for any given signal. 

Example

The following source generates the unary-compatible functio
u.

INPUT i, ui, clk; 
NODE u CLOCKED_BY clk; 
OUTPUT o; 
u = ui; 
o = u * i;



MACH 2xx, 4xx: Using Input Registers 8-25

 
ro 

he 
Findin g Signals Fit as Unar y
To detect signals which have been fit as unaries, you must 
inspect the Signal Directory section of report file. Check the
number of clusters used for each function. A function with ze
clusters has been fit as a unary.

Example

Continuing with the example shown in the previous section, t
function u is fit as a unary as shown in this excerpt from its 
report file:

Signal
# Name

Source 
Type

PalBlk
Clusters

Pal 
Block 
Inputs

0 i Input A12

1 ui Input

2 clk Input

3 u DFF Hidden A 0 A18

4 o Cmb Internal A 1
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Forcin g a Function to be Fit as 
Unary
To force a function to be fit as unary, the function must meet
of the following conditions: 

• Must be a NODE, not an OUTPUT

• Must have a single signal data equation 

• Must be a DFF, TFF, or DLATCH equation 

• Must conform to the reset and preset equation of the PA
block

To force the function into the input re gister

1 In your .pi  file, place the input signal on an I/O pin.

2 Place the function on the adjacent buried macrocell.

Example

Continuing with the example shown in the previous section, t
following PIL statements use the input register configuration
register the signal ui to form the function u which goes into t
switch matrix:

DEVICE 
TARGET 'PART_NUMBER AMD MACH210-12JC';
INPUT ui :4; 
u :MACROCELL_A05; 

END DEVICE;

Preventin g a Function from 
Bein g Fit as Unar y

To prevent a function from bein g fit as a unar y

1 Fix either the input or the function signal to a pin. 

The pin can be the same pin which PLSyn previously fit as a
unary. Given that one but not both signals is fixed is sufficie
to prevent the unary configuration.
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Preservin g Pinouts 
when Refittin g
This section describes how to refit your design by:

• Setting up your design with the intention of refitting befor
you ever start the physical implementation process.

• Using one of the following two methods to fix the pinouts 
when refitting your design:

• Create a two-level .pi  file from the .npi  file by adding 
PAL block SECTIONs within a DEVICE construct 
(page 8-28).

• Float nodes (page 8-34).

Plan for Refittin g
Before you start the first fitting, follow these design guideline
to ensure the greatest success when refitting:

• Target a device using the DEVICE construct in the .pi  file.

• Keep utilization low; below 70%. 

• Keep pinout options open as long as possible. 

• Don’t release board layout after the first successful fit, sin
the design might change and changes may not refit the w
the original design was fit. 

• As much as possible, try to work with what the PLSyn fitte
prefers to do, especially in terms of partitioning into PAL
blocks, rather than forcing a specific pinout.
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Before you apply this method, 
you must run a fit (which 
automatically generates a .npi 
file) and generate a fuse map. 
Method 1: Creatin g a Two-Level 
.pi File
This method preserves the PAL block partitioning of the 
programmable logic while giving the PLSyn fitter the freedom
to move buried logic within a PAL block, but not from one PA
block to another. Outputs and inputs remain fixed to specific
pins of the device. 

To create the two level .pi file

1 After completing the first fitting, copy: design_name.npi  
to design_name.pi  

2 In the .pi  file, move all inputs to the top (or bottom) of the
file. Do not change or delete any of the pin assignments

3 Set up two, four, or eight SECTIONs, depending on 
the device, within the DEVICE construct. 

4 Segregate all outputs and nodes into sections 
according to which PAL block they were originally fit 
into.   

5 Preserve pin assignments for different types of devices 
as follows:

• For MACH 2xx parts, check the .rpt  file (Signal 
Directory section) for nodes fit using zero clusters. 
Preserve these pin assignments; PLSyn fits these no
with input registers.

• For MACH 435, preserve pin assignments to 
IN_REG_X##;  these are input register assignments. 

6 Drop the pin assignment on nodes which have been fit o
O pins and are not required on another device. 

The .doc  file lists all nodes, and also provides a wire list
which shows which nodes are wired to another device. 

7 Except as indicated in steps 4 and 5, drop all pin 
assignments for buried logic, and preserve all pin 
assignments for I/O pins. 

8 Rerun the PLSyn fitter. If the design fits successfully, yo
have a repeatable solution. 
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Suppose you have fit a design into a MACH 230. The report f
contains the following lines in the Signal Directory section 
showing that df_reg[1]  and df_reg[2]  are fit on input 
registers:

Notice that, for routing purposes, PLSyn placed node 
df_reg[0]  on a pin since the signal is not needed outside of 
device.

The .npi  file looks like this:

 -------------- .npi file ---------------  
DEVICE
TARGET 'PART_NUMBER AMD MACH230-15JC';  

dout[19]:3; 
dout[6]:4; 
dout[5]:5; 
dout[2]:6; 
INPUT dflags[1]:7; 
INPUT dflags[2]:8; 
dout[1]:9; 
INPUT dflags[0]:12; 
INPUT din[0]:13; 
INPUT din[10]:14; 
INPUT din[2]:15; 
frame:16; 
INPUT delay[4]:17; 
INPUT rst:18; 
INPUT new_con:19; 
INPUT clk:20; 
INPUT din[18]:23; 
dout[9]:24; 
dout[8]:25; 
dout[4]:26; 
dout[3]:27; 
INPUT din[4]:29; 
INPUT din[17]:33; 
INPUT tx_en:34; 

Signal
# Name

Source 
Type

PalBlk
Clusters

Pal Block 
Inputs

68 df_reg[2] DFF Hidden A  0 A13

69 df_reg[1] DFF Hidden A  0 A12
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INPUT din[15]:35; 
INPUT delay[0]:36; 
INPUT din[16]:37; 
INPUT din[11]:38; 
INPUT ef0:39; 
INPUT phase:40; 
INPUT delay[5]:41; 
dout[18]:45; 
INPUT delay[2]:46; 
INPUT din[9]:47; 
INPUT delay[3]:48; 
INPUT din[5]:49; 
INPUT din[1]:50; 
INPUT din[14]:51; 
INPUT din[19]:52; 
dout[17]:54; 
INPUT delay[1]:55; 
dout[14]:56; 
dout[11]:57; 
dout[7]:58; 
INPUT din[3]:65; 
dout[16]:66; 
dout[15]:67; 
INPUT din[12]:68; 
INPUT din[8]:69; 
dout[12]:70; 
INPUT din[7]:71; 
fifo_ren:72;
df_reg[0]:75; 
INPUT ef1:76; 
INPUT din[6]:77; 
dout[13]:78; 
dout[10]:79; 
dout[0]:80; 
INPUT din[13]:83; 
df_reg[1]:MACROCELL_A13; 
df_reg[2]:MACROCELL_A15; 
s0:MACROCELL_B00; 
s2:MACROCELL_B02; 
dcnt[0]:MACROCELL_B04; 
s1:MACROCELL_B10; 
dval:MACROCELL_B12; 
dcnt[2]:MACROCELL_D05; 
dcnt[4]:MACROCELL_D08; 
prep_done:MACROCELL_D10; 



Preserving Pinouts when Refitting 8-31
dcnt[5]:MACROCELL_D14; 
dcnt[3]:MACROCELL_E11; 
dcnt[1]:MACROCELL_G10; 
dv_lvl0:MACROCELL_H05; 
dv_lvl1:MACROCELL_H12; 
END DEVICE; 

The new .pi  file (a modified version of the .npi  file) looks like 
this:

-------------- .pi file --------------- 
DEVICE

TARGET 'PART_NUMBER AMD MACH230-15JC';  

INPUT dflags[1]:7; 
INPUT dflags[2]:8; 
INPUT dflags[0]:12; 
INPUT din[0]:13; 
INPUT din[10]:14; 
INPUT din[2]:15; 
INPUT delay[4]:17; 
INPUT rst:18; 
INPUT new_con:19; 
INPUT clk:20; 
INPUT din[18]:23; 
INPUT din[4]:29; 
INPUT din[17]:33; 
INPUT tx_en:34; 
INPUT din[15]:35; 
INPUT delay[0]:36; 
INPUT din[16]:37; 
INPUT din[11]:38; 
INPUT ef0:39; 
INPUT phase:40; 
INPUT delay[5]:41; 
INPUT delay[2]:46; 
INPUT din[9]:47; 
INPUT delay[3]:48; 
INPUT din[5]:49; 
INPUT din[1]:50; 
INPUT din[14]:51; 
INPUT din[19]:52; 
INPUT delay[1]:55; 
INPUT din[3]:65; 
INPUT din[12]:68; 
INPUT din[8]:69; 
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INPUT din[7]:71; 
INPUT ef1:76; 
INPUT din[6]:77; 
INPUT din[13]:83; 

SECTION
dout[19]:3; 
dout[6]:4; 
dout[5]:5; 
dout[2]:6; 
dout[1]:9; 
df_reg[1]:MACROCELL_A13; "Part of input

"register assignment 
df_reg[2]:MACROCELL_A15; "Part of input

"register assignment 
END SECTION; 

SECTION
frame:16;
s0; ":MACROCELL_B00;
s2; ":MACROCELL_B02;
dcnt [0]; ":MACROCELL_B04; 
s1; ":MACROCELL_B10; 
dval; ":MACROCELL_B12; 

END SECTION; 

SECTION 
dout[9]:24; 
dout[8]:25; 
dout[4]:26; 
dout[3]:27; 

END SECTION; 

SECTION
dcnt[2]; ":MACROCELL_D05; 
dcnt[4]; ":MACROCELL_D08; 
prep_done; ":MACROCELL_D10; 
dcnt[5]; ":MACROCELL_D14; 

END SECTION; 

SECTION
dout[18]:45; 
dcnt[3]; ":MACROCELL_E11; 

END SECTION; 

SECTION
dout[17]:54; 
dout[14]:56; 
dout[11]:57; 
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dout[7]:58; 
END SECTION; 

SECTION
dout[16]:66; 
dout[15]:67; 
dout[12]:70; 
fifo_ren:72; 
dcnt[1]; ":MACROCELL_G10; 

END SECTION; 

SECTION
df_reg[0]; ":75; This is a node

"on a pin 
dout[13]:78; 
dout[10]:79; 
dout[0]:80; 
dv_lvl0; ":MACROCELL_H05; 
dv_lvl1; ":MACROCELL_H12; 

END SECTION;  
END DEVICE;
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Before you apply this method, 
you must run a fit (so that a .npi 
file exists) and generate a fuse 
map. 

Note For clarity, some of the 
constructs normally found in 
the .npi file have been 
eliminated.
Method 2: Floatin g Nodes
Another way to release nodes from their pin assignments, w
keeping them in the PAL block to which they were assigned
to specifically float the nodes.

To float the nodes when refittin g

1 After completing a fitting, copy:
design_name.npi  to design_name.pi  

2 In the .pi  file, use the FLOAT_NODES property of the 
form:

{ FLOAT_NODES } ;

Place the statement so that it applies globally to all devic

Example

SOURCE FILE

INPUT i1;
INPUT clk, oe;
NODE n1..n2 CLOCKED_BY clk;
OUTPUT 01 ENABLED_BY oe;
n1 - i1;
n2 = n1;
o1 = n2;

PHYSICAL INFORMATION FILE

{FLOAT_NODES};

DEVICE
TARGET 'PART_NUMBER AMD MACH110-20/BXA';
o1:2;
INPUT clk:13;
INPUT oe:32;
INPUT i1:33;
ni:SHADOW_OF_16; "ni will be fit in

"PAL block A
"but not necessarily
"on nodeSHADOW_OF_16

END DEVICE;
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Partitioning
Option
Required

For more information on Max 
Devices and setting constraints, 
see Constraining Devices on 
page 5-18.
When Fittin g into One 
Device Fails
When your design fails to fit into a single MACH device, ther
are two ways to approach debugging the problem:

• Force the design into one device using the default signa
reference in the .pi  file.

• Partition the design between two devices and analyze th
result.

Usin g the “Default” Si gnal 
Reference 
It would seem that setting the Max Devices constraint to one
should force PLSyn to fit the design into one device. Howev
this actually tells the PLSyn fitter to quit after one device is 
filled. This means that when there is a failure, there is very lit
diagnostic information available in the log and report files.

To force the entire desi gn into one part and 
obtain a report file

1 Use the default signal reference in a DEVICE statement
your .pi  file. The default reference is the same as namin
all signals in the design not mentioned elsewhere in the .pi  
file.

Example

The following PIL fits the design into a single MACH 210 
device.

DEVICE 
TARGET 'part_number AMD MACH210-15JC'; 
default; 

END DEVICE;
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When you do this, the design might fit the first time. If it doe
not, look at the log and report files for valuable information 
about why PLSyn could not fit the circuit.

What you can find out in the lo g file

The log file (.log ) can tell you things like:

• Your design exceeds device limits such as RESET/PRES
constraints. You might need to adjust the design to the lim
of the device, or use another part or parts with greater 
resources.

• The PLSyn fitter did not find a suitable partition. You 
should check the report file for details.

What you can find out in the report file

The report file (.rpt ) can tell you things like:

• The best partition PLSyn could produce and why it is no
valid for the device. 

• The PLSyn partitioner succeeded assigning functions to
PAL blocks, but the PLSyn fitter failed placing and routin
the design. 

Based on the progress and problems written to the report fil
you need to use the .pi  file to:

• adjust the design and/or 

• adjust the implementation specification.

In general, look for resources which are in high utilization. If
macrocells are in high demand, more node collapsing can 
relieve the problem. If PTERMs are in high demand, you mig
try extracting some common factors into a common node. 
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Usin g a Second Device
Another approach to a difficult fitting problem is to allow the 
design to overflow into a second device, and then see which
functions the PLSyn fitter leaves out of the first device.

If you generate fusemaps for the two-device solution, you ca
use the .npi  file to work one or two functions back into the firs
device. 

To work functions back into the tar get device

1 Copy the .npi  file to a new .pi  file. 

2 Move the functions assigned to the second device and 
include them in the DEVICE statement for the first devic
but without any pin assignments. 

If that does not work, try the following:

• Node collapsing.

• Factoring to allow room for the left out functions.

Considering a larger device.
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Accessin g the MACH 
Internal Feedback Path
In MACH devices, outputs without an output enable can fee
back into the device through two paths:

• Directly from the pin. The is called pin feedback and may or 
may not bond-out to a physical pin.

• Directly from the macrocell. This is called macrocell 
feedback.

These paths are functionally equivalent, but the pin feedbac
can be slower that the macrocell feedback. By default, PLSy
routes signals using the pin-feedback path. 

To use the macrocell-feedback path for one 
signal

1 In your .pi  file, attach the FORCE_INTERNAL_FB 
property to the appropriate signal.

To use the macrocell-feedback on all si gnals in 
the device

1 Include the FORCE_INTERNAL_FB property in the 
DEVICE specification.

P in  
F eedb ack

M a cro cell
F e edba ck

T o A rra y

T o  Array

P rog ra m mab le  
Po la rity
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This example shows the PIL that forces signal out1  to follow 
the macrocell (internal) feedback path instead of the pin 
feedback path.

SOURCE FILE

INPUT a, b, c;
OUTPUT out1 CLOCKD_BY clk;
OUTPUT out2;

out1 = a * b;
out2 = out1 * c;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH465-15KC';
out1 {FORCE_INTERNAL_FB}; "Use the 

"macrocell feedback
DEFAULT;

END DEVICE;

Example

This example shows the PIL that specifies that all signals in 
device should use the macrocell (internal) feedback path inst
of the pin feedback path.

SOURCE FILE

INPUT a, b, c;
OUTPUT out1 CLOCKD_BY clk;
OUTPUT out2;

out1 = a * b;;
out2 = out1 * c;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH465-15KC';
{FORCE_INTERNAL_FB};"Use the macrocell 

"feedback for all signals in the
"device

DEFAULT;
END DEVICE;
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MACH 215, 4xx: Fittin g 
Asynchronous 
Functions
Both the MACH 215 and MACH 4xx devices support 
asynchronous functions, but they have different capabilities.
Some functions, or groups of functions, suitable for the MAC
215 will not fit in the MACH 4xx.

PTERM Clock and RESET and 
PRESET
When the clock expression is a product term (PTERM), a dev
requires both RESET and PRESET in its equation. An equation
such as this requires the device to run in asynchronous mod

However, a MACH 4xx device can have either asynchronou
RESET or PRESET, but not both. This means that functions 
this type can only fit in the MACH 215 (which allows both 
asynchronous PRESET and RESET) using the following 
construct:

OUTPUT o1 CLOCKED_BY (clk1 * clk2) RESET_BY reset 
PRESET_BY preset;

More Than One RESET/PRESET 
Pair per PAL Block
In the MACH 4xx, any function which has both a RESET an
PRESET expression must use the block resources for reset
preset. If a design has more than eight different pairs of RES
and PRESET equations, it cannot fit in one MACH 4xx, but m
fit in one MACH 215. 

The following set of functions can only fit in a MACH 215:
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OUTPUT o1 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_1;
OUTPUT o2 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_2;
OUTPUT o3 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_3;
OUTPUT o4 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_4;
OUTPUT o5 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_5;
OUTPUT o6 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_6;
OUTPUT o7 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_7;
OUTPUT o8 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_8;
OUTPUT o9 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_9; 

MACH 4xx: Usin g XOR 
T-Equations
If you are fitting an XOR T-equation that is greater than 20 
PTERMs, you need to insert a node between the equation a
the T-register. This rule also applies to a function that requir
both a TFF register and an XOR equation because the PLS
compiler expands the XOR equation into a T-equation which
can be greater than 20 PTERMs.

Example

This design will not fit due to equation o2.T expanding to 24
PTERMs.

INPUT clk;
INPUT i1, i2, i3, i4, i5;
INPUT j1, j2, j3, j4, j5;
T_FLOP OUTPUT o1 CLOCKED_BY clk; 
T_FLOP OUTPUT o2 CLOCKED_BY clk;

o1.T = i1 (+) (i2 + j2 + j3 + j4 * j5);
o2.T = (i1*j1) (+) (i2*j2 + i3*j3 + i4*j4 + i5*j5);

If rewritten with a node for the T-equation, it fits because the
combinatorial equation does not need to be expanded.

INPUT clk;
INPUT i1, i2, i3, i4, i5;
INPUT j1, j2, j3, j4, j5;
T_FLOP OUTPUT o1 CLOCKED_BY clk;
T_FLOP OUTPUT o2 CLOCKED_BY clk;
NODE n;

o1.T = i1 (+) (i2 + j2 + j3 + j4 * j5);
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n = (i1*j1) (+) (i2*j2 + i3*j3 + i4*j4 + i5*j5);
o2.T = n;

MACH 4xx: Controllin g 
Asynchronous Mode
You can manually control the implementation of functions wi
asynchronous clocking using the asynchronous macrocell 
features of the MACH 4xx.

Because asynchronous fitting can be a resource and timing c
the PLSyn fitter opts for synchronous mode wherever possib
However, if by doing so PAL blocks are underutilized or the 
solution requires extra devices, PLSyn opts for asynchronou
mode. 

When using asynchronous mode, the PLSyn fitter selects th
block reset and preset, and the block clock signals so as to 
minimize the number of macrocells that are fit.

Since the macrocell local-reset PTERM and the shared PAL
block reset and preset PTERMs are generated in the PAL bl
array, there is no timing penalty for using the asynchronous
mode reset. However, you might need more control over 
selecting the functions that use asynchronous clocking. The
difference in timing between the pin clock and an array 
PTERM-generated clock signal can be of overriding 
importance.

To control which functions are clocked 
asynchronousl y

1 Group and select the signals that you want placed on th
clock pins.
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MACH 4xx: Controllin g 
T-Flop S ynthesis
For some equations, the T-flop might have a smaller equatio
but slightly greater delay. For speed-sensitive circuits, you c
use D-flops exclusively instead because the XOR in the MAC
4xx provides for relatively efficient implementation of T-
equations using the D register.

Normal Operation
Unless otherwise directed, PLSyn fits the smallest equation
D, T, or XOR, or their complements.

DFF-Only Fittin g

To use DFF equations onl y

1 Design the circuit in terms of DFF equations. If you do n
reference T_FLOP or other register types, PLSyn will 
generate DFF equations by default.

2 To restrict the design to fitting only DFF equations, includ
the statement:

{ FF_SYNTH OFF } 

in the .pi  file. 

Depending on where you place the statement, this option ca
apply to specific signals, or to the entire device or design. 
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Usin g the T-Equation
If a given function is most easily expressed using an equation
toggle operation, then the D equation is the XOR of that 
equation and the register output.

If (T) defines the toggle equation of function F, then the dire
TFF expression of that function in DSL is:

T_FLOP OUTPUT F CLOCKED_BY clk ...;
F = (T);

while the DFF equivalent function is:

OUTPUT F CLOCKED_BY clk ...;
F = (T) (+) F;

MACH 4xx: Controllin g 
Power-On Reset
The MACH 4xx has a built-in power-on reset feature that se
all registers to a known state when power is applied to the p
This section discusses how you can determine the state of t
registers, and the steps you can take to manage the power-
feature.

What Is a Lo gical Reset?
DSL defines the term reset in a device-independent way. To 
reset a signal means to put the signal in the unasserted state
HIGH_TRUE signal goes to the low-voltage state when it is 
reset. If the signal is a LOW_TRUE sense, then a reset cau
the signal to go to the high voltage state. In both cases, the si
is in its unasserted condition. This is a logical reset.
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PLSyn flags functions which are 
fit using an asynchronous 
macrocell with the string ASYNC 
in the Signal Directory section of 
the report file.
The Nominal Case
Most applications of the MACH 4xx perform a logical reset on 
power-up. Registered signals go to the unasserted state.

Exception Cases
For each signal that violates the power-on logical reset, PLS
flags the entry in the Signal Directory section of the report fi
with the string RS_SWAP. These signals receive a logical prese
at power-on. 

A violation can be caused by one of two things: 

• Macrocells in asynchronous mode that have a preset 
equation perform a power-on logical preset. 

• A function performs a power-on logical preset if it is fit on
a macrocell in a PAL block where its reset and preset ar
out-of-phase with the majority of functions in the PAL 
block. Out-of-phase means that a function’s reset and pre
equations are identical to the PAL block preset and rese
equations, respectively.

To prevent the out-of-phase condition

1 Manually partition your design. 

This allows PLSyn to fit a function with a preset equation fit i
an asynchronous macrocell into a synchronous macrocell if 
function is not inherently asynchronous (that is, if it does no
have a clock which is a product of multiple signals).
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MACH 230 and 435: 
Possible Pin 
Incompatibilit y Between
In rare cases, designs that fit in a MACH 230 are not pin-
compatible with the MACH 435. This only happens when yo
are using both registers and latches in the same PAL block u
pins 20 and 22, or pins 62 and 65 for the clock and latch ena
signals.

This is due to the change in latch implementation between t
MACH 1 and 2 families and the MACH 3 and 4 families. In th
MACH 1 and 2 case, latches are transparent low and latched 
high. In the MACH 435, this sense is reversed to provide the
more common functionality of transparent high, latched low.

This is seldom a problem in the MACH 435 since it can sele
clock polarity. Not all combinations of clock polarities for all 
clock pins are available within a single PAL block. This mea
that a problem can arise when porting a design with clocks a
registers in the same block using clock pins from the same cl
pair. 

The clock pins are paired internally as CLK0 (pin 20) and CLK
(pin 22), and as CLK2 (pin 62) and CLK3 (pin 65). Within eac
PAL block, the MACH 435 can select a clock polarity 
configuration (from each pair) that allows:

• both clocks TRUE,

• both clocks inverted, or

• both phases of one of the clock pair.

A given PAL block cannot select the true sense of one clock
the pair and the inverted sense of the other.

Example

Consider a MACH 230 design with a register and latch in th
same PAL block. Assume that the register is clocked by one
clock pin of a pair and the latch is enabled by the other pin of 
pair. Differences between the latches of the MACH 230 and 
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MACH 435 mean that the MACH 435 must invert the latch 
enable to achieve the same functionality. This also means th
the PAL block needs exactly the same clock polarity. It can’
have true sense of one pair member and inverted sense of t
other.

If one of the functions is a node, you can move it to another
block. You can also force one of the clocks to be asynchron
(clocking by PTERM row) by using an internal node to produ
the clock signal. 

MACH 445 and 465: 
Confi gurin g for Zero-
Hold Time
The MACH 445 and MACH 465 have an option to insert a del
between the I/O pins and the input registers in the device. T
increases the setup time for the input registers and reduces
hold time for these registers to zero.

To set the hold time on the input re gisters

1 Use the MACH_ZERO_HOLD_INPUT property in the 
DEVICE construct of your .pi  file.

Example

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH465-15KC';
{MACH_ZERO_HOLD_INPUT};"Set all input

registers to zero hold time

DEFAULT;
END DEVICE;

Assigning the MACH_ZERO_HOLD_INPUT property to a 
device configures all of the input registers for zero-hold time
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MACH 445 and 465: 
Accessin g Signature 
Bits
The MACH 445 and MACH 465 devices have a 32-bit field th
you can use to hold user data. This field is called the Signat
Bits, or USERCODE, field.

To place data in the USERCODE field

1 In your .pi  file, use the SIGNATURE property in the 
DEVICE section with the syntax:

{SIGNATURE data };

where data is a string of up to four characters (enclosed i
single quotes) or a 32-bit signed integer.

Example

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH465-15KC';
{SIGNATURE 'test'};

DEFAULT;
END DEVICE;
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For a list of fuse assignment 
statements that assert the tri-
state enable for unused pins in 
all MACH devices, see 
Appendix C, AMD MACH 
Device Tables.
MACH 1xx and 2xx: 
Drivin g or Floatin g 
Unused Outputs
For MACH 1xx and 2xx devices, you can drive or float I/O pin
that do not have input or output signals attached, depending
whether the associated macrocell (shadow pin) is in use. If y
place a hidden function in the macrocell, the pin goes to the h
impedance or floating state. If you do not use the macrocell, th
pin goes to a driven state with a constant value. 

Note This does not apply to the MACH 435 because 
these outputs have built-in pull-ups on the outputs, 
providing a default input when left unconnected.

Forcin g Outputs Driven

To force an output to be driven

1 Assign all outputs to pins so that the unused pins are kno

2 In your .pi  file, place fuse statements with the syntax

INTACT fuse #
BLOWN fuse #

to modify the implementation.

After placing a node on the corresponding shadow pin, its sig
is present on the pin. Otherwise, the pin asserts either high 
low depending on how other unused internal resources are 
dispensed.
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Use the fuse statements in 
Appendix C, AMD MACH 
Device Tables to configure 
floating outputs. Just replace the 
BLOWN keyword with INTACT.
Example

An example .pi  file looks like this with outputs on pins 
2-9 and intent to assert the OE on pins 14 to 21.

DEVICE TARGET 'PART_NUMBER AMD MACH110-15JC'; 
o1:2; o2:3; o3:4; o4:5; 
o5:6; o6:7; o7:8; o8:9;

"Assert OE on remaining outputs 
INTACT 6230 ; BLOWN 6231 ; " Pin 14:  
INTACT 6238 ; BLOWN 6239 ; " Pin 15:  
INTACT 6246 ; BLOWN 6247 ; " Pin 16:  
INTACT 6254 ; BLOWN 6255 ; " Pin 17:  
INTACT 6262 ; BLOWN 6263 ; " Pin 18:  
INTACT 6270 ; BLOWN 6271 ; " Pin 19:  
INTACT 6278 ; BLOWN 6279 ; " Pin 20:  
INTACT 6286 ; BLOWN 6287 ; " Pin 21: 

END DEVICE;

Forcin g Outputs Floatin g

To force an output to float

1 Assign all outputs to pins so that the unused pins are kno

2 In your .pi  file, place fuse statements with the syntax:

INTACT fuse #
INTACT fuse #

to modify the implementation.

When placing a node on the corresponding shadow pin, its 
signal is present on the pin. Otherwise, the pin asserts either 
or low depending on how other unused internal resources a
dispensed.
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Example

An example .pi  file would look like this with outputs on pins 
2-9 and intent to float the OE on pins 14 to 21.

DEVICE TARGET 'PART_NUMBER AMD MACH110-15JC'; 
o1:2; o2:3; o3:4; o4:5; 
o5:6; o6:7; o7:8; o8:9;

"Float OE on remaining outputs 
INTACT 6230 ; INTACT 6231 ; " Pin 14:  
INTACT 6238 ; INTACT 6239 ; " Pin 15:  
INTACT 6246 ; INTACT 6247 ; " Pin 16:  
INTACT 6254 ; INTACT 6255 ; " Pin 17:  
INTACT 6262 ; INTACT 6263 ; " Pin 18:  
INTACT 6270 ; INTACT 6271 ; " Pin 19:  
INTACT 6278 ; INTACT 6279 ; " Pin 20:  
INTACT 6286 ; INTACT 6287 ; " Pin 21: 

END DEVICE;
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The MACH Report File
The PLSyn fitter writes a complete description of a fitted 
MACH device showing:

• Resource utilization

• All signal and routing information

• Full placement details including internal nodes

Obtainin g a Report File
PLSyn creates a report file when fitting for targeted MACH 
devices; not during automatic device selection and partitionin

To obtain a MACH report file on the first fittin g

Either:

• Use the DEVICE and TARGET properties in your .pi  file 
using the syntax:

DEVICE TARGET 'part_number amd part #'; 
END DEVICE;

in the simplest case.

• Put empty DEVICE constructs into your .pi  file. This 
forces a report file while allowing the program the comple
freedom to partition the design. 

Example

The following PIL partitions a design into two MACH110’s an
produces a report for each device.

DEVICE TARGET 'PART_NUMBER AMD MACH110-15JC';
END DEVICE ;

DEVICE TARGET 'PART_NUMBER AMD MACH110-15JC';
END DEVICE ;
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To obtain a MACH report file when usin g 
automatic partitionin g

1 Run the PLSyn fitter the first time.

2 Copy the .npi  file to a new .pi  file.

3 Run the PLSyn fitter the second time using the new .pi  file.

Contents of the Report File
The report file contains device-specific fitting information abo
the internal resources of the MACH device. It shows exactly
which macrocells and routing paths each signal uses.

The report file is not a replacement for the documentation 
(.doc ) file. It does not list the equations for any given functio
or give a simple pinout diagram. It gives in depth information
that the documentation file does not provide.

The report file serves two purposes: 

• When the design fits, it describes the specific placement a
routing of the solution. 

• If a design fails to fit, it provides information to help you 
understand why the fit attempt failed, how far the fitting 
proceeded, and what aspect of the fitting caused proble

For MACH 1xx and 2xx devices, the report file format is 
slightly different from that for the MACH 3xx and 4xx devices
However, the report file has the same sections of information
summarized here and described in greater detail in the 
remainder of this chapter.

Failure Disclaimers If the design fails when partitioning
or during place-and-route, PLSyn writes a disclaimer 
immediately following the heading. This alerts you that the 
design did not fit successfully and to the possibility that 
information might be missing or inconsistent.
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Summar y Statistics Summarizes the number of inputs,
nodes, and outputs for your design by PAL block.

Device Resource Utilization Reports utilization 
statistics for the different resource types for each device and
PAL blocks.

Partitioner Report Shows how the design is partitioned
into PAL blocks.

Clock Assi gnments Shows which pin clocks are used in
which PAL blocks for MACH 3xx and 4xx devices.

Signal Director y Lists all inputs, outputs, and nodes on 
the device with specific assignment information for each sign

Resource Assi gnment Map Shows device details (in 
physical order by pin and macrocell) and which signals use 
which resources.

Failure Disclaimers
If the design fails when partitioning or during place-and-rout
PLSyn writes a disclaimer immediately following the heading
This alerts you that the design did not fit successfully and to 
possibility that information might be missing or inconsistent.

There are different disclaimers depending on where the fittin
failed and the device type that PLSyn attempted to fit. 

If a MACH 435 or MACH 1xx or 2xx device desi gn 
fails when partitionin g

The following disclaimer is printed:

FAILURE-TO-PARTITION DISCLAIMER: 

The following partitioner reports show the 
last failed attempts to partition the 
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design. Partitions which violate device 
limits are indicated. Also, if there are 
more Block partitions than blocks in the 
device, the partition will fail.

Because of different fitting algorithms for the two MACH 
families, MACH 1 and 2 family devices have a different fit 
disclaimer from MACH 3 and 4 family devices. 

If a MACH 1xx or 2xx famil y device fails when 
fittin g

The following disclaimer is printed:

FAILURE-TO-FIT DISCLAIMER: 

The following report represents the final 
status of a failed fit attempt. The report 
is accurate but incomplete. It indicates 
which signals were not placed or routed. 
In the 'SIGNAL DIRECTORY' signal lines 
preceded by '-' represent signals which 
could not be placed. Founts ending in '--' 
represent signals which could not be 
routed.

The Signal Directory information indicates how far the fitting
process proceeded before PLSyn gave up. The un-routed an
unplaced signals should point to the cause of the fitting 
problems. To achieve a fit, try modifying the design or manua
direct the partitioner.
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If a MACH 4xx desi gn fails when fittin g

The following disclaimer is printed:

FAILURE-TO-FIT DISCLAIMER: 

The following report represents the final 
status of a failed fit attempt. The 
'SUMMARY STATISTICS', 'RESOURCE 
UTILIZATION', and 'CLOCK ASSIGNMENTS' 
sections are accurate. The 'SIGNAL 
DIRECTORY' is accurate except for pin and 
macrocell designations. The RESOURCE 
ASSIGNMENT MAP may have missing or 
redundant signals and conflicting resource 
assignments.

This disclaimer includes statistics showing which resource 
proved most troublesome during the fit operation. Use this 
information to decide how to modify your design before 
attempting another fit.

Example

The relative conflict levels for each resource type listed here
indicate the reason for failure when fitting:

Pins 3 
Input Regs 0 
Macrocells 0 
PTERMs  352 
Feedbacks 0 
Fanouts 0

The PTERMs value of 352 indicates that the PLSyn fitter ha
trouble assigning product terms. 

Summar y Statistics
This section summarizes the number of inputs, nodes, and 
outputs for your design by PAL block and how many function
per block. Because the MACH 3 and 4 families have more wa
to fit a function, the PLSyn fitter provides more statistics for 
these designs.
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The sum total of Outputs, Tri-
states, and Nodes should equal 
the total Functions by block and 
the total of the Macrocells and 
Input Registers/Latch statistics. 
The numbers for Xor Equations 
on down are not mutually 
exclusive nor should they match 
the total number of functions.
Sample: MACH 1xx and 2xx statistics

5  Inputs 
0  Registered/Latched Inputs 
11 Outputs 
0  Tri-states 
0  Nodes

Functions by block ( 8, 3, 0, 0 )

Sample: MACH 3xx and 4xx statistics

4  Inputs 
0  Outputs 
32 Tri-states 
0  Nodes

Functions by block ( 4, 4, 4, 4, 4, 4, 4, 4 ) 
D Register Macrocells 2 
T Register Macrocells 26 
D Latch Macrocells 2 
Combinatorial Macrocells 2 
D Input Registers 0 
D Input Latches 0

Xor Equations 0 
Asynchronous Equations 0 
Single-PTERM Equations 32 
Total PTERMs Required 32
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Device Resource Utilization
This section provides utilization statistics for the resource typ
of each device and its PAL blocks. The section is broken int
two parts:

• Global resource utilization statistics.

• Resource statistics for each PAL block.

The statistics for the MACH 1 and 2 families are slightly 
different to those for the MACH 3 and 4 families. These 
examples show the global statistics and one PAL block statis
set for each device family.

Sample: MACH 1xx and 2xx resource statistics 

Resource Available Used Remaining %

Clocks: 2 1 1 50

Pins: 38 35 3 92

Input Lines: 88 72 16 81

I/O Macro: 32 16 16 50

Total Macro: 64 48 16 75

PTERMS: 256 48 64 75

PAL_BLOCK A

Input Lines: 22 18 4 81

I/O Macro: 8 4 4 50

Total Macro: 16 12 4 75

 PTERMs: 64 12 16 75
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Sample: MACH 3xx and 4xx resource statistics 

The resource utilization statistics are defined as follows:

Resource Available Used Remaining %

Clocks: 4 1 3 25

Pins: 70 67 3 95

Input Regs: 64 0 64 0

Macrocells: 128 96 32 0

 PTERMs: 640 314 326 49

Feedbacks: 192 125 67 65

 Fanouts: 264 161 103 60

PAL_BLOCK A

Blk Clocks: 4 1 3 25

I/O Pins: 8 8 0 100

Input Regs: 8 0 8 0

Macrocells: 16 12 4 75

 PTERMs: 80 42 38 52

Feedbacks: 24 16 8 66

 Fanouts: 33 18 15 54

Clocks Clock pins used for clock signals

Pins Input and I/O pins used in any capacity

Input Lines Array inputs

I/O Macro Output macrocells

Total Macro Output and buried macrocells

I/O Pins Number of bonded-out pin feedbacks

Input Re gs Macrocells used as input registers

Macrocells Macrocells without output/buried distinction

Pterms AND array rows used in equation generatio

Feedbacks Inputs to the Switch Matrix

Fanouts Inputs to the AND Arrays

Blk Clocks Number of selectable clock lines for each 
block
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Note In the MACH 3 and 4 
families, the clock signals can 
vary from one PAL block to 
another.
Partitioner Report
This section shows how the functions (outputs and nodes) a
partitioned into PAL blocks including:

• Which signals must be routed to the PAL block to genera
the functions assigned to the block. 

• How many unique clocks, enables, and register set/rese
equations the assigned functions require.

Clock Assi gnments
The Clock Assignments sections is specific to the MACH 3 a
4 families, and shows:

• which clocks are required in which PAL blocks, and

• which phase (true or inverted) is needed.

The Clock Assignments section can have zero to four clock p
listed depending on how many clocks the design uses. 

Example

This report describes two clocks where:

• CLK0 is on pin 62 and is used in its true sense in all eigh
PAL blocks.

• CLK1 is on pin 23 and is used in its inverted sense in PA
block D.

CLOCK ASSIGNMENTS: 
Notes: block usage 'H' indicates used in TRUE sense. 

block usage 'L' indicates used in INVERSEsense.

clock signal [ 35] CLK1 
pin 23 
block usage , , , L, , , ,

clock signal [ 34] CLK0 
pin 62 
block usage H , H , H , H , H , H , H , H
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Signal Director y
The Signal Directory section lists all inputs, outputs, and nod
on the device with specific assignment information for each 
signal. The format of this section for the MACH 1 and 2 familie
is different from that for the MACH 3 and 4 families.

Sample: MACH 1xx and 2xx Si gnal Director y 
section

SIGNAL DIRECTORY: 

Notes: Leading '-' indicates signal not assigned. 
Trailing '+' indicates feedback path is from pin. 
Functions with '0' Clusters are input registered. 

Every input, output, and node is listed in this directory. The d
columns are defined as follows:

Sample: MACH 3xx and 4xx Si gnal Director y

SIGNAL DIRECTORY: 

Signal
# Name

Source
Type

PalBlk
Clusters

Pal Block Inputs

0 A_10___p2 Cmb Output D  1 D11

1 A_11___p3 Cmb Output D  1 D10

2 A_8___p4 Cmb Output D  1 D09

3 A_9___p5 Cmb Output D  1 D15

4 A_19___p9 Input A01 +

5 RESET___p10 Input A05 B05 C05 D05 +

6 A_20___p11 Input D21 +

Signal # The index number used to reference 
the signal

Signal Name The user identifier for the signal

Source Type {Input | Hidden | Output | Biput | 
Internal} with register type qualifiers

PalBlk Pal Block where output or node is 
assigned

Clusters: Used Number of Pterm Clusters used to 
generate function

Clusters: Unused 
PTs

Unused Pterms left in used clusters

Pal Block Inputs Array input lines for Signal Fanouts



8-62 MACH 1-4 Device-Specific Fitting
Notes:Register type suffix '_X' indicates XOR used; 
Register type suffix '_A' indicates Asynchronous mode used; 
Register type suffix '_LT' indicates function is LOW_TRUE. 
'RS_SWAP' flags functions which are preset at power-on. 
'OE' flags tri-state functions.   

[ 0] Output: SAO_8_ 
Pin 72 (I/O) Block G Macrocell_G14 1 PTERM COMB  

[ 1] Output: SAO_7_ 
Pin 48 (I/O) Block E Macrocell_E10 1 PTERM COMB  

[ 2] Output: SAO_6_ 
Pin 45 (I/O) Block E Macrocell_E00 1 PTERM COMB

...

[ 32] Reg. Input: NBDIR 
Pin 3 (I/O) Block A Unary_of_3 1 PTERM LATCH  

[ 33] Reg. Input: NCDIR 
Pin 78 (I/O) Block H Unary_of_78 1 PTERM LATCH  

[ 34] Node: ST4 
Block D Macrocell_D03 13 PTERM DFF_A  

[ 35] Node: ST3 
Block H Macrocell_H09 15 PTERM DFF_A

...

[ 44] Input: ADIR 
Pin 5 (I/O) Block A  

[ 45] Input: BDIR 
Pin 3 (I/O) Block A
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Each of the entries has two lines:

• The first line contains the signal index (in brackets), sign
type, and signal name. The Resource Assignment Map u
the signal index shown here since there is not always 
enough room for the full signal name. The Signal type is o
of the following: Input, Reg. Input, Reg., Feedback, Nod
Tri-state, or Output.

• The second line contains the assignment information for 
signal. If the signal appears on a pin, PLSyn reports the 
number and type. Function and Inputs on I/O pins provid
the block number of the pin and/or macrocell assignmen
Functions provide macrocell assignment information alon
with specifics on how PLSyn fit the function. This include
the number of PTERMs the function requires, and the 
register type used to implement the function. These are 
noted in the Notes section at the top.

Resource Assi gnment Map
This section follows the physical layout of the device and sho
signal assignments. As with the Signal Directory, the format
this section is different for the MACH 1 and 2 and the MACH
and 4 families.

The MACH 1 and 2 families are simpler to represent since th
is a one-to-one relationship between pins, macrocells, and a
inputs. 
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Sample: MACH 1xx and 2xx Resource 
Assi gnment Map

RESOURCE ASSIGNMENT MAP: 

Every input, output, and node is listed in this directory. The da
columns are defined as follows:

MINC
Node#

Node
Type

Pin/Macro
ID

Signal
### Name

1 Vcc/Gnd PWR

2 I/O IO-00 ( 34) A_13

45 Shadow A00 ( 34) A_13

46 Buried A01 ( 64) B_16

3 I/O IO-01 ( 24) A_17

47 Shadow A02 ( 61) C_13

48 Buried A03

...

8 I/O IO-06 ( 32) A_15

57 Shadow A12 ( 32) A_15

58 Buried A13

9 I/O IO-07 ( 31) A_20

59 Shadow A14 ( 65) B_17

60 Buried A15 ( 63) C_15

10 Input IO ( 6) A_24

11 Input I1 ( 30) A_21

12 Vcc/Gnd PWR

13 In/Clk I2/C0 ( 8) CLK2

14 I/O IO-08 ( 21) A_30

75 Shadow B14

76 Buried B15 ( 53) B_25

MINC Node # The physical pin number or internal node 
number

Node Type {Vcc/Gnd | Shadow | Buried | I/O | Input | 
In/Clk}

Pin/Macro ID Pin or macrocell identifier

Signal # Signal index (see SIGNAL DIRECTORY)

Signal Name Signal name
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08 C08 D11 E08 G08 H19

H00

C03 D03 E03 G03 H03
If the same signal is assigned to a shadow node and the adja
I/O pin, the signal is an output. If these two are different, the
signal on the shadow pin is a node, and the signal on the I/O
is an input.

The MACH 3 and 4 families are more complex to represent 
since the paths between pins, macrocells, and array inputs 
programmable. 

Sample: MACH 3xx and 4xx Resource 
Assi gnment Map

Resource Assignment Map

Notes:Signal index '[###]' refers to SIGNAL DIRECTORY entry ###.
Signal index '[N/C]' is specified 'NO_CONNECT' in the .pi file.
Signal index '[---]' indicates no signal present.
Resource 'IR' is input register; 'MC' is macrocell.
PTERM Cluster 'E' is equation cluster (2 PTERMs).
PTERM Cluster 'A' is async cluster (2 PTERMs).
PTERM Cluster 'S' is single cluster (1 PTERM).
Cluster Steering 'd': down one macrocell (by macrocell number).
Cluster Steering 'u': up one macrocell.
Cluster Steering 'U': up two macrocells.
Cluster Steering '=': to adjacent macrocell.
Cluster Steering '-': cluster not used.

--PINOUT-- ---------PLACEMENT--------- -------------------------- ROUTING------------------------

Pin [Sig]  InReg/ [Sig] PTERMs Feedback-------------------------- Fanout-------------------------

___ _____  MCell_ _____  EAS   ID_ [Sig] Src Block and Input Line________________

1 PWR

2 PWR

3 [45] IR 0 [32] A00 [32] IR A08 B

MC A00 [24] === A01 [---] -

MC A01 [---] ddd A02 [---] -

4 [---] IR 1 [---] A03 [---] -

MC A02 [ 42] === A04 [ 42] MC

MC A03 [---] uuu A05 [---] -

5 [ 44] IR 2 [ 31] A06 [ 31] IR A03 B03

MC A04 [---] UUU A07 [---] -

MC A05 [---] --- A08 [---] -
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Every input, output, and node is listed in this directory. The da
columns are defined as follows:

PTERM steerin g of clusters

The report shows PTERM steering for three PTERM cluster
per macrocell. The three clusters are:

PINOUT Signals on physical pins

Pin Physical pin number

[Sig] Signal index of pin signal

PLACEMENT Resources used to generate nodes and 
outputs

InReg/Mcell Input Register (IR) or Macrocell (MC) 
identifier

[Sig] Signal index of node or output

PTERMs EAS PTERM steering (See below)

ROUTING Signals into and out of switch matrix 

Feedback ID Identifier of switch matrix input

Feedback [Si g] Signal index of feedback signal

Feedback Src Source directed to switch matrix { Pin | IR |
MC }

Fanout PAL block inputs assigned to signal

E Equation which consists of two PTERMs which ar
always part of the data equation

A Asynchronous which consists of the two PTERM
which are either used as part of the data equation
used as asynchronous clock and reset.

S Single consists of the single PTERM which is eithe
part of the data equation or half of the XOR 
equation.
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The following character flags indicate the steering of these 
clusters:

Note “Up” and “down” do not mean physically higher or 
lower in the printout. Up refers to a lower-
numbered macrocell, while down refers to a 
higher-numbered macrocell. In odd numbered PAL 
blocks (blocks B, D, F, H) the macrocells are 
numbered in reverse order compared to the pins. 
Since this printout is ordered by physical pins, the 
macrocells in those blocks show up in reverse 
order. However, down from any macrocell 3 is 
always macrocell 4. 

= Local macrocell

u Up one macrocell

d Down one macrocell

U Up two macrocells
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Chapter Overview
This chapter describes how to control the fitting process for 
specific MACH 5 devices. Topics include:

• A comparison of MACH 5 devices to other MACH 
architectures, page 9-2

• Tips and device details, pages 9-5 through 9-20

• The document file, page 9-21

Supplement
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Comparin g the MACH 5 
to Other MACH 
Architectures
AMD’s MACH5xx architecture represents a departure from 
previous MACH (MACH1xx/2xx/3xx/4xx) families. The 
earlier MACH families have extremely predictable timing 
because all signals follow the same paths through internal 
matrices. The MACH 1 and 2 families have a single internal
matrix through which all input signals are routed to PAL block
The MACH 3 and 4 families extend internal routability by usin
Input, Central and Output matrices (see Figure 9-1).

The MACH 5 architecture has a hierarchical interconnect 
system with internal routability of 100%. It also allows you to
send signals directly to the PAL blocks without going throug
the interconnect matrices (as long as equations have fewer 
16 pterms). Even if functions have more than 16 pterms, the
Block Interconnect (see Figure 9-2) can connect the signals
another PAL block within the segment. 

When equations become too large to fit into a segment (4 P
blocks), they can be routed to other segments via the Segm
Interconnect. This means that tpd becomes longer with 
increased equation size, with boundaries at 16 and 48 pterm
However, this increased tpd is offset by the fact that the MAC
5 can connect any two signals internally. This lessens the 
necessity of having to use up I/O pins to connect signals (an
eliminates some of the timing problems created by going “of
chip”). Thus the MACH 5 can make refitting much easier.

The major differences between MACH1xx/2xx/3xx/4xx and 
MACH5 are shown graphically in the following two figures.

MACH1xx/2xx/3xx/4xx
• Timing paths are the same for all signals, making for ver

predictable propagation delays.
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Figure 9-1 Simplified MACH 1xx/2xx/3xx/4xx Block 
Diagrams

• To maintain timing paths, all I/Os go through a Switch 
Matrix (MACH 1 and 2) or an Input Switch Matrix (MACH 
3 and 4). There are no direct paths from the outside wor
(except clocks) to the macrocells.
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• Highly configurable, due to use of internal routing matrice

MACH5xx
• While timing paths are not all the same for the MACH 5 

(unlike previous MACH families), this less predictable 
nature has significant advantages. For example, a block w
bonded-out I/O pins could be used as a fast PLD for timi
critical signals. These signals need not go through the 
internal interconnect matrices.

• The use of hierarchical interconnect matrices in the MAC
5 yields increased internal routability (up to 100%). To sa
it another way, any two signals in an MACH 5 can be 
connected via the interconnect matrices.

Figure 9-2 Simplified 5xx Block Diagram
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b lock has bond ed
ou t p ins)



Using the .pi File to Control MACH 5 Fitting 9-5

ith 

ed 
 an 

For additional device-specific 
information, refer to the MACH 
Family Data Book from AMD.

See Chapter 6, Controlling the 
Fitting Process Using the .pi 
File and the PIL Reference in 
PLSyn online help for more 
information on the .pi file.
Usin g the .pi File to 
Control MACH 5 Fittin g
MACH 5 devices are handled like any other PLD with full 
support for automatic device selection and partitioning. As w
PLDs, you can also control implementation using the .pi  file. 

The following is a list of .pi  file properties unique to the 
MACH 5.

Routin g in a Segment 
and Block
The SECTION construct and the TARGET statement are us
to specify how signals are routed in a Segment and Block of
MACH 5 device.

Syntax

TARGET  S<seg_id> [B <block_id> ]  

where

seg_id  is an optional segment identifier from 0..7 

block_id  is an optional block identifier from a..d

You can specify just the targeted segment with: 

TARGET 'S0';"section targeted at segment 0

or specify both targeted segment and block with: 

TARGET 'S0Ba' "section targeted at segment 0, block A

Example

DEVICE

FANOUT POWER

FORCE_LOCAL_FB SLEW_RATE

LOCAL_TOGGLE_FEEDBACK
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TARGET 'TEMPLATE MV256_68 QFP-100-M256': 
"place group into MV256

SECTION
TARGET 'S1';
"force q1 into MACH5 segment 1

q1:8;
END SECTION;

SECTION
TARGET 'S0Ba'; 
"force out7..out10 into 
"MACH5 segment 0 
"block A
...
out7:5, out8:6;
"assignment with physical pin
"or node numbers

END SECTION;

END DEVICE;

Assi gnin g Pins and 
Nodes
An MACH 5 device has both physical (or absolute) pins (the
ones on the device package) and relative node numbers (tha
node locations within the device). For each node number th
is a corresponding node name (which is generally easier to 
remember than the node number). 

Figure 9-3 Mach 5 Architecture

There are two feedbacks associated with each macrocell in 
MACH 5:

P in  
F eedb ack

M a cro cell
F e edba ck

T o A rra y

T o  Array

P rog ra m mab le  
P o la rity
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• Macrocell feedback which feeds back immediately after t
macrocell, to the Block Interconnect.

• Pin feedback which feeds back after the tristate buffer. T
pin feedback may or may not bond-out to a physical pin.

Syntax

[S< seg_id >][B< block_id >] < feedback_id > 

where

seg_id is an optional segment identifier from 0..7 (for 
MACH 5)

block_id is an optional block identifier from a..d

feedback_id = M<mcell_no> | P<mcell_no>

mcell_no is the macrocell number from 0..16

M<mcell_no> is the macrocell feedback

P<mcell_no> is the pin feedback

Note that there is a node number for every pin feedback, 
regardless of whether or not the pin feedback is bonded-out 
physical pin. If the pin feedback is bonded-out, there is also
corresponding absolute (physical) pin number. If you specify
absolute (physical) pin numbers, they will be reproduced in 
output files of the fitter.

The following table defines relative node names and their virt
pin numbers. 

Note Virtual pin numbers are defined for internal device 
use only and are unique for the entire MACH 5 
family. 

Table 9-1 MACH 5 Node Names and Pin Numbers

Relative Node Names Virtual Pin Names

S0BaM00..S0BaM15  . . . . . . 0-15

S0BaP00..S0BaP15 . . . . . . 16-31

S0BbM00..S0BbM15 . . . . . . 32-47

S0BbP00..S0BbP15 . . . . . . 48-63

S0BcM00..S0BcM15 . . . . . . 64-79
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Example

INPUT j1:S2BaM00 "route j1 to mux S2BaM00 

S0BcP00..S0BcP15 . . . . . . 80-95

S0BdM00..S0BcM15 . . . . . . 96-111

S0BdP00..S0BcP15 . . . . . . 112-127

S1BaM00..S1BaM15 . . . . . . 128-143

S1BaP00..S0BaP15 . . . . . . 144-159

S1BbM00..S1BbM15 . . . . . . 160-175

S1BbP00..S1BbP15 . . . . . . 176-191

S1BcM00..S1BcM15 . . . . . . 192-207

S1BcP00..S1BcP15 . . . . . . 208-223

S1BdM00..S1BdM15  . . . . . . 224-239

S1BdP00..S1BdP15  . . . . . 240-255

S7BaM00..S7BaM15  . . . . . . 896-911

S7BaP00..S7BaP15  . . . . . . 912-927

S7BbM00..S7BbM15  . . . . . . 928-943

S7BbP00..S7BbP15  . . . . . . 944-959

S7BcM00..S7BcM15  . . . . . . 960-975

S7BcP00..S7BcP15  . . . . . . 976-991

S7BdM00..S7BdM15  . . . . . . 992-1007

S7BdP00..S7BdP15  . . . . . . 1008-1023

Table 9-1 MACH 5 Node Names and Pin Numbers 

Relative Node Names Virtual Pin Names
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For more information on unaries, 
see Accessing Internal Points 
in a PLD Device on page 7-2.

Note There might be 
exceptions (unknown at this 
time) that will not allow 
placement of such dual 
feedback equations on the 
same macrocell internal/pin 
feedback. One possible 
example is lack of routing 
resources.
Placin g a Signal on an 
Input Re gister or Latch
The .pi  file property UNARY is used to place a signal on an
input register or input latch. The UNARY property must be 
specified on the output signal of the unary function. 

Example

Source File
INPUT ui, iclk;
OUTPUT uo CLOCKED_BY iclk;
uo = ui;

Physical Information File
DEVICE
SECTION
  TARGET 'S0Ba';
  INPUT ui;
  OUTPUT uo { UNARY };
END DEVICE;

Usin g Dual Feedback
Dual feedback is the simultaneous use of both feedback pat
internal and pin. There are no DSL or .pi  constructs for 
specifying dual feedback. 

To specif y dual feedback 

1 Write an intermediate node equation.

2 Set the pin feedback equal to node feedback.

The PLSyn fitter looks for such dual feedback equations and
places them on the internal and pin feedback of the same 
macrocell. 

Note The node collapsing in the optimizer will collapse 
the intermediate node away unless you preserve 
the intermediate node in the .pi file.
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Example

INPUT i1, i2, i3, i4;
OUTPUTS out1, out2, out3;
OUTPUT pin_fb; "pin_fb has to be placed 

"on bonded out pin. If you
"consider this wasting an
"I/O pin, declare this a
"node instead.

NODE node_fb;

node_fb = i1 * i2 + i3 * i4; 
"node feedback equation

pin_fb = node_fb;
"intermediate node equation

out1 = i2 * i3 * node_fb;
"node feedback used

out2 = i2 + i4 * pin_fb;
"pin feedback used

out3 = i2 * node_fb + i3 * pin_fb;
"both node and pin feedback
"on same eqn

Forcin g the Feedback 
Path to be Local
There are cases, for timing reasons, you may want all feedba
to be contained within the same PAL block. You can do this
the MACH 5 with the FORCE_LOCAL_FB property. This 
property can be used at the DEVICE, SECTION, or signal lev
in the .pi  file.

Examples

Source File
INPUT clk, rst, load, up_down, data[7..0] ;iclk;
OUTPUT count[7..0]  CLOCKED_BY clk RESET_BY rst;
IF load = 0 THEN

IF up_down = 1 THEN
count = count .+. 1;

ELSE
count = count .-. 1;

END IF;
ELSE 
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count = data;
END IF; = ui;

Physical Information File (Case 1)
"This example shows the use of the FORCE_LOCAL_FB at a 
"device level.  This forces local feedback on all fanout 
"signals in the device.

DEVICE
TARGET 'PART_NUMBER AMD MACH 5-256/160-7HC';
{FORCE_LOCAL_FB};  "force local feedback on

"all signals in the device
END DEVICE;
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Physical Information File (Case 2)
"This example shows the use of the FORCE_LOCAL_FB in a 
"GROUP and SECTION.  Note that you have to specify 
"FORCE_LOCAL_FB at the signal level in a GROUP.

DEVICE
TARGET 'PART_NUMBER AMD MACH 5-256/160-7HC';
GROUP

COUNT[7];
COUNT[6];
COUNT[5];
COUNT[4];
DATA[7];{FORCE_LOCAL_FB};
DATA[6];{FORCE_LOCAL_FB];

END GROUP;

SECTION
TARGET ‘S1Bb’;
{FORCE_LOCAL_FB};
COUNT[3];
COUNT[2];
COUNT[1];
COUNT[0];
DATA[5];
DATA[4];

END SECTION
END DEVICE;

Specif ying Fanout
To route a signal between two points, the fitter needs to kno
the signal’s:

• Fanout destinations: The PAL block inputs are the signa
destinations.

• Path: If the destination is within a segment, no path 
information is required. If the fanout crosses segment 
boundaries via the segment interconnect bus, the 
intersegment line has to be specified.
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{FANOUTS 
’S< seg_id >B<block_id >M<mux_id ><mux_line > 
S<intersegment_line >'};

where

seg_id  = 0 .. 7

block_id  = a | b | c | d  (must be lower case)

mux_id  = 0 .. 31

mux_line  = 0 .. 7

intersegment_line  = 0 .. 191

You can use the syntax shown above to specify a local feedb
by using I7 for mux_line. This assumes an 8:1 Level 1 mux.

Example

A FANOUT specification of S0BaM01S100 means route to: 

• Level 1 mux S0BaM0. 

• Select line 1 via intersegment line 100.

DEVICE
" fully specified signal, NOT within a section
" The third fanout for j1 specifies a local feedback
INPUT j1:S2BaM00 { FANOUTS 'S2BaM0,S1BaM1I1,S2BaM00I7' };
NODE  j2:S3BaP15 { FANOUTS 'S2BaM1I7' }; "This line will

"produce an error, local feedback incorrectly specified
NODE  j2:S3BaP15  { FANOUTS 'I7' }; 

"correct j2 fanout spec, local feedback

SECTION
TARGET 'S0Ba'; "force out7..out8 into

"MACH5 segment 0 block A
q1:M00; "placements are local to block
INPUT i1:P01  { FANOUTS 'M0I0,S1BbM2I3' };

" 2 fanouts: 1st fanout is
" S0BaM0I0 if fully specified

NODE  f1:M01  { FANOUTS 'M15I10' }; 
"route to L1 mux 15, line 15 of this
"block signal origin is M01 of this 
"block.  Note that i2 has been removed 
"from this section and the fanout moved  
"to its block of origin.

END SECTION;

SECTION
TARGET 'S1Bb'; "force out7..out8 into 
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"MACH5 segment 1 block b
q2:M00; "placements are local to block
INPUT i2:P02; { FANOUTS 'M0I1,S0BaM0I1' };  

" 2 fanouts
f2:M01  { FANOUTS 'M1I2' }; "route to L1 

"mux 1, line 2 of this block
"Note that i1 has been removed from 
"this section and the fanout moved
"to its block of origin.

END SECTION;

END DEVICE;

Implementin g Toggle 
Register Feedback
A toggle (T) register is implemented by taking the feedback 
the register output Q and XORing it with the D register input
The toggle feedback can be 

• A local feedback. 

• Routed via a level 2 demux and the segment bus (non-loc

The property LOCAL_TOGGLE_FEEDBACK is used to forc
local toggle feedback.

The LOCAL_TOGGLE_FEEDBACK property can be 
specified at the device, SECTION or signal (outputs and nod
only) level.

If a local feedback path cannot be found for the toggle feedba
the fitter generates a warning.

Implementin g Dual-
Edge Clockin g
The MACH 5 has three clocking options:

• Selectable positive/negative edge clocking.
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• Clocking on both edges.

• Complementary clocking, creating an inverse of clock lin
3 (CLK2) on clock line 4 (CLK3). 

The DSL control modifier CLOCKED_BY BOTH_EDGES lets
you make use of either or both edges of the specified clock. Y
can use enables to specify negative or positive edge clocking
means of two keywords: 

• CLOCK_ENABLED_BY NEG_EDGE 

• CLOCK_ENABLED_BY POS_EDGE.

If a CLOCK_ENABLED_BY is not specified with the 
CLOCKED_BY BOTH_EDGES construct, the equation 
defaults to clocking on BOTH edges.

Complementary clocking is available if the macrocell is not 
controlled by a CLOCKED_BY BOTH_EDGES construct. 
Complementary clocking uses clock line 3 (CLK2) as the 
primary clock and clock line 4 (CLK3) as the inverted clock.

Syntax

OUTPUT signal_name  CLOCKED_BY BOTH_EDGES_OF clk_name  
CLOCK_ENABLED_BY POS_EDGE enable_name ;
CLOCK_ENABLED_BY NEG_EDGE enable_name ;
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Example
INPUT clk1, clk2, ce1, ce2;
OUTPUT out1 CLOCKED_BY BOTH_EDGES_OF clk1; 

"clocks out1 on both edges of clk1

OUTPUT out2 CLOCKED_BY BOTH_EDGES_OF clk2
CLOCK_ENABLED_BY POS_EDGE_OF ce1
CLOCK_ENABLED_BY NEG_EDGE_OF ce2;
"clocks out2 on either edge of clk2,
"determined by enables ce1 and ce2 

Specif ying Reserve 
Capacit y
The MACH_UTILIZATION property specifies the amount of 
reserve capacity to leave available in a device. This affects 
use of pterms and macrocells. 

Syntax

{MACH_UTILIZATION percent } ;

where percent  is the percentage of device resources to be us
The range of values is 0 to 100.

The unused resources are distributed throughout the device
There are two reasons to reserve some resources in a devic

• To allow for expansion of logic.

• To ease and speed the fitting process. Simply put, it is ea
for the fitter to place and route a solution at 80% utilizatio
than at 100% utilization. If design iteration speed is more
important than density (for example, earlier in the design
cycle or for refitting), set the utilization factor to a lower 
value.
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Constrainin g the Size of 
Combinatorial Nodes
You can constrain the size of combinatorial nodes PLSyn 
collapses during the optimization process, thereby affecting h
the logic fits into MACH devices.

To constrain the size of combinatorial nodes

1 Use the MAX_PTERMS property in your .pi  file using the 
syntax:

{MAX_PTERMS p};

where p is the maximum number of PTERMs to which th
optimizer can collapse.

The PLSyn optimizer collapses combinatorial nodes up to a s
specified by MAX_PTERMS. 

Makin g Adjustments

Usin g lower MAX_PTERMS generall y results in

• Less node collapsing 

• Smaller functions 

• Slower implementation 

• May increase routing requirements

If the value is low, the design will typically be implemented a
a larger number of smaller equations. This makes placemen
somewhat easier because smaller functions do not place dem
on the pterm allocation mechanism, but more smaller functio
may require more routing resources and may require more 
overall macrocell logic. 
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Usin g higher MAX_PTERMS generall y results in

• More node collapsing 

• Larger functions 

• Faster implementation 

• May increase routing requirements

Fewer larger functions may ease the routing requirements, b
be harder to place, because the demand for pterms may ca
conflicts in placing functions together in a PAL block.

Note For optimal fitting, you should try a number of 
values to determine the best value for your design.

To see the exact effect of chan ging the optimizin g 
parameters

1 After optimizing, open the .doc  file.

2 Check the number of nodes. The number of nodes gener
goes down as the MAX_PTERMS parameter goes up.

A Few Considerations
• Either High or Low MAX_PTERMS can cause greate

routing demand.

• Lower MAX_PTERMS can produce more internal 
nodes which must be routed to the equations where th
are used.

• Higher MAX_PTERMS can allow a node to be 
collapsed into multiple equations so that the signals 
required to generate the node may be needed in mult
places. Furthermore, large equations may require lar
numbers of signals to be routed into the block where t
equation is placed, producing a locally high routing 
demand.
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Other Optimizin g Parameters
For general purposes, the following parameters may be use
the .pi  file for designs targeting MACH5 devices.

Controllin g Power 
Levels
The syntax for specifying power level is:

POWER LOW | MED_LOW | MED_HIGH | HIGH

Power levels can be specified at a signal, SECTION or devi
level. The fitter will check the power levels for consistency 
across the various levels. Error messages will be printed ou
when the power levels specified do not match. If none is 
specified, the default power level will be HIGH.

Example

SECTION
TARGET 'S1Bb'; "force out7..out8 into MACH5

"segment 1 block b
q2:M00; "placements are local to block
INPUT o2:P02; { FANOUTS 'M0I0', POWER LOW }; 

"power level for o2 is low
f2:M01  { FANOUTS 'M1I1'  };"Use default slew rate

"which is FAST
END SECTION;

MAX_PTERMS 32

MAX_XOR_PTERMS 31

MACH_UTILIZATION 100

MAX_SYMBOLS 32

POLARITY_CONTROL TRUE

XOR_POLARITY_CONTROL TRUE
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Controllin g Slew Rates
The syntax for specifying slew rate is:

SLEW_RATE  SLOW | FAST

Slew rate can be specified for signal, SECTION or device lev
The fitter will check the slew rates for consistency across th
various levels. If slew rates specified do not match, the fitter w
generate an error.

Example

SECTION
TARGET 'S1Bb';"force out7..out8 into MACH5 

"segment 1 block b
q2:M00; "placements are local to block

"{ SLEW_RATE FAST }
INPUT o2:P02; { FANOUTS 'M0I0', SLEW_RATE SLOW }; 

"slew_rate is SLOW

f2:M01  { FANOUTS 'MII1'  }; "Use default slew 
"rate which is FAST

END SECTION;

There is also a factory-programmed device-level downgrade
SLOW. When set to SLOW, it overrides the FAST slew rate
attribute for individual signals. If individual signals are 
explicitly specified with a FAST slew rate and the device-lev
slew rate has been downgraded to SLOW, the fitter will gener
a warning.
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The Document File
The document file, design_name.doc , contains information 
about the various stages of compilation and partitioning. The
following information is contained in the .doc  file:

• Information about the design (title, designer, date, compa
etc.) and switch values specified for compiler and optimiz
functions.

• Explicit (or reduced) design equations that are realized i
the final layout.

• A list of the solutions generated for the design.

• Partitioning criteria used in generating the device solutio

• Pinout diagrams of the device solution selected.

• A list of possible devices for the templates in the solution

• A wire list.
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The Report File
In addition to the .doc  file, a report file, design_name.rpt , 
will be generated for an MACH 5 device. The report file 
generally contains the sections described below.

Headin g
This section generally contains the following information:

• Date when the design was run through the fitter

• Part type and device number

• Package type

• User supplied design information

Example

DATE:     Fri Jan 26 14:44:48 1996

DESIGN:   prob1.fb
DEVICE:   MV256_160:1
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Summar y Statistics
This section summarizes the design in terms of number-of-
clocks, inputs, nodes and outputs at the device level and its
various sub-partitions namely, segments and PAL blocks. 
Power levels for each block are specified here. 

Example

SUMMARY STATISTICS:

 10 Inputs
 32 Outputs
  0 Tri-states
124 Nodes

Functions by block:
  S0:  8  7 12 12 
  S1:  8  7 12 12 
  S2:  8  7 12 12 
  S3:  8  7 12 12

D Register Macrocells    36
T Register Macrocells    24
D Latch Macrocells       0
Combinatorial Macrocells 92
D Input Registers        0
D Input Latches          0

Xor Equations            24
Single-Pterm Equations   23
Total Pterms Required    867
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Power Resource Utilization
The POWER SUMMARY section shows the following:

• Number of blocks with power set to LOW

• Number of blocks with power set to MED_LOW

• Number of blocks with power set to MED_HIGH

• Number of blocks with power set to HIGH

Example

POWER SUMMARY:

Number of blocks with power set to LOW is 0
Number of blocks with power set to MED_LOW is 0
Number of blocks with power set to MED_HIGH is 0
Number of blocks with power set to HIGH is 16

Device Resource Utilization
The DEVICE RESOURCE UTILIZATION section provides 
utilization statistics for the different device resources at the 
device, segment and PAL block partitions. A table is provide
for each partition with the following columns: 

Resource Name of resource; the resources available
for each block may be different

Available Available resource count for the partition

Used Used resource count for the partition

Remainin g Unused resource count for the partition

Percent Percentage resource utilization for the 
partition
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The resource types referenced in these tables are defined a
follows: 

 

The resource types for the device and segment partitions ar

 

The resource types for the PAL block partitions are divided in
two groups:

 

Clocks Clock pins used for clock signals

Pins Input and I/O pins used in any capacity

I/O Pins Number of bonded-out pin feedbacks

Input Re gs Macrocells used as input registers

Macrocells Macrocells without output/buried 
distinction

Pterms AND array rows used in equation 
generation

Feedbacks Inputs to the Switch Matrix

Fanouts Inputs to the AND Arrays

Blk Clocks Number of selectable clock lines for each 
block

Clocks Pins

Input Regs Macrocells

Pterms Feedbacks

Fanouts

Clock generator 
block:

Clocks

Pterms

Blk Clocks

Macrocell block: I/O Pins

Input Regs

Macrocells

Pterms

Feedbacks

Fanouts
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 DEVICE RESOURCE UTILIZATION:

Resource Available Used Remaining %

DEVICE

Clock Pins: 4 1 3 25

I/O Pins: 160 41 119 25

Input Regs: 32 0 32 0

Macrocells 256 156 100 60

Control Pterms 144 16 128 11

Cluster Pterms 1024 876 148 85

1-pt Clusters: 256 180 76 70

3-pt Clusters: 256 252 4 98

Signal Resources 512 133 379 25

Array Inputs 512 264 248 51

Intersegment Lines: 128 9 119 7

SEGMENT 0

Clock Pins: 4 1 3 25

Pins: 40 17 23 42

Input Regs: 8 0 8 0

Macrocells: 64 39 25 60

Control Pterms: 36 4 32 11

Cluster Pterms: 256 219 37 85

1-pt Clusters: 64 45 19 70

3-pt Clusters: 64 63 1 98

Signal Resources: 128 40 88 31

Array Inputs: 128 66 62 51

Segment Lines: 128 40 88 31

CONTROL BLOCK ‘S0Ba’

Clock Pins: 4 1 3 25

Blk Pins: 4 1 3 25

Enable Pterms: 2 0 2 0

Init Pterms: 3 1 2 33

Clock Pterms: 4 0 4 0

MACROCELL BLOCK ‘S0Ba’

I/O Pins: 16 8 8 50

Input Regs: 2 0 2 0

Macrocells 16 8 8 50

Cluster Pterms 64 61 3 95

1-pt Cluster 16 14 2 87

3-pt Clusters: 16 16 0 10

Signal Resources 32 10 22 31

Array Inputs 32 14 18 43
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Partition Groups
This section shows how functions (outputs and nodes) are 
assigned to the PAL blocks. It shows which signals must be
routed to the PAL block to generate the functions assigned to
block. It also shows how many unique clocks, enables and 
register preset/reset equations are required for the assigned
functions.

Example

PARTITION GROUPS:

Block 'S0Ba'Partition 0;     Group-type FIXED_GROUP;
1 Clocks;   0 Enables;   1 Register Sets
8 Functions
O3[4] O3[2] O3[1]
prep_4.12.large-0prep_4.12.large-1prep_4.12.large-2
prep_4.12.large-3prep_4.12.large-4 

15 Signals
clk rst q8[7]              
q8[6] q8[5] q8[4]              
q8[3] q8[2] q8[1]              
q8[0] prep_4.12.large-0prep_4.12.large-1
prep_4.12.large-2prep_4.12.large-3prep_4.12.large-4  

Block 'S0Bb'Partition 1;     Group-type FIXED_GROUP;
1 Clocks;   0 Enables;   1 Register Sets
7 Functions
q8[5] q8[4] prep_4.11.large-0
prep_4.11.large-1prep_4.11.large-2prep_4.11.large-3
prep_4.11.large-4 

15 Signals

clk rst q7[7]
q7[6] q7[5] q7[4]
q7[3] q7[2] q7[1]
q7[0] prep_4.11.large-0prep_4.11.large-1  
prep_4.11.large-2prep_4.11.large-3prep_4.11.large-4  

Block 'S0Bc'Partition 2;     Group-type FIXED_GROUP;
1 Clocks;   0 Enables;   1 Register Sets
12 Functions
q7[7] q7[6]              q7[1]
q7[0] q8[7]              q8[6]
q8[3] q8[2]              q8[1]             
q8[0] prep_4.10.large-0  prep_4.10.large-3 
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20 Signals
I[7] I[6] I[5]               
I[4] I[3] I[2]               
I[1] I[0] clk                
rst prep_4.10.large-0prep_4.10.large-1  
prep_4.10.large-2prep_4.10.large-3prep_4.10.large-4  
prep_4.11.large-0prep_4.11.large-1prep_4.11.large-2  
prep_4.11.large-3prep_4.11.large-4  

Signal Director y
Clocks, inputs, outputs and nodes on the part are listed with
specific assignment information for each signal. Slew rate 
which is on a per-signal basis on the MACH 5 will also be list
here. 

The signal directory table will have the following columns: 

Signal # The index number used to reference 
the signal

Signal Name The user identifier for the signal

Source Type {Input | Hidden | Output | Biput | 
Internal} with register type qualifiers

PalBlk Pal Block where output or node is 
assigned

Clusters: Used Number of Pterm Clusters used to 
generate function

Clusters: Unused 
PTs

Unused Pterms left in used clusters

Pal Block Inputs Array input lines for Signal Fanouts
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Example
SIGNAL DIRECTORY:

Notes:
Register type suffix '_X' indicates XOR used;
Register type suffix '_LT' indicates function is LOW_TRUE.
'RS_SWAP' flags functions which are preset at power-on.
'OE' flags tri-state functions.

[  0] Output: O[7]
Pin 168 (I/OBlock S3Bd  Macrocell_02  4 Pterm COMB        

[  1] Output: O[6]
Pin 169 (I/O)Block S3Bd  Macrocell_03  2 Pterm COMB        

[  2] Output: O[5]
Pin 170 (I/O)Block S3Bd  Macrocell_04  2 Pterm COMB        

[  3] Output: O[4]
Pin 165 (I/O)Block S3Ba  Macrocell_00  1 Pterm COMB        

[  4] Output: O[3]
Pin 171 (I/O)Block S3Bd  Macrocell_05  2 Pterm COMB        

[  5] Output: O[2]
Pin 163 (I/O)  Block S3Ba  Macrocell_02  1 Pterm COMB        

[  6] Output: O[1]
Pin 164 (I/O)Block S3Ba  Macrocell_01  3 Pterm COMB        

[  7] Output: O[0]
Pin 172 (I/O)Block S3Bd  Macrocell_06  2 Pterm COMB        

[  8] Node: q1[7]
S3BcM2 Block S3Bc  Macrocell_02  4 Pterm COMB        

[  9] Node: q1[6]
S3BcM1 Block S3Bc  Macrocell_01  2 Pterm COMB        

[ 10] Node: q1[5]
S3BdM1 Block S3Bd  Macrocell_01  2 Pterm COMB        

[ 11] Node: q1[4]
S3BdM0 Block S3Bd  Macrocell_00  1 Pterm COMB        

[ 12] Node: q1[3]
S3BdM12 Block S3Bd  Macrocell_12  2 Pterm COMB        
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Fanout Table
The headings in the table have the following meanings: 

Signal_Src Signal name from the SIGNAL 
DIRECTORY LIST

ISL# Intersegment line number to which 
Signal_Src connects

SL# Segment line number

Src SL# Segment line number for the same segmen
as the source signal
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----------------------

L# Mux Blk SL# Mux

6 M16I3

7 M22I5

4 M18I4

5 M17I4

04 M06I5

116 M29I4 S1Bc 119 M30I6

98 M09I5 S2Bd 98 M31I5

102 M19I5

117 M13I1 S0Bc 117 M04I5

101 M21I3 S1Bb 101 M00I1

101 M18I5 S2Ba 114 M12I0

114 M24I6 S2Bd 114 M07I6

100 M12I1 S3Bc 100 M08I5

86 M04I3 S1Bc 87 M01I4

65 M22I3 S2Bd 65 M01I3

71 M18I3

119 M05I6 S1Bc 99 M19I5

115 M01I5 S2Bd 115 M11I6

111 M30I6

89 M07I4 S1Bc 73 M06I3

92 M14I4 S2Bd 92 M03I4

88 M02I4
Example
FANOUT TABLE:

PASS/ Src Fanouts-------------

FAIL Signal_Src ISL# SL# Blk SL# Mux Blk S

Block S0Ba:

PASS[151] S0BaM3 --- --- S0Ba 66 M17I2 S0Bd 6

PASS[152] S0BaM4 --- --- S0Ba 97 M24I0 S0Bd 9

PASS[153] S0BaM5 --- --- S0Ba 74 M16I1 S0Bd 7

PASS[154] S0BaM8 --- --- S0Ba 75 M27I2 S0Bd 7

PASS [155] S0BaM11 --- --- S0Ba 104 M07I0 S0Bd 1

PASS [162] S0BaP4 35 116 S0Bc 116 M11I5 S0Bd

S1Bd 119 M05I6 S2Bc

S3Bc 102 M22I5 S3Bd

PASS [165] S0BaP5 11 117 S0Ba 117 M01I0 S0Bb

S0Bd 117 M03I6 S1Ba

S1Bc 101 M15I5 S1Bd

S2Bb 114 M04I1 S2Bc

S3Ba 100 M29I0 S3Bb

S3Bd 100 M13I5

PASS [156] S0BaP6 90 86 S0Bc 86 M10I3 S0Bd

S1Bd 87 M28I4 S2Bc

S3Bc 71 M20I3 S3Bd

PASS [163] S0BaP7 23 119 S0Bc 119 M03I5 S0Bd

S1Bd 99 M16I5 S2Bc

S3Bc 111 M31I5 S3Bd

PASS [157] S0BaP9 126 89 S0Bc 89 M09I4 S0Bd

S1Bd 73 M23I5 S2Bc

S3Bc 88 M10I4 S3Bd
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BLOCK CONFIGURATION TABLES:
Notes: '*' indicates that the pin is bonded-out
BLOCK 'S0Ba': POWER=HIGH
   CONTROL PTERMS:
           RST0 = rst ;
   BLOCK CLOCKS:
      BLK_CLK 2 (PIN_CLOCK,POL=HIGH) : c
      BLK_CLK 3 (PIN_CLOCK,POL=LOW) : c
ARRAY INPUTS:

[---] [165] [---] [138] [

[140] [---] [---] [---] [---

[153] [151] [---] [---] [

[152] [---] [137] [154]
Power Table

Example

POWER TABLE:

            BLOCK A   BLOCK B   BLOCK C   BLOCK D
SEGMENT  0: HIGH      HIGH      HIGH      HIGH     
SEGMENT  1: HIGH      HIGH      HIGH      HIGH     
SEGMENT  2: HIGH      HIGH      HIGH      HIGH     
SEGMENT  3: HIGH      HIGH      HIGH      HIGH     

Block Confi guration Tables

Example

Note Array inputs I0 through I31 are are assigned signal 
names from the SIGNAL DIRECTORY list.

lk ;
lk ;

139] [---] [135] [155] Inputs I0 to I7

] [---] [---] [---] Inputs I8 to I15

136] [134] [133] [---] Inputs I16 to I23

[---] [---] [---] [---] Inputs I24 to I31
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Node OE Pin

[---] VCC [120] *

[---] VCC [123] *

[---] VCC [122] *

[151] GND [---] *

[152] GND [162] *

W [153] GND [165] *

GND [156] *

GND [163] *

W [154] GND [---] *

GND [157] *

GND [---] *
In the following segment, labels have the following meaning

Example

Pterms Used Number of pterms used on this macrocell; i
the column has 1+7, it means 7 pterms we
used and one pterm was steered from 
elsewhere

Pterms Avl Number of pterms available for this 
macrocell

PT Map Indicates whether pterm was applied to the
XOR or product term cluster (OR input)

POL Indicates polarity of the signal

CLK Indicates which clock from the clock 
generator was used

Reg Ctrl Indicates whether signal was combinatoria
or registered

Slew Slew rate set

OE Indicates whether the output enable was 
high or low

Node Relative node number

Pin Actual pin number

C C C C C C C C C C C C C C C C P C

0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 Pterms PT O L Reg

MC                     0 1 2 3 4 5 Used Avl Map L K Ctrl Slew

00 1 - - - - - - - - - - - - - - - 1 0 SUM L 3 COMB FAST

01 3 - - - - - - - - - - - - - - - 3 0 SUM l 3 COMB FAST

02 - - 1 - - - - - - - - - - - - - 1 0 SUM L 3 COMB FAST

03 - 4 3 1 - - - - - - - - - - - - 1+7 0 XOR H 2 RST0 SLOW

04 - - - 3 1 4 4 - - - - - - - - - 1+11 0 XOR H 2 RST0 SLOW

05 - - - - 3 - - 4 4 - - - - - - - 11 0 SUM H 2 RST0 SLO

06 - - - - - - - - - - - - - - - - - - --- - - ---- ---- [---]

07 - - - - - - - - - - - - - - - - - - --- - - --- --- [---]

08 - - - - - - - - - 3 3 4 4 - - - 13 1 SUM H 2 RST0 SLO

09 - - - - - - - - - 1 - - - - - - - - --- - - --- --- [---]

10 - - - - - - - - - - 1 - - - - - - - --- - - --- --- [---]
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Chapter Overview
This chapter describes how to control the fitting process for 
Atmel’s ATV5000 architecture. Topics include:

• General information about designing with the ATV5000,
page 10-2

• Tips and device details, pages 10-2 through 10-17

• The report file, page 10-18
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See Chapter 6, Controlling the 
Fitting Process Using the .pi 
Fileand the PIL Reference in 
PLSyn online help for more 
information on the .pi file.
Designin g with the 
ATV5000
The Atmel ATV5000 CPLD is supported by PLSyn through 
automatic device selection and automatic partitioning/fitting.
The ATV5000 is a sophisticated device, with many unique 
features. ATV5000-Specific Optimization

There are several .pi  properties that control optimization of the
design. While these properties are not specific to the ATV50
they provide a means of tuning the optimization to best fit a 
design into ATV5000 parts. 

Constrainin g the Size of 
Combinatorial Nodes
The MAX_PTERMS and MAX_SYMBOLS properties are the
key optimizer properties for fitting into the ATV5000. For mos
designs, the following settings for MAX_PTERMS and 
MAX_SYMBOLS are suggested:

{
MAX_PTERMS  13,
MAX_SYMBOLS 40
}
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The Effect of MAX_PTERMS
The MAX_PTERMS property is the most critical property for
optimizing a design for the ATV5000. The effect of changing
MAX_PTERMS is summarized here.

Usin g higher MAX_PTERMS generall y results in 
this

• Fewer leftover combinatorial nodes

• Larger functions

• Faster implementation

• Increased number of sum terms required

Setting MAX_PTERMS higher may increase the number of su
terms needed. The PLSyn fitter may place small registered 
nodes on logic cell register Q2 or on the buried logic cells. 
However, as MAX_PTERMS is increased, the registered nod
increase in size beyond the capacity of the sum terms feedi
register Q2 and the buried logic cells. The only option remain
may be to use more logic cell sum-terms to feed register Q1
possibly leaving register Q2 unusable.

Usin g lower MAX_PTERMS generall y results in 
this

• More leftover combinatorial nodes

• Smaller functions

• Slower implementation

• Increased regionalization requirements

Setting MAX_PTERMS lower may increase regionalization 
requirements. The regionalization requirements depend on 
number of universal PTERMs in each function. Increasing 
MAX_PTERMS may increase the number of PTERMs in ea
function, but the number of universal PTERMs in each functi
does not necessarily also increase. This is so because in th
ATV5000, combinatorial shadow nodes feed back into the 
universal bus. Lowering MAX_PTERMS will cause more 
combinatorial nodes to remain after node collapsing, and th
additional combinatorial nodes may cause certain PTERMs 
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be universal rather than regional, possibly increasing 
regionalization requirements.

To see the exact effect of chan ging the optimizin g 
parameters

1 Open the .doc  file after optimizing and check the number
of nodes. The number of nodes generally goes down as
MAX_PTERMS parameter goes up.

It is advantageous to keep the number of combinatorial nod
low. This is because the combinatorial shadow nodes in the
ATV5000 (the nodes in the logic cell where combinatorial no
signals are placed) do double duty as RU converters. Howe
this depends on the particular design. If there are not many 
signals that must be routed from a quadrant's regional bus to
universal bus, it may be more advantageous to keep the siz
the functions smaller.

In critical fitting cases, it may be necessary to try several setti
for MAX_PTERMS to get satisfactory results.

The Effect of MAX_SYMBOLS
Increasing MAX_SYMBOLS will increase the number of 
inputs per PTERM in output and node signals. We suggest 
setting MAX_SYMBOLS to 40 because the smallest produc
terms are the regional product terms, which have 40 input 
signals available. Increasing MAX_SYMBOLS will potentially
create PTERMs that are too big for the regional rows in the 
ATV5000.
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Specif ying Device 
Utilization
To specif y the amount of reserve capacit y to 
leave available in a device

1 Use the ATV5_UTILIZATION property in your .pi  file 
using the syntax:

{ATV5_UTILIZATION percent};

where percent if the percentage of device resources to b
used. The range of values is 0 to 100.

This affects the use of PTERMs, macrocells, and pins.The 
unused resources are distributed throughout the device. The
are two reasons to reserve some resources in a device:

• Resources may be reserved to allow for expansion of lo

• Resources may be reserved to ease and speed the fittin
process. It is easier for the PLSyn fitter to place and rout
solution at 80% utilization than at 100% utilization. If 
design iteration speed is more important than density (e
earlier in the design cycle), set the utilization factor to a 
lower value.

Usin g the Flip-Flop 
Clock Option
The flip-flop clock option in the ATV5000 architecture can 
provide the clock for the registers from two locations:

• One product term.

• One product term ANDed with a clock pin signal.

The PLSyn fitter uses this flip-flop clock option to:

• Provide enabled clocking functionality.
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For more information on 
CLOCK_ENABLED_BY, refer to 
the PIL Reference in PLSyn 
online help.
• Allow you to control the source of the clock signal.

Enablin g Clockin g
A registered output or node signal may be declared in the .src  
file to have a clock enable through the DSL 
CLOCK_ENABLED_BY declaration. The PLSyn fitter will 
implement clock enable functionality by using the flip-flop 
clock option as follows:

• The clock signal is placed on the regional clock pin.

• The PTERM given in the CLOCK_ENABLED_BY 
declaration is placed on the clock product term.

Therefore, the clock signal will not be seen by the register un
the CLOCK_ENABLED_BY PTERM is asserted.

The clock for the registered output or node signal must be a
single signal. The clock enable may be a single signal or a sin
PTERM. 

There is no on-chip synchronization circuitry between the clo
signal and the clock product term. It is your responsibility to
assure that the signals that feed the flip-flop clock option are
glitch-free.

Example

SOURCE FILE

INPUT i, clk, ce1..ce2;
OUTPUT o CLOCKED_BY clk CLOCK_ENABLED_BY 
ce1*ce2;
o = i;

Controllin g the Clock Source
The flip-flop clock option in the ATV5000 allows the clock for
registered output and node signals (with no clock enable), to
provided by one of two sources:
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• a dedicated clock pin, one per quadrant

• the clock product term

By default, the PLSyn fitter will place the clock on the clock 
product term, saving the quadrant clock pin for inputs to the
regional bus. However, if you need the speed provided by th
quadrant clock pin, you can specify that the clock be placed
the quadrant clock pin. This is done through the 
CLOCK_BY_PIN .pi  property.

This property cannot be used if the signal is clocked by an 
equation (for example, CLOCKED_BY a*b).

Example

SOURCE FILE

INPUT i, clk;
OUTPUT o CLOCKED_BY clk;
o = i;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';
o {CLOCK_BY_PIN};   "Force the clock to

"come from the quadrant clock pin
END DEVICE;

You can also explicitly specify that the clock is to be supplie
by the clock product term. This is done through the 
CLOCK_BY_ROW .pi  property.

CLOCK_BY_ROW is the default for registered outputs and 
nodes.

Example

SOURCE FILE

INPUT i, clk1..clk2;
OUTPUT o CLOCKED_BY clk1*clk2;
o = i;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';
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o {CLOCK_BY_ROW};
END DEVICE;
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For more information on unaries, 
see Accessing Internal Points 
in a PLD Device on page 7-2.
Usin g the I/O Pin 
Latches
The I/O pins in the ATV5000 architecture can direct an inpu
signal through a latch. You can use the I/O pin latches throu
the latched unary concept. 

The PLSyn fitter considers the I/O pin latches to be unary nod
and hence possible locations for placing unary functions.

To declare a unary function in your design, declare a node sig
in the .src  file with the following characteristics:

• Declared as a latched node signal.

• Latched by either a low-true or an inverted signal.

• Fed by a single signal.

The PLSyn fitter may place the unary functions automaticall
or you can place them manually through .pi  file assignments.   
See the following section for the unary pin names.

Identif ying Pins and 
Nodes
This section describes the pin and node names for the ATV50
This information is useful to manually assign signals to pins a
nodes in the .pi  file. It is also useful for interpreting where 
signals were fit in the .rpt  and the .npi  files.

The ATV5000 has both physical pins and virtual pins. Physic
pins are the pins that physically appear on the device packa
Virtual pins are device node locations where node signals m
be placed.

Physical pins are referenced by the pin number in the packa
diagram.

Virtual pins are named according to their characteristics and
their location in the device. The names imply the characterist
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of the device nodes, their location within the logic cell or burie
logic cell, and the physical pin number of the logic cell that th
are associated with.

REG_SHADOW_OF_ Registered shadow pins are 
located on register Q1, with the logic cell disconnected from t
I/O pin. The I/O pin then functions as an input. Registered 
shadow pins have access to sum terms A, B, and C. Regist
node signals may be placed on registered shadow pins.

COMB_SHADOW_OF_ Combinatorial shadow pins are
located on sum term B, with the feedback going into the 
universal bus. Combinatorial shadow pins have access to su
term B. Combinatorial node signals may be placed on 
combinatorial shadow pins.

BURIED_OF_ Buried pins are located on register Q2. 
Buried pins have access to sum term C. Registered node sig
may be placed on buried pins.

UNARY_OF_ Unary pins are located on the I/O pin latch
Unary functions may be placed of binary pins.

BLMC Designator for the buried logic cells. Combinatoria
node signals or registered node signals may be placed on th
buried logic cells.
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For more information on 
GROUP, refer to the PIL 
Reference in PLSyn online help.
Targetin g Quadrants in 
the ATV5000
You can specify which output and node signals are to be pla
together in the same quadrant of a device. This specification
done in the .pi  file. There are several reasons for explicitly 
grouping signals in the ATV5000, including:

• Critical timing may require you to keep a group of signals 
the same quadrant, minimizing speed lost in RU convers

• PCB layout may be easier when related signals are kep
together.

• Critical fitting cases may require you to manually tune th
partitions created by the PLSyn fitter in order to achieve
successful fit.

Usin g the GROUP Construct
The .pi  file GROUP construct allows you to specify a set of
output and node signals that are to be fit together into the sa
quadrant, without specifying which quadrant and without 
keeping multiple GROUPs from being fit together in the sam
quadrant. 
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For more information on 
SECTION, refer to the PIL 
Reference in PLSyn online help.
Example

SOURCE FILE

INPUT i[8];
OUTPUT ogroup1[8];
OUTPUT ogroup2[8];
ogroup1 = i;
ogroup2 = i;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';
GROUP

ogroup1; "all ogroup1 signals will go
"into the same quadrant

END GROUP;

GROUP
ogroup2; "all ogroup2 signals may or

"may not also go into
"ogroup1's quadrant

END GROUP;
END DEVICE;

Usin g the SECTION Construct
The .pi  file SECTION construct allows you to specify a set o
signals that are to be fit together in the same quadrant. Two
different SECTIONS will not be fit into the same quadrant. 

In addition, you can specify which quadrant to fit the SECTIO
into with the TARGET construct.

Syntax is:

TARGET 'quadrant_name';

The list below details the names of the quadrants in the 
ATV5000.
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Quadrant Names

Quadrant 1
Quadrant 2
Quadrant 3
Quadrant 4

If a SECTION isn't targeted to a specific quadrant, PLSyn w
place the SECTION into a quadrant automatically.

Example

SOURCE FILE

INPUT i[8];
OUTPUT ogroup1[8];
OUTPUT ogroup2[8];
ogroup1 = i;
ogroup2 = i;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';
SECTION

TARGET 'Quadrant 1';
ogroup1;  "all ogroup1 signals

"will go into quadrant 1
END GROUP;

SECTION
TARGET 'Quadrant 2';
ogroup2;  "all ogroup2 signals

"will go into quadrant 2
END GROUP;

END DEVICE;
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Placin g Node Si gnals on 
Buried Lo gic Cells
The PLSyn fitter will not automatically place node signals on
the buried logic cells. However, you can manually place 
combinatorial or registered node signals on the buried node
This is accomplished through pin assignments in the .pi  file.

You can sometimes reduce the number of resources used f
regionalization by manually placing combinatorial node signa
on the buried logic cells rather than on the combinatorial shad
nodes. Since the buried logic cells feed back into the region
bus rather than the universal bus, as the combinatorial shad
nodes do, regionalization resources may be saved. Howeve
you must weigh this savings against potentially incurring RU
conversion if the signal placed on a buried logic cell is need
in another quadrant.

The PLSyn fitter uses the buried logic cells for regionalizatio
when fitting output and node signals. We recommended that 
do not assign node signals, especially registered node signa
the buried logic cells unless you are sure that you have eno
buried logic cells to satisfy regionalization requirements.

Example

SOURCE FILE

input i, clk;
node n clocked_by clk;
n = i;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';
n: BLMC23; "place node n on buried

"logic cell 23
END DEVICE;



Understanding RU Conversion 10-15

t's 

 
us, 
nals 
ion 

l to 
ing 
 the 
an 

 it 
rial 

0. 

nly 
ant 
Understandin g RU 
Conversion
When a design is partitioned across the quadrants of an 
ATV5000, there are often signals fed back into one quadran
regional bus via the Q1 and Q2 register feedbacks that are 
needed by output or node signals in a different quadrant. By
routing the necessary regional bus signals to the universal b
the signals can become available to the output and node sig
in other quadrants. This routing process is called RU convers
(Regional - Universal conversion).

The PLSyn fitter performs RU conversion automatically by 
using the logic cell configuration that gives sum term B a 
feedback path into the universal bus. The regional bus signa
be RU converted is placed on one of the regional rows feed
sum term B, and the signal then takes the feedback path into
universal bus. In this configuration, sum term B functions as 
RU converter.

When a logic cell's sum term B is used as an RU converter,
becomes unavailable for any other use (such as a combinato
shadow node).

Understandin g 
Regionalization
Regionalization is the process of manipulating a universal 
PTERM so that it may be fit on a regional row in the ATV500
Regionalization is used during the process of fitting the 
PTERMs of an output or node signal.

Universal and re gional PTERMs

Universal PTERMs have at least one signal that is available o
in the universal bus or in the regional bus of a different quadr
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than the output or node signal is assigned to. Universal PTER
can go only on the universal rows of the ATV5000.

All the signals of regional PTERMs are available in the region
bus of the same quadrant that the output or node signal is 
assigned to. Regional PTERMs may go on universal or regio
rows of the ATV5000.

Regionalization, sum-term combinin g, and fittin g 
PTERMs

In a difficult-to-fit design, the key to directing PLSyn’s PLSyn
fitter to a successful fit is simply understanding how the fitter
attempting to fit the universal PTERMs. It also helps to know
how sum-term combining and regionalization are interrelate
for a particular design. You can use the .rpt  file to obtain much 
information about the results of sum term combining and 
regionalization for a fit attempt.

When the PLSyn fitter fits the PTERMs of an output or node
signal, it attempts to get enough regional and universal rows
combining sum terms. If this fails to supply enough universa
rows, then regionalization is used to convert some of the out
or node signal's universal PTERMs to regional PTERMs, 
allowing placement of PTERMs on the otherwise unused 
regional rows.

In addition, if a node signal has a universal PTERM that must
on the regional row feeding the asynchronous preset of regi
Q2, regionalization will be used to convert that universal 
PTERM to a regional PTERM.

Regionalization is handled automatically by the PLSyn fitter
There are no provisions to manually force regionalization of
PTERMs.

There are two basic techniques used in regionalization:

• signal regionalization

• PTERM regionalization
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How PLS yn Does 
Regionalization
The Plsyn fitter always performs signal regionalization via inp
pins when attempting to fit a design. This is done before any
other regionalization technique is used.

UR conversion and PTERM regionalization are complementa
regionalization techniques. Some designs can only be fit via 
conversion, but others can be fit only via PTERM 
regionalization.

During a fit attempt, the PLSyn fitter varies the number of 
buried logic cells available per quadrant for PTERM 
regionalization, from 0 to 6, as it attempts to place the PTER
of output and node signals. The remainder of the buried log
cells are used for UR conversion. This allows the best mix o
these complementary regionalization techniques to be used

Signal Regionalization
Signal regionalization is the process of routing universal sign
to the regional bus of a quadrant. By regionalizing the univer
signals in a universal PTERM, the universal PTERM may 
become regional. Often, many universal PTERMs that have f
universal signals can be regionalized by regionalizing just a f
universal signals. The PLSyn fitter uses the input/clock pins a
UR conversion to regionalize signals.

Usin g input pins

The PLSyn fitter will place universal input signals on any inp
clock pins that are not used to supply clock signals to regist
or latches. The fitter uses the path from the pins into all four
regional buses to regionalize the universal input signals.

Input signals are selected for regionalization via input pins 
based on the number of universal PTERMs that need each 
universal input signal across the entire device.
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Usin g feedback paths (UR conversion)

UR conversion (Universal - Regional conversion) is the proce
of regionalizing universal signals, using the feedback path fro
the buried logic cells into the regional bus.

The PLSyn fitter performs UR conversion by placing a univers
signal on the universal row of a buried logic cell and configurin
the buried logic cell for combinatorial operation. When used
this manner, the buried logic cell functions as a UR converter.

PTERM Regionalization
Pterm regionalization is the process of regionalizing an entir
universal PTERM, using a buried logic cell. Since the entire
universal PTERM is regionalized at once, universal PTERM
that have a lot of universal signals can be regionalized via 
PTERM regionalization.

The PLSyn fitter performs PTERM regionalization by placing
the entire universal PTERM on the universal row of a buried
logic cell and configuring the buried logic cell for combinatoria
operation. Therefore, a signal representing the entire univer
PTERM is available in the regional bus, and substitutes for t
original universal PTERM in any output or node signals that
have the universal PTERM in their equations.
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The Report File
The .rpt  file is written by the PLSyn fitter during the process
of fitting part or all of a design into ATV5000 devices. The 
.rpt  file is useful as an aid in:

• Understanding why designs do not fit.

• Directing the PLSyn fitter to success in fitting a difficult 
design.

• Determining how a design was fit and the device resourc
that were used.

The .rpt  file is complementary to the .doc  file. It contains 
information about the design and about the attempt made by
PLSyn fitter to implement the design. This information is 
specific to the ATV5000. In-depth information about the inpu
output, and node signals is given, along with assignments to
device resources made by the PLSyn fitter.

Obtainin g Report File

To obtain a report file

1 Create a .pi  file with a DEVICE that is targeted towards an
ATV5000. 

No other specifications in the .pi  file are necessary. PLSyn will
generate automatically a report file named 
design_name<nn>.rpt  where <nn> is a sequence number 
representing the edition of the report.
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Example

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';

END DEVICE;

If you think the design will take more than one device, put a
many DEVICEs in the .pi  file as you think the design will 
need. A different .rpt  file will be created for each device in the
solution, named design_name01.rpt , 
design_name02.rpt , and so on.

Pin assignments, properties, and other .pi  file constructs may 
be placed in the DEVICEs if needed. They will not affect 
creation of the .rpt  file.

Headin g
The header contains the date and time the design was run 
through PLSyn. It also contains the user-supplied design 
information from the .src  file. This gives a way of identifying 
the .rpt  file.

DATE:     Fri Sep  2 15:18:45 1994Date design was run

DESIGN:   drink Design name
DEVICE:   ATV5000:1 Part name and position in PI file

DEVICE statement list

TITLE:    drink User-supplied information from
ENGINEER: ATV5000 Designer.src file
COMPANY:  Atmel Corporation
PROJECT:  ATV5000 .rpt example
REVISION: 1.0
COMMENT:  Example of ATV5000 .rpt file using example drink.src
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Failure-to-Partition Disclaimer
If the PLSyn fitter fails to partition the design successfully 
across the quadrants of the device, a disclaimer is printed 
immediately following the heading. This lets you know that 
partitioning failed.

If the design partitions successfully, no disclaimer will be 
printed.

Partitioner Report
This section shows:

• The functions (output and node signals) assigned to eac
quadrant.

• The signals that must be available in each quadrant.

• How many unique clocks, latch enables, enables, and 
register reset/preset equations are in each quadrant.

Signal Director y
This section contains information about the design that is 
specific to the ATV5000. All input, output and node signals 
assigned to the device are listed. 

For each signal, the buses that the signals are available in a
listed.

For output and node signals, the universal and regional PTER
are listed. Also shown for output and node signals is the 
equation form used (DFF, TFF, or DeMorganized).

The information in the signal directory is taken before any 
device resources are assigned to. Therefore, some signals 
become available in different buses during function placeme
Also, some universal PTERMs may be regionalized during 
function placement.
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Example
SIGNAL DIRECTORY:

Notes: Universal PTERMs may become regional
during function placement.
'BAR' indicates DeMorganized form equation used.
'DFF' indicates D flip-flop form equation used.
'TFF' indicates T flip-flop form equation used.

Input: nickel
Buses:  Univ  

Input: dime
Buses:  Univ  

Output:return_dime
Buses:  Univ 
Universal PTERMs:

/nickel*/dime*quarter*/drink_machine-1*drink_machine-2;
/nickel*/dime*quarter*drink_machine-0*

drink_machine-1*/drink_machine-2 ;
Regional PTERMs:

/drink_machine-0*drink_machine-1*drink_machine-2 ;

Node:DFF drink_machine-0
Buses:  Univ  Q1 
Universal PTERMs:

nickel*/drink_machine-0*/drink_machine-2 ;
nickel*/drink_machine-0*/drink_machine-1 ;
/nickel*/quarter*drink_machine-0*/drink_machine-2 ;

        /dime*quarter*/drink_machine-0*/drink_machine-1*
/drink_machine-2 ;

/nickel*/dime*/quarter*drink_machine-0*
/drink_machine-1 ;

/nickel*dime*drink_machine-0*/drink_machine-2 ;
Regional PTERMs:

In this example, the input signals nickel and dime are availa
in the universal bus. The output signal return_dime is availa
in the universal bus, has two universal PTERMs, and one 
regional PTERM. The node signal drink_machine-0 is availab
in the universal bus and quadrant 1's regional bus, and has 
universal PTERMs.
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Signals Universalized on Sum 
Term B
The signals that underwent RU conversion are listed here, 
quadrant by quadrant, as follows:

SIGNALS UNIVERSALIZED ON SUM TERM B:

Quadrant 1
----------
drink_machine-2
drink_machine-1
drink_machine-0

In this example, RU conversion was performed only in quadra
1.

Signals Re gionalized on Input 
Pins
Signals that were regionalized on input/clock pins are listed 
here. Signals that only supply register clocks or latches from 
input/clock pins are listed also, since they are available in al
regional buses.

Function Placement Report
The function placement report provides information about th
actions of the PLSyn fitter during output and node signal 
placement. Information about UR conversion, PTERM 
regionalization, and output/node signal placement is provide
If the PLSyn fitter failed to fit the design, this information is 
especially valuable as an aid in guiding the PLSyn fitter to a
successful fit.

Quadrant sections

The function placement report is organized on an primary le
around quadrant sections. In each quadrant section, functio
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placement progress for each quadrant is reported. Informati
about quadrant 1 is reported first, then quadrants 2, 3, and 4
any functions were assigned to those quadrants. Within eac
quadrant section, each line in the .rpt  file is preceded by a 
quadrant indicator to remind you of the current quadrant.

Fit attempt sections

Within each quadrant section, the function placement report
organized on a secondary level around fit attempt sections f
each quadrant. Each fit attempt section contains information
about function placement for a fit attempt within each quadra
Each fit attempt represents an attempt the PLSyn fitter mad
placing the functions in the quadrant, with a different number
buried logic cells available for PTERM regionalization in eac
fit attempt. There may be up to 7 fit attempts. See the preced
section on Understanding Regionalization for more informati
on regionalization and the fitting process.

Within each fit attempt section is an UR conversion report, a
PTERM regionalization report, and an output/node signal 
placement report. These three reports give information abou
regionalization and function placement progress for a fit 
attempt.

UR conversion report

The signals that underwent UR conversion during the fit attem
are listed in this table, along with the buried logic cells servin
as UR converters.

Pterm re gionalization report

The PTERMs that underwent PTERM regionalization during
the fit attempt are listed in this table, along with the buried log
cells each PTERM was regionalized on.

Output/node si gnal placement report

Each output and node signal that was successfully placed du
the fit attempt is listed in this table, with the pin the signal w
assigned to and the sum terms in the logic cell that were use
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the signal. This lets you examine how sum term combining w
performed. 

Example

The output/node signal placement report for the drink exam
for quadrant 1, fit attempt 1 looks like:

Q1: OUTPUT/NODE SIGNAL PLACEMENT REPORT:
Q1: 
Q1:        Device Pin    Sum terms used    Signal
Q1: -------------------------------------------------
Q1:  REG_SHADOW_OF_13        a b           drink_machine-0
Q1:  REG_SHADOW_OF_12        a b           drink_machine-1
Q1:  REG_SHADOW_OF_11        a b           drink_machine-2

Input Si gnal Placement Report
This table lists each input signal that was placed on an inpu
clock or I/O pin. Signals that were regionalized via input are a
listed. If all the input signals could not be placed, the failure 
notes.

Failure-to-Fit Disclaimer
If the PLSyn fitter fails to place all output, node, and input 
signals in the partitioned design, a disclaimer is printed 
immediately following the input signal placement report. Thi
lets you know that fitting failed.

If the design fit successfully, a message is printed with the 
number of functions successfully fit in the device.
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Appendix Overview
This appendix describes the sections of the documentation 
that PLSyn creates whenever you try to physically implemen
programmable logic design.
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Summar y of 
Documentation File 
Contents
PLSyn generates a documentation file for the design through
the physical implementation process. This file is called 
design_name.doc , by default, and contains the following 
information:

• Compiler and optimizer run-time options (switch values)

• Reduced design equations.

• Solutions generated for the design.

• Partitioning criteria.

• Pinout diagrams for the chosen implementation.

• A list of possible devices for each architecture in the 
solution list.

• A wire list.

To view the documentation file

1 In PLSyn, from the File menu, select Examine Doc File.
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Example: If you specify a JK flip-
flop as part of the design, the 
PLSyn compiler generates 
equations for all other flip-flop 
types as well. The synthesized 
equations are simply logically-
equivalent versions of the flip-
flop you specified. 
Reduced Desi gn 
Equations
When compiling and optimizing your programmable logic, 
PLSyn synthesizes the equations which represent the logic 
thereby creating additional alternative equations. The additio
equations give the PLSyn fitter more options when attempting
fit your design. This also means that the .doc  file might include 
equations in addition to those supplied by you in the design 
source file.

Equation Extensions Used in the 
.doc File
Table 10-1 lists equation types and the equation extension y
might see in the .doc  file.

Table 10-1 Equation Extensions Used in the .doc File

.doc File 
Extensio
n

Description Example

.XORL* if y =a (+) b, then y.xorl = a 

(left side of XOR operation)

Y.XORL

.XORR* if y =a (+) b, then y.xorr = b 

(right side of XOR operation)

Y.XORR

.EQN Combinatorial equation 

(no CLOCKED_BY on output, 
biput, or node)

A.EQN

.D D flip-flop equation FLOP.D

.J J flip-flop equation FLOP.J

.K K flip-flop equation FLOP.K

.S S flip-flop equation FLOP.S

.R R flip-flop equation FLOP.R 

.T T flip-flop equation FLOP.T
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yn Note PLSyn can always 
generate the complemented 
(DeMorgan) version of the 
equations. But when the 
version of an equation is non-
complemented, PLSyn might 
not be able to generate it 
because of its size.
DeMorgan Equations
In addition to the equations listed in the previous table, PLS
might generate DeMorgan versions of the same equations. 
These, too, are candidates for device fitting. 

In the .doc  file, PLSyn marks the DeMorgan version of an 
equation with a tilde (~) after the equation name.

Example

Suppose you have declared equations as follows:

INPUT a, b, oe;
OUTPUT or1 ENABLED_BY oe;
or1 = a + b;

*. The compiler/optimizer may generate an XOR equation, 
even if none was specified in the original .dsl file. Exam-
ples include synthesis from T flops, arithmetic operators 
.+. and .-., etc. 

.CLK clock equation X.CLK = /A

OUTPUT x CLOCKED_BY /a

.RESET reset equation X.RESET = RST

OUTPUT x CLOCKED_BY /a 
RESET_BY rst

.PRESET preset equation X.PRESET = PRST

OUTPUT x CLOCKED_BY /a 
PRESET_BY prst

.OE OE enabled equation X.OE = OE

OUTPUT x ENABLED_BY oe

.LATCH latched equation X.LATCH = LAT1

OUTPUT X LATCHED_BY 
lat1

.CE clock-enabled equation X.CE = CE

Table 10-1 Equation Extensions Used in the .doc File 

.doc File 
Extensio
n

Description Example
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After synthesis, PLSyn writes the .doc file equations as follow

OR1.EQN =  A + B;
.OE =  OE;
OR1.EQN(~) =  /A * /B;
.OE(~) =  /OE;

Equation Displa y
Equations can fall into four categories:

By default, the .doc  file includes either:

• the version of the equation that was used during fitting, o

• the primary equation version if fitting has not yet been do

Primary Equations used to describe the signal.

Synthesized Equations generated by the compiler/
optimizer.

DeMorgan Complemented equations generated by the
compiler/optimizer.

Fit Form of the equations (primary, synthesized
or the DeMorgan of the two) that PLSyn 
actually fits into the device.
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Partitionin g Criteria
The Partitioning Criteria section lists the constraints in effec
during the partitioning/fitting process.

Note A warning appears in the .doc file if you updated 
the constraints used during partitioning after 
PLSyn generated the solutions. This tells you that 
the partitioning criteria displayed in the .doc file 
might be incorrect.

PLSyn writes the partitioning criteria to the .doc  file after 
having created the list of possible devices from the available
(.avl ) file and the enabled constraints. 

Solutions List
The Solutions List section lists the architectures that the PLS
fitter found to fit your programmable logic. This is the same 
information that PLSyn displays in the solutions list in the 
PLSyn window. 

Fuse Map Files
The Fuse Map Files section associates which fuse maps go
which device for a particular solution. You will only see this 
section if you ran the Fuse Map Generator command from t
Tools menu.



Pinout Diagrams A-7

ur 

 

the 
rs’ 
 
le 
Pinout Dia grams
The Pinout Diagrams section contains for each device in yo
chosen implementation either:

• a diagram, for a DIP or CDIP package type, or, 

• a pinout table, for all other package types.

that shows the device, the pin types (INPUT, OUTPUT, 
BIPUT), and an indicator of the signal/pin placement. PLSyn
writes this information to the .doc  file after having completed 
fitting and partitioning.

Possible Devices List
When PLSyn generates device solutions, the solution list in 
PLSyn window contains architecture names, not manufacture
names, for devices. The Possible Devices List section in the
.doc  file provides a list of the actual devices that are availab
for a given architecture. 

Wire List
The Wire List section lists for your chosen implementation, 
which signals to connect to which pins.
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Appendix Overview
This appendix describes each of the file types that PLSyn u
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File 
Extension

Description

.afb Database contain
for simulations an

.avl Available parts file
to create a custom

.cst Constraint file. A 
partitioning constr

.doc Design document
implementation.

.dsl DSL source code
based, the file na
reserved for use b

.edf EDIF netlist conta
logic.

.fb Database contain
implementation d

.j1,.j2, ... Fuse map files, in

.log PLSyn log/error fi
implementation.

.npi PIL file containing
fitting/partitioning.
implementation on
the .pi file.

.pi Physical informat
fitting, and partitio
the .pi file to con

.sch Schematic file.

.slb Symbol library file

.plb Package library fi

.tv Test vectors file.
Files Used b y PLSyn

Source

ing compiled logic equations. Used 
d as input to the PLSyn optimizer.

PLSyn compiler

. You can copy plsynlib.avl 
 available file for your site.

System-installed plsynlib.avl file 

temporary file used to specify the 
aints and priorities.

PLSyn

ation file, updated during physical PLSyn

 files. If the design is schematic-
med design_name.dsl is 
y PLSyn.

user, schematic-to-DSL translator

ining the design’s programmable Schematics

ing optimized logic equations and 
ata.

PLSyn 

 JEDEC format. PLSyn fuse maps generator

le, updated during physical PLSyn

 a description of the design’s 
 Can be used to repeat the 
 subsequent iterations by copying to 

PLSyn, after fuse map is generated

ion file containing optimization, 
ning statements. You can customize 
trol the implementation.

For new designs, a copy of 
default .pi, found in the MicroSim 
root directory

Schematics

. Schematics

le. Schematics

PSpice/PLogic
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Appendix Overview
This appendix contains lookup tables for pin names and fus
commands for AMD MACH device architectures. These are t
notations you can use in your .pi  file.

Pin Name Tables on page C-2 lists the pin reference name for 
each macrocell in a PAL block.

MACH 1xx and 2xx: Fuse Commands for Driving Outputs on 
page C-12 lists the fuse commands you can use to force the 
named pin to be driven.
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Pin Name Tables
The following tables list the reference name for each macroc
in a PAL block. 

To determine the exact name for a pin

Replace the ##  characters in the listed Reference Name with t
corresponding two digit Macrocell Number.   

MACH 110

  

MACH 111, 111SP

  

Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 2-9 MACROCELL_A## 00 - 07

14-21 08 - 15

B 24-31 MACROCELL_B## 00 - 07

36-43 08 - 15

Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 2-9 MACROCELL_A## 00 - 07

14-21 08 - 15

B 24-31 MACROCELL_B## 15 - 08

36-43 07 - 00
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MACH 120, 121

 

MACH 130, 131, 131SP

 

Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 2-7 MACROCELL_A## 00 - 05

9-14 06-11

B 21-26 MACROCELL_B## 11-06

28-33 05 - 00

C 36-41 MACROCELL_C## 00 - 05

43-48 06-11

D 55-60 MACROCELL_D## 11-06

62-67 05 - 00

Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 3-10 MACROCELL_A## 00 - 07

12-19 08 - 15

B 24-31 MACROCELL_B## 15 - 08

33-40 07- 00

C 45-52 MACROCELL_C## 00 - 07

54-61 08 - 15

D 66-73 MACROCELL_D## 15 - 08

75-82 07- 00
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MACH 210, 211, 211SP

Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 2-9 MACROCELL_A## 00,02,04,
06,08,10,
12,14

01,03,05,
07,09,11,
13,15

B 14-21 MACROCELL_B## 14,12,10,
08,06,04,
02,00

15,13,11,
09,07,05,
03,01

C 21-31 MACROCELL_C## 00,02,04,
06,08,10,
12,14

01,03,05,
07,09,11,
13,15

D 36-43 MACROCELL_D## 14,12,10,
08,06,04,
02,00

15,13,11,
09,07,05,
03,01
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MACH 215 

Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 2-9 MACROCELL_A## 00,02,04,
06,08,10,
12,14

IN_REG_A## 01,03,05,
07,09,11,
13,15

B 14-21 MACROCELL_B## 14,12,10,
08,06,04,
02,00

IN_REG_B## 15,13,11,
09,07,05,
03,00

C 24-31 MACROCELL_C## 00,02,04,
06,

08,10,12,
14

IN_REG_C## 01,03,05,
07,09,11,
13,15

D 36-43 MACROCELL_D## 14,12,10,
08,06,04,
02,00

IN_REG_D## 15,13,11,
09,07,05,
03,00
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MACH 220, 221, 221SP

Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 2-7 MACROCELL_A## 00,02,04,
06,08,10

01,03,05,
07,09,11

B 9-14 MACROCELL_B## 10,08,06,
04,02,00

11,09,07,
05,03,01

C 21-26 MACROCELL_C## 00,02,04,
06,08,10

01,03,05,
07,09,11

D 28-33 MACROCELL_D## 10,08,06,
04,02,00

11,09,07,
05,03,01

E  36-41 MACROCELL_E## 00,02,04,
06,08,10

01,03,05,
07,09,11

F  43-48 MACROCELL_F## 10,08,06,
04,02,00

11,09,07,
05,03,01

G 55-60 MACROCELL_G## 00,02,04,
06,08,10

01,03,05,
07,09,11

H 62-67 MACROCELL_H## 10,08,06,
04,02,00

11,09,07,
05,03,01
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MACH 230, 231

 Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 3-10 MACROCELL_A## 00,02,04,
06,08,10,
12,14

01,03,05,
07,09,11,
13,15

B 12-19 MACROCELL_B## 14,12,10,
08,06,04,
02,00

15,13,11,
09,07,05,
03,01

C 24-31 MACROCELL_C## 00,02,04,
06,08,10,
12,14

01,03,05,
07,09,11,
13,15

D 33-40 MACROCELL_D## 14,12,10,
08,06,04,
02,00

15,13,11,
09,07,05,
03,01

E 45-52 MACROCELL_E## 00,02,04,
06,08,10,
12,14

01,03,05,
07,09,11,
13,15

F 54-61 MACROCELL_F## 14,12,10,
08,06,04,
02,00

15,13,11,
09,07,05,
03,01

G 66-73 MACROCELL_G## 00,02,04,
06,08,10,
12,14

01,03,05,
07,09,11,
13,15

H 75-82 MACROCELL_H## 14,12,10,
08,06,04,
02,00

15,13,11,
09,07,05,
03,01



C-8 AMD MACH Device Tables
MACH 435, 436

 Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 3-10 MACROCELL_A## 00 - 15

IN_REG_A## 00 - 07

B 12-19 MACROCELL_B## 00 - 15

IN_REG_B## 07 - 00

C 24-31 MACROCELL_C## 00 - 15

IN_REG_C## 00 - 07

D 33-40 MACROCELL_D## 00 - 15

IN_REG_D## 07 - 00

E 45-52 MACROCELL_E## 00 - 15

IN_REG_E## 00 - 07

F 45-52 MACROCELL_F## 00 - 15

IN_REG_F## 07 - 00

G 66-73 MACROCELL_G## 00 - 15

IN_REG_G## 00 - 07

H 75-82 MACROCELL_H## 00 - 15

IN_REG_H## 07 - 00



Pin Name Tables C-9
MACH 445, 446

Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

B 5-12 MACROCELL_B## 00 - 15

IN_REG_B## 07 - 00

C 19-26 MACROCELL_C## 00 - 15

IN_REG_C## 00 - 07

D 31-38 MACROCELL_D## 00 - 15

IN_REG_D## 07 - 00

E 43-50 MACROCELL_E## 00 - 15

IN_REG_E## 00 - 07

F 55-62 MACROCELL_F## 00 - 15

IN_REG_F## 07 - 00

G 69-76 MACROCELL_G## 00 - 15

IN_REG_G## 00 - 07

H 81-88 MACROCELL_H## 00 - 15

IN_REG_H## 07 - 00

A 93-100 MACROCELL_G## 00 - 15

IN_REG_G## 00 - 07



C-10 AMD MACH Device Tables
MACH 465, 466 

Macrocell Number (##)

Bloc
k

Pins Reference Name
Outpu
t

Burie
d

Input

C 3-10 MACROCELL_C## 00 - 15

IN_REG_C## 07 - 00

D 13-20 MACROCELL_D## 00 - 15

IN_REG_D## 07 - 00

E 32-39 MACROCELL_E## 00 - 15

IN_REG_E## 00 - 07

F 42-49 MACROCELL_F## 00 - 15

IN_REG_F## 00 - 07

G 54-61 MACROCELL_G## 00 - 15

IN_REG_G## 07 - 00

H 64-71 MACROCELL_H## 00 - 15

IN_REG_H## 07 - 00

I 86-93 MACROCELL_I## 00 - 15

IN_REG_I## 00 - 07

J 96-103 MACROCELL_J## 00 - 15

IN_REG_J## 00 - 07

K 107-114 MACROCELL_K## 00 - 15

IN_REG_K## 07 - 00

L 117-124 MACROCELL_L## 00 - 15

IN_REG_L## 07 - 00

M 136-143 MACROCELL_M## 00 - 15

IN_REG_M## 00 - 07

N 146-153 MACROCELL_N## 00 - 15

IN_REG_N## 00 - 07

O 158-165 MACROCELL_O## 00 - 15

IN_REG_O## 07 - 00

P 168-175 MACROCELL_P## 00 - 15

IN_REG_P## 07 - 00



Pin Name Tables C-11
A 190-197 MACROCELL_A## 00 - 15

IN_REG_A## 00 - 07

B 200-207 MACROCELL_B## 00 - 15

IN_REG_B## 00 - 07

Macrocell Number (##)

Bloc
k

Pins Reference Name
Outpu
t

Burie
d

Input



C-12 AMD MACH Device Tables
MACH 1xx and 2xx: Fuse 
Commands for Drivin g 
Outputs
The following tables give the fuse commands for the .pi  file to 
force the named pin to be driven.       

MACH 110

Table 10-2 MACH 110 OE Fuse Commands

Pin 02: INTACT 6166 ; BLOWN 6167 ;

Pin 03: INTACT 6174 ; BLOWN 6175 ;

Pin 04: INTACT 6182 ; BLOWN 6183 ;

Pin 05: INTACT 6190 ; BLOWN 6191 ;

Pin 06: INTACT 6198 ; BLOWN 6199 ;

Pin 07: INTACT 6206 ; BLOWN 6207 ;

Pin 08: INTACT 6214 ; BLOWN 6215 ;

Pin 09: INTACT 6222 ; BLOWN 6223 ;

Pin 14: INTACT 6230 ; BLOWN 6231 ;

Pin 15: INTACT 6238 ; BLOWN 6239 ;

Pin 16: INTACT 6246 ; BLOWN 6247 ;

Pin 17: INTACT 6254 ; BLOWN 6255 ;

Pin 18: INTACT 6262 ; BLOWN 6263 ;

Pin 19: INTACT 6270 ; BLOWN 6271 ;

Pin 20: INTACT 6278 ; BLOWN 6279 ;

Pin 21: INTACT 6286 ; BLOWN 6287 ;

Pin 24: INTACT 6294 ; BLOWN 6295 ;

Pin 25: INTACT 6302 ; BLOWN 6303 ;

Pin 26: INTACT 6310 ; BLOWN 6311 ;

Pin 27: INTACT 6318 ; BLOWN 6319 ;

Pin 28: INTACT 6326 ; BLOWN 6327 ;

Pin 29: INTACT 6334 ; BLOWN 6335 ;

Pin 30: INTACT 6342 ; BLOWN 6343 ;

Pin 31: INTACT 6350 ; BLOWN 6351 ;

Pin 36: INTACT 6358 ; BLOWN 6359 ;

Pin 37: INTACT 6366 ; BLOWN 6367 ;



MACH 1xx and 2xx: Fuse Commands for Driving Outputs C-13
MACH 120

Pin 38: INTACT 6374 ; BLOWN 6375 ;

Pin 39: INTACT 6382 ; BLOWN 6383 ;

Pin 40: INTACT 6390 ; BLOWN 6391 ;

Pin 41: INTACT 6398 ; BLOWN 6399 ;

Pin 42: INTACT 6406 ; BLOWN 6407 ;

Pin 43: INTACT 6414 ; BLOWN 6415 ;

Table 10-3 MACH 120 OE Fuse Commands

Pin 02: INTACT 2918 ; BLOWN 2919 ;

Pin 03: INTACT 2927 ; BLOWN 2928 ;

Pin 04: INTACT 2936 ; BLOWN 2937 ;

Pin 05: INTACT 2945 ; BLOWN 2946 ;

Pin 06: INTACT 2954 ; BLOWN 2955 ;

Pin 07: INTACT 2963 ; BLOWN 2964 ;

Pin 09: INTACT 2972 ; BLOWN 2973 ;

Pin 10: INTACT 2981 ; BLOWN 2982 ;

Pin 11: INTACT 2990 ; BLOWN 2991 ;

Pin 12: INTACT 2999 ; BLOWN 3000 ;

Pin 13: INTACT 3008 ; BLOWN 3009 ;

Pin 14: INTACT 3017 ; BLOWN 3018 ;

Pin 21: INTACT 6037 ; BLOWN 6038 ;

Pin 22: INTACT 6028 ; BLOWN 6029 ;

Pin 23: INTACT 6019 ; BLOWN 6020 ;

Pin 24: INTACT 6010 ; BLOWN 6011 ;

Pin 25: INTACT 6001 ; BLOWN 6002 ;

Pin 26: INTACT 5992 ; BLOWN 5993 ;

Pin 28: INTACT 5983 ; BLOWN 5984 ;

Pin 29: INTACT 5974 ; BLOWN 5975 ;

Pin 30: INTACT 5965 ; BLOWN 5966 ;

Pin 31: INTACT 5956 ; BLOWN 5957 ;

Pin 32: INTACT 5947 ; BLOWN 5948 ;

Pin 33: INTACT 5938 ; BLOWN 5939 ;

Pin 36: INTACT 8958 ; BLOWN 8959 ;

Pin 37: INTACT 8967 ; BLOWN 8968 ;

Table 10-2 MACH 110 OE Fuse Commands



C-14 AMD MACH Device Tables
MACH 130

Pin 38: INTACT 8976 ; BLOWN 8977 ;

Pin 39: INTACT 8985 ; BLOWN 8986 ;

Pin 40: INTACT 8994 ; BLOWN 8995 ;

Pin 41: INTACT 9003 ; BLOWN 9004 ;

Pin 43: INTACT 9012 ; BLOWN 9013 ;

Pin 44: INTACT 9021 ; BLOWN 9022 ;

Pin 45: INTACT 9030 ; BLOWN 9031 ;

Pin 46: INTACT 9039 ; BLOWN 9040 ;

Pin 47: INTACT 9048 ; BLOWN 9049 ;

Pin 48: INTACT 9057 ; BLOWN 9058 ;

Pin 55: INTACT 12077 ; BLOWN 12078 ;

Pin 56: INTACT 12068 ; BLOWN 12069 ;

Pin 57: INTACT 12059 ; BLOWN 12060 ;

Pin 58: INTACT 12050 ; BLOWN 12051 ;

Pin 59: INTACT 12041 ; BLOWN 12042 ;

Pin 60: INTACT 12032 ; BLOWN 12033 ;

Pin 62: INTACT 12023 ; BLOWN 12024 ;

Pin 63: INTACT 12014 ; BLOWN 12015 ;

Pin 64: INTACT 12005 ; BLOWN 12006 ;

Pin 65: INTACT 11996 ; BLOWN 11997 ;

Pin 66: INTACT 11987 ; BLOWN 11988 ;

Pin 67: INTACT 11978 ; BLOWN 11979 ;

Table 10-4 MACH 130 OE Fuse Commands

Pin 03: INTACT 3750 ; BLOWN 3751 ;

Pin 04: INTACT 3759 ; BLOWN 3760 ;

Pin 05: INTACT 3768 ; BLOWN 3769 ;

Pin 06: INTACT 3777 ; BLOWN 3778 ;

Pin 07: INTACT 3786 ; BLOWN 3787 ;

Pin 08: INTACT 3795 ; BLOWN 3796 ;

Pin 09: INTACT 3804 ; BLOWN 3805 ;

Pin 10: INTACT 3813 ; BLOWN 3814 ;

Pin 12: INTACT 3822 ; BLOWN 3823 ;

Pin 13: INTACT 3831 ; BLOWN 3832 ;

Table 10-3 MACH 120 OE Fuse Commands (continued)



MACH 1xx and 2xx: Fuse Commands for Driving Outputs C-15
Pin 14: INTACT 3840 ; BLOWN 3841 ;

Pin 15: INTACT 3849 ; BLOWN 3850 ;

Pin 16: INTACT 3858 ; BLOWN 3859 ;

Pin 17: INTACT 3867 ; BLOWN 3868 ;

Pin 18: INTACT 3876 ; BLOWN 3877 ;

Pin 19: INTACT 3885 ; BLOWN 3886 ;

Pin 24: INTACT 7773 ; BLOWN 7774 ;

Pin 25: INTACT 7764 ; BLOWN 7765 ;

Pin 26: INTACT 7755 ; BLOWN 7756 ;

Pin 27: INTACT 7746 ; BLOWN 7747 ;

Pin 28: INTACT 7737 ; BLOWN 7738 ;

Pin 29: INTACT 7728 ; BLOWN 7729 ;

Pin 30: INTACT 7719 ; BLOWN 7720 ;

Pin 31: INTACT 7710 ; BLOWN 7711 ;

Pin 33: INTACT 7701 ; BLOWN 7702 ;

Pin 34: INTACT 7692 ; BLOWN 7693 ;

Pin 35: INTACT 7683 ; BLOWN 7684 ;

Pin 36: INTACT 7674 ; BLOWN 7675 ;

Pin 37: INTACT 7665 ; BLOWN 7666 ;

Pin 38: INTACT 7656 ; BLOWN 7657 ;

Pin 39: INTACT 7647 ; BLOWN 7648 ;

Pin 40: INTACT 7638 ; BLOWN 7639 ;

Pin 45: INTACT 11526 ; BLOWN 11527 ;

Pin 46: INTACT 11535 ; BLOWN 11536 ;

Pin 47: INTACT 11544 ; BLOWN 11545 ;

Pin 48: INTACT 11553 ; BLOWN 11554 ;

Pin 49: INTACT 11562 ; BLOWN 11563 ;

Pin 50: INTACT 11571 ; BLOWN 11572 ;

Pin 51: INTACT 11580 ; BLOWN 11581 ;

Pin 52: INTACT 11589 ; BLOWN 11590 ;

Pin 54: INTACT 11598 ; BLOWN 11599 ;

Pin 55: INTACT 11607 ; BLOWN 11608 ;

Pin 56: INTACT 11616 ; BLOWN 11617 ;

Pin 57: INTACT 11625 ; BLOWN 11626 ;

Pin 58: INTACT 11634 ; BLOWN 11635 ;

Pin 59: INTACT 11643 ; BLOWN 11644 ;

Table 10-4 MACH 130 OE Fuse Commands (continued)



C-16 AMD MACH Device Tables
MACH 210

Pin 60: INTACT 11652 ; BLOWN 11653 ;

Pin 61: INTACT 11661 ; BLOWN 11662 ;

Pin 66: INTACT 15549 ; BLOWN 15550 ;

Pin 67: INTACT 15540 ; BLOWN 15541 ;

Pin 68: INTACT 15531 ; BLOWN 15532 ;

Pin 69: INTACT 15522 ; BLOWN 15523 ;

Pin 70: INTACT 15513 ; BLOWN 15514 ;

Pin 71: INTACT 15504 ; BLOWN 15505 ;

Pin 72: INTACT 15495 ; BLOWN 15496 ;

Pin 73: INTACT 15486 ; BLOWN 15487 ;

Pin 75: INTACT 15477 ; BLOWN 15478 ;

Pin 76: INTACT 15468 ; BLOWN 15469 ;

Pin 77: INTACT 15459 ; BLOWN 15460 ;

Pin 78: INTACT 15450 ; BLOWN 15451 ;

Pin 79: INTACT 15441 ; BLOWN 15442 ;

Pin 80: INTACT 15432 ; BLOWN 15433 ;

Pin 81: INTACT 15423 ; BLOWN 15424 ;

Pin 82: INTACT 15414 ; BLOWN 15415 ;

Table 10-5 MACH 210 OE Fuse Commands

Pin 02: INTACT 3086 ; BLOWN 3087 ;

Pin 03: INTACT 3102 ; BLOWN 3103 ;

Pin 04: INTACT 3118 ; BLOWN 3119 ;

Pin 05: INTACT 3134 ; BLOWN 3135 ;

Pin 06: INTACT 3150 ; BLOWN 3151 ;

Pin 07: INTACT 3166 ; BLOWN 3167 ;

Pin 08: INTACT 3182 ; BLOWN 3183 ;

Pin 09: INTACT 3198 ; BLOWN 3199 ;

Pin 14: INTACT 6406 ; BLOWN 6407 ;

Pin 15: INTACT 6390 ; BLOWN 6391 ;

Pin 16: INTACT 6374 ; BLOWN 6375 ;

Pin 17: INTACT 6358 ; BLOWN 6359 ;

Pin 18: INTACT 6342 ; BLOWN 6343 ;

Pin 19: INTACT 6326 ; BLOWN 6327 ;

Table 10-4 MACH 130 OE Fuse Commands (continued)



MACH 1xx and 2xx: Fuse Commands for Driving Outputs C-17
MACH 215

Pin 20: INTACT 6310 ; BLOWN 6311 ;

Pin 21: INTACT 6294 ; BLOWN 6295 ;

Pin 24: INTACT 9502 ; BLOWN 9503 ;

Pin 25: INTACT 9518 ; BLOWN 9519 ;

Pin 26: INTACT 9534 ; BLOWN 9535 ;

Pin 27: INTACT 9550 ; BLOWN 9551 ;

Pin 28: INTACT 9566 ; BLOWN 9567 ;

Pin 29: INTACT 9582 ; BLOWN 9583 ;

Pin 30: INTACT 9598 ; BLOWN 9599 ;

Pin 31: INTACT 9614 ; BLOWN 9615 ;

Pin 36: INTACT 12822 ; BLOWN 12823 ;

Pin 37: INTACT 12806 ; BLOWN 12807 ;

Pin 38: INTACT 12790 ; BLOWN 12791 ;

Pin 39: INTACT 12774 ; BLOWN 12775 ;

Pin 40: INTACT 12758 ; BLOWN 12759 ;

Pin 41: INTACT 12742 ; BLOWN 12743 ;

Pin 42: INTACT 12726 ; BLOWN 12727 ;

Pin 43: INTACT 12710 ; BLOWN 12711 ;

Table 10-6 MACH 215 OE Fuse Commands

Pin 02: BLOWN 88 .. 131 ;

Pin 03: BLOWN 440 .. 483 ;

Pin 04: BLOWN 792 .. 835 ;

Pin 05: BLOWN 1144 .. 1187 ;

Pin 06: BLOWN 1496 .. 1539 ;

Pin 07: BLOWN 1848 .. 1891 ;

Pin 08: BLOWN 2200 .. 2243 ;

Pin 09: BLOWN 2552 .. 2595 ;

Pin 14: BLOWN 5536 .. 5579 ;

Pin 15: BLOWN 5184 .. 5227 ;

Pin 16: BLOWN 4832 .. 4875 ;

Pin 17: BLOWN 4480 .. 4523 ;

Pin 18: BLOWN 4128 .. 4171 ;

Pin 19: BLOWN 3776 .. 3819 ;

Table 10-5 MACH 210 OE Fuse Commands (continued)



C-18 AMD MACH Device Tables
MACH 220

Pin 20: BLOWN 3424 .. 3467 ;

Pin 21: BLOWN 3072 .. 3115 ;

Pin 24: BLOWN 6056 .. 6099 ;

Pin 25: BLOWN 6408 .. 6451 ;

Pin 26: BLOWN 6760 .. 6803 ;

Pin 27: BLOWN 7112 .. 7155 ;

Pin 28: BLOWN 7464 .. 7507 ;

Pin 29: BLOWN 7816 .. 7859 ;

Pin 30: BLOWN 8168 .. 8211 ;

Pin 31: BLOWN 8520 .. 8563 ;

Pin 36: BLOWN 11504 .. 11547 ;

Pin 37: BLOWN 11152 .. 11195 ;

Pin 38: BLOWN 10800 .. 10843 ;

Pin 39: BLOWN 10448 .. 10491 ;

Pin 40: BLOWN 10096 .. 10139 ;

Pin 41: BLOWN 9744 .. 9787 ;

Pin 42: BLOWN 9392 .. 9435 ;

Pin 43: BLOWN 9040 .. 9083 ;

Table 10-7 MACH 220 OE Fuse Commands

Pin 02: INTACT 2814 ; BLOWN 2815 ;

Pin 03: INTACT 2830 ; BLOWN 2831 ;

Pin 04: INTACT 2846 ; BLOWN 2847 ;

Pin 05: INTACT 2862 ; BLOWN 2863 ;

Pin 06: INTACT 2878 ; BLOWN 2879 ;

Pin 07: INTACT 2894 ; BLOWN 2895 ;

Pin 09: INTACT 5798 ; BLOWN 5799 ;

Pin 10: INTACT 5782 ; BLOWN 5783 ;

Pin 11: INTACT 5766 ; BLOWN 5767 ;

Pin 12: INTACT 5750 ; BLOWN 5751 ;

Pin 13: INTACT 5734 ; BLOWN 5735 ;

Pin 14: INTACT 5718 ; BLOWN 5719 ;

Pin 21: INTACT 8622 ; BLOWN 8623 ;

Pin 22: INTACT 8638 ; BLOWN 8639 ;

Table 10-6 MACH 215 OE Fuse Commands (continued)



MACH 1xx and 2xx: Fuse Commands for Driving Outputs C-19
Pin 23: INTACT 8654 ; BLOWN 8655 ;

Pin 24: INTACT 8670 ; BLOWN 8671 ;

Pin 25: INTACT 8686 ; BLOWN 8687 ;

Pin 26: INTACT 8702 ; BLOWN 8703 ;

Pin 28: INTACT 11606 ; BLOWN 11607 ;

Pin 29: INTACT 11590 ; BLOWN 11591 ;

Pin 30: INTACT 11574 ; BLOWN 11575 ;

Pin 31: INTACT 11558 ; BLOWN 11559 ;

Pin 32: INTACT 11542 ; BLOWN 11543 ;

Pin 33: INTACT 11526 ; BLOWN 11527 ;

Pin 36: INTACT 14430 ; BLOWN 14431 ;

Pin 37: INTACT 14446 ; BLOWN 14447 ;

Pin 38: INTACT 14462 ; BLOWN 14463 ;

Pin 39: INTACT 14478 ; BLOWN 14479 ;

Pin 40: INTACT 14494 ; BLOWN 14495 ;

Pin 41: INTACT 14510 ; BLOWN 14511 ;

Pin 43: INTACT 17414 ; BLOWN 17415 ;

Pin 44: INTACT 17398 ; BLOWN 17399 ;

Pin 45: INTACT 17382 ; BLOWN 17383 ;

Pin 46: INTACT 17366 ; BLOWN 17367 ;

Pin 47: INTACT 17350 ; BLOWN 17351 ;

Pin 48: INTACT 17334 ; BLOWN 17335 ;

Pin 55: INTACT 20238 ; BLOWN 20239 ;

Pin 56: INTACT 20254 ; BLOWN 20255 ;

Pin 57: INTACT 20270 ; BLOWN 20271 ;

Pin 58: INTACT 20286 ; BLOWN 20287 ;

Pin 59: INTACT 20302 ; BLOWN 20303 ;

Pin 60: INTACT 20318 ; BLOWN 20319 ;

Pin 62: INTACT 23222 ; BLOWN 23223 ;

Table 10-7 MACH 220 OE Fuse Commands (continued)



C-20 AMD MACH Device Tables
MACH 230

Table 10-8 MACH 230 OE Fuse Commands

Pin 03: INTACT 3646 ; BLOWN 3647 ;

Pin 04: INTACT 3662 ; BLOWN 3663 ;

Pin 05: INTACT 3678 ; BLOWN 3679 ;

Pin 06: INTACT 3694 ; BLOWN 3695 ;

Pin 07: INTACT 3710 ; BLOWN 3711 ;

Pin 08: INTACT 3726 ; BLOWN 3727 ;

Pin 09: INTACT 3742 ; BLOWN 3743 ;

Pin 10: INTACT 3758 ; BLOWN 3759 ;

Pin 12: INTACT 7526 ; BLOWN 7527 ;

Pin 13: INTACT 7510 ; BLOWN 7511 ;

Pin 14: INTACT 7494 ; BLOWN 7495 ;

Pin 15: INTACT 7478 ; BLOWN 7479 ;

Pin 16: INTACT 7462 ; BLOWN 7463 ;

Pin 17: INTACT 7446 ; BLOWN 7447 ;

Pin 18: INTACT 7430 ; BLOWN 7431 ;

Pin 19: INTACT 7414 ; BLOWN 7415 ;

Pin 24: INTACT 11182 ; BLOWN 11183 ;

Pin 25: INTACT 11198 ; BLOWN 11199 ;

Pin 26: INTACT 11214 ; BLOWN 11215 ;

Pin 27: INTACT 11230 ; BLOWN 11231 ;

Pin 28: INTACT 11246 ; BLOWN 11247 ;

Pin 29: INTACT 11262 ; BLOWN 11263 ;

Pin 30: INTACT 11278 ; BLOWN 11279 ;

Pin 31: INTACT 11294 ; BLOWN 11295 ;

Pin 33: INTACT 15062 ; BLOWN 15063 ;

Pin 34: INTACT 15046 ; BLOWN 15047 ;

Pin 35: INTACT 15030 ; BLOWN 15031 ;

Pin 36: INTACT 15014 ; BLOWN 15015 ;

Pin 37: INTACT 14998 ; BLOWN 14999 ;

Pin 38: INTACT 14982 ; BLOWN 14983 ;

Pin 39: INTACT 14966 ; BLOWN 14967 ;

Pin 40: INTACT 14950 ; BLOWN 14951 ;

Pin 45: INTACT 18718 ; BLOWN 18719 ;

Pin 46: INTACT 18734 ; BLOWN 18735 ;

Pin 47: INTACT 18750 ; BLOWN 18751 ;



MACH 1xx and 2xx: Fuse Commands for Driving Outputs C-21
Pin 48: INTACT 18766 ; BLOWN 18767 ;

Pin 49: INTACT 18782 ; BLOWN 18783 ;

Pin 50: INTACT 18798 ; BLOWN 18799 ;

Pin 51: INTACT 18814 ; BLOWN 18815 ;

Pin 52: INTACT 18830 ; BLOWN 18831 ;

Pin 54: INTACT 22598 ; BLOWN 22599 ;

Pin 55: INTACT 22582 ; BLOWN 22583 ;

Pin 56: INTACT 22566 ; BLOWN 22567 ;

Pin 57: INTACT 22550 ; BLOWN 22551 ;

Pin 58: INTACT 22534 ; BLOWN 22535 ;

Pin 59: INTACT 22518 ; BLOWN 22519 ;

Pin 60: INTACT 22502 ; BLOWN 22503 ;

Pin 61: INTACT 22486 ; BLOWN 22487 ;

Pin 66: INTACT 26254 ; BLOWN 26255 ;

Pin 67: INTACT 26270 ; BLOWN 26271 ;

Pin 68: INTACT 26286 ; BLOWN 26287 ;

Pin 69: INTACT 26302 ; BLOWN 26303 ;

Pin 70: INTACT 26318 ; BLOWN 26319 ;

Pin 71: INTACT 26334 ; BLOWN 26335 ;

Pin 72: INTACT 26350 ; BLOWN 26351 ;

Pin 73: INTACT 26366 ; BLOWN 26367 ;

Pin 75: INTACT 30134 ; BLOWN 30135 ;

Pin 76: INTACT 30118 ; BLOWN 30119 ;

Pin 77: INTACT 30102 ; BLOWN 30103 ;

Pin 78: INTACT 30086 ; BLOWN 30087 ;

Pin 79: INTACT 30070 ; BLOWN 30071 ;

Pin 80: INTACT 30054 ; BLOWN 30055 ;

Pin 81: INTACT 30038 ; BLOWN 30039 ;

Pin 82: INTACT 30022 ; BLOWN 30023 ;

Table 10-8 MACH 230 OE Fuse Commands (continued)



Index
Symbols
.afb, B-2
.avl, 5-16, B-2
.cst, B-2
.doc, A-3, B-2

MACH5, 9-21
.dsl, 3-4, B-2
.edf, B-2
.fb, B-2
.lg, B-2
.npi, 5-28, B-2
.pi, B-2
.plb, B-2
.sch, B-2
.slb, B-2
.tv, B-2

A
A/D interface, 4-4
active-low nodes, 3-15
architecture constraint, 5-18
available file, 5-16
Available File text box, 5-20

B
back annotation, 5-28
back annotation (schematic), 5-28
blocks

creating DSL, 3-6

C
changing designs with PLDs, 5-30
Compile Library command, 5-8
Compiler command, 5-7
compiling, 1-3, 5-7, 5-8

command, 5-7
Create Nodes option, 5-9
Output Warnings option, 5-8
Product Term option, 5-9

constants, 3-16
constraints, 1-4

architecture, 5-18
available file, 5-20
current usage, 5-19
device template, 5-18
frequency, 5-19
logic family, 5-18
manufacturer, 5-18



Index-2
number of devices, 5-20
package type, 5-18
propagation delay, 5-19
setting up, 5-18
temperature, 5-18
user-defined, 5-20

converting nodes, 3-15
Create Nodes check box, 5-9
creating

DSL blocks, 3-6
fuse maps, 5-27
PCB netlists, 5-29

current constraint, 5-19

D
defining pin names, 3-6
DeMorgan

equations, A-4
optimization method, 5-11

design flow, 1-2
device

accessing internal points, 7-2
constraints, 5-18
maximum number, 5-20
programming, 1-5
selection, 1-5, 5-26

Device Templates button, 5-19
device templates constraint, 5-18
dig_prim.lib, 3-2
dig_prim.slb, 3-2
directed partitioning

16V8HD, 22VP10, and 16VP10 devices, 7-17
AMD MACH devices, 8-2, 9-5
controlling equation size, 6-10
FIT_AS_OUTPUT property, 6-6
fitting signals together, 6-13
fitting to a single device, 6-16
fitting to multiple devices, 6-17
maintaining pin assignments, 6-15
mixing automatic and directed modes, 6-17
P1800 devices, 7-16
PLD utilization, 6-5
specifying devices, 6-14
specifying footprints, 6-18
synthesis control properties, 6-9

document file
MACH5, 9-21
reduced design equations, A-3

don’t care generation, 5-11
DSL blocks, 3-4

changing the interface, 3-8
creating, 3-6
placing, 3-5
procedures, 3-5

DSL Model Editor, 3-7

E
editing a DSL Model, 3-7
equation

display, A-5
extensions, A-3

exclusive-OR synthesis, 5-12

F
FANOUTS property (MACH5), 9-13
file extensions, B-1
fitting, 1-4

introduction, 5-14
starting, 5-25

FLOAT_NODES property, 8-34
FORCE_INTERNAL_FB property, 8-38
FORCE_LOCAL_FB property (MACH5), 9-11
frequency

constraint, 5-19
priority, 5-24

Fuse Map Generator command, 5-27
fuse maps

creating, 5-27
Fuse Map Generator command, 5-27

G
generic logic symbols, 3-2

H
HI symbol, 3-16
hidden node, 7-2
HIGH property (MACH5), 9-19

I
I/O models, 4-5



Index-3
I/O parameters, 4-5
INCLUDE statement, 3-12
interface nodes

naming & labeling, 3-14
internal nodes, 3-13

J
JEDEC file, 4-6, 6-12, B-2

L
labeling interface nodes, 3-14
library, 5-7, 5-8
LO symbol, 3-16
LOCAL_TOGGLE_FEEDBACK property (MACH5), 9-

14
logic

constants, 3-16
minimization, 5-12
symbols, 3-2

Logic Family button, 5-19
logic family constraints, 5-18
LOW property (MACH5), 9-19
LOW_TRUE port, 3-15

M
MACH_UTILIZATION property (MACH5), 9-16
MACH_ZERO_HOLD_INPUT property, 8-47
Manufacturer button, 5-19
manufacturer constraints, 5-18
markers, 4-11
Max Current Usage text box, 5-19
Max Devices text box, 5-20
Max Frequency text box, 5-19
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naming restrictions, 3-16
Navigate/Push command, 3-6
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node collapsing, 5-12
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Number of Pins priority, 5-23
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optimization, 5-10

command, 5-10
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logic minimization, 5-12
node collapsing, 5-12
register synthesis, 5-11
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XOR synthesis, 5-12

Optimizer command, 5-10
Options command, 5-7, 5-8, 5-9

compiler options
Create Nodes text box, 5-9
Output Warnings checkbox, 5-8
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optimizer options
Optimization Method list, 5-13
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Package Type button, 5-19
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parameter
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partitioning, 1-4
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introduction, 5-14
starting, 5-25
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creating, 5-29
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PIL (Physical Implementation Language), 6-2
pin naming, 3-6
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diagrams, A-7
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PLDs
change designs with, 5-30
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simulation, 1-3
symbols, 3-2
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reduced design equations, A-3
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schematic
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test vectors, 4-6
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Size priority, 5-24
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source code
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symbols
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Temperature button, 5-19
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Tools menu
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Update Schematic command, 5-28
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XOR synthesis, 5-12
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