
 MicroSim PLS yn

PLD/CPLD Design Software

User’s Guide
MicroSim Corporation
20 Fairbanks

(714) 770-3022
Irvine, California 92618

roSim

g
,”

ks”)
arks in

marks

ystems

oduced
written

on one
porate
Version 8.0, June, 1997.

Copyright 1997, MicroSim Corporation. All rights reserved.
Printed in the United States of America.

TradeMarks
Referenced herein are the trademarks used by MicroSim Corporation to identify its products. Mic
Corporation is the exclusive owners of “MicroSim,” “PSpice,” “PLogic,” “PLSyn.”

Additional marks of MicroSim include: “StmEd,” “Stimulus Editor,” “Probe,” “Parts,” “Monte Carlo,” “Analo
Behavioral Modeling,” “Device Equations,” “Digital Simulation,” “Digital Files,” “Filter Designer,” “Schematics
“PLogic,” ”PCBoards,” “PSpice Optimizer,” and “PLSyn” and variations theron (collectively the “Trademar
are used in connection with computer programs. MicroSim owns various trademark registrations for these m
the United States and other countries.

SPECCTRA is a registered trademark of Cooper & Chyan Technology, Inc.

Microsoft, MS-DOS, Windows, Windows NT and the Windows logo are either registered trademarks or trade
of Microsoft Corporation.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Exchange and PostScript are trademarks of Adobe S
Incorporated or its subsidiaries and may be registered in certain jurisdictions.

EENET is a trademark of Eckert Enterprises.

All other company/product names are trademarks/registered trademarks of their respective holders.

Copyri ght Notice
Except as permitted under the United States Copyright Act of 1976, no part of this publication may be repr
or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior
permission of MicroSim Corporation.

As described in the license agreement, you are permitted to run one copy of the MicroSim software
computer at a time. Unauthorized duplication of the software or documentation is prohibited by law. Cor
Program Licensing and multiple copy discounts are available.

Technical Support
Internet Tech.Support@microsim.com

Phone (714) 837-0790
FAX (714) 455-0554
WWW http://www.microsim.com

Customer Service
Internet Sales@MicroSim.com
Phone (714) 770-3022

Contents
 xvii
xviii
. xix
 . xx
. xxi
 xxii
 xxiii

. 1-1
 1-2
. 1-3
. 1-3
. 1-4
 1-4
. 1-5
 1-5
 1-5

. 2-1
 2-2
 2-3
 2-3
 2-3
 2-4
2-5
Before You Be gin
Welcome to MicroSim . .
MicroSim PLSyn Overview .
How to Use this Guide .

Typographical Conventions . .
Related Documentation .

Online Help .
The PLSyn Features In Your Configuration

The Pro grammable Lo gic Desi gn Process—An OverviewChapter 1
Chapter Overview .
Steps for Designing Systems with Programmable Logic

Design .
Simulate .
Set Constraints and Priorities .
Fit and Partition .
Select Device .
Simulate with Timing .
Program Device .

Primer: How to Define Pro grammable Lo gicChapter 2
Chapter Overview .
Implementing a 3-to-8 Decoder with Programmable Logic
Design Phase: Defining Programmable Logic using Schematic Symbols . . .

Before you begin .
Loading and simulating the design

Converting 74LS Symbols to Programmable Logic
Verifying Functionality using Simulation

iv Contents

. 2-5
. 2-6
. 2-7
 2-7
2-8
. 2-9
. 2-9
2-10
 2-10
 2-10
2-11
 2-11
2-13

 . 3-1
 3-2
. 3-2
. 3-2
. 3-3
. 3-4
 3-4
. 3-5
 3-6
 3-7
 3-8
 3-9
 3-10
3-12
 3-13
 3-13
 3-14
 3-14
3-15
 3-15
 3-15
3-16
 3-16
Implementation Phase: Fitting and Partitioning the Design
Setting Constraints .
Setting Priorities .
Partitioning and Fitting .
Verifying Timing Behavior using Simulation
Creating Device Programming Files .
Back Annotating the Schematic .

Using a DSL Block to Define the Programmable Logic
Before You Begin .
Loading the Design .
Adding a DSL Block .
Defining DSL Source Code .
Equivalent Ways to Define the Decoder with DSL

Designin g with Pro grammable Lo gicChapter 3
Chapter Overview .
The Different Ways to Specify Programmable Logic in Schematics
Using Programmable Logic Symbols .

Generic Logic Symbols .
74xx Series Logic Symbols .

Using DSL Blocks .
What Are DSL Blocks? .
What Are DSL Procedures? .
Creating a DSL Block in Your Schematic
Using the MicroSim Text Editor to Define DSL Procedures
Changing the DSL Block Interface .
Using Existing DSL Source Code .
Structuring DSL Source Files .
Calling DSL Procedures and Functions from within a Procedure

Understanding Programmable Logic Nodes
Labeling Nodes .

Node naming restrictions .
Labeling interface nodes .

Creating Active-Low Interface Nodes
Converting Internal Nodes to Interface Nodes
Creating Physical Nodes .
Assigning a Logic 0 or 1 to an Input .

Guidelines for Entering Programmable Logic

Contents v

. 4-1
 4-2
 4-3
 4-3
 4-3
 4-3
 4-4
. 4-4
 4-5
 4-6
. 4-6
 4-7
 4-7
 4-7
 4-7
 4-8
 4-8
4-10
. 4-11
 4-11

. 5-1
 5-3
 5-4
 5-4
 5-5
 5-5
 5-5
 5-5
 5-6
 5-6
 5-7
 5-7
 5-8
 5-8
 5-9
5-9
Simulatin g Programmable Lo gic Desi gnsChapter 4
Chapter Overview .
Introduction to Simulating with PLogic or PSpice A/D
Setting Up Simulations .

Displaying the Dialog Box for Simulation Setup
If you have PLogic .
If you have PSpice A/D .

Defining Simulation Setup Options for Programmable Logic
Starting Simulations .
How the Simulator Uses Programmable Logic I/O Models
Simulating with Timing .
Generating Test Vectors .

Enabling Test Vector Generation .
If you have PLogic .
If you have PSpice A/D .

How the Simulator Responds .
Using the “Sample Window” Control .
Example: How the Simulator Creates Test Vectors
Troubleshooting Test Vector Differences

Using Probe Markers .
A caution about collapsed nodes .

Creatin g the Physical ImplementationChapter 5
Chapter Overview .
Overview of the Physical Implementation Process

If You Want More Control .
Where to Find Status and Design Information
Activating and Loading PLSyn .

Activating PLSyn .
From Schematics .
From the Windows Program Manager

Loading a Different Design .
The PLSyn Main Window .

Compiling the Logic . .
Manually Compiling Logic .
Compiling DSL Libraries .
Responding to Compile-Time Status and Errors
Controlling Node Generation During Compilation
Resolving “Out of Memory” Conditions

vi Contents

 5-10
5-11
5-13
-14
-14
5-15
5-16
 5-18
 5-20
5-22
 5-22
 5-23
 5-25
 5-25
 5-26
 5-27
 5-27
-28
 5-28
 5-29
 5-30

 . 6-1
. 6-2
. 6-2
 6-3
 6-3
. 6-3
. 6-3
 6-5
 6-6
 6-6
. 6-8
. 6-9
6-9
 6-10
6-11
 6-12
Optimizing the Logic Equations .
How the PLSyn Optimizer Synthesizes Logic Equations
Choosing the Optimization Method .

Overview of Fitting and Partitioning Logic 5
If You Don’t Have the Partitioning Option 5
How the PLSyn Fitter Works .

Limiting the PLD Parts Available for Search
Constraining Devices .

Setting Up User-Defined Constraints
How PLSyn Calculates Maximum Propagation Delay
The Default Constraints File .

Prioritizing the Solutions .
Using Constraints and Priorities Together

Running the PLSyn Fitter and Partitioner
Selecting Devices .
Creating Fuse Maps .

Including Test Vectors .
The Implementation-Specific Physical Information File (.npi) 5

Updating the Schematic .
Creating PCB Netlists .
When You Change the Design .

Controllin g the Fittin g Process Usin g the .pi FileChapter 6
Chapter Overview .
Introduction to the .pi File .

Why Use the .pi File? .
Using the Default .pi File .
Referring to Nodes in Your Design .

Interface nodes .
Internal nodes .

Controlling PLD Utilization .
Fitting a Node as an OUTPUT or NODE .
Controlling How Signals Are Fit Together
Disabling Outputs for Test .
Controlling Synthesis .

Cautions when using the DEMORGAN_SYNTH property
Controlling the Size of Equations .
Specifying Devices without Specifying Signals
Specifying JEDEC File Names .

Contents vii

 6-13
 6-13
 6-14
 6-15
6-16
-17
-17

 6-18

. 7-1
 7-2
 7-2
 7-2
 7-4
. 7-8
7-11
 7-11
 7-11
 7-12
-13
-14

 7-16
 7-16
 7-17

7-17

. 8-1
 8-2
 8-2
 8-2
 8-2
 8-3
 8-3
 . 8-4
. 8-4
More Examples Using the .pi File . .
Forcing Signals to be Fit Together in the Same Device
Using Specific Devices .
Maintaining Pin Assignments . .
Fitting the Design into One Device .
Fitting the Design into Multiple Devices 6
Mixing Automatic and Directed Partitioning 6
Refitting a Design into the Same Footprint

PLD Device-Specific Fittin gChapter 7
Chapter Overview .
Accessing Internal Points in a PLD Device

The Kinds of Nodes . .
Hidden nodes .
Unary nodes . .

Unary Nodes in the P330 and P331 .
Fitting Specific Device Architectures .

22V10, 750, and 2500: Handling Synchronous Preset
Using set and preset for the 22V10 and 750
Using set and preset for the 2500

P22V10I: Assigning Combinatorial Output During Feedback 7
P750B AND P2500B: Controlling Clock Source 7
P1800: Controlling Quadrant-Based Architectures

Assigning pins and nodes . .
Subgroups: Targeting quadrants .

P16V8HD, P22VP10, and P16VP10: Accessing the
Open-Drain Output .

MACH 1-4 Device-Specific Fittin gChapter 8
Chapter Overview .
Designing with MACH Devices .

When You Have Fitting Problems .
Using the log file .
Using the report file .

Summary of MACH Devices .
Output Enable Functions .
Register Reset/Preset Functions .
Packaging .

viii Contents

 . 8-5
-5

8-5
. 8-6
 8-7
. 8-8
 8-8
 . 8-8
 . 8-9
 8-10
 8-10
 8-11
 8-13
 8-13
5
 8-15
 8-16
 8-17
8
18
 8-19
8-23
 8-23
8-24
 8-24
 8-25
 8-26
8-26
 8-27

 8-27
-28

 8-34
 8-35
8-35
-36
-36

 8-37
 8-38
-40

 8-40
8-40
-41
Using Standard Clock Functions .
MACH 1xx, MACH 2xx: Synchronous Clock Functions 8
MACH 215, 3xx, 4xx: Asynchronous Clock Functions

Using Complex Clock Functions .
Clock Limitations .

Implementing Hazard-Free Combinatorial Latches
Basic Latch Circuit . .
Creating a Hazard-Free Latch .

Specifying Reserve Capacity .
Targeting PAL Blocks .

Using Signal Groups .
Using Device Sections .

Constraining the Size of Combinatorial Nodes
Making Adjustments .
Optimizing MACH 4xx Devices Using MAX_XOR_PTERMS 8-1
A Few Considerations .
Other Optimizing Parameters .

Understanding Pin Naming and Numbering
Using the MACROCELL_X## notation 8-1
Using the IN_REG_X## notation 8-

Achieving Satisfactory Pinouts .
MACH 2xx, 4xx: Using Input Registers .

Understanding Input Register Pin Names
MACH 2xx and 4xx Compared .
Input Registration .
Finding Signals Fit as Unary .
Forcing a Function to be Fit as Unary
Preventing a Function from Being Fit as Unary

Preserving Pinouts when Refitting .
Plan for Refitting .
Method 1: Creating a Two-Level .pi File 8
Method 2: Floating Nodes .

When Fitting into One Device Fails .
Using the “Default” Signal Reference

What you can find out in the log file 8
What you can find out in the report file 8

Using a Second Device .
Accessing the MACH Internal Feedback Path
MACH 215, 4xx: Fitting Asynchronous Functions 8

PTERM Clock and RESET and PRESET
More Than One RESET/PRESET Pair per PAL Block

MACH 4xx: Using XOR T-Equations . 8

Contents ix

-42
-43
 8-43
8-43
 8-44
8-44
. 8-44
. 8-45
. 8-45
8-46
-47
 8-48
-49
 8-49
 8-50
 8-52
 8-52
 8-53
 8-54
. 8-56
 8-58
 8-60
 8-60
 8-61
. 8-63
 8-66

. 9-1
 9-2
9-3
 9-4
 9-5
. 9-6
. 9-7
. 9-9
. 9-10
. 9-11
. 9-12
. 9-14
 9-15
MACH 4xx: Controlling Asynchronous Mode 8
MACH 4xx: Controlling T-Flop Synthesis 8

Normal Operation .
DFF-Only Fitting .
Using the T-Equation .

MACH 4xx: Controlling Power-On Reset
What Is a Logical Reset? .
The Nominal Case .
Exception Cases .

MACH 230 and 435: Possible Pin Incompatibility Between
MACH 445 and 465: Configuring for Zero-Hold Time 8
MACH 445 and 465: Accessing Signature Bits
MACH 1xx and 2xx: Driving or Floating Unused Outputs 8

Forcing Outputs Driven .
Forcing Outputs Floating .

The MACH Report File .
Obtaining a Report File .
Contents of the Report File .
Failure Disclaimers .
Summary Statistics .
Device Resource Utilization .
Partitioner Report .
Clock Assignments .
Signal Directory . .
Resource Assignment Map .

PTERM steering of clusters . .

MACH 5 Device-Specific Fittin gChapter 9
Chapter Overview .
Comparing the MACH 5 to Other MACH Architectures

MACH1xx/2xx/3xx/4xx .
MACH5xx .

Using the .pi File to Control MACH 5 Fitting
Routing in a Segment and Block .
Assigning Pins and Nodes .
Placing a Signal on an Input Register or Latch
Using Dual Feedback .
Forcing the Feedback Path to be Local .
Specifying Fanout .
Implementing Toggle Register Feedback
Implementing Dual-Edge Clocking .

x Contents

 9-16
 9-17
 9-17
 9-18
 9-19
 9-19
 9-20

 9-21
 9-22
 9-22
 9-23
 9-24
 9-24
 9-27
 9-28
 9-30
 9-32
9-32

 10-1
10-2
 10-2
0-3
0-4
10-5
10-5
 10-6
 10-6
 10-8
 10-8
0-10
0-10
0-11
0-13

10-14
Specifying Reserve Capacity .
Constraining the Size of Combinatorial Nodes

Making Adjustments .
A Few Considerations .
Other Optimizing Parameters .

Controlling Power Levels .
Controlling Slew Rates .
The Document File .
The Report File .

Heading .
Summary Statistics .
Power Resource Utilization .
Device Resource Utilization .
Partition Groups .
Signal Directory .
Fanout Table .
Power Table .
Block Configuration Tables .

ATV5000 Device-Specific Fittin gChapter 10
Chapter Overview .
Designing with the ATV5000 .
Constraining the Size of Combinatorial Nodes

The Effect of MAX_PTERMS . 1
The Effect of MAX_SYMBOLS . 1

Specifying Device Utilization .
Using the Flip-Flop Clock Option .

Enabling Clocking .
Controlling the Clock Source .

Using the I/O Pin Latches .
Identifying Pins and Nodes .
Targeting Quadrants in the ATV5000 . 1

Using the GROUP Construct . 1
Using the SECTION Construct . 1

Placing Node Signals on Buried Logic Cells 1
Understanding RU Conversion .

Contents xi

10-14
0-14
-15
0-16
0-16
0-16
0-17
0-17
10-18
0-18

10-19
0-20
0-20
0-20
0-22
0-22

10-22
10-22
0-23
0-23
0-23
0-23

10-24
0-24

 A-1
 A-2
 . A-3
 A-3
 A-4
 A-5
 A-6
 A-6
. A-6
. A-7
. A-7
 A-7
Understanding Regionalization .
Universal and regional PTERMs 1
Regionalization, sum-term combining, and fitting PTERMs 10

How PLSyn Does Regionalization . 1
Signal Regionalization . 1

Using input pins . 1
Using feedback paths (UR conversion) 1

PTERM Regionalization . 1
The Report File .

Obtaining Report File . 1
Heading .
Failure-to-Partition Disclaimer . 1
Partitioner Report . 1
Signal Directory . 1
Signals Universalized on Sum Term B 1
Signals Regionalized on Input Pins . 1
Function Placement Report .

Quadrant sections .
Fit attempt sections . 1
UR conversion report . 1
Pterm regionalization report . 1
Output/node signal placement report 1

Input Signal Placement Report .
Failure-to-Fit Disclaimer . 1

The Documentation FileAppendix A
Appendix Overview .
Summary of Documentation File Contents
Reduced Design Equations .

Equation Extensions Used in the .doc File
DeMorgan Equations .
Equation Display .

Partitioning Criteria .
Solutions List .
Fuse Map Files .
Pinout Diagrams .
Possible Devices List .
Wire List . .

xii Contents

. B-1
 . B-2

. C-1
 . C-2
 C-2
 C-2
 C-3
 C-3
 C-4
 C-5
 C-6
 C-7
 C-8
 C-9
-10
-12
-12
-13
-14
-16
-17
-18
-20
Summary of FilesAppendix B
Appendix Overview .
Files Used by PLSyn .

AMD MACH Device TablesAppendix C
Appendix Overview .
Pin Name Tables .

MACH 110 .
MACH 111, 111SP .
MACH 120, 121 . .
MACH 130, 131, 131SP . .
MACH 210, 211, 211SP . .
MACH 215 .
MACH 220, 221, 221SP . .
MACH 230, 231 . .
MACH 435, 436 . .
MACH 445, 446 . .
MACH 465, 466 . C

MACH 1xx and 2xx: Fuse Commands for Driving Outputs C
MACH 110 . C
MACH 120 . C
MACH 130 . C
MACH 210 . C
MACH 215 . C
MACH 220 . C
MACH 230 . C

Figures
 . 1-2
 . 2-2
 . 2-4
 . 2-9
 . 2-10
. 2-11
. 2-11
 . 3-3
 3-5
 . 3-8
. 3-10
. 3-11
. 3-14
. 5-6
. 5-15
 .
 .
 .
 . 7
 . 7-
 . 7-9
9-3
 9-5
 . 9-7
Figure 1-1 PLD Synthesis Design Flow .
Figure 2-1 3-to-8 Decoder Schematic .
Figure 2-2 Results of Decoder Simulation .
Figure 2-3 Back-Annotated Schematic Page .
Figure 2-4 The decoder1.sch Example Schematic .
Figure 2-5 Connecting the DSL Block .
Figure 2-6 Finished DSL Block .
Figure 3-1 7400 Symbol as Programmable Logic .
Figure 3-2 Relation of PLMODEL Attribute and DSL Procedure Name
Figure 3-3 The DSL Procedure Template .
Figure 3-4 A Source Code File for Each DSL Block
Figure 3-5 Single DSL Source Code File with More Than One Procedure
Figure 3-6 Programmable Logic Interface Node Labeled with a Global Port
Figure 5-1 Main PLSyn Window .
Figure 5-2 PLSyn Functional Architecture .
Figure 7-1 Hidden Node . 7-2
Figure 7-2 Shadow Node .7-3
Figure 7-3 Input Unary . 7-4
Figure 7-4 Feedback Unary .-4
Figure 7-5 P33x Local Unary . 9
Figure 7-6 P33x Shared Unary .
Figure 9-1 Simplified MACH 1xx/2xx/3xx/4xx Block Diagrams
Figure 9-2 Simplified 5xx Block Diagram .
Figure 9-3 Mach 5 Architecture .

Tables
. 4-5
 . 4-8
 . 4-9
 . 4-10
 . 5-19
. 5-19
 5-23
. 6-5
 . 6-10
. 7-6
 . 7-10
 . 7-16
. 8-3
 8-11
8-14
 . 9-8
 . A-3
 C-12
 C-13
 C-14
 C-16
 C-17
 C-18
 C-20
Table 4-1 PLSyn I/O Models .
Table 4-2 Test Vectors for Case 1 .
Table 4-3 Test Vectors for Case 2 .
Table 4-4 Test Vectors for Corrected Case 2 . .
Table 5-2 Temperature Rating Abbreviations .
Table 5-1 Device Selection Constraints Dialog Box Controls
Table 5-3 Solution Priorities Dialog Box Controls . .
Table 6-1 PLD Utilization Properties .
Table 6-2 Synthesis Control Properties . .
Table 7-1 Node Descriptions and Labels by Device Architecture
Table 7-2 Node Descriptions and Labels for P330 and P331
Table 7-3 Node Descriptions and Labels for P1800
Table 8-1 MACH Device Properties .
Table 8-2 MACH PAL Block Names .
Table 8-3 Minimum and Maximum Number of PTERMS
Table 9-1 MACH 5 Node Names and Pin Numbers
Table 10-1 Equation Extensions Used in the .doc File
Table 10-2 MACH 110 OE Fuse Commands .
Table 10-3 MACH 120 OE Fuse Commands .
Table 10-4 MACH 130 OE Fuse Commands .
Table 10-5 MACH 210 OE Fuse Commands .
Table 10-6 MACH 215 OE Fuse Commands .
Table 10-7 MACH 220 OE Fuse Commands .
Table 10-8 MACH 230 OE Fuse Commands .

Before You Be gin
ill
n

,
Welcome to MicroSim
Welcome to the MicroSim family of products. Whichever
programs you have purchased, we are confident that you w
find that they meet your circuit design needs. They provide a
easy-to-use, integrated environment for creating, simulating
and analyzing your circuit designs from start to finish.

xviii Before You Begin

n

s

M O D E L
+ BF =

symbols
packages

MicroSim
PSpice
Optimizer

MicroSim
Parts

models
MicroSim PLS yn
Overview
MicroSim PLSyn is a programmable logic synthesis program
that allows you to synthesize all or any portion of your desig
into PLD and/or CPLD parts.

PLSyn is fully integrated with other MicroSim programs. Thi
means you can do all of the following within the same
environment:

• Design your circuit with MicroSim Schematics.

• Synthesize programmable logic with MicroSim PLSyn.

• Simulate with MicroSim PSpice A/D (for mixed digital and
analog simulation) or MicroSim PLogic (for digital logic
and timing simulation).

• Analyze simulation results with MicroSim Probe.

MicroSim
Schematics

MicroSim
PCBoards

packages
footprints
padstacks

SPECCTRA
Autorouter

Gerber
files

drill
files

reports
MicroSim
Probe

MicroSim
PSpice A/D

MicroSim
PLSyn

PLD
devices

How to Use this Guide xix

n

tic

d
ing
rm
d

How to Use this Guide
This guide is designed so you can quickly find the informatio
you need to use PLSyn, including:

• how to create and edit designs which use PLDs (schema
and language-based), and

• how to optimize, partition, and fit devices.

This guide assumes that you are familiar with Microsoft
Windows (NT or 95), including how to use icons, menus, an
dialog boxes. It also assumes you have a basic understand
about how Windows manages applications and files to perfo
routine tasks, such as starting applications and opening, an
saving your work. If you are new to Windows, please review
your Microsoft Windows User’s Guide.

xx Before You Begin

Typographical Conventions
Before using PLSyn, you need to understand the terms and
typographical conventions used in this documentation.

This guide generally follows the conventions used in the
Microsoft Windows User’s Guide. Procedures for performing an
operation are generally numbered with the following
typographical conventions.

Notation Examples Description

C + r Press C+r A specific key or key stroke
on the keyboard.

monospace
font

Type VAC... or

dig_prim.slb

Commands/text entered from
the keyboard, or file names.

Feature available in systems
with the partitioning option
only

Tip providing advice or
different ways to do things.

Cautionary message.

Partitioning
Option
Required

To improve
accuracy...

Be careful...

Related Documentation xxi

rd
can

p

 to use...

 schematic capture front-end program
croSim programs and options.

CB layout editor that lets you specify
 well as the components, metal, and

 Editor, and the Parts utility, which are
you create, simulate, and test analog and
 examples on how to specify simulation
esults, edit input signals, and create

pice Basics, which are circuit analysis
ulate, and test

h is an analog performance
u fine tune your analog circuit designs.

etween MicroSim Schematics and
e A/D to enter designs that include
ray devices.

s a filter synthesis program that lets you
tive filters.
Related Documentation
Documentation for MicroSim products is available in both ha
copy and online. To access an online manual instantly, you
select it from the Help menu in its respective program (for
example, access the Schematics User’s Guide from the Hel
menu in Schematics).

Note The documentation you receive depends on the
software configuration you have purchased.

The following table provides a brief description of those
manuals available in both hard copy and online.

This manual... Provides information about how

MicroSim Schematics
User’s Guide

MicroSim Schematics, which is a
with a direct interface to other Mi

MicroSim PCBoards
User’s Guide

MicroSim PCBoards, which is a P
printed circuit board structure, as
graphics required for fabrication.

MicroSim PSpice A/D & Basics+
User’s Guide

PSpice A/D, Probe, the Stimulus
circuit analysis programs that let
digital circuit designs. It provides
parameters, analyze simulation r
models.

MicroSim PSpice & Basics
User’s Guide

MicroSim PSpice & MicroSim PS
programs that let you create, sim
analog-only circuit designs.

MicroSim PSpice Optimizer
User’s Guide

MicroSim PSpice Optimizer, whic
optimization program that lets yo

MicroSim FPGA
User’s Guide

MicroSim FPGA—the interface b
XACTstep—with MicroSim PSpic
Xilinx field programmable gate ar

MicroSim Filter Designer
User’s Guide

MicroSim Filter Designer, which i
design electronic frequency selec

xxii Before You Begin

 an

This online manual... Pr

MicroSim PSpice A/D
Online Reference Manual

R e
s d
a
c

MicroSim Application Notes
Online Manual

A d
u nt
a

Online Library List A
li

MicroSim PCBoards Online
Reference Manual

R s,
p the
n
c

MicroSim PCBoards Autorouter
Online User’s Guide

In
(C
The following table provides a brief description of those
manuals available online only.

Online Help
Selecting Search for Help On from the Help menu brings up
extensive online help system.

The online help includes:

• step-by-step instructions on how to use PLSyn features

• DSL language reference

• PIL language reference

• device lists (by manufacturer and by template)

• Technical Support information

Every dialog box also includes a help button which, when
selected, displays a description of the dialog box and each
control.

ovides this...

eference material for PSpice A/D. Also included: detailed descriptions of th
imulation controls and analysis specifications, start-up option definitions, an
 list of device types in the analog and digital model libraries. User interface
ommands are provided to instruct you on each of the screen commands.

 variety of articles that show you how a particular task can be accomplishe
sing MicroSim‘s products, and examples that demonstrate a new or differe
pproach to solving an engineering problem.

 complete list of the analog and digital parts in the model and symbol
braries.

eference information for MicroSim PCBoards, such as: file name extension
adstack naming conventions and standards, footprint naming conventions,
etlist file format, the layout file format, and library expansion and
ompression utilities.

formation on the integrated interface to Cooper & Chyan Technology’s
CT) SPECCTRA autorouter in MicroSim PCBoards.

The PLSyn Features In Your Configuration xxiii

ng.

m

rd

ls

0

rs

e

ed

Partitioning
Option
Required

Your configuration depends on
which of the design modules you
purchased: PLDs, AMD MACH,
and/or Atmel V-Series.
The PLSyn Features In
Your Confi guration
PLSyn, running with other MicroSim programs, provides the
following features:

• Multiple design entry modes.

• Schematic entry with support for hierarchical design.

• Design Synthesis Language (DSL) support of arithmetic
operators and arrays, procedure and function library linki

• Device-independent design entry.

• Integrated simulation at the system level to detect proble
areas in the design; you can simulate the functionality of
your design while it is still in the design phase.

• Compilation, optimization, and device selection.

• Logic consolidation; optimization and reduction of your
design to the smallest set of gates using industry-standa
methods.

• Multiple equation reduction levels; automatic
DeMorganization, automatic flip-flop synthesis, XOR
synthesis, don’t care generation, and node collapsing.

• Automatic or manual placement of input and output signa
in the selected programmable logic devices.

• Automatic partitioning of the design across as many as 2
devices.

• Libraries with up to 3,500 PLDs from twelve manufacture
and 100+ architectures.

• Ability to test programmable devices by automatically
generating test vectors from the functional simulation
results and downloading them to the programmer with th
fuse map file.

• On-line reference to the complete list of devices support
by PLSyn.

The Pro grammable Lo gic
Design Process—An
Overview
ss,
s
1

Chapter Overview
This chapter introduces the programmable logic design proce
and terms and concepts used throughout this manual. Topic
include:

• Design entry, page 1-3

• Functional simulation, page 1-3

• Constraints and priorities definition, page 1-4

• Fitting and partitioning process, page 1-4

• Device selection, page 1-5

• Timing simulation, page 1-5

• Device programming, page 1-5

1-2 The Programmable Logic Design Process—An Overview

 Because the design phase is
separate from the
implementation phase, you can
design and simulate your system
before choosing which PLD
part(s) you want to use.
Steps for Desi gnin g
Systems with
Programmable Lo gic
Figure 1-1 illustrates the typical design flow for synthesizing
programmable logic.

Figure 1-1 PLD Synthesis Design Flow

Design

Simulate

Define
Constraints &

Priorities

Implementation
Phase

Design Phase

Fit/Partition

Select
Device

Simulate
with

Timing

Program
Device

Layout
the

PCB

Steps for Designing Systems with Programmable Logic 1-3

ts.
ted

e

r

ble
en

e

 by

,

s,

Schematics

Example: Your design might be a
large system which contains
discrete PCB-level parts and one
or more PLDs. Or, it might be a
design of a reusable system
which you want to implement
entirely in a PLD.

PSpice A/D

PLogic

Probe
Design
You can program all or any part of your design into PLD par
To start, this means you need to define the functionality targe
for PLDs as programmable logic in your schematic.

Programmable logic takes the form of either:

• programmable logic symbols, such as gates, flip-flops, shift
registers, and counters, or

• Design Synthesis Language (DSL) blocks, which describ
programmable logic in a hardware description language

Your schematic can also include logic that is not targeted fo
PLDs. This is called non-programmable logic which takes the
usual form of discrete parts.

Your schematic can contain any combination of programma
logic symbols, DSL blocks, non-programmable logic, and ev
analog parts.

Simulate
You can simulate your design before you know which PLD
architectures (part types) you want to use. Before running th
simulation, PLSyn automatically compiles all of your
programmable logic into logic equations which are then used
the simulator.

Because simulations at this stage are before implementation
they do not include timing information. However, functional
simulations can save a lot of time early in the design proces
because the more time-consuming steps of optimization and
fitting are not required until your design is finished.

1-4 The Programmable Logic Design Process—An Overview

on

h

ter.

o
our

yn

on
yn

.

PLSyn

 See The PLSyn Features In
Your Configuration on page xxiii
for more information.

Example: You can place more
importance on lower power than
total price

PLSyn

Note You must have the
partitioning feature to fit a
design into multiple devices.

Partitioning
Option
Required
Set Constraints and Priorities
By default, the PLSyn fitter considers every device in the
library. The number of devices you have available depends
the design module options you have purchased.

Before you begin the fitting/partitioning process, you can
constrain the parts that the PLSyn fitter considers by device
properties such as architecture, logic family, package type,
speed, etc. This helps narrow the architecture-set from whic
PLSyn can choose, which results in faster completion of the
fitting/partitioning process.

You can also have PLSyn rank the solutions by defining the
relative merit of device properties like price, number of pins,
size, propagation delay, and frequency, before running the fit
These are your solution priorities.

Fit and Partition
 After you have completed the functional design and set the
fitting constraints and priorities, you are ready to fit your
programmable logic into PLD parts. Fitting is the process of
mapping a logic design into physical devices.

PLSyn finds and displays a list of up to ten solutions which
implement your design’s programmable logic while abiding t
your constraints. PLSyn lists the best solutions, ranked by y
assigned solution priorities.

For each solution it finds, PLSyn displays the generic
architecture, or template, for the device, along with its cost,
speed, and power consumption.

If your PLSyn package includes the partitioning feature, PLS
automatically allocates or partitions logic into two or more
devices (up to a maximum of twenty). PLSyn can also partiti
logic between devices with different architectures. If so, PLS
shows each architecture in the solution list.

PLSyn’s fitting and partitioning process works automatically
You can also direct the process by using the physical
information file which contains statements in the Physical

Steps for Designing Systems with Programmable Logic 1-5

ct

t
res

u
tom
s)

ual
e
r

D

our

your

PLSyn

PSpice A/D

PLogic

Probe

PLSyn
Information Language (PIL). Using PIL, you can specify exa
part numbers, put groups of logic into specific devices, and
specify device pinouts.

Select Device
After the PLSyn fitter has found the solutions that implemen
your design, the next step is to choose one of the architectu
and the corresponding physical part(s) you want to use.

When you select an architecture in the solution list, PLSyn
displays a list of all part numbers meeting the constraints yo
have specified. These appear in the Solution Detail at the bot
of the PLSyn window. All you have to do is select which one(
to use.

Simulate with Timin g
Any simulations that you perform after you have selected act
PLD part numbers, include timing information specific to thos
parts. This allows you to check the device’s timing within you
system and find potential problems such as setup/hold time
violations or worst-case timing hazards which involve the PL
device.

Program Device
As the final step, you need to generate the fuse maps that y
device programmer needs to program the PLDs. PLSyn
generates these as JEDEC files, one for each PLD device in
implementation.

Primer: How to Define
Programmable Lo gic
size

tic

d
es

2

Chapter Overview
This chapter guides you through the steps needed to synthe
a PLD device for a simple 3-to-8 decoder.

Implementing a 3-to-8 Decoder with Programmable Logic on
page 2-2 describes the sample circuit.

Design Phase: Defining Programmable Logic using Schema
Symbols on page 2-3 walks you through the steps needed to
convert existing schematic symbols to programmable logic.

Implementation Phase: Fitting and Partitioning the Design on
page 2-5 walks you through the steps needed to fit, select an
program a PLD device subject to the constraints and prioriti
you define.

Using a DSL Block to Define the Programmable Logic on
page 2-10 presents a way of defining the programmable logic
that is equivalent to that using schematic symbols.

2-2 Primer: How to Define Programmable Logic

s.

ng

ne

Note You can mix both
programmable logic symbols
and DSL blocks on your
schematic.
Implementin g a 3-to-8
Decoder with
Programmable Lo gic
Figure 2-1 illustrates a simple 3-to-8 decoder, consisting of
three 74LS04 inverters and eight 74LS11 3-input AND gate

Figure 2-1 3-to-8 Decoder Schematic

Assume that you want to target all of the decoder for PLD
implementation. You have two alternative but equivalent
methods from which to choose:

• Convert discrete components to programmable logic usi
schematic symbols.

• Create Design Synthesis Language (DSL) blocks to defi
functionality using a hardware description language.

Design Phase: Defining Programmable Logic using Schematic Symbols 2-3

 of

ess

u
In the remainder of this chapter, you will see how to use both
these methods. You will also learn how to set up and run the
physical implementation process, which is the same regardl
of how you specify the programmable logic.

Design Phase: Definin g
Programmable Lo gic
usin g Schematic
Symbols

Before you be gin

Copy the following files from the \ MicroSim root
directory\examples\plsyn\decoder directory to your
working directory:

decoder.sch schematic file

decoder.stl stimulus library file

Loadin g and simulatin g the desi gn

To load the schematic

1 In the MicroSim program group, double-click the
Schematics icon to start Schematics.

2 From the File menu, select Open .

3 Move to the directory containing decoder.sch .

4 In the File Name list box, select the schematic file that yo
are interested in.

2-4 Primer: How to Define Programmable Logic

ure
.

een

n
ly.

ing

n.

Figure 2-2 Results of Decoder
Simulation
Once the circuit is loaded, you should run a simulation to ens
that the circuit is working properly before you fit it into a PLD
The schematic is already configured to perform an 800 nsec
simulation.

To simulate

1 From the Analysis menu, select Simulate.

Next you can view the results in Probe. This schematic has b
set up to start Probe automatically and to display the signals
which have markers attached. The resulting signals shown i
Figure 2-2 indicate that the decoder is in fact working correct

Convertin g 74LS Symbols to
Programmable Lo gic
There are two ways to enter programmable logic symbols, us
either:

• pre-defined programmable logic symbols found in the
dig_prim.slb symbol library, or

• 74xx symbols and then setting their IMPL attributes to
PLSYN.

Since the decoder is already defined with discrete logic, the
second method (defining the IMPL attribute) is the most
convenient way to turn the existing design into a PLD desig

To include devices in the pro grammable lo gic

1 Select all 74LS symbols on the schematic. Either:

• draw a box around each symbol, or

• S+click on each 74LS part.

2 From the Edit menu, select Attributes.

3 Click Yes to the prompt: Globally edit attributes of all
selected items?

Implementation Phase: Fitting and Partitioning the Design 2-5

es

vice

 do

As an alternative, you can
change each part individually
(rather than globally) by double-
clicking each 74LS device and
setting the value of each IMPL
attribute to PLSYN.

Note If you changed the
default color settings, your
colors may differ from this
example.

Although you have just made the
entire decoder design
programmable logic, you can
also specify only a portion of a
design as programmable logic.

It’s also easy to change a symbol
back into a non-programmable
logic symbol. Just edit the
symbol’s IMPL attribute and
clear its value so that it is blank.
4 In the Attribute Name text box, type IMPL; in the Value
text box, type PLSYN.

This sets the value of the IMPL attribute to PLSYN for all
selected parts that have an IMPL attribute (in this case, all
parts).

5 Click OK.

Notice that the reference designator for each logic device
changes to PLSYN_U1, PLSYN_U2, ..., and the color chang
from green to blue, by default.

Verif ying Functionalit y usin g
Simulation
At this point, you can re-run the simulation to verify that the
programmable logic representation matches the discrete de
representation. The programmable logic is compiled for you
automatically before the simulation starts.

Implementation Phase:
Fittin g and Partitionin g
the Desi gn
You are now ready to create the physical implementation. To
this, you must run PLSyn.

To activate PLS yn

1 From the Tools menu, select Run PLSyn.

PLSyn starts with the current design file loaded.

2-6 Primer: How to Define Programmable Logic

ich

er,

 to

e

o

Settin g Constraints
Constraints allow you to choose the types of devices into wh
PLSyn must fit the design. You can narrow the search for
solutions by selecting criteria such as device template
(architecture), logic family, manufacturer, package type, pow
speed, and temperature.

By default, PLSyn considers all devices. Suppose you want
narrow the solution search by selecting specific device
templates: P16V8A and P22V10.

To constrain the solution to the P16V8A and
P22V10 device templates

1 From the Edit menu, select Constraints.

PLSyn displays a list of constraints that you can enable.
Some constraints, such as Device Template, also requir
that you select from a list of values.

2 Click Devices.

3 Click None to deselect all items.

4 Scroll until P16V8A is visible and click on it.

5 Scroll and find P22V10.

6 Hold down the C key and click P22V10.

7 Click OK.

You can also constrain the device search by telling PLSyn t
look only for one logic family of devices. By default, all three
logic families—CMOS, ECL, and TTL—are included in the
search.

Suppose that you don’t want to use ECL.

To exclude the ECL lo gic famil y from the solution

1 Click Logic Families.

2 Hold down the C key and click ECL. This leaves CMOS,
OBS, and TTL highlighted.

Implementation Phase: Fitting and Partitioning the Design 2-7

on,

s.
up

,
.

as
 (if
3 Click OK to return to the constraints selection dialog
box.

4 Click OK to exit constraints specification.

Settin g Priorities
Solution priorities allow you to determine the ranking of the
solutions found during the fitting and partitioning process
according to factors such as price, speed, power consumpti
and pin count. They also determine the ordering of alternate
devices for a given solution.

By default, price has the highest priority.

To indicate a preference for faster parts

1 From the Edit menu, select Priorities.

2 In the Prop Delay text box, type 10.

3 In the Price text box, type 5.

4 Click OK.

Partitionin g and Fittin g
You are now ready to start the fitting and partitioning proces
During the fitting process, PLSyn finds and displays a list of
to 10 solutions which implement the programmable logic
according to your constraints. PLSyn lists the best solutions
ranked according to solution priorities that you just assigned

To begin the fittin g process

1 From the Tools menu, select Fitter/Partitioner.

PLSyn first checks the netlist to make sure that the design h
not changed. Then PLSyn automatically compiles the design
not already compiled), optimizes the design, and starts the
fitting process.

2-8 Primer: How to Define Programmable Logic

ur
ally

the

t
PLSyn scans the available file to find devices which match yo
constraints. PLSyn then searches for the devices which actu
fit your design’s programmable logic. When this process is
complete, PLSyn displays the solutions in the solution list at
top of the PLSyn window.

This design fits into either of the two templates which you
selected earlier: P16V8A and P22V10. P16V8A is listed firs
because it is the best device meeting the specified priorities.
Further, the best P16V8A is a GAL16V8C-5LP, shown in the
solution detail list.

To select a different part number

For example, suppose you want to use a leadless chip
carrier,

1 Click Browse to view the list of alternate parts.

2 Select the PALCE16V8H-5JC/5.

3 Click OK to keep the selection.

The PALCE16V8H-5JC/5 is now the physical device
which implements the decoder (although a rather
expensive implementation!).

Verif ying Timin g Behavior usin g
Simulation
If you now simulate the design, the simulator includes the
timing specifications for the PALCE16V8H-5JC/5. This
allows you to check the timing behavior for both:

• the device itself, and

• the device operating within your entire system.

Implementation Phase: Fitting and Partitioning the Design 2-9

 a

will
 is

ic.

page

e.

The JEDEC file is the input to
your device programmer.

Alternatively, you could go back
to the schematic and set the
switch to generate test vectors in
the PLSyn Setup dialog box (see
page 4-3), then re-simulate to
include the test vector in the
JEDEC file.

Figure 2-3 Back-Annotated
Schematic Page
Creatin g Device Pro grammin g
Files
You are now ready to run the Fuse Map Generator to create
device programming file in JEDEC format.

To generate fuse maps

1 From the Tools menu, select Fuse Map Generator.

PLSyn displays a warning message that no test vectors
be included in the fuse map file at this time. For now, this
fine.

2 Click Yes when prompted to continue.

This creates a file named decoder.j1 .

To view the JEDEC file name and other useful
information

1 Select Examine Doc File in the File menu.

Back Annotatin g the Schematic
You can now back annotate the schematic to include the
physical device(s) that you selected.

To back-annotate the schematic

1 In PLSyn, from the Tools menu, select Update Schemat

Schematics places the selected PLD(s) on a new schematic
along with the appropriate input/output ports.

To view the PLD part as shown in Fi gure 2-3

1 In Schematics, from the Navigate menu, select Next Pag

2 Click YES to the prompt: Save changes to current page?

2-10 Primer: How to Define Programmable Logic

le.

pre-

re

Physical implementation is the
same no matter how you set up
the programmable logic in your
schematic. If, after having
defined the DSL block, you want
to implement the design, follow
the instructions in Implementing
a 3-to-8 Decoder with
Programmable Logic on
page 2-2.

Figure 2-4 The decoder1.sch
Example Schematic
Usin g a DSL Block to
Define the
Programmable Lo gic
The following steps describe how to implement the 3-to-8
decoder with a DSL procedure which is equivalent to the
programmable logic symbols you used in the previous examp

Before You Be gin
Copy the following files from the \ MicroSim root
directory\examples\plsyn\decoder1 directory to your
working directory:

decoder1.sch schematic file

decoder1.stl stimulus library file

Loadin g the Desi gn
The schematic file, decoder1.sch , contains only digital
stimulus and global output ports. The analysis setup is also
configured to perform an 800 nsec simulation.

To load the schematic

1 From the File menu, select Open.

2 Move to the directory containing decoder1.sch .

3 In the File Name list, select the schematic file that you a
interested in.

Using a DSL Block to Define the Programmable Logic 2-11

L

uts

:
p

s.

ck.

Figure 2-5 Connecting the
DSL Block

Figure 2-6 Finished DSL Block
Addin g a DSL Block
DSL blocks are simply hierarchical blocks which reference DS
source code files instead of schematic files.

To add a DSL block

1 From the Draw menu, select Block.

2 Place one block on the schematic page between the inp
and the outputs, as shown in Figure 2-3.

3 From the Draw menu, select Wire and connect each
stimulus input directly to the block.

4 Repeat step 3 for each global output port, as shown in
Figure 2-3. Each connection to the block creates a pin.

a Rename the DSL block’s pins as shown in Figure 2-3
double-click the pin name (for example, P1) to bring u
the Change Pin dialog box.

b Enter a new pin name.

c Click OK.

d Repeat steps a-c for each of the input and output pin

Definin g DSL Source Code
You are now ready to enter the DSL source code for the blo

To define DSL source code

1 Double-click the block to push into it.

2 Enter the DSL source code file, decod3x8.dsl , in the
Setup Block dialog box, then click OK.

Schematics displays the MicroSim Text Editor. Because
you are defining a new block, the PROCEDURE header and END
statements are defined for you as follows.

PROCEDURE decod3x8(INPUT A, B, C;
 OUTPUT D0, D1, D2, D3, D4, D5, D6, D7);

END decod3x8;

2-12 Primer: How to Define Programmable Logic

re

ut

xt
Notice that the INPUT and OUTPUT nodes in the procedu
header correspond to the pin names of the DSL block.

3 Type the entire TRUTH_TABLE statement between the
PROCEDURE header and END statement as shown:

This simple construct sets a single bit in the D7.. D0 outp
based on the three inputs’ integer value.

4 From the File menu, select Save.

5 From the File menu, select Close to exit the MicroSim Te
Editor.

To verif y that the DSL version of the decoder
performs exactl y as the lo gic s ymbol version

1 From the Analysis menu, select Simulate.

Equivalent Wa ys to Define the
Decoder with DSL
Try experimenting with the different features of DSL. For
example, you could also implement the decoder using the
following CASE statement:

CASE [C,B,A]
 WHEN 0 => [D7..D0] = 00000001b;
 WHEN 1 => [D7..D0] = 00000010b;
 WHEN 2 => [D7..D0] = 00000100b;

Using a DSL Block to Define the Programmable Logic 2-13

h
cks
 WHEN 3 => [D7..D0] = 00001000b;
 WHEN 4 => [D7..D0] = 00010000b;
 WHEN 5 => [D7..D0] = 00100000b;
 WHEN 6 => [D7..D0] = 01000000b;
 WHEN 7 => [D7..D0] = 10000000b;
END CASE;

Or, you could use the following (somewhat crude, but still
effective) set of equations:

D0 = /(A + B + C);
D1 = A * /(B + C);
D2 = B * /(A + C);
D3 = A * B * /C;
D4 = /(A + B) * C;
D5 = A * /B * C;
D6 = /A * B * C;
D7 = A * B * C;

With a little experimentation, you should find that DSL is bot
easy-to-learn and powerful enough to describe complex blo
of logic.

Designin g with
Programmable Lo gic
le

ert

The discussion in
assumes that yo
with Schematics
use of hierarchic
to your MicroSim
User’s Guide for
Schematics.
3

 this chapter
u are familiar
, including the
al blocks. Refer

 Schematics
details on using
Chapter Overview
This chapter describes in detail how to specify programmab
logic using Schematics.

The Different Ways to Specify Programmable Logic in
Schematics on page 3-2 introduces the two equivalent
mechanisms you can use to define programmable logic.

Using Programmable Logic Symbols on page 3-2 describes
where to find programmable logic symbols and how to conv
discrete logic symbols to programmable logic.

Using DSL Blocks on page 3-4 explains how to place and define
functional blocks describing programmable logic using a
hardware description language.

Understanding Programmable Logic Nodes on page 3-13
explains how to define the internal and interface nodes
connecting to programmable logic.

Guidelines for Entering Programmable Logic on page 3-16, lists
the do’s and don’ts that you should follow to avoid problems
during the physical implementation phase.

3-2 Designing with Programmable Logic

 at

s,

Note IMPL is short for
“implementation.”

For a complete list of symbols,
refer to the Programmable Logic
Symbol Reference in PLSyn
online help.
The Different Wa ys to
Specif y Programmable
Logic in Schematics
You can define programmable logic in two ways using:

• logic symbols (such as gates and flip-flops)

• DSL (Design Synthesis Language) blocks

You can place programmable logic symbols and DSL blocks
anywhere on your schematic—that means on any page and
any level of the hierarchy.

Usin g Programmable
Logic Symbols
Logic symbols used as programmable logic have their IMPL
attribute set to the value PLSYN. The available logic symbols
fall into two classes:

• Generic logic symbols

Example: NAND4, JKFF

• 74xx series symbols

Example: 74LS04 or 74HC107

Generic Lo gic Symbols
The dig_prim.slb symbol library contains ready-to-use
programmable logic symbols, including gates, enabled gate
flip-flops, and latches. Each symbol already has its IMPL
attribute set to PLSYN.

Using Programmable Logic Symbols 3-3

s
.

w

Figure 3-1 7400 Symbol as
Programmable Logic
74xx Series Lo gic Symbols
You can also convert the common 74xx series logic symbol
found in the 74xx.slb symbol libraries to programmable logic

To convert one 74xx series lo gic s ymbol to
pro grammable lo gic

1 Double-click the symbol.

2 Click the IMPL= entry.

3 In the Value text box, type PLSYN.

4 Click Save Attr.

5 Click OK.

To convert several 74xx series lo gic s ymbols to
pro grammable lo gic all at once

1 Select the 74xx symbols.

2 From the Edit menu, select Attributes.

3 Click Yes to the prompt: Globally edit attributes of all
selected items?

4 Click the IMPL= entry.

5 In the Value text box, type PLSYN.

6 Click Save Attr.

7 Click OK.

Schematics automatically updates the symbol’s reference
designator and changes its color to blue (by default), to sho
that it is programmable logic.

Note Some of the 74xx symbols cannot be converted to
programmable logic. These symbols do not have
the IMPL attribute. Adding an IMPL attribute will
not work because PLSyn does not know the
symbol’s logic function.

3-4 Designing with Programmable Logic

g

ic This section describes how to
define and edit DSL blocks within
Schematics. For information on
DSL language syntax, refer to
the PIL Reference in PLSyn
online help.

Note DSL files must have the
.dsl extension.
You can also change programmable logic symbols back to
discrete PCB devices.

To revert to non -pro grammable lo gic

1 Select the symbol(s) and bring up the Edit Attributes dialo
box as described in the above two procedures.

2 Click the IMPL= entry.

3 Clear (set to blank) the Value text box.

4 Click Save Attr.

5 Click OK.

Usin g DSL Blocks
In addition to logic symbols, you can define programmable log
using DSL (Design Synthesis Language) blocks on your
schematic.

What Are DSL Blocks?
DSL blocks are hierarchical blocks which have a language-
based definition instead of a symbolic definition. DSL logic
expressions and constructs take the place of discrete logic
symbols. So, instead of referencing a schematic file (.sch),
DSL blocks reference a DSL source code file (.dsl).

Using DSL Blocks 3-5

ts

s
What Are DSL Procedures?
Each DSL block you place corresponds to a single procedure
within the source code file. Procedures contain language
constructs such as simple logic expressions, truth-tables, or
state-machine definitions. The signals coming into the DSL
block define the inputs to the procedure. Likewise, the outpu
of the procedure define the output signals of the DSL block.

A DSL block has a PLMODEL attribute which defines the
procedure name.

Example: The HB1 DSL block shown in Figure 3-2 reference
the adder5.dsl DSL source code file which contains the
ADDER5 procedure referenced by the block’s PLMODEL
attribute.

Figure 3-2 Relation of PLMODEL Attribute and DSL
Procedure Name

PROCEDURE ADDER5(INPUT A[4..0], B[4..0];
OUTPUT SUM[4..0]);
SUM = A .+. B;

END ADDER5;

DSL block

adder5.dsl

3-6 Designing with Programmable Logic

bus

.

me

You can change the size of the
block by selecting the block, then
using S right-click on one
of the corners to drag it to the
desired size.

Note Pin names must not be
one of the DSL keywords,
such as INPUT or OUTPUT.
For the list of DSL keywords,
refer to the DSL Reference in
PLSyn online help.

The ERC attribute defines the
electrical purpose of the pin.

Note The .dsl file cannot
have the same name as the
schematic file. (It is reserved
for system use.) For example,
a schematic named
decoder.sch cannot reference
a file named decoder.dsl.
Creatin g a DSL Block in Your
Schematic

To create a DSL block

1 In Schematics, from the Draw menu, select Block.

2 Click to place the block on the schematic page.

3 Connect wires or buses directly to the block. Each
connection automatically creates a pin at the junction.

4 Define the names and types of each pin.

a Double-click the pin name.

b Enter a new pin name.

When naming a bus connection, use the Schematics
label syntax, for example, A[4-0].

c If necessary, select the correct ERC value for the pin

By default, the pins on the left are given an ERC
attribute of input and pins on the right are given an
ERC of output . Do not set the ERC attribute to DON’T
CARE; this is not allowed for a DSL block.

5 Push into the DSL block. Either:

• double-click the block, or

• from the Navigate menu, select Push.

Because this is a new block, you are prompted for the na
of the file containing the DSL source code.

6 Enter the name of the DSL source file (using the .dsl
extension) that you want to create or reference.

Using DSL Blocks 3-7

k,

e

 a
 to
7 If you have not yet created the DSL procedure for this bloc
then do one of the following:

• If the DSL file does not exist, Schematics activates th
MicroSim Text Editor automatically. Specify the new
DSL procedure and save the .dsl file.

• If the DSL file does exist but you still need to specify
the procedure, activate the MicroSim Text Editor from
the MicroSim program group, open the .dsl file,
specify the new DSL procedure, and save the file.

See the next section for information on defining DSL
procedures.

Usin g the MicroSim Text Editor
to Define DSL Procedures
When given a file name with the .dsl extension, Schematics
displays the MicroSim Text Editor which you can use to:

• Define the body of the DSL procedure.

• Add other procedures or functions.

For new DSL procedures, Schematics automatically creates
procedure template with input and output ports corresponding
the DSL block’s pin names and attributes.

Figure 3-3 The DSL Procedure Template

3-8 Designing with Programmable Logic

t to

bus

nd
.

h of
ort

n

If the block’s PLMODEL attribute is undefined, Schematics
defines it for you using the DSL file name (excluding the .dsl
extension).

Schematics also automatically translates the bus label forma
the DSL array format.

Example: In the procedure header shown in Figure 3-3, the
format A[4-0] is translated to the array format A[4..0].

Changing the DSL Block
Interface
The pins on the DSL block must match the number, name, a
signal direction of the port nodes used in the DSL procedure
This means that if you add or delete pins, or change the widt
a bus on your DSL block, you must update the procedure’s p
nodes corresponding to the changed pins.

Example: If you change a port’s direction from an output to a
input, you must change the ERC value of the corresponding
DSL block pin to INPUT.

Using DSL Blocks 3-9

k.

.

 it

lan

re.

tch

L

t

For detailed instructions (menu
options and mouse moves), see
the following procedures:

• To create a DSL block on
page 3-6.

• To change the pin properties
in Schematics on page 3-9.
To chan ge the pin properties in Schematics

1 In Schematics, double-click the pin name in the DSL bloc

2 Change values in the Pin Name text box or Pin Attibutes
frame as needed.

To chan ge the pin properties in the MicroSim Text
Editor

1 In Schematics, double click the DSL block.

2 Modify the procedure header to match the new interface

Usin g Existin g DSL Source Code
You can create a DSL file ahead of time and then associate
with any DSL block you create thereafter.

To associate an existin g DSL file with a new DSL
block

1 Check the port node names in the DSL procedure you p
to use with the new DSL block.

2 Place a block.

3 Add a pin for each of the port nodes in the DSL procedu

4 For each pin, change its name and ERC (if needed) to ma
the corresponding port node in the DSL procedure.

5 Add a PLMODEL attribute to the block and assign the DS
procedure’s name as its value.

a Select the DSL block.

b From the Edit menu, select Attributes.

c In the Name text box, type PLMODEL.In the Value tex
box, type the DSL procedure name.

3-10 Designing with Programmable Logic

 of
d Click Save Attr.

e Click OK.

6 Push into the block, and when prompted, enter the name
the existing DSL source code file.

Structurin g DSL Source Files
When organizing your DSL procedures, you can have

• one procedure per file, or

• multiple procedures per file.

Example: A sin gle DSL procedure in each file

In Figure 3-4, if you were to make a change only to file2.dsl ,
file1.dsl is not recompiled.

Figure 3-4 A Source Code File for Each DSL Block

PROCEDURE A(INPUT ...; OUTPUT ...);
...

END A;

PROCEDURE B(INPUT ...; OUTPUT ...);
...

END B;

file1.dsl
PLMODEL=A

file2.dsl
PLMODEL=

DSL
Block

DSL
Block

file2.dsl

file1.dsl

Schematic
page

Using DSL Blocks 3-11

e
Example: More than one DSL procedure in a
sin gle file

From a maintenance point of view, this method is easier to
manage because there are fewer files.

Figure 3-5 Single DSL Source Code File with More Than On
Procedure

PROCEDURE A(INPUT ...; OUTPUT ...);
...

END A;

PROCEDURE B(INPUT ...; OUTPUT ...);
...

END B;

file3.dsl
PLMODEL=A

file3.dsl
PLMODEL=B

DSL
Block

DSL
Block

Schematic
page

file3.dsl

3-12 Designing with Programmable Logic

 to

s to

e

he

y

For information on the use of the
INCLUDE and USE statements,
refer to the DSL Reference in
PLSyn online help.
To create a pre-compiled DSL
file, manually compile the file
from PLSyn using Compile
Library from the Tools menu.
Callin g DSL Procedures and
Functions from within a
Procedure
Like other programming languages, DSL allows a procedure
contain calls to other procedures and functions.

You must define called procedures and functions before they are
called from the main DSL procedure. There are several way
do this:

• Add the called procedure or function directly to the sourc
code before the calling procedure.

• Include another DSL source file into your source before t
calling procedure by using the INCLUDE statement.

• Reference a pre-compiled DSL file (for example, a librar
of commonly used DSL procedures) from your source by
using the USE statement before the calling procedure.

Understanding Programmable Logic Nodes 3-13

f

ur
D.

 in
ame,

l
e

For more information on the .pi
file, see Chapter 6, Controlling
the Fitting Process Using the
.pi File and refer to the PIL
Reference in PLSyn online help.
Understandin g
Programmable Lo gic
Nodes
As you enter a programmable logic design, the nodes which
connect to programmable logic symbols or DSL blocks are o
two types.

Internal nodes These connect programmable logic to
other programmable logic.

Interface nodes These are at the boundary of the
programmable logic, and connect to all other schematic
symbols, such as global ports, non-programmable logic, and
analog devices.

After you have performed the physical implementation of yo
design, interface nodes correspond to physical pins on a PL

Labelin g Nodes
You are not required to label the programmable logic nodes
Schematics. Schematics automatically generates a unique n
such as NPL_0013.

However, to reference a node in your design’s Physical
Information (.pi) file, you should label the node so that you’l
know how to refer to it. Once labeled, PLSyn carries the nam
throughout the physical implementation process by PLSyn.

To label an y node

1 Double-click the wire.

2 Enter a name.

3-14 Designing with Programmable Logic

ng

etic

h

For a listing of DSL keywords,
refer to the DSL Reference in
PLSyn online help.

For more information, see Back
Annotating the Schematic on
page 2-9.
Node namin g restrictions

Programmable logic node names must adhere to the followi
naming conventions:

• The first character must be alphabetic (a-z , or A-Z).

• Remaining characters can be any combination of alphab
(a-z , A-Z), numeric (0-9), and underscore (_) characters.

• Names cannot be any of the DSL keywords.

Node names are case-insensitive which means upper-case and
lower-case letters are treated alike.

Labelin g interface nodes

For interface nodes, you can insure that the node label will
persist with the PLD implementation.

To force the label to appear in the back-annotated
PLD symbol

1 Attach a global port to the interface node, as shown in
Figure 3-6.

2 Label the global port.

Figure 3-6 Programmable Logic Interface Node Labeled wit
a Global Port

Non-programmable
logic Programmable

logic

Understanding Programmable Logic Nodes 3-15

ic

 be
LD

The LOW_TRUE port symbol is
contained in the dig_prim.slb
symbol library.

You could use this method to
make an internal node available
for testing. See Figure 3-6 on
page 3-14 for an example.

For more information on physical
nodes, refer to the DSL
Reference in PLSyn online help.
Creatin g Active-Low Interface
Nodes

To create active-low inputs or outputs to your
pro grammable lo gic

Place a LOW_TRUE port (instead of a global port).

Note The LOW_TRUE port creates interface nodes in
the same manner as the global port. Therefore,
you cannot use the LOW_TRUE port to create
active-low internal nodes.

Convertin g Internal Nodes to
Interface Nodes
When PLSyn runs an optimization, internal programmable log
nodes are automatic candidates for removal known as node
collapsing. To avoid this, you can change an internal node to
an interface node, and have the node appear at a physical P
pin.

To convert an internal node to an interface node

1 Attach a global port.

2 Assign a label.

Creatin g Physical Nodes

To create a ph ysical node at the schematic level

Place the PHYNODE/PL symbol and connect it to a wire.

3-16 Designing with Programmable Logic

bol
d

c

D
te

ice

The LO and HI symbols are
contained in the port.slb
symbol library.
Assi gnin g a Logic 0 or 1 to an
Input
You can assign constant 0 or 1 to a programmable logic sym
by using the LO and HI symbols in one of the ways describe
below.

Alone If you attach a LO or HI symbol directly to an input
pin of a programmable logic symbol (or to an unlabeled wire
connected to an input pin), PLSyn treats that input as a logi
constant 0 or 1.

Example: Use the HI symbol to tie an unused input on an AN
gate high, or to tie the J and K inputs of a flip-flop high to crea
a T flip-flop.

Attached to an interface node If a LO or HI symbol
is attached to an interface node, the LO or HI behaves like a
stimulus during simulation. PLSyn still creates a physical dev
pin.

Guidelines for Enterin g
Programmable Lo gic
Do this

• Always begin the names of the following objects with an
alphabetic character (a-z or A-Z):

• Schematic (.sch) and DSL source (.dsl) file names

• Programmable logic interface and internal nodes

• DSL block pins

The remainder of the name can contain numbers (0-9) or
the underscore (_).

Guidelines for Entering Programmable Logic 3-17

ne

on-

l)
can

de

) in

 the

For a listing of DSL keywords,
refer to the DSL Reference in
PLSyn online help.
Note Do not use any other punctuation characters in the
name.

• Make sure that each independent collection of
programmable logic has at least one input interface and o
output interface node. That is, at least one input and one
output signal must connect either to a global port or to n
programmable logic.

Don’t do this

• Label any programmable logic node (interface or interna
the same as any of the DSL keywords. For example, you
use OUT, but not OUTPUT.

• Tie output interface nodes together. That is, the same no
may not be driven by two or more programmable logic
output pins.

• Connect the analog ground node (node 0) to any
programmable logic interface. Use the digital constant
sources LO and HI instead.

• Make a port label an integer.

• Use punctuation marks (except for underscore characters
names. See Do this above for naming conventions.

• Name the DSL file or procedure the same name as any of
programmable logic symbols contained in digprim.slb .

Simulatin g Programmable
Logic Desi gns

cs

For more informa
A/D, refer to you
PSpice A/D Us
4

tion on PSpice
r MicroSim
er’s Guide.
Chapter Overview
This chapter describes how to simulate your programmable
logic design both before and after PLD implementation. Topi
include:

Introduction to Simulating with PLogic or PSpice A/D on
page 4-2

Setting Up Simulations on page 4-3

Starting Simulations on page 4-4

How the Simulator Uses Programmable Logic I/O Models on
page 4-5

Simulating with Timing on page 4-6

Generating Test Vectors on page 4-6

Using Probe Markers on page 4-10

4-2 Simulating Programmable Logic Designs

ble
n a

od

as
the
Introduction to
Simulatin g with PLo gic
or PSpice A/D
Once you have entered a design which includes programma
logic, you can simulate both before and after you have chose
physical implementation. The purpose of the simulation
depends on the development stage of your design.

Verif y function before implementation At this
stage, simulations do not include timing. Instead, this is a go
time to verify that your design is behaving as you expect it to
operate.

Verif y timin g after implementation At this stage,
after having selected the PLD devices, simulations
automatically include timing information for the devices such
propagation delays and setup times. You can verify not only
timing of each PLD, but also the timing of the entire circuit
including the PLD(s).

Setting Up Simulations 4-3

is
he
 or

PLogic simulation setup

PSpice A/D simulation setup
Settin g Up Simulations
Simulation setup for circuits containing programmable logic
similar to that for any other circuit. The way you navigate to t
setup options depends on which simulator you have: PLogic
PSpice A/D.

Displa ying the Dialo g Box for
Simulation Setup

If you have PLo gic

To displa y the Anal ysis Setup dialo g box

1 In Schematics, from the Analysis menu, select Setup.

If you have PSpice A/D

To displa y the Di gital Setup dialo g box

1 In Schematics, from the Analysis menu, select Setup.

2 Click Digital Setup.

4-4 Simulating Programmable Logic Designs

cify

nd

ble
e

iles
n
ot
ou
we

Refer to your MicroSim PSpice
A/D User’s Guide for detailed
information on how to specify the
delay, A/D interface level
(PSpice A/D only), and flip-flop
initialization for your design as a
whole.

Note The power and ground
nodes and the A/D interface
settings only apply to mixed-
signal simulations with
PSpice A/D. These options
have no effect on digital-only
simulations.
Definin g Simulation Setup
Options for Pro grammable Lo gic
Besides the usual simulation setup options, you can also spe
simulation setup specific to the programmable logic part of your
design. This includes options for delay, A/D interface level, a
power supplies.

To displa y the dialo g box for pro grammable lo gic
settin gs

1 From within the simulation setup dialog box, click
Advanced.

In addition to the usual settings for the simulator, you can ena
the capture of test vectors for the fuse map (JEDEC) file. Se
Generating Test Vectors on page 4-6 for more information.

Startin g Simulations
There are two ways to start a simulation, either from
Schematics, or from the simulator (PSpice A/D or PLogic).

Using Schematics, the netlister generates a netlist and comp
the programmable logic. Although you can run simulations o
circuit files previously generated by Schematics, they might n
reflect the current state of your design. To insure that what y
are simulating is always in sync with your schematic design,
recommend that you always start your simulations from
Schematics.

How the Simulator Uses Programmable Logic I/O Models 4-5

,
 is
 I/
put

og
s
del

pts
-1

e

LD

.

Table 4-1 PLSyn I/O Models

* These models are located in
the dig_io.lib symbol library.

I/O Model Name*

PLSYN_IO_DEFAULT

PLSYN_IO_TTL

PLSYN_IO_CMOS

PLSYN_INT_IO_ECL

PLSYN_EXT_IO_ECL
To start a simulation from within Schematics

Select Simulate in the Analysis menu.

How the Simulator Uses
Programmable Lo gic I/O
Models
I/O models define the digital and analog characteristics of
digital input and output pins. As with all other digital devices
your programmable logic also uses I/O models. If a digital pin
connected to other digital devices, the simulator refers to the
O model to obtain the pin’s output resistance, as well as its in
or output capacitance.

If your package includes PSpice A/D, you can simulate anal
devices along with your programmable logic. If a digital pin i
connected to analog devices, PSpice A/D refers to the I/O mo
to obtain the name of an interface subcircuit (either AtoD or
DtoA) to insert between the devices.

When you simulate programmable logic, the simulator attem
to use the I/O model appropriate for the technology. Table 4
lists the I/O models used by PSpice A/D and PLogic for
programmable logic.

The simulator determines the correct technology if:

• You have constrained the physical implementation to on
technology.

• The fitting process is complete and you have selected P
part numbers.

If the simulator cannot determine the technology of the
programmable logic (for example, you have selected two or
more technologies in your device constraints), the simulator
uses IO_DEFAULT_PLSYN, which has 74LS characteristics

4-6 Simulating Programmable Logic Designs

de
s
se

e
C
te

e

For more information on how
PSpice A/D treats unspecified
propagation delays, refer to your
MicroSim PSpice A/D User’s
Guide.
Note If your design is partitioned into two or more
devices, the simulator automatically uses the
appropriate I/O model at the logical boundaries of
each device.

Simulatin g with Timin g
After you have performed the physical implementation and
selected PLD devices, any simulations that you run will inclu
timing information for those devices. This timing information i
obtained from PLSyn’s device library. The simulator uses the
timing values:

The device library contains maximum-rated values for tPD and
tCO, and minimum values for tS. The simulator calculates
minimum and typical values from the maximum propagation
delay values.

Generatin g Test Vectors
In the PLSyn context, the term test vectors refers to the section
of the JEDEC file used by device programmers to validate th
device after it has been programmed. Each line of the JEDE
file’s test vector section contains input signals (which stimula
the programmable logic) and the expected output signals.
Device programmers apply the input signals and compare th
results to the expected outputs specified in the JEDEC file.

tPD combinatorial propagation delay

tCO clock-to-output propagation delay

tS setup time

Generating Test Vectors 4-7

ach
ors

c
st

Unit delay mode effectively turns
off the simulator’s inertial delay
behavior which causes short
pulses to be swallowed.
Because device programmers
do not support inertial behavior,
this helps avoid test vector
mismatches.
Enablin g Test Vector Generation
If you enable test vector generation during the simulation,
PLSyn collates and formats the input and output signals for e
PLD in the solution into test vectors. PLSyn adds these vect
to the JEDEC file(s) when the fuse map is created after you have
fitted and performed device selection.

If you have PLo gic

To enable test vector generation

1 In Schematics, from the Analysis menu, select Setup.

2 Select (✓) the Capture Test Vectors check box.

If you have PSpice A/D

To enable test vector generation

1 In Schematics, from the Analysis menu, select Setup.

2 Click Digital Setup.

3 Select (✓) the Capture Test Vectors check box.

How the Simulator Responds
With test vector generation enabled, the programmable logi
portion of the design runs in unit delay mode. This avoids te
vector mismatches during device programming.

Note Any time you re-fit or select a different solution, you
must re-simulate in order to generate the test
vectors for the new device(s).

4-8 Simulating Programmable Logic Designs

ut

r
ds,
 the

gic.

See page 4-3 for information on
how to get to the setup dialog
box for your simulator.

Table 4-2 Test Vectors for
Case 1

Note In JEDEC files, 0, and 1
are input values; L and H are
output values.

Time Sample
Taken

I1 I2 O1

10 0 0 L

11 1 0 L

20 1 1 H

30 0 1 L
Usin g the “Sample Window”
Control
The Sample Window value (specified in the simulation setup
dialog box) defines the interval during which the simulator
considers input changes to occur at the same time.

Set this value when signals, considered part of the same inp
vector, arrive at the boundary of the programmable logic at
slightly different times. This is useful, for example, in mixed
analog/digital designs.

Example: How the Simulator
Creates Test Vectors

Case 1

Consider the following case,

with inputs and outputs as follows.

With Sample Window set to zero, the simulator creates test
vectors by recording the value of all inputs and outputs
whenever any input changes. The vector consists of all prio
input values, along with the current output value. In other wor
the simulator assumes that any input change propagates to
output by the time the next input change occurs. Table 4-2
shows the test vectors that the simulator creates using this lo

1

2
3I1

I2
O1

PLSYN_U1

AND2

0 10 20 30

I1

I2

O1

Generating Test Vectors 4-9

ven

he

e

ted

s if

ires.
end

Table 4-3 Test Vectors for
Case 2

Time Sample
Taken

I1 I2 O1

10 0 0 L

11 1 0 L

20 1 1 H

30 0 1 H

Table 4-4 Test Vectors for
Corrected Case 2

Time Sample
Taken

I1 I2 O1

10 0 0 L

20 1 1 H

30 0 1 H
The simulator takes one final sample at the end of the
simulation. As you can see, these test vectors are correct, e
though the input changes do not arrive simultaneously.

Case 2

Unfortunately, this approach produces the wrong results in t
following case,

with inputs and outputs shown below.

With Sample Window set to zero, the simulator produces th
vectors shown in Table 4-2. At time 11, the output value of L is
incorrect. The result of I1 changing to 1 had not yet propaga
to the output.

Corrected Case 2

The sampling window allows you to treat staggered inputs a
they had arrived simultaneously. A sampling window begins
when any input changes and ends after the sample time exp
The inputs in the test vector consist of the input values at the
of the sampling window.

In case 2, a sampling window at least 1 unit in the duration,
corrects the problem.

3
O1

1

2

I1

I2

PLSYN_U2

OR2

0 10 20 30

I1

I2

O1

0 10 20 30

I1

I2

O1

4-10 Simulating Programmable Logic Designs

the

 in

e

e
ur

ns
ot
.

Collapsed nodes happen when
PLSyn removes an internal
signal node by substituting the
node’s equation into any
equation that references the
node.
Table 4-2 shows the test vectors.

Troubleshootin g Test Vector
Differences
Sometimes, when the device programmer tests the device,
results produced by the part are different from the expected
output results produced by the simulator. If this occurs, the
following hints can help you solve the problem.

• Try specifying a non-zero sampling window as described
the previous section. Use a value greater than the
propagation delay (tmin) of the device.

• Make sure that the initial value of the clock stimulus is
inactive for the type of flip-flop you are using. Why? In th
simulator, the flip-flop primitive requires the entire clock
edge (for example, 0 → 1) to register the data. However, in
the programmer, the flip-flop registers its input if the first
vector contains a value of 1 for the clock.

Usin g Probe Markers
To view logic levels, you can place markers on both
programmable logic interface nodes and nodes internal to th
programmable logic in the schematic. If you’ve configured yo
system to automatically run Probe after simulation, waveform
results immediately display in the Probe window.

A caution about collapsed nodes

When optimizing a design, PLSyn reduces the logic equatio
which can result in collapsed nodes. Collapsed nodes are n
available in Probe, even if you have placed markers on them

Note Results at interface nodes are still available.

Creatin g the Ph ysical
Implementation

s.
5

Chapter Overview
This chapter describes how to create the physical
implementation of your programmable logic using PLSyn.

Overview of the Physical Implementation Process on page 5-3
reviews the steps you must follow to implement the
programmable logic.

Where to Find Status and Design Information on page 5-4 talks
about the log and document files that PLSyn generates.

Activating and Loading PLSyn on page 5-5 explains how to
activate PLSyn.

Compiling the Logic on page 5-7 explains how PLSyn converts
the programmable logic symbols and DSL blocks to logic
equations.

Optimizing the Logic Equations on page 5-10 describes the
kinds of algorithms PLSyn uses to reduce the logic equation

Overview of Fitting and Partitioning Logic on page 5-14
explains how to run the PLSyn fitter and how it works.

5-2 Creating the Physical Implementation

e.

on.
Limiting the PLD Parts Available for Search on page 5-16
explains how to use the available file to specify a preferred
device set.

Constraining Devices on page 5-18 explains how to narrow the
search by manufacturer, logic family, speed, and/or part typ

Prioritizing the Solutions on page 5-23 explains how to use
PLSyn to rank the solution set by speed, cost, power
consumption, and pin count preferences.

Running the PLSyn Fitter and Partitioner on page 5-25 explains
how to start the PLSyn fitter.

Selecting Devices on page 5-26 explains how you can select a
different device from the solution list.

Creating Fuse Maps on page 5-27 explains how to generate fuse
maps to program the devices.

Updating the Schematic on page 5-28 explains how to back-
annotate the schematic with the selected PLD implementati

Creating PCB Netlists on page 5-29 provides tips when
preparing to generate a netlist for board layout.

When You Change the Design on page 5-30 provides tips when
trying iterative what-if implementations.

Overview of the Physical Implementation Process 5-3

e

dit

ls

ools

ng
Overview of the Ph ysical
Implementation Process
After you have described your design in Schematics, you ar
ready to create the physical implementation of your
programmable logic using PLSyn.

To have PLS yn determine solutions for the
physical implementation automaticall y

1 If needed, customize the available file (.avl) with user-
defined properties that you want to constrain.

2 Define the selection constraints using Constraints in the E
menu.

3 Define the solution priorities using Priorities in the Edit
menu.

4 Run the PLSyn fitter using Fitter/Partitioner from the Too
menu. PLSyn automatically compiles and optimizes the
programmable logic in your design.

5 Select the PLD device(s) you want to use.

6 Create the fuse maps using Fuse Map Generator in the T
menu.

7 Back-annotate the schematic with the PLD device(s) usi
Update Schematic in the Tools menu.

5-4 Creating the Physical Implementation

ls

n

s

elp
es,

em

ses.

r
yn
nd

See Compiling the Logic on
page 5-7 and Optimizing the
Logic Equations on page 5-10
for more information on what
PLSyn does when compiling and
optimizing your design.

For more information on the
using the .pi file, refer to
Chapter 6,Controlling the
Fitting Process Using the .pi File
and the PIL Reference in PLSyn
online help.

For MACH devices, PLSyn also
produces a report file. For more
information, see The MACH
Report File on page 8-52.

For a detailed description of
documentation file contents, see
Appendix A, The
Documentation File.
If You Want More Control
As described above, you can leave the synthesis details to
PLSyn. But if you want more control, you can:

• Manually run the PLSyn compiler.

• Manually run the PLSyn optimizer.

• Direct the fitting/partitioning process by specifying contro
in the physical implementation file (.pi).

Where to Find Status
and Desi gn Information
To document your design, or, if your design fails to fit, PLSy
furnishes tools that can help you solve any problems:

Message Viewer The Message Viewer displays warning
and error messages that occur when PLSyn (or another
MicroSim program) encounters a problem. You can access h
text that relates directly to each message. For some messag
you can also jump to the point in your design where the probl
was detected.

Log file The log file (design_name.log) contains status
and error messages from each of the implementation proces

Documentation file The documentation file
(design_name.doc) contains detailed information about you
design, such as the logic equations and device pinouts. PLS
automatically creates this file after the optimization phase, a
updates this file after you generate the fuse map file(s).

Activating and Loading PLSyn 5-5

n

tart

that
,
Activatin g and Loadin g
PLSyn
This section describes how to:

• Start PLSyn.

• Load a design.

• Interpret the PLSyn window.

Activatin g PLSyn
Start the PLSyn program either from:

• Schematics, or

• the PLSyn program icon in Windows.

From Schematics

To activate PLS yn from Schematics

1 In the Schematic Editor, from the Tools menu, select Ru
PLSyn.

If your design is already open in Schematics, then you can s
the physical implementation phase of your design once the
PLSyn main window displays. If not, you must load a design
directly into PLSyn as described in Loading a Different Design
on page 5-6.

From the Windows Pro gram Mana ger

In the Windows program manager, there is a program group
contains Windows icons for all installed MicroSim programs
including PLSyn.

5-6 Creating the Physical Implementation

ent

double-click
this icon

Solution List

Figure 5-1 Main PLSyn
Window

Solution Detail List
To activate PLS yn from the Windows Pro gram
Manager

1 In the MicroSim program group, double-click the PLSyn
icon.

PLSyn activates without a design. See Loading a Different
Design for further instructions.

Loadin g a Different Desi gn
Once you have activated PLSyn, you can change to a differ
design at any time.

To load an existin g desi gn

1 From the File menu, select Open.

2 Select a schematic (.sch) or DSL source (.dsl) file.

The PLSyn Main Window
Once loaded, PLSyn’s main window appears as shown in
Figure 5-1.

The top area, called the solution list, displays architectures
chosen by the PLSyn fitter. The bottom area, called the solution
detail list, displays a list of alternative part numbers available
for the architecture you selected in the solution list above.

During fitting, this window contains a list of the device
templates PLSyn is considering.

Compiling the Logic 5-7

to

nt

,
or
f the
yn

For more information on fitting
and partitioning, see Overview
of Fitting and Partitioning Logic
on page 5-14 and the sections
that follow.

Another way to automatically
compile the programmable logic
is as follows:

1 In Schematics, from the
Analysis menu, select Create
Netlist.
Compilin g the Lo gic
The PLSyn compiler converts all of your design’s
programmable logic (logic symbols and DSL blocks) into
equivalent logic equations. PLSyn writes the compiled logic
an internal file named design_name .afb which the
simulator and the PLSyn optimizer use later on.

You can compile programmable logic at different stages of
design development:

• Automatically during the fit and partition process.

• Manually to verify the syntax of the programmable logic.

• Manually to compile DSL files that include the USE
statement to reference other DSL files—also known as a
library compile.

Note You must manually compile DSL files that contain
the USE statement before running a general
compilation of your design, or before starting the fit
and partition process. This is explained in more
detail in the following two sections.

Manuall y Compilin g Logic

To manuall y compile all pro grammable lo gic in
your desi gn

1 Pre-compile any DSL files that include the USE stateme
(see Compiling DSL Libraries on page 5-8).

2 From the Tools menu, select Compiler.

To ensure that the schematic matches the PLSyn database
PLSyn first checks to see if any of the programmable logic,
its interfaces, has changed since the last generated netlist. I
programmable logic portion of your design has changed, PLS
automatically regenerates the netlist.

5-8 Creating the Physical Implementation

ry
ke

me

 at

s in
.

Compilin g DSL Libraries
Whenever your design includes DSL blocks that include the
USE statement, you must load each DSL file and run a libra
compile before any other manual or automatic compilations ta
place.

To compile DSL blocks that include the USE
statement

1 From the File menu, select Open, and then select the na
of the DSL file you want to compile.

2 From the Tools menu, select Compile Library.

Respondin g to Compile-Time
Status and Errors
During compilation, PLSyn displays a status window which
shows the compiler’s progress. You can abort the compilation
any time.

To abort the compilation

1 In the status window, click Cancel.

If there are compile-time errors, PLSyn displays the message
the Message Viewer. In addition, PLSyn keeps a written log

To control whether PLS yn writes compiler errors
to the lo g file

Do the following before starting the compile:

1 From the Tools menu, select Options.

2 Select (✓) the Output Warnings check box.

3 Click OK.

After you have corrected any errors in your DSL blocks, you
must restart the compiler.

Compiling the Logic 5-9

l

ce

e

 of
er
Controllin g Node Generation
Durin g Compilation
You can control whether the PLSyn compiler creates interna
nodes for carry bits for arithmetic and relational operators.

To allow PLS yn to create internal nodes

Do the following before starting the compile:

1 From the Tools menu, select Options.

2 Select (✓) the Create Nodes check box.

3 Click OK.

Resolvin g “Out of Memor y”
Conditions
If you encounter an “Out of Memory” message, you can redu
memory requirements by setting the maximum number of
product terms any equation form can have.

To limit the number of product terms

Do the following before starting the compile:

1 From the Tools menu, select Options.

2 In the Product Term text box, type an integer value for th
maximum number of allowed product terms ranging from
64 to 5012. The default is 1024.

3 Click OK.

As a rule of thumb, lower the Product Term value by a factor
two. If you continue to get an “Out of Memory” message, low
the value again.

5-10 Creating the Physical Implementation

s as

.

ion

Note Optimization is only
needed prior to fitting and
partitioning, not prior to
running simulations.

For more information on fitting
and partitioning, see Overview
of Fitting and Partitioning Logic
on page 5-14 and the sections
that follow.

If you experience an “Out of
Memory” message, try limiting
the maximum number of product
terms allowed in an equation
form and restart the optimization.
For more information, see
Resolving “Out of Memory”
Conditions on page 5-9.
Optimizin g the Lo gic
Equations
PLSyn performs optimization prior to fitting to compact your
design’s programmable logic into as few equations and node
possible. This allows your design to fit into the fewest and
smallest possible devices.

PLSyn writes the optimizer output to a file named
design_name.fb which the fitter and partitioner use later on

Though you would usually have PLSyn run the optimizer
automatically in the fit and partition process, you can also
manually run the optimizer.

To manuall y optimize all pro grammable lo gic in
your desi gn

1 Make sure your design is compiled (see Compiling the
Logic on page 5-7).

2 From the Tools menu, select Optimizer.

During optimization, PLSyn displays a status window which
shows the optimizer’s progress. You can abort the optimizat
at any time.

To abort the optimization

1 In the status window, click Cancel.

Optimizing the Logic Equations 5-11

es
te
et.
n

e

r,

e

nd

ro
ost
How the PLS yn Optimizer
Synthesizes Lo gic Equations
In addition to compacting the logic, the optimizer also produc
multiple, functionally-equivalent equation sets to accommoda
the wide variety of device architectures available on the mark
This means that for each potential device solution, the PLSy
fitter is able to select the set of equations that best uses the
characteristics of that particular architecture.

The optimizer employs several techniques to synthesize the
equations.

DeMorganization DeMorganization allows the PLSyn
fitter to invert signals internal to a device while maintaining th
signal polarity and functionality as described by the logic
design. The ability to tailor equations internally to the device
lets you create a functional design that is independent of the
signal polarity capabilities of a particular device. It also gives
maximum flexibility to the fitter so that PLSyn can place large
more complex designs into fewer devices.

Register s ynthesis The optimizer synthesizes flip-flop
types to optimize equation placement within a device. For
example, you can describe logic in terms of J-K flip-flops. Th
optimizer also synthesizes the D equation so that the PLSyn
fitter can place the equation in a device with D flip-flops.

Don’t care generation You can express Don’t Care
conditions using the DSL If/Then/Else, Case, Truth Table, a
State Machine statements. You can also assign Don’t Care
conditions to signals within procedures and functions. When
output values are unspecified, the optimizer assumes a Don’t
Care condition. This allows the optimizer to assign either a ze
or one value, depending upon which value generates the m
optimal equation.

Exclusive-OR (XOR) s ynthesis Whenever possible,
the optimizer maintains exclusive-OR representations of all

5-12 Creating the Physical Implementation

ut

ing

-

ally

and
ns.

n
equations. The partitioner can then use the exclusive-OR
representation in devices with that capability. In devices witho
exclusive-OR capability, the partitioner uses the sum-of-
products representation.

Node collapsin g The optimizer minimizes the use of
intermediate nodes. The optimizer removes nodes by collaps
their equations into any equations that reference them.

Logic minimization There are three final reduction
algorithms available: Espresso, Espresso/Exact, and Quine
McCluskey. You can set the method from the Tools/Options
dialog. The Espresso algorithm is the fastest method and usu
produces results as good as the other two algorithms. The
Espresso/Exact and Quine-McCluskey methods are slower
use more dynamic memory but may result in smaller equatio
Due to the speed and memory use issues, these optional
reduction techniques should be restricted to designs with
relatively small equations where optimal equation minimizatio
is critical. The default reduction technique is Espresso.

Optimizing the Logic Equations 5-13

ood
ods

, you

on

You can also control optimization
using the .pi file. See
Chapter 6, Controlling the
Fitting Process Using the .pi
File and the PIL Reference in
PLSyn online help.
Choosin g the Optimization
Method
You can control the optimization algorithm PLSyn uses to
reduce the logic equations, choosing from:

• Espresso

• Espresso/Exact

• Quine-McCluskey

Espresso is the default reduction technique.

To chan ge the optimization al gorithm

1 From the Tools menu, select Options.

2 From the Optimization Method list, select the algorithm
name.

3 Click OK.

The Espresso technique is fast and generally produces very g
equations. The Espresso/Exact and Quine-McCluskey meth
are slower and use more dynamic memory but may result in
smaller equations. Due to the speed and memory use issues
should restrict using these optional reduction techniques to
designs with relatively small equations where optimal equati
minimization is critical.

5-14 Creating the Physical Implementation

its

ng

st

o
ne

For information on using the .pi
file see Chapter 6, Controlling
the Fitting Process Using the
.pi File and refer to the PIL
Reference in PLSyn online help.
Overview of Fittin g and
Partitionin g Logic
During the fitting and partitioning process, PLSyn searches
library of parts for the PLD device architecture(s) which can
implement, or fit, the programmable logic in your design.

There are two ways you can proceed with the fitting/partitioni
process:

• Completely automatic, letting PLSyn determine how to be
fit the logic.

• Using the .pi file to control how logic is fit; for example,
into specific part numbers, with specific grouping of the
logic into specific devices, and with specific pinouts for
individual nodes.

This rest of this chapter describes how to use PLSyn to
automatically fit and partition the programmable logic.

If You Don’t Have the Partitionin g
Option
Systems with the partitioning option allow PLSyn to fit your
design into multiple PLD devices. If you do not have the
partitioning feature, all of your programmable logic must fit int
a single device. The discussions which mention more than o
device in a solution do not apply to you.

Overview of Fitting and Partitioning Logic 5-15

 to

yn
e

nd

rts

e
ns

ct

Note If any of the DSL blocks
contain USE statements to
refer to other DSL blocks, you
must first manually compile
these DSL files using the
Compile Libraries option in
the Tools menu. For more
information, see Compiling
DSL Libraries on page 5-8.

Solutions, or architectures, are
sometimes referred to as
templates. For example, in the
dialog box that PLSyn displays
when you select Constraints in
the Edit menu, you’ll see a
constraint named Device
Templates.
How the PLS yn Fitter Works
Figure 5-2 shows how the PLSyn fitter and partitioner relate
other PLSyn functions, data, and programmable logic. The
shaded objects indicate functions that must occur before PLS
can fit and partition the design: define, compile, and optimiz
the programmable logic.

Figure 5-2 PLSyn Functional Architecture

If needed, PLSyn automatically compiles and optimizes the
programmable logic before starting the fitting process.

There are two ways you can narrow the device search to the
devices that interest you, and thereby speed up the fitting
process:

• Edit the available parts file (.avl).

• Define constraints, such as device architecture,
manufacturer, technology, speed, power consumption, a
temperature.

PLSyn begins the search by scanning the list of available pa
contained in the available parts file (.avl), then filtering the
search further by the constraints you have defined. When th
search is complete, PLSyn displays a list of up to ten solutio
(architectures), ranked by the priorities which you defined
earlier. For a given architecture, you can then select the exa
part numbers that you want to use.

Available
File

Constraints Priorities

Fitter/Partitioner

Compiler/

DSL

Optimizer

5-16 Creating the Physical Implementation

,

o
ch

s
file

ry.

up

g
u

Partitioning
Option
Required
If your system includes the partitioning option, and if needed
PLSyn automatically fits your programmable logic into more
than one device, up to a maximum of twenty. PLSyn can als
partition into different architectures. If so, PLSyn displays ea
architecture in the Solution Detail list.

Limitin g the PLD Parts
Available for Search
The available file (.avl) contains the list of only those device
that you want PLSyn to consider as potential solutions. This
contains information on:

• available device types

• device manufacturer names

• logic families

• package types

• temperatures

• prices

The default available file, plsynlib.avl , resides in the bin
subdirectory under your MicroSim root directory. When
shipped, this file contains every part in the master device libra

Because limiting architectures, not devices, is what speeds
the fitting process, we recommend that you avoid editing the
.avl file unless you plan to constrain the device search usin
user-defined properties. In this case, we recommend that yo
create a new .avl file using plsynlib.avl as a starting point.

Limiting the PLD Parts Available for Search 5-17

re,

ly

You can enforce constraint-
checking on the user-defined
fields by defining the User1 and
User2 constraint controls. See
Constraining Devices on
page 5-18 and Setting Up User-
Defined Constraints on
page 5-20.
To create and use a custom available file

1 Copy plsynlib.avl to a different file name with the .avl
extension.

2 Using any text editor, open the file, make modifications
according to the restrictions explained after this procedu
and save it.

3 In PLSyn, from the Edit menu, select Constraints.

4 In the Available File text box, enter the file name.

Each line in the file is a complete record of a device. The on
changes you should make to the available file are to:

• Delete the entire line containing a device to remove that
device from consideration.

• Update the last three fields on a line, which are (listed in
order of appearance):

• part price (in cents),

• a user-defined numeric property

• a second user-defined numeric property

Note Do not change any other fields or the format of the
available file.

5-18 Creating the Physical Implementation

er
file,
red

e

to
Constrainin g Devices
Constraints allow you to narrow the list of devices that the
PLSyn fitter considers when searching for solutions. The fitt
compares your constraints against each part in the available
and only those matching the specified constraints are conside
for fitting.

Note If your constraints are too narrow, the PLSyn fitter
and partitioner may not be able to implement your
design.

To edit the constraints for your current desi gn

1 From the Edit menu, select Constraints.

2 Enable the constraints you want PLSyn to consider as
follows:

• For Device Templates, Logic Family, Manufacturer,
Package Type, or Temperature, click the button to th
right of the constraint and select the items you want
considered. See Table 5-1 for a description of each of
these.

• For all other constraints, type an appropriate value in
the corresponding text box as described in Table 5-1.

3 Clear any constraints you don’t want PLSyn to consider
(✓removed).

4 Click OK.

Constraining Devices 5-19

Table 5-2 Temperature
Rating Abbreviations

Temperature
Abbreviation Meaning

883B MIL-STD-883B

COM 0 to +75 °C

EXT -40 to 85 °C

MIL -55 to 125 °C
Table 5-1 Device Selection Constraints Dialog Box
Controls

Control Name Meanin g

Device
Templates

List of the architectures that are available in
your package. PLSyn considers only the
selected architectures. For more information,
refer to the the Device Lists in PLSyn online
help.

Logic Family List of available logic families. PLSyn
considers only the selected logic families. For
more information, refer to the the Device
Lists in PLSyn online help.

Manufacturer List of available manufacturers. PLSyn
considers only the selected logic families. For
more information, refer to the the Device
Lists in PLSyn online help.

Package Type List of footprints or package types available
for partitioning. PLSyn considers only the
selected footprints. For more information,
refer to the the Device Lists in PLSyn online
help.

Temperature List of available temperature ratings. PLSyn
considers only the selected temperature
ratings. Table 5-2 lists the valid temperature
rating abbreviations.

Max Prop Delay Highest allowable value for propagation delay
in nanoseconds. See How PLSyn Calculates
Maximum Propagation Delay on
page 5-22 for more information.

Max Frequency Highest allowable frequency value in MHz.
Default is 10 MHz.

Max Current
Usage

Highest allowable value for power supply
current in mAmps. Default is 10 mA.

5-20 Creating the Physical Implementation

n

-

ls

Partitioning
Option
Required
Settin g Up User-Defined
Constraints
Enabling user-defined constraints requires:

• Associating a property and value for each device listed i
your available file.

• Defining the comparison that must be satisfied to include
that device in the fitting/partitioning process.

User 1 Comparison criteria used on the first user-
defined property in each device statement in
the available file. Defined as a pair of a values:

• relational operator (e.g., <, <=, =, etc.)

• target number between 0 and 255

See Setting Up User-Defined Constraints
on page 5-20

User 2 Comparison criteria used on the second user
defined property in each device statement in
the available file. See User1 above and
Setting Up User-Defined Constraints on
page 5-20

Max Devices Highest allowable number of devices into
which the partitioner can allocate
programmable logic, ranging from 1 to 20.

Available File The name of the available file. Default is
plsynlib.avl.

Table 5-1 Device Selection Constraints Dialog Box Contro
(continued)

Control Name Meanin g

Constraining Devices 5-21

er
fter

e

e

lues

ld.
ess

For more information on the
available file format, see
Limiting the PLD Parts
Available for Search on
page 5-16.
To set up user-defined constraints

1 In your .avl file, use a standard text editor to enter the
value of a numeric property in each device line either aft
the price property (referred to as the User1 property) or a
the first user-defined property (referred to as the User2
property).

You can have at most two user-defined properties.

2 In PLSyn, when defining constraints (by selecting
Constraints in the Edit menu), select (✓) the corresponding
User1 or User2 check box.

3 Select a relational operator from the drop-down list to th
right of the User1 or User2 constraint that you selected.

4 Type the target value for comparison in the text box to th
right of the relational operator you just selected.

Example

A common application for the user-defined fields is device
defect rate. If your production group has failure statistics on
devices that range from 0 to 100, then you can enter those va
into your available file.

Suppose that each device statement in your .avl file contains
device defect rate values in the field after price—the User1 fie
Then you can enforce device selections with a failure rate of l
than 10% by:

1 In PLSyn, from the Edit menu, selecting Constraints.

2 Selecting (✓) the User1 check box.

3 Selecting < for the relational operator.

4 Typing 10 in the text box.

5-22 Creating the Physical Implementation

).

to
How PLS yn Calculates Maximum
Propa gation Dela y

Combinatorial (non-re gistered) devices The
maximum propagation delay is the worst case tPD, as published
by the manufacturer.

Registered devices The maximum propagation delay is
the sum of the tS and tCO (setup time and clock-to-output delay

Devices with both combinatorial and re gistered
outputs The maximum propagation delay is the larger of
the two cases described above.

The Default Constraints File
When fitting a new design, PLSyn initializes the constraints
values contained in the default constraints file, default.cst .
This file resides in the bin subdirectory under your MicroSim
root directory.

To customize the set of default constraints

1 Choose a constraints file created for an existing design
(residing in your working directory).

2 Make a copy of that file and save it to the bin subdirectory
with the name default.cst .

Prioritizing the Solutions 5-23

in
 to

e
ch

u

Partitioning
Option
Required
Prioritizin g the
Solutions
When PLSyn finds a solution which fits your programmable
logic, it ranks the solution to determine whether it is better or
worse than other solutions it has found. If the solution is with
the ten best, PLSyn positions it in the solutions list according
its relative merit.

The ranking is based on priorities that you define.

To define rankin g priorities

1 From the Edit menu, select Priorities.

2 Select (✓) the check boxes for the priorities you want to us
to rank the solution. See Table 5-1 for a description of ea
one.

3 Enter weighting factors from 1 to 10 for the criteria that yo
enabled where 10 indicates most important.

Note Disabled criteria are not considered in the ranking
of solutions.

Table 5-3 Solution Priorities Dialog Box Controls

Control Name Meanin g

Price Minimize the total price of the solution. Use a
high priority to indicate a preference for
lower-cost solutions. In multiple-template
solutions, PLSyn considers the total price of
all devices in the solution.

If you have the partitioning option, then
PLSyn can opt for cheaper, multiple-device
solutions instead of more costly, single-device
solutions.

Number of Pins Minimize the total pin count. Use a high
priority to indicate a preference for a lower pin
count. In multiple-template solutions, PLSyn
considers the pin count of all devices.

5-24 Creating the Physical Implementation

 of

.

.

In multiple-device solutions, PLSyn uses all of the criteria
where appropriate.

Example: The price given for a particular solution is the sum
the prices of all parts in the solution.

Size Minimize total size. Use a high priority to
indicate a preference for physically smaller
parts. In multiple-template solutions, PLSyn
considers total size.

Prop Delay Maximize speed. Use a high priority to
indicate a preference for faster parts. In
multiple-template solutions, PLSyn considers
the device with the longest propagation delay.

Frequency Maximize clock speeds. Use a high priority to
indicate a preference for parts with higher
maximum clock speeds. In multiple-template
solutions, PLSyn considers the device with the
lowest frequency rating.

Supply Current Minimize power consumption. Use a high
priority to indicate a preference for parts with
lower power supply consumption. In multiple-
template solutions, PLSyn uses the sum of the
individual lcc values.

User 1 Use in conjunction with a USER1 constraint
as follows:

• If USER1 > 0 is the constraint, then PLSyn
considers a solution to be better that has a
USER1 value that is higher than another
USER1 value. Example: 99 is better than 4

• If USER1 < 1 is the constraint, then PLSyn
considers a solution to be better that has a
USER1 value that is lower than another
USER1 value. Example: 4 is better than 99

User 2 See User1

Table 5-3 Solution Priorities Dialog Box Controls

Control Name Meanin g

Running the PLSyn Fitter and Partitioner 5-25

/

ith

d
ion

der,
te

t

Usin g Constraints and Priorities
Together
While constraints eliminate devices, priorities eliminate
solutions. Used together, you can effectively focus the fitting
partitioning process to find the devices that best meet your
needs.

Example: You can enable a constraint to eliminate devices w
propagation delays greater than 50 nsec, and then specify a
priority that indicates a preference, but not a requirement, for
low-power devices.

Runnin g the PLS yn
Fitter and Partitioner
To start the fittin g/partitionin g process

1 From the Tools menu, select Fitter/Partitioner.

As PLSyn tries solutions, it updates the number of attempte
and found solutions on the status line. If a successful solut
ranks within the top ten, PLSyn places it in the solution list.

Depending on the amount of programmable logic in your
design, and the number of architectures PLSyn has to consi
the fitting/partitioning process can take from less than a minu
to several minutes or even hours. Therefore, select your
constraints carefully.

The fitting/partitioning process can fail because:

• PLSyn can’t find any parts in the available file which mee
your constraints.

• PLSyn can’t fit your logic into the architectures which did
meet your constraints.

If this happens to you, try relaxing the constraints, thereby
allowing PLSyn to consider additional device architectures.

5-26 Creating the Physical Implementation

re in

to:

r

on
Selectin g Devices
After PLSyn has found the solution(s) which will implement
your design, you can select part numbers for each architectu
the solution list.

PLSyn uses the solution and part numbers that you choose

• update the schematic.

• perform timing simulations, and

• generate fuse maps.

You can explore different implementations by changing you
selection to different part(s) or even a different solution.

To select the PLD implementation

1 Select the solution (architecture) you want from the soluti
list.

A list of part numbers corresponding to the selected
architecture appears in the solution detail list.

2 Select part numbers for the chosen solution. Either:

• double-click the device name in the list, or

• select the device and click Browse.

3 Select a different part and click OK.

Creating Fuse Maps 5-27

r
s.
ch

n the

d
the
r of
er.

g
e
tes

The JEDEC file has a special
format used by your device
programmer to determine which
of the PLD fuses to blow.

For more information, see
Generating Test Vectors on
page 4-6.
Creatin g Fuse Maps
After you have selected the PLD device(s) to implement you
programmable logic, you can use PLSyn to create fuse map
PLSyn creates one fuse map file, called a JEDEC file, for ea
device in the solution.

To create fuse maps

1 From the Tools menu, select Fuse Map Generator.

This command generates as many files as there are devices i
solution named design_name.j n, where n is an integer from
one to the number of devices.

After creating the fuse map file(s), PLSyn updates the
documentation file with the names of the JEDEC files create
for each device architecture. Each JEDEC file also contains
name of the device architecture in its header. The remainde
the device programming is handled by your device programm

Includin g Test Vectors
The JEDEC file also includes any test vectors created durin
simulation, which the device programmer uses to validate th
programming. If you have not run a simulation which genera
test vectors, you will see a warning message, but you can
continue creating the fuse map file without test vector
information.

5-28 Creating the Physical Implementation

cal

ur

nd

to

ou
rts.
ur

mbol

the
r,

You will find this feature useful,
for example, when you must
change the functionality of your
design after having laid out the
printed circuit board.

For general information, see
Chapter 6, Controlling the
Fitting Process Using the .pi
File and refer to the PIL
Reference in PLSyn online help.

For more information on PCB
layout, see Creating PCB
Netlists on page 5-29.

Note If Schematics cannot
find the PLD symbols, you
need to add the PLD symbol
libraries to your library
configuration (using the Editor
Configuration option in the
Options menu). These library
files are named pld_xxx.slb,
where xxx is the three
character manufacturer
abbreviation.
The Implementation-Specific
Physical Information File (.npi)
When you generate fuse maps, PLSyn creates a new physi
information file named design_name.npi . This file contains
the Physical Information Language (PIL) representation of yo
design’s current implementation (target device(s) and pinout
information) so that PLSyn can exactly duplicate the fitting a
partitioning of your design in subsequent iterations.

To recreate the implementation

1 In your design directory, copy the design_name.npi file
to the design_name.pi file.

2 In PLSyn, from the Tools menu, select Fitter/Partitioner
refit the design.

Note Groups and fixed groups to which the PLSyn fitter
assigned a NAME property retain the given NAME
in the .npi file.

Updatin g the Schematic
After you have selected a solution and PLD part number(s), y
can back annotate your schematic with symbols for those pa
This is useful if when you want to create a PCB layout from yo
schematic.

To update your schematic

1 From the Tools menu, select Update Schematic.

Schematics adds a page to your schematic, and places a sy
for each PLD in the selected implementation.

The PLD symbols use pin names which don’t always match
pin-names found in the manufacturer’s data books. Howeve
the pin numbers and functionality are the same.

The used pins connect to either a:

Creating PCB Netlists 5-29

ble
tic.

e

L

ter
is

CB
r

For more information on
interface nodes, see
Understanding
Programmable Logic Nodes
on page 3-13.

For more information, see
Updating the Schematic on
page 5-28.

For information on generating a
PCB netlist, refer to your
MicroSim Schematics User’s
Guide.
• global port, or

• off-page port.

A global port connects a pin to its corresponding programma
logic interface node, which resides elsewhere on the schema
If you have attached a global port to the programmable logic
interface node, the PLD symbol’s global port label is the sam
as the interface’s global port label. Otherwise, the PLD
symbol’s global port label is in the form of REFDES: pin
name corresponding to the programmable logic symbol or DS
block.

For an internal node in the programmable logic, the PLSyn fit
places an off-page port on the PLD pin. The fitter may do th
for a variety of reasons; for example, to use a feedback path
within a device, or to connect internal logic from one PLD to
another.

Note Each time you update your schematic from PLSyn,
Schematics deletes then recreates the page
containing the PLD symbols. Because of this, you
should make few or no additions or changes to this
page.

Creatin g PCB Netlists
After you have updated your schematic, you can create a P
layout. You do not have to make any further changes to you
schematic.

Note Schematics only netlists non-programmable logic
symbols including the back-annotated PLD
symbols, and analog devices.

5-30 Creating the Physical Implementation

Syn

ed,
the
al

on,
 in

For more information, see The
Implementation-Specific
Physical Information File (.npi)
on page 5-28 and Specifying
JEDEC File Names on
page 6-12.
When You Chan ge the
Design
When you make changes to your design, Schematics and PL
determine whether any changes have been made to the
programmable logic or its interfaces. If changes have occurr
you must start the physical implementation process over at
compilation step. That means PLSyn will overwrite the origin
solution with the new solution.

You can freeze your latest implementation by copying the .npi
file to the .pi file after having generated the fuse maps. On
subsequent runs, PLSyn will create a physical implementati
including device numbers and pin-outs, exactly as specified
the .pi file.

Controllin g the Fittin g
Process Usin g the .pi File
Note This chap
describe the sy
Physical Inform
Language (PIL
used in the .pi fi
PIL Reference in
help for this info

For more informa
specific fitting, se

• Chapter 7, PL
Specific Fitti

• Chapter 8, M
Device-Spec

• Chapter 9, M
Specific Fitti

• Chapter 10, A
Device-Spec
6

ter does not
ntax of the
ation
) statements
le. Refer to the
 PLSyn online
rmation.

tion on device-
e:

D Device-
ng

ACH 1-4
ific Fitting

ACH 5 Device-
ng

TV5000
ific Fitting
Chapter Overview
This chapter introduces the .pi file and ways of using it to
control the fitting process. Topics include:

Introduction to the .pi File on page 6-2

Controlling PLD Utilization on page 6-5

Fitting a Node as an OUTPUT or NODE on page 6-6

Controlling How Signals Are Fit Together on page 6-6

Disabling Outputs for Test on page 6-8

Controlling Synthesis on page 6-9

Controlling the Size of Equations on page 6-10

Specifying Devices without Specifying Signals on page 6-11

Specifying JEDEC File Names on page 6-12

6-2 Controlling the Fitting Process Using the .pi File

ur
ion

ice
to

r

me
t
Introduction to the .pi
File
Though PLSyn can handle the physical implementation of yo
design automatically, you can also use the physical informat
file (.pi file), to exercise control over implementation during
the optimization and fitting/partitioning process.

Why Use the .pi File?
With PLSyn, programmable logic designs are completely dev
independent. This means, for example, that you don’t need
make pin assignments with a DSL source file. However, you
might need to control the mapping from design to device. Fo
example, you might need to:

• Group signals together to make sure they are fit on the sa
device, while letting the PLSyn fitter and partitioner selec
devices and perform pin assignments automatically.

• Specify a device, letting the PLSyn fitter and partitioner
perform pin assignments.

• Specify a device and some or all pin assignments.

• Control equation sizes.

The .pi file lets you do any of these and more.

Introduction to the .pi File 6-3

,

ts

t to

nt

 of

e.

For more information on nodes,
see Understanding
Programmable Logic Nodes
on page 3-13
Usin g the Default .pi File
When you create a design for programmable logic synthesis
PLSyn copies the file default.pi (in the bin subdirectory
under the MicroSim root directory) to a file named
design_name.pi in your design directory. The default file
contains the Physical Information Language (PIL) statemen
PLSyn needs to optimize and partition most designs
automatically. You can add statements to this file or change i
suit your needs.

Referrin g to Nodes in Your
Design
Much of what goes into your .pi file controls the properties and
placement of signals, which you identify by node name. In
general, label the nodes that you plan to reference within the .pi
file.

Here are a few considerations when working with the differe
node types.

Interface nodes

Use the associated label on your schematic directly in the .pi
file.

Internal nodes

PLSyn transforms node names which are internal to a group
programmable logic (including NODES statements inside of
DSL blocks), into unique names by adding prefixes to the nam

6-4 Controlling the Fitting Process Using the .pi File

e

Procedure/Function Invocation

u1:proc(data3, clock3, q3);

proc(data1, clock1, q1);

proc(data2, clock2, q2);

If you are in doubt, refer to the
equation section in the
documentation file (.doc) for the
list of actual node names PLSyn
uses.
The new name has the form

proc_name . instance_name . local_name

where

By default, the DSL compiler assigns 1 as the first
instance_name, 2 as the second instance_name, and so on.
You can also define the instance_name in your DSL source.

To define the instance name of a DSL procedure
or function

1 In your DSL source, specify the instance_name in the
procedure invocation statement as follows:

instance_name : procedure_name (signal_list)

Example

Consider this DSL procedure:

PROCEDURE proc(INPUT d, clk; OUTPUT y);
NODE dff CLOCKED_BY clk;
dff = d;
y = dff;

END proc;

The following table shows the nodes names the compiler
generates given the DSL procedure invocation.

proc_name is the name of the procedure or
function

instance_name is the name assigned to this instanc
of the procedure or function

local_name is the name of the INPUT or
OUTPUT parameter or local NODE
within the procedure or function.

Generated Nodes

proc.u1.d, proc.u1.clk, proc.u1.y, proc.u1.dff

proc.1.d, proc.1.clk, proc.1.y, proc.1.dff

proc.2.d, proc.2.clk, proc.2.y, proc.2.dff

Controlling PLD Utilization 6-5

ture

ned

ly

, meaning that the device properties are

ercentage of array inputs on a
sed during fitting.

ercentage of output pins or output
ce that may be used during fitting.

ercentage of PLA and row-product
A fitting. There is no equivalent
ALs.

See also Specifying Reserve
Capacity on page 8-9 for
information on the
MACH_UTILIZATION property.
Controllin g PLD
Utilization
For some designs, you should reserve PLD resources for fu
logic expansion.

To keep specific pins free

1 Use the NO_CONNECT construct.

To control the percenta ge of inputs, outputs, and
product terms that can be used

1 Use the properties summarized in Table 6-1.

Example

Suppose you are targeting a P22V10 architecture having defi
the following utilization properties in your .pi file:

{PLD_INPUT_UTILIZATION 90};

{PLD_OUTPUT_UTILIZATION 80};

{PLA_PTERM_UTILIZATION 95};

PLSyn will use only 19 of the 22 available array inputs, and on
8 of the 10 available outputs.

*. The default percentage for each of these properties is 100%
fully utilized.

Table 6-1 PLD Utilization Properties

Property Syntax * Meanin g

{ PLD_INPUT_UTILIZATION % }; Sets the maximum p
device that may be u

{ PLD_OUTPUT_UTILIZATION % }; Sets the maximum p
macrocells on a devi

{ PLA_PTERM_UTILIZATION % }; Sets the maximum p
terms used during PL
control property for P

6-6 Controlling the Fitting Process Using the .pi File

se

or

is

 to
s,
als
er

f
If a PLA such as the S6001 is the target device, PLSyn will u
only 60 of the 64 product terms.

Fittin g a Node as an
OUTPUT or NODE
To control whether a node is fit as an OUTPUT or
as a NODE

1 Use the FIT_AS_OUTPUT property.

FIT_AS_OUTPUT has no effect on output signals, which are
already destined to be fit on a visible output pin of a device. F
node signals, this property alerts the PLSyn fitter to place th
node signal on an output pin.

Controllin g How Si gnals
Are Fit To gether
Early in the fitting process, the PLSyn decides which signals
fit together as one inseparable block of functionality. For PLD
this means signals are fit in the same output macrocell. Sign
can be fit together if a NODE is the only signal feeding anoth
NODE or OUTPUT that has no register or latch equations.

To control how si gnals are fit

1 Use the NO_COLLAPSE and FIT_WITH properties.

NO_COLLAPSE The NO_COLLAPSE property tells
PLSyn to fit this signal individually, separate from the fitting o
any other signal.

Controlling How Signals Are Fit Together 6-7

n
y
FIT_WITH The FIT_WITH property lets you specify two
signals to be fit together. The FIT_WITH property is allowed o
any .pi output, and takes one argument. For example, to sa
that signal node_x should be fit with x , you would need to add
the following statement to the .pi file:

node_x {FIT_WITH x};

Example

SOURCE FILE

INPUT d, e, clk, oe;
NODE d_node CLOCKED_BY clk;
NODE e_node CLOCKED_BY clk;
OUTPUT out, e_out, not_e_out ENABLED_BY oe;

d_node = d;
e_node = e;
out = d_node;
not_e_out = e_node;
e_out = e_node;

PHYSICAL INFORMATION FILE

d_node {NO_COLLAPSE}
e_node {FIT WITH ‘e_out’}

6-8 Controlling the Fitting Process Using the .pi File

er
Disablin g Outputs for
Test
In some cases, you might want to disable an output only
during testing, but otherwise leave the output enabled
during normal operation.

To indicate that an output is disabled onl y durin g
testin g

1 Use the DISABLED_ONLY_FOR_TEST property.

When the output is enabled, PLSyn treats the input and output
of a buffer as functionally different. When the output is disabled
(using the DISABLED_ONLY_
FOR_TEST property), PLSYN:

• Programs the enable equation.

• Treats the signal on the input of the tri-state buffer as
equivalent to the signal on the output of the tri-state buff
(for feedback purposes).

Example

The following PIL statement disables a single output:

out_x {DISABLED_ONLY_FOR_TEST};

If the output signal out_x has an enable, the PLSyn fitter
programs the enable equation. If out_x is given only a single
signal (e.g., node_y), then out_x and node_y are
interchangeable (for feedback purposes).

Example

The following PIL statement disables all outputs:

{DISABLED_ONLY_FOR_TEST};

Controlling Synthesis 6-9

ns

p
n.

Note Because PLSyn
automatically optimizes your
design by default, there is
generally little reason to use
these properties.
Controllin g Synthesis
To control DeMor gan synthesis of data equations
in PLS yn:

Use the DEMORGAN_SYNTH property where data equatio
are the D, JK, SR, T, XOR left and XOR right equations.

Cautions when usin g the DEMORGAN_SYNTH
propert y

When using DEMORGAN_SYNTH, do not do the following:

• Control DeMorganization of control equations, such as
ENABLE, CLOCK, RESET, or PRESET.

• Control DeMorganization of the J equation of a JK flip-flo
with no corresponding DeMorganization of the K equatio

To control flip-flop s ynthesis

1 Use the FF_SYNTH property.

To control XOR to Sum-of-Products s ynthesis

1 Use the XOR_TO_SOP_SYNTH property.

6-10 Controlling the Fitting Process Using the .pi File

 of

 the

.

Table 6-2 Synthesis Control P

Property Va

DEMORGAN_SYNTH A

FO

O

FF_SYNTH A

O

XOR_TO_SOP_SYNTH A

FO

O

Table 6-2 summarizes the settings and meanings for all three
these properties.

Controllin g the Size of
Equations
Controlling the size of equations can have a major impact on
success of the PLSyn fitter and the number of solutions it
generates.

To control the size of equations

1 Use the MAX_PTERMS and MAX_SYMBOLS properties

roperties

lue Action

UTO (default) The optimizer will automatically select the
best DeMorganization choice.

RCE Force the optimizer to DeMorganize the
primary equation (use the offset).

FF Prevent the optimizer from DeMorganizing
the primary equation (use the onset).

UTO (default) The optimizer will automatically do flip-flop
synthesis to meet the needs of the target
device.

FF Require the target device to have the flip-flop
type given in the design.

UTO (default) The optimizer will automatically select
between the XOR equation and the sum-of-
products equation.

RCE Force the optimizer to use the sum-of-
products equation.

FF Force the optimizer to use the XOR equation.

Specifying Devices without Specifying Signals 6-11

t

an
Example

If you know that you want to use devices with macrocells tha
have eight or fewer PTERMs, then you want to keep the
optimizer from collapsing nodes into equations with more th
eight PTERMs using these PIL statements:

{MAX_PTERMS 8};

{MAX_SYMBOLS 16};

Specif ying Devices
without Specif ying
Signals
To specif y the devices to use without specific pin
information

1 Use the DEVICE property without a signal list.

Example

The following PIL statements will fit a design into two
MACH210 devices and a MACH130 device:

DEVICE
TARGET 'PART_NUMBER AMD MACH210-15JC';

END DEVICE;

DEVICE
TARGET 'PART_NUMBER AMD MACH210-15JC';

END DEVICE;

DEVICE
TARGET 'PART_NUMBER MACH130-15JC';

END DEVICE;

6-12 Controlling the Fitting Process Using the .pi File

Specif ying JEDEC File
Names
PLSyn automatically creates JEDEC files and saves them in
your design directory, using names of the form
design_name.j n where n is a number from one up to the
number of devices.

To specif y a name for each JEDEC file

1 Use the FUSEMAP_FILE property within a DEVICE
construct of the form:

{ FUSEMAP_FILE ' file name ' } ;

Example

DEVICE
{ FUSEMAP_FILE 'mypal.jedec' } ;

.

.

.
END DEVICE ;

More Examples Using the .pi File 6-13

ut
ant

est

ice
it in
More Examples Usin g
the .pi File

Forcin g Signals to be Fit
Together in the Same Device

Scenario

You have a design that implements a counter, and the outp
signals are heavily interdependent. For timing reasons you w
them to be fit together in the same device, but want the
automatic device selection and partitioning to determine the b
device according to your priorities.

Solution

GROUP
q0..q5, carry;

END GROUP;

which tells PLSyn to fit the signals that are members of the
GROUP, q0..q5 and carry together in the same device.
There are no limitations imposed by the GROUP on the dev
to use. In addition, other groups and ungrouped signals can f
the same device with this group.

6-14 Controlling the Fitting Process Using the .pi File

se

 fit

Using the GROUP construct
instead would specify that the
signals o[0..6] and carry must fit
together into the same device.
Usin g Specific Devices

Scenario

You are prototyping a small design, and have several
reprogrammable P16V8As that you know that you want to u
during the debugging stage.

Solution

DEVICE
TARGET 'PART_NUMBER AMD PALCE16V8H-10JC/4';
o [0..6];
carry;

END DEVICE;

The DEVICE construct specifies that no other groups can be
into the same device. This means that you can give device-
specific information in fixed groups. One kind of device-
specific information is the device to TARGET or fit this fixed
group into. Here, the target device is named by its
PART_NUMBER.

More Examples Using the .pi File 6-15

me
he

tain

ain

rd
t

om
P.

 in
ns

ect
e.
Maintainin g Pin Assi gnments

Scenario

You have an existing design in which you have changed so
logic and you want to refit the design into the same device. T
device is a P20V8 in a JLCC package, and you want to main
the pin assignments.

Solution

DEVICE
TARGET 'TEMPLATE P20V8 JLCC-28-P28';
INPUT clk:2, in1:3, in2:4, in3:5, in4:6;
out1:18, out2:19,out3:20, out4:21;
NO_CONNECT 7..13, 15, 22..27;

END DEVICE;

where, the target device is named by its TEMPLATE P20V8
and its footprint JLCC-28-P28.

A template is a device architecture and the footprint is a cert
pinout configuration consisting of three things:

• The type of package (e.g., DIP, SOIC, or JLCC).

• The number of pins in the package.

• The mapping of physical pins to logical, or virtual, pins.

Example

DIP-24-STD indicates a 24 pin DIP package with the standa
pinout mapping (pin 12 as ground and pin 24 as VCC). Mos
parts use a standard pin mapping, abbreviated as STD. An
example of a non-standard pin mapping is the 4.5ns P16L8 fr
AMD, which uses extra power and ground pins in a 28-pin DI
The footprint for such a device is a DIP-28-A28.

Signals used as inputs to the device are marked with INPUT
the .pi file. The signals in the fixed group are assigned to pi
by appending : pin_name to the signal name, such as clk:2 .
If device pins must be left free, use the NO_CONNECT
property. The pin names in the pin assignments and no-conn
pins are the actual physical pin names for the targeted devic

6-16 Controlling the Fitting Process Using the .pi File

.
als

ck
ou

y
Fittin g the Desi gn into One
Device

Scenario

You want to fit your entire design into one AMD
PAL16R6B4CJ.

Solution

DEVICE
TARGET 'PART_NUMBER AMD PAL16R6B4CJ';
DEFAULT;

END DEVICE;

The DEVICE specification is marked as the DEFAULT group
The default group is the group that contains all the output sign
that you have not mentioned elsewhere in the .pi file.

Specifying a default group is optional. Here, it provides a qui
way to put all the signals in the design into the same device. Y
can also specify DEFAULT at the global level, outside of an
group or DEVICE specification. This means PLSyn will
automatically fit and partition all unmentioned signals.

More Examples Using the .pi File 6-17
Fittin g the Desi gn into Multiple
Devices

Scenario

You have a design that will take two AMD parts.

Solution

DEVICE
TARGET 'PART_NUMBER AMD PAL16R6B4CJ';
out1..out5;

END DEVICE;

DEVICE
TARGET 'PART_NUMBER AMD PAL16R6B4CJ';
out6..out10;

END DEVICE;

Mixin g Automatic and Directed
Partitionin g

Scenario

Assume that your design is similar to the design of the last
example. However, it has several critical functions that you
want placed into fast PLDs.

Solution

DEVICE
TARGET 'PART_NUMBER AMD PAL16R6B4CJ';
out1..out5;

END DEVICE;

DEVICE
TARGET 'PART_NUMBER AMD PAL16R6B4CJ';
out6..out10;

END DEVICE;

6-18 Controlling the Fitting Process Using the .pi File
Note The contents of this .pi file are the same as the
previous example. In this case, nothing needs to
be said in the .pi file about the critical functions. If
you prioritize for speed during partitioning, PLSyn
will automatically find the fastest device or
combination of devices available that will fit the
critical functions.

More Examples Using the .pi File 6-19

s
his
ou

eep

 to

ture
use

you
Refittin g a Design into the Same
Footprint

Scenario

Your board is already in production, but a logic flaw indicate
that you have changed the logic implemented in your PLD. T
causes your design to outgrow the P20R8 you were using. Y
need to refit the design into another architecture, but must k
the pinout the same.

Solution

DEVICE
TARGET 'FOOTPRINT DIP-24-STD';
INPUT clk:1, oe:13, in1:2, in2:3, in3:4, in4:5;
INPUT in5:6, in6:7, in7:8, in8:9, in9:10, in10:11;
INPUT in11:14, in12:23;
out1:15, out2:16, out3:17, out4:18;
out5:19, out6:20, out7:21, out8:22;

END DEVICE;

The fixed group is targeted to FOOTPRINT DIP-24-STD.
Targeting a device to a footprint causes automatic device
selection and fitting across devices that match the footprint.
Depending on the form of the actual equations, there are up
79 architectures that can potentially fit this example.

For this example, the P20R8 architecture and P312 architec
in a DIP package both have the same footprint, so you can
the P312 instead of the outgrown P20R8. The old pin
assignments are enforced, regardless of which architecture
choose. This means that the board layout is preserved.

Note You can narrow the search by setting constraints
and priorities to optimize the fit for price, speed, or
other factors.

PLD Device-Specific Fittin g
B,
7

Chapter Overview
This chapter describes how to control the fitting process for
specific PLD device architectures using the .pi file.

Accessing Internal Points in a PLD Device on page 7-2
describes the different kinds of internal nodes and how to
reference them in your .pi file.

Fitting Specific Device Architectures on page 7-11 describes
control mechanisms for the 22V10, 750, 2500,P22V10I, P750
P2500B, P1800, P16V8HD, P22VP10, and P16VP10,
including:

• Handling synchronous preset

• Assigning combinatorial output during feedback

• Controlling clock source

• Controlling quadrant-based architectures

• Accessing the open-drain output

7-2 PLD Device-Specific Fitting

 of

ons.

 pin
en

ou
Accessin g Internal
Points in a PLD Device
To reference si gnals internal to a PLD device

1 Use the node name convention corresponding to the kind
node: hidden/buried, shadow, unary.

This section describes the node types and naming conventi
See Table 7-1 on page 7-6 for a summary of the node naming
conventions that apply to specific PLD device architectures.

The Kinds of Nodes

Hidden nodes

A hidden node is a node that does not terminate in a physical
connection. Shadow and buried nodes are examples of hidd
nodes, typically used to hold functions used only within a
device.

Node signals are signals that you place on hidden nodes.
However, node signals are not restricted to hidden nodes; y
can also place them on visible pins.

Figure 7-1 Hidden Node

Accessing Internal Points in a PLD Device 7-3

the

ber
Shadow nodes

You can create a shadow hidden node (known simply as a
shadow node or shadow) by disabling the output buffer of a
normal output macrocell. The shadow node terminates with
internal feedback to the array, and is therefore not visible
outside the device as shown in Figure 7-2.

Figure 7-2 Shadow Node

Buried nodes

A buried node is a hidden node where some external pin num
is associated.

7-4 PLD Device-Specific Fitting

 is

. A
nary.

a

ck
Unary nodes

Unary nodes are nodes with a single input. Usually the node
registered. There are two basic types of unaries. The most
common is a registered input pin, also called an input unary
second type is a clocked feedback path, called a feedback u

Input unar y

An input unary is a hidden unary in an input macrocell, i.e.,
clocked input pin, as shown in Figure 7-3.

Figure 7-3 Input Unary

Feedback unar y

A feedback unary is a hidden unary path through the feedba
register of an output macrocell, as shown in Figure 7-4.

Figure 7-4 Feedback Unary

Accessing Internal Points in a PLD Device 7-5

r

ry

ose
t

 as

Note MACH devices use a
different naming convention.
For more information, see
Understanding Pin Naming
and Numbering on page 8-17.
To select a node or unar y path

1 In your .pi file, use the label associated with the node o
unary using the following labeling convention:

where ## is the manufacturer-specified pin number in the prima
package, usually DIP.

Example

There are a large number of devices that have general-purp
registers. This example shows how you can define DSL tha
allows the fitter to take advantage of these general-purpose
registers.

The following DSL statements reflect a clocked input defined
a unary node:

INPUT i_unclocked, clk;
NODE i CLOCKED_BY clk;

i = i_unclocked;

This approach provides certain advantages over a standard
clocked input.

• The design references both the clocked (i) and unclocked
(i_unclocked) versions of the signal.

• Reference the hidden node in the .pi file.

• Map this description into any device with a register.

hidden node NODE##

unary node UNARY_OF_##

buried node BURIED_OF_##

7-6 PLD Device-Specific Fitting

Table 7-1 Node Descr

Architecture Pin De

P16V8HD Input

Feed

P204R Shad

P23S8 Burie

P241R Shad

P2500 Shad

Burie

P29M16 Shad

Input

P29MA16 Shad

Input

P312 Input

Shad
iptions and Labels by Device Architecture

scription Pin Label

 unaries UNARY_OF_2...UNARY_OF_9

back unaries UNARY_OF_13...UNARY_OF_16

UNARY_OF_19...UNARY_OF_20

UNARY_OF_22...UNARY_OF_23

ow nodes SHADOW_OF_12...SHADOW_OF_19

d nodes BURIED_OF_13...BURIED_OF_18

ow nodes SHADOW_OF_4...SHADOW_OF_9
SHADOW_OF_14...SHADOW_OF_23

ow nodes SHADOW_OF_4...SHADOW_OF_9
SHADOW_OF_11... SHADOW_OF_16
SHADOW_OF_24... SHADOW_OF_29
SHADOW_OF_31... SHADOW_OF_36

d nodes BURIED_OF_4...BURIED_OF_9
BURIED_OF_11...BURIED_OF_16
BURIED_OF_24...BURIED_OF_29
BURIED_OF_31...BURIED_OF_36

ow nodes SHADOW_OF_3, SHADOW_OF_4
SHADOW_OF_9, SHADOW_OF_10
SHADOW_OF_15, SHADOW_OF_16
SHADOW_OF_21, SHADOW_OF_22

unaries UNARY_OF_3...UNARY_OF_10
UNARY_OF_15...UNARY_OF_22

ow nodes SHADOW_OF_3, SHADOW_OF_4
SHADOW_OF_9, SHADOW_OF_10
SHADOW_OF_15, SHADOW_OF_16
SHADOW_OF_21, SHADOW_OF_22

unaries UNARY_OF_3...UNARY_OF_10
UNARY_OF_15...UNARY_OF_22

 unaries UNARY_OF_3...UNARY_OF_10

ow nodes SHADOW_OF_2, SHADOW_OF_11
SHADOW_OF_14...SHADOW_OF_23

Accessing Internal Points in a PLD Device 7-7

itecture (continued)

HADOW_OF_7
ADOW_OF_12

ADOW_OF_17
ADOW_OF_27
ADOW_OF_32
ADOW_OF_37

RY_OF_3
RY_OF_20

RY_OF_23
RY_OF_40

Y_OF_3
RY_OF_20

RY_OF_23
RY_OF_40

RY_OF_7
Y_OF_14

ARY_OF_20
RY_OF_28

ARY_OF_6
Y_OF_14
Y_OF_14

.SHADOW_OF_23

ADOW_OF_17

ADOW_OF_23

URIED_OF_23

HADOW_OF_23
Table 7-1 Node Descriptions and Labels by Device Arch

Architecture Pin Description Pin Label

P324 Shadow nodes SHADOW_OF_4...S
SHADOW_OF_9...SH
SHADOW_OF_14...SH
SHADOW_OF_24...SH
SHADOW_OF_29...SH
SHADOW_OF_34...SH

Input unaries UNARY_OF_2, UNA
UNARY_OF_18...UNA
UNARY_OF_22, UNA
UNARY_OF_38...UNA

UNARY_OF_2, UNAR
UNARY_OF_18...UNA
UNARY_OF_22, UNA
UNARY_OF_38...UNA

P332 Input unaries UNARY_OF_1...UNA
UNARY_OF_9...UNAR

Feedback unaries UNARY_OF_15...UN
UNARY_OF_23...UNA

P336/P337 Input unaries UNARY_OF_1...UN
UNARY_OF_9...UNAR
UNARY_OF_9...UNAR

P32VX10 Shadow nodes SHADOW_OF_14..

P448 Shadow nodes SHADOW_OF_13
SHADOW_OF_15...SH
SHADOW_OF_19
SHADOW_OF_21...SH

P750 Buried nodes BURIED_OF_14...B

Shadow nodes SHADOW_OF_14...S

S105 Hidden nodes NODE29...NODE34

S167/S168 Hidden nodes NODE25...NODE30

7-8 PLD Device-Specific Fitting

den
),

ths,

ith

Table 7-1 Node Descriptions

Architecture Pin Description

S30S16 Input unaries

Hidden nodes

Shadow nodes

Shadow nodes

S405/S415 Hidden nodes

S506 Hidden nodes

S507 Hidden nodes

S6001/S6002 Hidden nodes

Shadow nodes

Input unaries

Feedback unarie

The architectures which have
unary nodes are the P16V8HD,
P29M16, P29MA16, P312,
P324, P330, P331, P332,
S30S16, S6001, ATV5000, and
the MACH2xx parts.

For more information on the
MACH2xx parts, see Chapter 8,
MACH 1-4 Device-Specific
Fitting.

For more information on the
ATV5000 parts, see Chapter 10,
ATV5000 Device-Specific
Fitting.
Unary Nodes in the P330 and
P331
The P330 and P331 architectures have unusual types of hid
unaries. In addition to the clocked input paths (input unaries
they have clocked feedback paths in the output macrocells.
Neighboring macrocells can share the clocked feedback pa
which can result in a large number of hidden paths.

In the P330 and P331, you can build two types of unaries w
these kinds of paths: local unary and shared unary

 and Labels by Device Architecture (continued)

Pin Label

UNARY_OF_21...UNARY_OF_24

NODE29...NODE32

SHADOW_OF_8...SHADOW_OF_9

SHADOW_OF_15...SHADOW_OF_20

NODE29...NODE36

NODE25...NODE40

NODE25...NODE32

NODE25...NODE32

SHADOW_OF_14...SHADOW_OF_23

UNARY_OF_2...UNARY_OF_11

s UNARY_OF_14...UNARY_OF_23

Accessing Internal Points in a PLD Device 7-9
Local unar y The local unary has a path through the
feedback multiplexer, as shown in Figure 7-5.

Figure 7-5 P33x Local Unary

Shared unar y The shared unary has a path through a
shared multiplexer, as shown in Figure 7-6.

Figure 7-6 P33x Shared Unary

7-10 PLD Device-Specific Fitting

r

1.

Table 7-2 Node Descriptions a

Architecture Pin Description

P330 Hidden nodes

Input unaries

Local feedback u

Shadow nodes

Shared feedback

P331 Shadow nodes

Local feedback u

Shared feedback
To select a node or unar y path in a P330 or P331

1 In your .pi file, use the label associated with the node o
unary according to the following labeling convention:

where ## is the manufacturer-specified pin number in the
primary package, in this case, DIP.

Table 7-2 summarizes the node labels for the P330 and P33

hidden node NODE##

standard unary node UNARY_OF_##

local unary node LOCAL_OF_##

shared unary node SHARED_OF_##

shadow node SHADOW_OF_##

nd Labels for P330 and P331

Pin Label

NODE29...NODE32

UNARY_OF_3...UNARY_OF_7
UNARY_OF_9...UNARY_OF_14

naries LOCAL_OF_15...LOCAL_OF_20
LOCAL_OF_23...LOCAL_OF_28

SHADOW_OF_15...SHADOW_OF_20
SHADOW_OF_23...SHADOW_OF_28

 unaries SHARED_OF_15...SHARED_OF_20
SHARED_OF_23...SHARED_OF_28

SHADOW_OF_15...SHADOW_OF_20
SHADOW_OF_23...SHADOW_OF_28

naries LOCAL_OF_15...LOCAL_OF_20
LOCAL_OF_23...LOCAL_OF_28

 unaries SHARED_OF_15...SHARED_OF_20
SHARED_OF_23...SHARED_OF_28

Fitting Specific Device Architectures 7-11

ion
nous
iven
me
 a

w
ed.
Fittin g Specific Device
Architectures

22V10, 750, and 2500: Handlin g
Synchronous Preset
PLSyn supports several device architectures that have a
synchronous reset. If PLSyn has DeMorganized the D equat
on a device, then the asynchronous reset is now an asynchro
preset and the synchronous preset is a synchronous reset. G
this anomaly and the priority PLSyn places on insuring the sa
functionality for various implementations, PLSyn does not fit
preset equation onto any synchronous preset.

In some architectures, however, you can still use the common set
(set or preset). A synchronous preset is like an extra AND ro
input to the OR, but available only when the output is register

Usin g set and preset for the 22V10 and 750

For the 22V10 (which includes the P22V10, P22VP10, and
P22V10I) and the 750 (which includes the P750B), the
synchronous preset row is common to all macrocells in the
device.

To use set or preset in the 22V10 and 750
architectures

1 Use the COMMON_SET_PTERM property in your .pi
file.

7-12 PLD Device-Specific Fitting

to

Example

SOURCE FILE

INPUT clk, reset1, reset2;
OUTPUT a[10] CLOCKED_BY clk;

IF (reset1*reset2) THEN
a = 0;

ELSE
a = a .+. 1;

END IF;

PHYSICAL INFORMATION FILE

DEVICE

{COMMON_SET_PTERM 'reset1*reset2';};

TARGET 'TEMPLATE P22VP10 DIP-24-STD';

a;

END DEVICE;

The common set PTERM is reset1*reset2 . This term sets
the output low, so PLSyn automatically uses the DeMorgan
meet this common set PTERM requirement.

Usin g set and preset for the 2500

The 2500 architecture (which includes the P2500) has eight
synchronous preset rows shared by 2 or 4 macrocells.

To use set or preset in the 2500 architecture

1 Use the SET_PTERM property in your .pi file.

If no pin assignments are given, PLSyn automatically
determines macrocell pairing to meet the SET_PTERM
requirements.

Fitting Specific Device Architectures 7-13

Example

SOURCE FILE

INPUT clk, reset1, reset2;
OUTPUT a[10] CLOCKED_BY clk;

IF (reset1*reset2) THEN
a = 0;

ELSE
a = a .+. 1;

END IF;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'ATM ATV2500H-25DC';
a {SET_PTERM' reset1* reset2 ';

.

.

.
END DEVICE;

Note If you specify the pin numbers for macrocells that
share a synchronous preset term, all of the
macrocells must have the same SET_PTERM
requirements.

P22V10I: Assi gnin g
Combinatorial Output Durin g
Feedback
Using the P22V10I device, you can assign a combinatorial
output while feeding back a registered version of the signal.

To assi gn combinatorial lo gic to the P22V10I
architecture

1 Describe the DSL logic as follows:

• Assign the logic to an internal combinatorial node.

• Assign the internal combinatorial node to an internal
registered node.

7-14 PLD Device-Specific Fitting

• Assign the internal combinatorial node to a
combinatorial output. If needed, you can define this
output to have an output enable.

2 In your .pi file, attach the COM_OUT_REG_FB property
to the output signal.

Example

SOURCE FILE

INPUT clk, in1 in2;
OUTPUT out1, out2;
PHYSICAL NODE before_feedback;
NODE after_feedback CLOCKED_BY clk;

before_feedback = in1;
out1 = before_feedback;
after_feedback = before_feedback;
out2 = after_feedback * in2;

PHYSICAL INFORMATION FILE

DEVICE
TARGET ‘TEMPLATE P22V10I DIP-24-STD’;

"Force the Combinatorial
"Output/Registered Feedback mode
"using out1 as the output and
"after_feedback as the
"registered feedback mode

out1 {COMB_OUT_REG_FB after_feedback};
END DEVICE;

P750B AND P2500B: Controllin g
Clock Source
The Atmel P750B and P2500B architectures can provide the
clock for the registers from two locations:

• A dedicated clock pin.

• A row in the fuse array.

Fitting Specific Device Architectures 7-15

To control the clock source for the P750B and
P2500B architectures

1 Add a CLOCKED_BY_xxx property to the output or nodes
that you wish to control, in your .pi file as follows:

Note Do not use the CLOCKED_BY_PIN property when
the signal is clocked by an equation (for example,
CLOCKED_BY (a*b)).

Example

SOURCE FILE

INPUT clk, in1;
OUTPUT out1 CLOCKED_BY clk;
out1 = in1;

PHYSICAL INFORMATION FILE

DEVICE
TARGET ‘TEMPLATE P750B DIP-24-STD’;
out1 {CLOCKED_BY_PIN};"Force the

"clock to come from the clock pin
END DEVICE;

Example

SOURCE FILE

INPUT clk, in1;
OUTPUT out1 CLOCKED_BY clk;
out1 = in1;

PHYSICAL INFORMATION FILE

DEVICE
TARGET ‘TEMPLATE P750B DIP-24-STD’;
out1 {CLOCKED_BY_ROW};"Force the clock

"to come from the product term
END DEVICE;

CLOCKED_BY_PIN The register must be clocked by
the signal on the dedicated clock
pin.

CLOCKED_BY_ROW The register must be clocked by
the internal clock product term.

7-16 PLD Device-Specific Fitting

 the
he
ells

ny

An
he

to a

pin.
Note If you do not specify CLOCKED_BY_PIN or
CLOCKED_BY_ROW, the fitter will attempt to us
CLOCKED_BY_PIN first, then will try to use
CLOCK_BY_ROW.

P1800: Controllin g Quadrant-
Based Architectures
The P1800 device architecture is different from other PLDs
because it has quadrants. Within a quadrant, local macrocells
and the pre-enable feedback of global macrocells feed only
same quadrant and do not feed the other three quadrants (t
input pins and the post-enable feedback of the global macroc
feed the entire device.)

Assi gnin g pins and nodes

You can assign a signal to a pin in much the same way as a
other device using the .pi file. Unless it is in a SECTION, an
OUTPUT in a P1800 DEVICE must have a pin assignment.
output signal without a pin assignment is ambiguous since t
fitter needs to know (at a minimum) the quadrant you want.

Table 7-2 lists the sixteen shadow nodes in the P1800
architecture which can accept node signal assignments.

As you make pin or node assignments, be aware of the
requirements imposed by the quadrants of the P1800. For
example, if signal x needs signal y, and signal x is assigned
local macrocell output pin, then y must be fit in the same
quadrant or the signal x must be brought in on a global input

Table 7-3 Node Descriptions and Labels for P1800

Architect
ure

Pin
Descripti
on

Pin
Label

P1800 Shadow SHADOW_OF_10...SHADOW_OF_13
SHADOW_OF_23...SHADOW_OF_26
SHADOW_OF_44...SHADOW_OF_47
SHADOW_OF_57...SHADOW_OF_60

Fitting Specific Device Architectures 7-17

ts,
rd

ort
en-

e
Subgroups: Tar getin g quadrants

To indicate a tar get quadrant in a P1800 device

1 Use the SECTION construct in your .pi file.

You can target the SECTION to any one of the four quadran
labeled A, B, C, and D (the target string should contain the wo
quadrant followed by the quadrant letter (for example,
TARGET ‘Quadrant B’;). You can include OUTPUTS
without pin assignments in the SECTION construct.

Example

DEVICE
TARGET 'TEMPLATE P1800 JLCC-68-STD';
SECTION

TARGET 'Quadrant A';
a:3; " Place a on pin 3

" of quadrant A
END SECTION;
b:34, c:SHADOW_OF_44;

" b on pin 34,
" c on pin 44's shadow

SECTION
TARGET 'Quadrant D';
d1, " Place d1 ANYWHERE

" in quadrant D.
d2:57; " d2 goes on pin 57

" of quadrant D.
END SECTION;

END DEVICE;

P16V8HD, P22VP10, and
P16VP10: Accessin g the Open-
Drain Output
The P16V8HD, P22VP10, and P16VP10 architectures supp
open-drain outputs. Unlike normal totem-pole outputs, an op
drain output only drives Vol. Whereas Voh is driven on a totem-
pole output, nothing is driven from an open-drain output. Th

7-18 PLD Device-Specific Fitting

ut

nd

in

rain
voltage level of an open-drain output depends on external
loading and pull-up circuitry.

In your .pi file, you can direct outputs to be open drain by
attaching the OPEN_DRAIN property to the output signals,
provided those outputs support open drain.

To express this functionality, the enable equation of an outp
(in this case x) must be of the form:

/ internal_name_for_x * enable_equation

This means that the output is enabled only if the data is low a
the enable equation is true. The value internal_name_for_x is
any signal just prior to the enable buffer of the output on the
device. The enable equation is independent of the open-dra
functionality.

PLSyn provides a function that you can use to create open-d
output signals of the proper form:

FUNCTION open_drain(d, oe);
NODE out ENABLED_BY /d*oe;
out = d;
return out;

END open_drain;

Example

SOURCE FILE

USE 'dfeature' ;
LOW_TRUE INPUT oe;
INPUT i, j, clk;
NODE 1_x CLOCKED_BY clk;
OUTPUT x;

i_x = i*j;
x = open_drain(i_x, oe);

PHYSICAL INFORMATION FILE

DEVICE
TARGET ‘PART_NUMBER amd PALCD16V8HD-15PC’;
x {OPEN_DRAIN};
END DEVICE;

Once an output is in the proper form for an open-drain
configuration, the simulator can simulate the functionality

Fitting Specific Device Architectures 7-19

also

rain

t of

ain

 of
correctly and test vectors sent to the device programmer are
be correct.

PLSyn generates two enable equations:

• open-drain capable devices

• all other devices

In the example given above, the enable equation for open-d
outputs is oe , and the enable equation for other outputs is /
i_x*oe . To maintain device independence, you can fit an
output onto parts without the open-drain capability at the cos
increased enable equation complexity. Consider timing and
parametric design issues independently of PLSyn’s open-dr
synthesis capability.

You can also use the open-drain function to aid in the design
buses.

Example

SOURCE FILE

USE 'dfeature';

" Declare the inputs
INPUT input_bus1[4];
INPUT input_bus2[4];
INPUT clk;

" Declare the two buses and the
" associated wired bus
NODE internal_bus1[4] CLOCKED_BY clk;
NODE internal_bus2[4] CLOCKED_BY clk;
OUTPUT bus1[4];
OUTPUT bus2[4];
WIRED_BUS combined_bus[4] : bus1, bus2;

" Declare an output that will refer to
" the wired bus
OUTPUT and_all;

" Make assignments to the two buses
internal_bus1 = input_bus1;
internal_bus2 = input_bus2;

7-20 PLD Device-Specific Fitting
" Declare each bus to have
" open-drain outputs
bus1[0] = open_drain (internal_bus1[0], 1);
bus1[1] = open_drain (internal_bus1[1], 1);
bus1[2] = open_drain (internal_bus1[2], 1);
bus1[3] = open_drain (internal_bus1[3], 1);
bus2[0] = open_drain (internal_bus2[0], 1);
bus2[1] = open_drain (internal_bus2[1], 1);
bus2[2] = open_drain (internal_bus2[2], 1);
bus2[3] = open_drain (internal_bus2[3], 1);

" Reference the wired bus and_all =
" combined_bus[0]*combined_bus[1]*
" combined_bus[2]*combined_bus[3];

PHYSICAL INFORMATION FILE

bus2 {OPEN_DRAIN };
bus1 {OPEN_DRAIN };

MACH 1-4 Device-Specific
Fittin g
8

Chapter Overview
This chapter describes how to control the fitting process for
specific MACH 1-4 device architectures. Topics include:

• When to design with MACH devices, page 8-2

• Summary of MACH device properties, page 8-3

• Tips and device details, pages 8-10 through 8-49

• The report file, page 8-52

See Appendix C, AMD MACH Device Tables for detailed
information on:

• Device-specific pin names

• Fuse commands for forcing outputs to be driven

8-2 MACH 1-4 Device-Specific Fitting

o

d

d

to

For additional device-specific
information, refer to the MACH
Family Data Book from AMD.

See Chapter 6, Controlling the
Fitting Process Using the .pi
File and the PIL Reference in
PLSyn online help for more
information on the .pi file.

For more information, see The
MACH Report File on
page 8-52.
Designin g with MACH
Devices
MACH devices, summarized in Table 8-1 on page 8-3, are
handled like any other PLD with full support for automatic
device selection and partitioning. As with PLDs, you can als
control implementation using the .pi file.

When You Have Fittin g Problems
If your design fails to fit, there are several tools to help you fin
the problem(s). These include the:

• Log file

• Report file

Usin g the lo g file

The PLSyn fitter generates the log file (.log) every time it runs.
The log file is the first place to look when you have fitting
problems.

If a fitting run fails, the log file contains information that
explains why the design did not fit. If you are using group an
pin assignments in the .pi file, the log file contains any
messages regarding the validity of these assignments.

Usin g the report file

When you specify a MACH device in the .pi file, the PLSyn
fitter generates a device-specific report file (.rpt)., whether the
fitter succeeds in fitting or not. If the fitter fails, the report file
contains valuable information that shows which resources
presented the most problems in fitting. Use this information
help you decide how to change the design or the .pi file to
make the design fit easier.

Summary of MACH Devices 8-3

k.
o

D.

s
Input
Regs

Input
s

Clks

 0 4 2

 0 4 2

 32 6 2+32

 0 4 4

 0 4 4

 0 2 4

 0 2 4

 64 2 4+128

8 128 14 4+256
Summar y of MACH
Devices
Table 8-1 summarizes the properties of MACH devices.

Output Enable Functions

MACH 1xx These devices have 12 or 16 outputs per bloc
There are two OE PTERMs for the top half of the block, and tw
OE PTERMs for the bottom half of the block. Each output
selects its OE from either of the two available PTERMs or a
constant: 1 or 0.

MACH 2xx These devices have 6 or 8 outputs per block.
There are two OE PTERMs per PAL block. Each output
selects its OE from either of the two available PTERMs or a
constant: 1 or 0.

*. For speed values, see the MACH Family Data Book from AM

Table 8-1 MACH Device Properties*

Device
Pin
s

Blk
s

Array
Input
s

Max
Pterms

OMCs BMC

MACH 110 44 2 22 12 32 0

MACH 210 44 4 22 16 32 32

MACH 215 44 4 22 12 32 0

MACH 120 68 4 26 12 48 0

MACH 220 68 8 26 16 48 48

MACH 130 84 4 26 12 64 0

MACH 230 84 8 26 16 64 64

MACH 435 84 8 33 20 64 64

MACH 465 208 16 34 20 128 12

8-4 MACH 1-4 Device-Specific Fitting

 all

r

t in
ut
ch

,
e,
MACH 215, MACH 4xx These devices have one OE
PTERM per output. You can program them independently as1,
0, or any product of signals in the block.

Register Reset/Preset Functions

MACH 1xx, MACH 2xx These devices have one reset
and one preset in each block. The reset and preset apply to
registers in the block.

Note Note, a registered function without a reset (or
preset) is the same as RESET_BY 0. This will not
fit in the same block with other functions with non-
zero reset expressions.

MACH 215 This device has a reset and preset PTERM fo
each output register. The input registers do not have reset
capabilities.

MACH 4xx These devices have one reset and one prese
each block. These apply to the macrocells but not to the inp
registers. The macrocells have an asynchronous option whi
allows for a local reset or preset, but not both, for individual
functions.

Packaging
All like pin-count packages are pin compatible. For example
when a MACH 110 design exceeds the capacity of the devic
you can generally substitute a MACH 210.

Using Standard Clock Functions 8-5

ns

 and

irs

Note For all MACH devices,
the clock signals are also
signal inputs to the switch
matrix. You can route these to
the blocks.

If your design needs a clock
which is more complex, you can
define a clock using a complex
logic function. See Using
Complex Clock Functions on
page 8-6.
Usin g Standard Clock
Functions

MACH 1xx, MACH 2xx: S ynchronous Clock
Functions

These devices support pin clock only.

MACH 215, 3xx, 4xx: As ynchronous Clock
Functions

Although both the MACH 215 and MACH 4xx support
asynchronous functions, some functions or groups of functio
fit only in the MACH 215. These are:

• Functions that are clocked by a PTERM and have a reset
preset.

• Groups of functions that have more than eight distinct pa
of reset and preset equations.

MACH 215 This device supports pin clock or clock by
PTERM.

You can clock the output macrocells by:

• pin 13, or

• a local PTERM, or

• the inverse of either of those signals.

You can clock the input registers by:

• pin 13, or

• pin 35, or

• the inverse of either of those signals.

8-6 MACH 1-4 Device-Specific Fitting

e,
T.

nt

in
e

See device manufacturer
literature for specifics.
MACH 3xx and 4xx These devices support clock by pin
or clock by PTERM. You can set the pin clock mode from:

• any of four clock pins, or

• the inverse of those signals.

Not all possible clock signal and inverse combinations are
available in a given block.

Usin g Complex Clock
Functions
When a design requires a clock expression that can’t be
implemented directly in the clock resources of a MACH devic
you can place the clock logic in a separate NODE or OUTPU
The PLSyn fitter automatically wires the function to the clock
resources of the device.

MACH 1 and 2 You can use the complex clock output in
the MACH 1 & 2 families either internally or externally as the
clock. The only exception is if the MACH 215 clock pin is
unavailable. Then PLSyn routes the clock signal to the PAL
blocks where it is needed and connects it using the clock
PTERM.

MACH 3 and 4 You can use a function generated in the
MACH 3 & 4 families either internally or externally as the
clock. The PLSyn fitter defaults to using the clock signal
internally to save the pins used in external routing. To preve
the clock from taking an I/O pin, you can declare the clock
function to be a node.

If you need the faster timing provided by an external clock p
connection, simply place the clock signal on a clock pin in th
.pi file.

Using Complex Clock Functions 8-7

rt

e a

a

ock

Note This costs some extra
delay.
Example

The following source file can fit into any MACH device.

input i;
input c1, c2;
output ck;
output a clocked_by ck;
a = 1;

Clock Limitations
• The synchronous MACH parts (MACH 1x0 and MACH

2x0) can only be clocked by pin.

• The synchronous MACH parts (MACH 215 and MACH 3
& 4 families) can clock by a single PTERM, and can inve
clock signals in most cases.

In either case, the PLSyn fitter allows you to generate and us
more complex clock than the part supports directly. For
example, you can use the sum of two or more PTERMs, or
single PTERM on an asynchronous part.

To use a more complex clock than the part
supports

1 Create an output node with a data equation that is the cl
function you want generated.

2 Use the output node as the clock signal.

8-8 MACH 1-4 Device-Specific Fitting

 to

 the
Implementin g Hazard-
Free Combinatorial
Latches
You may need to implement combinatorial latches in MACH
devices. A combinatorial latch is a simple combinatorial
function in which the output is derived from inputs and
feedbacks. A seemingly correct latch design can be subject
hazard conditions that might cause latch failure. By inserting
redundancy into the latch equation, you can protect against
hazard conditions.

Basic Latch Circuit
The basic transparent DLatch expression looks like the
following:

INPUT Data;
INPUT LatchEnable;
NODE DLatch;
DLatch = LatchEnable * Data

+ /LatchEnable * DLatch;

Creatin g a Hazard-Free Latch
A Karnaugh map reveals that it is possible to lose data when
LatchEnable goes from 1 to 0 while asserting Data.

To create a latch that protects a gainst losin g data

1 Add a Cover Term to the DLATCH equation by
encapsulating the combinatorial latch function in a DSL
procedure.

2 Add the NO_REDUCE option to the output to prevent
PLSyn from reducing out the Cover Term.

Specifying Reserve Capacity 8-9

s
 at
nt
),

ed.

n
The procedure to do this is as follows:

PROCEDURE DLatch(INPUT Data, LatchEnable;
OUTPUT DLatchOut NO_REDUCE);
DLatchOut = LatchEnable * Data
+ /LatchEnable * DLatchOut
+ Data * DLatchOut; "Cover Term

END Dlatch;

Specif ying Reserve
Capacit y
There are two reasons to reserve resources in a device:

• Allow for expansion of logic.

• Simplify and speed up the fitting process. Simply put, it i
easier to place and route a solution at 80% utilization than
100% utilization. If design iteration speed is more importa
than density (for example, you’re early in the design cycle
set the utilization factor to a lower value.

To specif y the amount of reserve capacit y to
leave available in a device

1 Use the MACH_UTILIZATION property in your .pi file
using the syntax

{MACH_UTILIZATION percent };

where % is the percentage of device resources to be us
The range of values is 0 to 100.

This affects the use of pins, PTERMs, and macrocells. PLSy
distributes the unused resources throughout the device.

8-10 MACH 1-4 Device-Specific Fitting

 to

al

Although in MACH devices there
is no timing advantage to placing
signals in the same PAL block,
doing so may make PCB layout
easier by keeping related signals
together.
Targetin g PAL Blocks
You can specify which nodes, outputs and biputs you want
placed together in the same PAL block. There are two ways
do this:

• Signal groups

• Device sections

Usin g Signal Groups
Use this method if you don’t care whether PLSyn fits one sign
group into the same PAL block as another signal group.

To group si gnals into a PAL block.

In your .pi file, use the GROUP property inside of a DEVICE
construct.

Example

SOURCE FILE

INPUT i[8];
OUTPUT ogroup1[8];
OUTPUT ogroup2[8];
ogroup1 = i;
ogroup2 = i;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH110-15JC';

GROUP
ogroup1; "all ogroup1 signals will

"go into the
END GROUP; "same PAL block

Targeting PAL Blocks 8-11

ck.

Table 8-2 MACH PAL Block

Names

Note MACH 5 devices have
4 PAL blocks (A-D) for each
segment. The number of
segments varies with specific
devices in the M5 family.

Architecture
PAL Block
Name

MACH110 A..B
MACH120 A..D
MACH130 A..D
MACH210 A..D
MACH211 A..D
MACH211sp A..D
MACH215 A..D
MACH220/221 A..H
MACH230/231sp A..H
MACH435 A..H
MACH465 A..P
MACH5xx A..D
GROUP
ogroup2; "all ogroup2 signals

"may or may not
END GROUP; "also go into ogroup1's

"PAL block
END DEVICE;

Usin g Device Sections
Use this method if you want PLSyn to:

• restrict the set of signals in each device section to a different
PAL block, and/or

• target the signals in a device section to a specific PAL blo

To fit all si gnals in a device section into one PAL
block.

In your .pi file, use the SECTION property inside of a
DEVICE construct.

To tar get the si gnals in a section to a specific PAL
block

Use the TARGET property in your .pi file of the form

TARGET ' pal_block_name ';

Table 8-2 lists the names of the PAL blocks for the MACH
family.

8-12 MACH 1-4 Device-Specific Fitting
Example

SOURCE FILE

INPUT i[8];
OUTPUT ogroup1[8];
OUTPUT ogroup2[8];
ogroup1 = i;
ogroup2 = i;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH110-15JC';
SECTION

TARGET 'A';
ogroup1; "all ogroup1 signals

"will go into PAL
"block A

END SECTION;

SECTION
TARGET 'B';
ogroup2; "all ogroup2 signals

"will go into PAL
"block B

END SECTION;
END DEVICE;

Constraining the Size of Combinatorial Nodes 8-13

ow

ize

n
ent
e

e

or
ns
Constrainin g the Size of
Combinatorial Nodes
You can constrain the size of combinatorial nodes PLSyn
collapses during the optimization process, thereby affecting h
the logic fits into MACH devices.

To constrain the size of combinatorial nodes

Use the MAX_PTERMS property in your .pi file using the
syntax:

{MAX_PTERMS p};

where p is the maximum number of PTERMs to which the
optimizer can collapse.

The PLSyn optimizer collapses combinatorial nodes up to a s
specified by MAX_PTERMS.

Makin g Adjustments
If the value is low, then PLSyn typically implements the desig
as a larger number of smaller equations. This makes placem
easier because smaller functions do not place demand on th
PTERM allocation mechanism. However, more smaller
functions can require more routing resources and can requir
more overall macrocell logic.

At the other end, fewer larger functions can ease the routing
requirements, but be harder to place because the demand f
PTERMs can cause conflicts when attempting to place functio
together in a PAL block.

8-14 MACH 1-4 Device-Specific Fitting

u
r a

 the
Table 8-3 shows the minimum and maximum number of
PTERMs along with a suggested value. For optimal fitting, yo
should try a number of values to determine the best value fo
given design.

Usin g higher MAX_PTERMS generall y results in

• More node collapsing

• Larger functions

• Faster implementation

• May increase routing requirements

Usin g lower MAX_PTERMS generall y results in

• Less node collapsing

• Smaller functions

• Slower implementation

• May increase routing requirements

To see the exact effect of chan ging the optimizin g
parameters

1 Open the .doc file after optimizing and check the number
of nodes. The number of nodes generally goes down as
MAX_PTERMS parameter goes up.

*. Will vary with the design.

Table 8-3 Minimum and Maximum Number of PTERMS

Family

Minimum
Number of
PTERMs per
Output

Maximum
Number of
PTERMs per
Output

Suggested
Number of
PTERMs per
Output

MACH 1XX 4 12 8

MACH 2XX 4 16 8 or 12*

MACH 435 5 20 10 or 15

Constraining the Size of Combinatorial Nodes 8-15

s

 a
 is

For exact usage, see the PIL
Reference in PLSyn online help.

Note The MACH 1xx/2xx
devices do not support XOR.
Note You can use any optimization property (for
example MAX_PTERMS or MAX_SYMBOLS) in
GROUPs, SECTIONS, or with any individual
signals.

Optimizin g MACH 4xx Devices
Usin g MAX_XOR_PTERMS
In addition to the MAX_PTERMS property, you can adjust
MAX_XOR_PTERMS for MACH 4xx devices. The
MAX_XOR_PTERMS value is typically one less than the
MAX_PTERMS value to allow for the single PTERM which is
placed on the XOR row.

The following table shows suggested values for
MAX_XOR_PTERMS and MAX_PTERMS.

A Few Considerations
• Either High or Low MAX_PTERMS can cause greater

routing demand.

• Lower MAX_PTERMS can produce more internal nodes
which PLSyn must route to the equations where they are
used.

• Higher MAX_PTERMS allow PLSyn to collapse a node
into multiple equations. This results in placing the signal
needed to generate the node in multiple places.
Furthermore, large equations can require PLSyn to route
large number of signals into the block where the equation
placed, producing a locally high routing demand.

Larger ↔ Smaller

Property Faster ↔ Slower

MAX_XOR_PTERMS 19 14 9 4

MAX_PTERMS 20 15 10 5

8-16 MACH 1-4 Device-Specific Fitting

For more information, refer to the
PIL Reference in PLSyn online
help.
Other Optimizin g Parameters
Other optimizing parameters suitable for MACH devices are
listed below with suggested values.

For the MACH 4xx

For MACH 1xx/2xx devices

Note Within this range of suitable parameters there are
trade-offs on equation size and speed.

MAX_PTERMS 10

MAX_XOR_PTERMS 9

MACH_UTILIZATION 100

MAX_SYMBOLS 20

POLARITY_CONTROL TRUE

XOR_POLARITY_CONTROL TRUE

MAX_PTERMS 8

MACH_UTILIZATION 100

MAX_SYMBOLS 20

POLARITY_CONTROL TRUE

Understanding Pin Naming and Numbering 8-17

al

ed
s

For more description of the
internal node types, see
Accessing Internal Points in a
PLD Device on page 7-2.
However, note that MACH
devices reference internal nodes
differently than other kinds of
PLDs.
Understandin g Pin
Namin g and Numberin g
In the MACH family, you can assign signals to pins and intern
nodes:

To reference MACH device pins

1 Use the following notations:

where X is the PAL block ID and ## is the macrocell
number.

The macrocells and input registers are sequentially number
through the device in the same order as the macrocell name
(A00 - H15). Depending on the device and PAL block, these
numbers are sequenced in either the same order as the
neighboring physical pin numbers, or reverse order.

For a list of device-specific pin names and numbers, see
Appendix C, AMD MACH Device Tables.

Physical pins input pins

input-clock pins

input/output pins

Internal nodes shadow node

buried node

unary node

MACROCELL_X## physical pins
shadow node
buried node

IN_REG_X## unary node

8-18 MACH 1-4 Device-Specific Fitting

he

H

ried
ts,

Using a shadow node rather than
a biput pin allows the physical
pin and its pin feedback path to
be used as an input.

For more information on using
unary nodes in MACH devices,
see MACH 2xx, 4xx: Using
Input Registers on page 8-23.
Usin g the MACROCELL_ X## notation

For ph ysical pins A physical pin (input, input-clock, or
input/output) connects to either an input or biput macrocell.
Reference physical pins by the block ID and pin number in t
package diagram found in your data book.

For buried nodes A buried node is a macrocell within the
device which cannot be connected to an I/O pin. In the MAC
2xx parts, these are the odd numbered macrocells.

For shadow nodes Shadow nodes are biput macrocells
that, when disconnected from an I/O pin, are treated as a bu
node with the pin as an input. In the MACH 1xx and 2xx par
all I/O pins have corresponding shadow nodes.

Usin g the IN_REG_X## notation

The IN_REG_X## notation is reserved for unary nodes. Most
often they are input registers. In the MACH 215 and MACH 4xx,
input registers are available on all I/O pins.

Achieving Satisfactory Pinouts 8-19

 to

r

als It may help to sort the .pi file first
to get signals with like names
together, since they often are
grouped together.

See Using Signal Groups on
page 8-10 for more information.
Achievin g Satisfactor y
Pinouts
The general approach is to first fit the design unconstrained
prove that there is a solution; then mold that solution into a
pinout that meets the board layout requirements.

To achieve acceptable pinouts

1 Generate an unconstrained solution: run the PLSyn fitte
and fuse map generator to produce an .npi file.

2 Copy the .npi file to the .pi file.

3 In the .pi file, strip the pin assignments.

4 Take out the NO_CONNECT information.

5 Use the GROUP statement to control which sets of sign
you want to fit together in localized or sequential pins.

Note Leave the INPUT signals for later. Not every
function must be in a group.

The .pi file will look similar to this:

DEVICE
TARGET 'PART_NUMBER AMD MACH130-15JC';

INPUT B20M;
INPUT NACKI0;
INPUT NACKI1;
 ...

TXC;

GROUP
COL1;
CRS1;

END GROUP;

GROUP
COL2;
CRS2;

END GROUP;

8-20 MACH 1-4 Device-Specific Fitting

w

 See Table 8-2 on page 8-11 for
the names of the PAL blocks.
See Using Device Sections on
page 8-11 for information on how
to use the SECTION and
TARGET properties.

Reminder: If you have outputs in
different PAL blocks that must be
adjacent, you can have them
either:

• span the boundary of
adjacent PAL blocks, or

• wrap-around between the last
PAL block and the first.
GROUP
NACKO0;
NACKO1;
NACKO2;

END GROUP;

...
END DEVICE;

6 Run the PLSyn fitter on the grouped .pi file to see which
groups go best with other groups (for example, similar
signal, OE, and RESET requirements).

7 If this fails to fit, check the log file to find the group which
violates the constraints of a PAL block, and either:

• dissolve the group, or

• divide it into two groups.

8 When PLSyn successfully completes the fit, copy the ne
.npi file to a .pi file and make that your current .pi file.

9 If it is necessary to swap the contents between two PAL
blocks, then target the PAL blocks.

a Refer to a pinout table for the device and determine
where the PAL block divisions occur.

b Divide the current .pi file into PAL block groups
using the SECTION construct with TARGET
statements. (Save the inputs for later.)

c Strip the pin numbers and reassign the groups as
required.

Achieving Satisfactory Pinouts 8-21

ts
L
The .pi file will look like this:

DEVICE
TARGET 'PART_NUMBER AMD MACH130-15JC';

INPUT B20M;
INPUT NACKI0;
INPUT NACKI1;
...
TXC;

SECTION
TARGET 'A';
NACKO0;
NACKO1;
NACKO2;

END SECTION;

SECTION
TARGET 'B';
COL1;
CRS1;
COL2;
CRS2;

END SECTION;

...
END DEVICE;

d Run the PLSyn fitter.

e If the fit fails, consult the log file and make adjustmen
as required. One thing you can try is to rotate the PA
block assignments (A to B, B to C, ... H to A).

f Repeat steps d and e until the PAL block assignments
are satisfactory.

10 Copy the .npi file to a new .pi file.

8-22 MACH 1-4 Device-Specific Fitting

rs.

l
ut

uts
ust

in

:

e

The intent here is to handle
inputs last. Since inputs have
only routing constraints, fitting
them last leaves more
possibilities for the
programmable logic functions
which have routing, PTERM
allocation, and control function
constraints.
11 Find suitable pin assignments within the PAL blocks.

a Add comments to the .pi file to show where the PAL
block’s limits are.

b Separate all of the inputs and strip off their pin numbe

Be sure, however, to leave room for sequential
assignments of input groups. You might find it helpfu
to leave biputs available adjacent to the dedicated inp
pins so that input groups can fit across dedicated inp
and onto the biputs. Remember that clock signals m
go on clock/input pins.

c Strip the pin numbers off of one PAL block.

d Pick one group of signals and assign it the desired p
assignment.

e Run the PLSyn fitter.

f If it fails, be sure to check the log file. Try the following

• Shift the signals by one pin.

• Try walking an unassigned pin through the
group.

• Try assigning the other pins, and see where the
group ends up.

g When you finish one PAL block, repeat steps c-f for th
next PAL block.

MACH 2xx, 4xx: Using Input Registers 8-23

n

H

n as
d

r
use

al
ly
r of

es

For a list of pin names, see
Appendix C, AMD MACH
Device Tables.
MACH 2xx, 4xx: Usin g
Input Re gisters
The MACH 2xx and 4xx devices can register signals betwee
the I/O pin and the switch matrix. The MACH 215 and MACH
4xx have a dedicated register for each I/O pin. The other MAC
2xx devices use the buried macrocell adjacent to the pin to
perform the registration.

The PLSyn fitter attempts to use these input registers as ofte
possible because their use saves both routing resources an
propagation delay.

Understandin g Input Re gister
Pin Names
The MACH 4xx and MACH 215 have dedicated hardware fo
the input register function. These are called unary pins beca
they support a function of exactly one signal. The naming
convention for these pins is IN_REG_X## where X is the PAL
block ID and ## is the macrocell number.

To register the pin signal in the MACH 2x0 devices, the sign
is routed through the adjacent buried register. This effective
takes one buried register macrocell and reduces the numbe
nodes which the part can fit internally.

The MACH 2x0 devices register I/O pin signals on nodes nam
MACROCELL_X## where X is the block ID and ## is the
macrocell number.

Note Assigning a signal to that pin is not enough to force
use of the input register mode. The assignment is
ambiguous and PLSyn interprets it as an internal
node assignment.

8-24 MACH 1-4 Device-Specific Fitting

es.

 any

se
n.

ers,
les

r

to

rray

on.

s

e,

n

With conventional routing, the
input goes into the switch matrix
and is brought to the PAL block
array, then fit as any other node.
MACH 2xx and 4xx Compared
The MACH 4xx devices have separate input register resourc
Because this simplifies the fitting of unary functions, these
assignments are simple and direct. You can assign manually
unary function to IN_REG_X##, or let the PLSyn fitter do this
automatically. The MACH 4xx is also able to automatically u
these resources to register the feedback of an output functio

The MACH 215 does have separate hardware for input regist
but because of its general architecture, the PLSyn fitter hand
it as it would MACH 1xx/2xx devices, sharing the same
restrictions.

Input Re gistration
The input register configuration has several advantages ove
conventional routing:

• It saves one PAL block input and four PTERMs needed
generate the function in the standard configuration.

• It also saves propagation time of one pass through the a
for the signal generated.

In PLSyn, there is no INPUT CLOCKED_BY construct, so the
fitter look for nodes that have a single signal as the D equati
These are unary functions because they are functions of one
signal. Whenever possible, the PLSyn fitter automatically fit
unaries in input registers.

If you are using the MACH 2xx, you might need to detect, forc
or prevent use of input registers for any given signal.

Example

The following source generates the unary-compatible functio
u.

INPUT i, ui, clk;
NODE u CLOCKED_BY clk;
OUTPUT o;
u = ui;
o = u * i;

MACH 2xx, 4xx: Using Input Registers 8-25

ro

he
Findin g Signals Fit as Unar y
To detect signals which have been fit as unaries, you must
inspect the Signal Directory section of report file. Check the
number of clusters used for each function. A function with ze
clusters has been fit as a unary.

Example

Continuing with the example shown in the previous section, t
function u is fit as a unary as shown in this excerpt from its
report file:

Signal
Name

Source
Type

PalBlk
Clusters

Pal
Block
Inputs

0 i Input A12

1 ui Input

2 clk Input

3 u DFF Hidden A 0 A18

4 o Cmb Internal A 1

8-26 MACH 1-4 Device-Specific Fitting

 all

L

he
 to
he

nt
Forcin g a Function to be Fit as
Unary
To force a function to be fit as unary, the function must meet
of the following conditions:

• Must be a NODE, not an OUTPUT

• Must have a single signal data equation

• Must be a DFF, TFF, or DLATCH equation

• Must conform to the reset and preset equation of the PA
block

To force the function into the input re gister

1 In your .pi file, place the input signal on an I/O pin.

2 Place the function on the adjacent buried macrocell.

Example

Continuing with the example shown in the previous section, t
following PIL statements use the input register configuration
register the signal ui to form the function u which goes into t
switch matrix:

DEVICE
TARGET 'PART_NUMBER AMD MACH210-12JC';
INPUT ui :4;
u :MACROCELL_A05;

END DEVICE;

Preventin g a Function from
Bein g Fit as Unar y

To prevent a function from bein g fit as a unar y

1 Fix either the input or the function signal to a pin.

The pin can be the same pin which PLSyn previously fit as a
unary. Given that one but not both signals is fixed is sufficie
to prevent the unary configuration.

Preserving Pinouts when Refitting 8-27

e

s

ce
ay

r

Preservin g Pinouts
when Refittin g
This section describes how to refit your design by:

• Setting up your design with the intention of refitting befor
you ever start the physical implementation process.

• Using one of the following two methods to fix the pinouts
when refitting your design:

• Create a two-level .pi file from the .npi file by adding
PAL block SECTIONs within a DEVICE construct
(page 8-28).

• Float nodes (page 8-34).

Plan for Refittin g
Before you start the first fitting, follow these design guideline
to ensure the greatest success when refitting:

• Target a device using the DEVICE construct in the .pi file.

• Keep utilization low; below 70%.

• Keep pinout options open as long as possible.

• Don’t release board layout after the first successful fit, sin
the design might change and changes may not refit the w
the original design was fit.

• As much as possible, try to work with what the PLSyn fitte
prefers to do, especially in terms of partitioning into PAL
blocks, rather than forcing a specific pinout.

8-28 MACH 1-4 Device-Specific Fitting

L

.

des

n I/

u

Before you apply this method,
you must run a fit (which
automatically generates a .npi
file) and generate a fuse map.
Method 1: Creatin g a Two-Level
.pi File
This method preserves the PAL block partitioning of the
programmable logic while giving the PLSyn fitter the freedom
to move buried logic within a PAL block, but not from one PA
block to another. Outputs and inputs remain fixed to specific
pins of the device.

To create the two level .pi file

1 After completing the first fitting, copy: design_name.npi
to design_name.pi

2 In the .pi file, move all inputs to the top (or bottom) of the
file. Do not change or delete any of the pin assignments

3 Set up two, four, or eight SECTIONs, depending on
the device, within the DEVICE construct.

4 Segregate all outputs and nodes into sections
according to which PAL block they were originally fit
into.

5 Preserve pin assignments for different types of devices
as follows:

• For MACH 2xx parts, check the .rpt file (Signal
Directory section) for nodes fit using zero clusters.
Preserve these pin assignments; PLSyn fits these no
with input registers.

• For MACH 435, preserve pin assignments to
IN_REG_X##; these are input register assignments.

6 Drop the pin assignment on nodes which have been fit o
O pins and are not required on another device.

The .doc file lists all nodes, and also provides a wire list
which shows which nodes are wired to another device.

7 Except as indicated in steps 4 and 5, drop all pin
assignments for buried logic, and preserve all pin
assignments for I/O pins.

8 Rerun the PLSyn fitter. If the design fits successfully, yo
have a repeatable solution.

Preserving Pinouts when Refitting 8-29

ile

the
Example

Suppose you have fit a design into a MACH 230. The report f
contains the following lines in the Signal Directory section
showing that df_reg[1] and df_reg[2] are fit on input
registers:

Notice that, for routing purposes, PLSyn placed node
df_reg[0] on a pin since the signal is not needed outside of
device.

The .npi file looks like this:

 -------------- .npi file ---------------
DEVICE
TARGET 'PART_NUMBER AMD MACH230-15JC';

dout[19]:3;
dout[6]:4;
dout[5]:5;
dout[2]:6;
INPUT dflags[1]:7;
INPUT dflags[2]:8;
dout[1]:9;
INPUT dflags[0]:12;
INPUT din[0]:13;
INPUT din[10]:14;
INPUT din[2]:15;
frame:16;
INPUT delay[4]:17;
INPUT rst:18;
INPUT new_con:19;
INPUT clk:20;
INPUT din[18]:23;
dout[9]:24;
dout[8]:25;
dout[4]:26;
dout[3]:27;
INPUT din[4]:29;
INPUT din[17]:33;
INPUT tx_en:34;

Signal
Name

Source
Type

PalBlk
Clusters

Pal Block
Inputs

68 df_reg[2] DFF Hidden A 0 A13

69 df_reg[1] DFF Hidden A 0 A12

8-30 MACH 1-4 Device-Specific Fitting
INPUT din[15]:35;
INPUT delay[0]:36;
INPUT din[16]:37;
INPUT din[11]:38;
INPUT ef0:39;
INPUT phase:40;
INPUT delay[5]:41;
dout[18]:45;
INPUT delay[2]:46;
INPUT din[9]:47;
INPUT delay[3]:48;
INPUT din[5]:49;
INPUT din[1]:50;
INPUT din[14]:51;
INPUT din[19]:52;
dout[17]:54;
INPUT delay[1]:55;
dout[14]:56;
dout[11]:57;
dout[7]:58;
INPUT din[3]:65;
dout[16]:66;
dout[15]:67;
INPUT din[12]:68;
INPUT din[8]:69;
dout[12]:70;
INPUT din[7]:71;
fifo_ren:72;
df_reg[0]:75;
INPUT ef1:76;
INPUT din[6]:77;
dout[13]:78;
dout[10]:79;
dout[0]:80;
INPUT din[13]:83;
df_reg[1]:MACROCELL_A13;
df_reg[2]:MACROCELL_A15;
s0:MACROCELL_B00;
s2:MACROCELL_B02;
dcnt[0]:MACROCELL_B04;
s1:MACROCELL_B10;
dval:MACROCELL_B12;
dcnt[2]:MACROCELL_D05;
dcnt[4]:MACROCELL_D08;
prep_done:MACROCELL_D10;

Preserving Pinouts when Refitting 8-31
dcnt[5]:MACROCELL_D14;
dcnt[3]:MACROCELL_E11;
dcnt[1]:MACROCELL_G10;
dv_lvl0:MACROCELL_H05;
dv_lvl1:MACROCELL_H12;
END DEVICE;

The new .pi file (a modified version of the .npi file) looks like
this:

-------------- .pi file ---------------
DEVICE

TARGET 'PART_NUMBER AMD MACH230-15JC';

INPUT dflags[1]:7;
INPUT dflags[2]:8;
INPUT dflags[0]:12;
INPUT din[0]:13;
INPUT din[10]:14;
INPUT din[2]:15;
INPUT delay[4]:17;
INPUT rst:18;
INPUT new_con:19;
INPUT clk:20;
INPUT din[18]:23;
INPUT din[4]:29;
INPUT din[17]:33;
INPUT tx_en:34;
INPUT din[15]:35;
INPUT delay[0]:36;
INPUT din[16]:37;
INPUT din[11]:38;
INPUT ef0:39;
INPUT phase:40;
INPUT delay[5]:41;
INPUT delay[2]:46;
INPUT din[9]:47;
INPUT delay[3]:48;
INPUT din[5]:49;
INPUT din[1]:50;
INPUT din[14]:51;
INPUT din[19]:52;
INPUT delay[1]:55;
INPUT din[3]:65;
INPUT din[12]:68;
INPUT din[8]:69;

8-32 MACH 1-4 Device-Specific Fitting
INPUT din[7]:71;
INPUT ef1:76;
INPUT din[6]:77;
INPUT din[13]:83;

SECTION
dout[19]:3;
dout[6]:4;
dout[5]:5;
dout[2]:6;
dout[1]:9;
df_reg[1]:MACROCELL_A13; "Part of input

"register assignment
df_reg[2]:MACROCELL_A15; "Part of input

"register assignment
END SECTION;

SECTION
frame:16;
s0; ":MACROCELL_B00;
s2; ":MACROCELL_B02;
dcnt [0]; ":MACROCELL_B04;
s1; ":MACROCELL_B10;
dval; ":MACROCELL_B12;

END SECTION;

SECTION
dout[9]:24;
dout[8]:25;
dout[4]:26;
dout[3]:27;

END SECTION;

SECTION
dcnt[2]; ":MACROCELL_D05;
dcnt[4]; ":MACROCELL_D08;
prep_done; ":MACROCELL_D10;
dcnt[5]; ":MACROCELL_D14;

END SECTION;

SECTION
dout[18]:45;
dcnt[3]; ":MACROCELL_E11;

END SECTION;

SECTION
dout[17]:54;
dout[14]:56;
dout[11]:57;

Preserving Pinouts when Refitting 8-33
dout[7]:58;
END SECTION;

SECTION
dout[16]:66;
dout[15]:67;
dout[12]:70;
fifo_ren:72;
dcnt[1]; ":MACROCELL_G10;

END SECTION;

SECTION
df_reg[0]; ":75; This is a node

"on a pin
dout[13]:78;
dout[10]:79;
dout[0]:80;
dv_lvl0; ":MACROCELL_H05;
dv_lvl1; ":MACROCELL_H12;

END SECTION;
END DEVICE;

8-34 MACH 1-4 Device-Specific Fitting

hile
 is

es.

Before you apply this method,
you must run a fit (so that a .npi
file exists) and generate a fuse
map.

Note For clarity, some of the
constructs normally found in
the .npi file have been
eliminated.
Method 2: Floatin g Nodes
Another way to release nodes from their pin assignments, w
keeping them in the PAL block to which they were assigned
to specifically float the nodes.

To float the nodes when refittin g

1 After completing a fitting, copy:
design_name.npi to design_name.pi

2 In the .pi file, use the FLOAT_NODES property of the
form:

{ FLOAT_NODES } ;

Place the statement so that it applies globally to all devic

Example

SOURCE FILE

INPUT i1;
INPUT clk, oe;
NODE n1..n2 CLOCKED_BY clk;
OUTPUT 01 ENABLED_BY oe;
n1 - i1;
n2 = n1;
o1 = n2;

PHYSICAL INFORMATION FILE

{FLOAT_NODES};

DEVICE
TARGET 'PART_NUMBER AMD MACH110-20/BXA';
o1:2;
INPUT clk:13;
INPUT oe:32;
INPUT i1:33;
ni:SHADOW_OF_16; "ni will be fit in

"PAL block A
"but not necessarily
"on nodeSHADOW_OF_16

END DEVICE;

When Fitting into One Device Fails 8-35

e

l

e

er,

tle

 in
g

Partitioning
Option
Required

For more information on Max
Devices and setting constraints,
see Constraining Devices on
page 5-18.
When Fittin g into One
Device Fails
When your design fails to fit into a single MACH device, ther
are two ways to approach debugging the problem:

• Force the design into one device using the default signa
reference in the .pi file.

• Partition the design between two devices and analyze th
result.

Usin g the “Default” Si gnal
Reference
It would seem that setting the Max Devices constraint to one
should force PLSyn to fit the design into one device. Howev
this actually tells the PLSyn fitter to quit after one device is
filled. This means that when there is a failure, there is very lit
diagnostic information available in the log and report files.

To force the entire desi gn into one part and
obtain a report file

1 Use the default signal reference in a DEVICE statement
your .pi file. The default reference is the same as namin
all signals in the design not mentioned elsewhere in the .pi
file.

Example

The following PIL fits the design into a single MACH 210
device.

DEVICE
TARGET 'part_number AMD MACH210-15JC';
default;

END DEVICE;

8-36 MACH 1-4 Device-Specific Fitting

s

ET
its

t

g

e,

ht
When you do this, the design might fit the first time. If it doe
not, look at the log and report files for valuable information
about why PLSyn could not fit the circuit.

What you can find out in the lo g file

The log file (.log) can tell you things like:

• Your design exceeds device limits such as RESET/PRES
constraints. You might need to adjust the design to the lim
of the device, or use another part or parts with greater
resources.

• The PLSyn fitter did not find a suitable partition. You
should check the report file for details.

What you can find out in the report file

The report file (.rpt) can tell you things like:

• The best partition PLSyn could produce and why it is no
valid for the device.

• The PLSyn partitioner succeeded assigning functions to
PAL blocks, but the PLSyn fitter failed placing and routin
the design.

Based on the progress and problems written to the report fil
you need to use the .pi file to:

• adjust the design and/or

• adjust the implementation specification.

In general, look for resources which are in high utilization. If
macrocells are in high demand, more node collapsing can
relieve the problem. If PTERMs are in high demand, you mig
try extracting some common factors into a common node.

When Fitting into One Device Fails 8-37

n
t

e

Partitioning
Option
Required
Usin g a Second Device
Another approach to a difficult fitting problem is to allow the
design to overflow into a second device, and then see which
functions the PLSyn fitter leaves out of the first device.

If you generate fusemaps for the two-device solution, you ca
use the .npi file to work one or two functions back into the firs
device.

To work functions back into the tar get device

1 Copy the .npi file to a new .pi file.

2 Move the functions assigned to the second device and
include them in the DEVICE statement for the first devic
but without any pin assignments.

If that does not work, try the following:

• Node collapsing.

• Factoring to allow room for the left out functions.

Considering a larger device.

8-38 MACH 1-4 Device-Specific Fitting

d

k
n
Accessin g the MACH
Internal Feedback Path
In MACH devices, outputs without an output enable can fee
back into the device through two paths:

• Directly from the pin. The is called pin feedback and may or
may not bond-out to a physical pin.

• Directly from the macrocell. This is called macrocell
feedback.

These paths are functionally equivalent, but the pin feedbac
can be slower that the macrocell feedback. By default, PLSy
routes signals using the pin-feedback path.

To use the macrocell-feedback path for one
signal

1 In your .pi file, attach the FORCE_INTERNAL_FB
property to the appropriate signal.

To use the macrocell-feedback on all si gnals in
the device

1 Include the FORCE_INTERNAL_FB property in the
DEVICE specification.

P in
F eedb ack

M a cro cell
F e edba ck

T o A rra y

T o Array

P rog ra m mab le
Po la rity

Accessing the MACH Internal Feedback Path 8-39

the
ead
Example

This example shows the PIL that forces signal out1 to follow
the macrocell (internal) feedback path instead of the pin
feedback path.

SOURCE FILE

INPUT a, b, c;
OUTPUT out1 CLOCKD_BY clk;
OUTPUT out2;

out1 = a * b;
out2 = out1 * c;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH465-15KC';
out1 {FORCE_INTERNAL_FB}; "Use the

"macrocell feedback
DEFAULT;

END DEVICE;

Example

This example shows the PIL that specifies that all signals in
device should use the macrocell (internal) feedback path inst
of the pin feedback path.

SOURCE FILE

INPUT a, b, c;
OUTPUT out1 CLOCKD_BY clk;
OUTPUT out2;

out1 = a * b;;
out2 = out1 * c;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH465-15KC';
{FORCE_INTERNAL_FB};"Use the macrocell

"feedback for all signals in the
"device

DEFAULT;
END DEVICE;

8-40 MACH 1-4 Device-Specific Fitting

H

ice

e.

s
of

d
 and
ET
ay
MACH 215, 4xx: Fittin g
Asynchronous
Functions
Both the MACH 215 and MACH 4xx devices support
asynchronous functions, but they have different capabilities.
Some functions, or groups of functions, suitable for the MAC
215 will not fit in the MACH 4xx.

PTERM Clock and RESET and
PRESET
When the clock expression is a product term (PTERM), a dev
requires both RESET and PRESET in its equation. An equation
such as this requires the device to run in asynchronous mod

However, a MACH 4xx device can have either asynchronou
RESET or PRESET, but not both. This means that functions
this type can only fit in the MACH 215 (which allows both
asynchronous PRESET and RESET) using the following
construct:

OUTPUT o1 CLOCKED_BY (clk1 * clk2) RESET_BY reset
PRESET_BY preset;

More Than One RESET/PRESET
Pair per PAL Block
In the MACH 4xx, any function which has both a RESET an
PRESET expression must use the block resources for reset
preset. If a design has more than eight different pairs of RES
and PRESET equations, it cannot fit in one MACH 4xx, but m
fit in one MACH 215.

The following set of functions can only fit in a MACH 215:

MACH 4xx: Using XOR T-Equations 8-41

nd
es
yn

OUTPUT o1 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_1;
OUTPUT o2 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_2;
OUTPUT o3 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_3;
OUTPUT o4 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_4;
OUTPUT o5 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_5;
OUTPUT o6 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_6;
OUTPUT o7 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_7;
OUTPUT o8 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_8;
OUTPUT o9 CLOCKED_BY clk RESET_BY reset PRESET_BY pre_9;

MACH 4xx: Usin g XOR
T-Equations
If you are fitting an XOR T-equation that is greater than 20
PTERMs, you need to insert a node between the equation a
the T-register. This rule also applies to a function that requir
both a TFF register and an XOR equation because the PLS
compiler expands the XOR equation into a T-equation which
can be greater than 20 PTERMs.

Example

This design will not fit due to equation o2.T expanding to 24
PTERMs.

INPUT clk;
INPUT i1, i2, i3, i4, i5;
INPUT j1, j2, j3, j4, j5;
T_FLOP OUTPUT o1 CLOCKED_BY clk;
T_FLOP OUTPUT o2 CLOCKED_BY clk;

o1.T = i1 (+) (i2 + j2 + j3 + j4 * j5);
o2.T = (i1*j1) (+) (i2*j2 + i3*j3 + i4*j4 + i5*j5);

If rewritten with a node for the T-equation, it fits because the
combinatorial equation does not need to be expanded.

INPUT clk;
INPUT i1, i2, i3, i4, i5;
INPUT j1, j2, j3, j4, j5;
T_FLOP OUTPUT o1 CLOCKED_BY clk;
T_FLOP OUTPUT o2 CLOCKED_BY clk;
NODE n;

o1.T = i1 (+) (i2 + j2 + j3 + j4 * j5);

8-42 MACH 1-4 Device-Specific Fitting

th

ost,
le.

s

e

ock

e
n = (i1*j1) (+) (i2*j2 + i3*j3 + i4*j4 + i5*j5);
o2.T = n;

MACH 4xx: Controllin g
Asynchronous Mode
You can manually control the implementation of functions wi
asynchronous clocking using the asynchronous macrocell
features of the MACH 4xx.

Because asynchronous fitting can be a resource and timing c
the PLSyn fitter opts for synchronous mode wherever possib
However, if by doing so PAL blocks are underutilized or the
solution requires extra devices, PLSyn opts for asynchronou
mode.

When using asynchronous mode, the PLSyn fitter selects th
block reset and preset, and the block clock signals so as to
minimize the number of macrocells that are fit.

Since the macrocell local-reset PTERM and the shared PAL
block reset and preset PTERMs are generated in the PAL bl
array, there is no timing penalty for using the asynchronous
mode reset. However, you might need more control over
selecting the functions that use asynchronous clocking. The
difference in timing between the pin clock and an array
PTERM-generated clock signal can be of overriding
importance.

To control which functions are clocked
asynchronousl y

1 Group and select the signals that you want placed on th
clock pins.

MACH 4xx: Controlling T-Flop Synthesis 8-43

n,
an
H

 of

ot

e

n
MACH 4xx: Controllin g
T-Flop S ynthesis
For some equations, the T-flop might have a smaller equatio
but slightly greater delay. For speed-sensitive circuits, you c
use D-flops exclusively instead because the XOR in the MAC
4xx provides for relatively efficient implementation of T-
equations using the D register.

Normal Operation
Unless otherwise directed, PLSyn fits the smallest equation
D, T, or XOR, or their complements.

DFF-Only Fittin g

To use DFF equations onl y

1 Design the circuit in terms of DFF equations. If you do n
reference T_FLOP or other register types, PLSyn will
generate DFF equations by default.

2 To restrict the design to fitting only DFF equations, includ
the statement:

{ FF_SYNTH OFF }

in the .pi file.

Depending on where you place the statement, this option ca
apply to specific signals, or to the entire device or design.

8-44 MACH 1-4 Device-Specific Fitting

 for

ct

ts
art.
he
on

. A

ses
gnal
Usin g the T-Equation
If a given function is most easily expressed using an equation
toggle operation, then the D equation is the XOR of that
equation and the register output.

If (T) defines the toggle equation of function F, then the dire
TFF expression of that function in DSL is:

T_FLOP OUTPUT F CLOCKED_BY clk ...;
F = (T);

while the DFF equivalent function is:

OUTPUT F CLOCKED_BY clk ...;
F = (T) (+) F;

MACH 4xx: Controllin g
Power-On Reset
The MACH 4xx has a built-in power-on reset feature that se
all registers to a known state when power is applied to the p
This section discusses how you can determine the state of t
registers, and the steps you can take to manage the power-
feature.

What Is a Lo gical Reset?
DSL defines the term reset in a device-independent way. To
reset a signal means to put the signal in the unasserted state
HIGH_TRUE signal goes to the low-voltage state when it is
reset. If the signal is a LOW_TRUE sense, then a reset cau
the signal to go to the high voltage state. In both cases, the si
is in its unasserted condition. This is a logical reset.

MACH 4xx: Controlling Power-On Reset 8-45

yn
le
t

e

set
t

n
the
t

PLSyn flags functions which are
fit using an asynchronous
macrocell with the string ASYNC
in the Signal Directory section of
the report file.
The Nominal Case
Most applications of the MACH 4xx perform a logical reset on
power-up. Registered signals go to the unasserted state.

Exception Cases
For each signal that violates the power-on logical reset, PLS
flags the entry in the Signal Directory section of the report fi
with the string RS_SWAP. These signals receive a logical prese
at power-on.

A violation can be caused by one of two things:

• Macrocells in asynchronous mode that have a preset
equation perform a power-on logical preset.

• A function performs a power-on logical preset if it is fit on
a macrocell in a PAL block where its reset and preset ar
out-of-phase with the majority of functions in the PAL
block. Out-of-phase means that a function’s reset and pre
equations are identical to the PAL block preset and rese
equations, respectively.

To prevent the out-of-phase condition

1 Manually partition your design.

This allows PLSyn to fit a function with a preset equation fit i
an asynchronous macrocell into a synchronous macrocell if
function is not inherently asynchronous (that is, if it does no
have a clock which is a product of multiple signals).

8-46 MACH 1-4 Device-Specific Fitting

u
sing
ble

he
e

ct

ns
nd

ock

1
h

 of

e

the
the
MACH 230 and 435:
Possible Pin
Incompatibilit y Between
In rare cases, designs that fit in a MACH 230 are not pin-
compatible with the MACH 435. This only happens when yo
are using both registers and latches in the same PAL block u
pins 20 and 22, or pins 62 and 65 for the clock and latch ena
signals.

This is due to the change in latch implementation between t
MACH 1 and 2 families and the MACH 3 and 4 families. In th
MACH 1 and 2 case, latches are transparent low and latched
high. In the MACH 435, this sense is reversed to provide the
more common functionality of transparent high, latched low.

This is seldom a problem in the MACH 435 since it can sele
clock polarity. Not all combinations of clock polarities for all
clock pins are available within a single PAL block. This mea
that a problem can arise when porting a design with clocks a
registers in the same block using clock pins from the same cl
pair.

The clock pins are paired internally as CLK0 (pin 20) and CLK
(pin 22), and as CLK2 (pin 62) and CLK3 (pin 65). Within eac
PAL block, the MACH 435 can select a clock polarity
configuration (from each pair) that allows:

• both clocks TRUE,

• both clocks inverted, or

• both phases of one of the clock pair.

A given PAL block cannot select the true sense of one clock
the pair and the inverted sense of the other.

Example

Consider a MACH 230 design with a register and latch in th
same PAL block. Assume that the register is clocked by one
clock pin of a pair and the latch is enabled by the other pin of
pair. Differences between the latches of the MACH 230 and

MACH 445 and 465: Configuring for Zero-Hold Time 8-47

at
t
he

ous
ce

ay
his
 the

.

MACH 435 mean that the MACH 435 must invert the latch
enable to achieve the same functionality. This also means th
the PAL block needs exactly the same clock polarity. It can’
have true sense of one pair member and inverted sense of t
other.

If one of the functions is a node, you can move it to another
block. You can also force one of the clocks to be asynchron
(clocking by PTERM row) by using an internal node to produ
the clock signal.

MACH 445 and 465:
Confi gurin g for Zero-
Hold Time
The MACH 445 and MACH 465 have an option to insert a del
between the I/O pins and the input registers in the device. T
increases the setup time for the input registers and reduces
hold time for these registers to zero.

To set the hold time on the input re gisters

1 Use the MACH_ZERO_HOLD_INPUT property in the
DEVICE construct of your .pi file.

Example

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH465-15KC';
{MACH_ZERO_HOLD_INPUT};"Set all input

registers to zero hold time

DEFAULT;
END DEVICE;

Assigning the MACH_ZERO_HOLD_INPUT property to a
device configures all of the input registers for zero-hold time

8-48 MACH 1-4 Device-Specific Fitting

at
ure

n
MACH 445 and 465:
Accessin g Signature
Bits
The MACH 445 and MACH 465 devices have a 32-bit field th
you can use to hold user data. This field is called the Signat
Bits, or USERCODE, field.

To place data in the USERCODE field

1 In your .pi file, use the SIGNATURE property in the
DEVICE section with the syntax:

{SIGNATURE data };

where data is a string of up to four characters (enclosed i
single quotes) or a 32-bit signed integer.

Example

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'PART_NUMBER AMD MACH465-15KC';
{SIGNATURE 'test'};

DEFAULT;
END DEVICE;

MACH 1xx and 2xx: Driving or Floating Unused Outputs 8-49

s
 on
ou
igh
e

wn.

nal
or

For a list of fuse assignment
statements that assert the tri-
state enable for unused pins in
all MACH devices, see
Appendix C, AMD MACH
Device Tables.
MACH 1xx and 2xx:
Drivin g or Floatin g
Unused Outputs
For MACH 1xx and 2xx devices, you can drive or float I/O pin
that do not have input or output signals attached, depending
whether the associated macrocell (shadow pin) is in use. If y
place a hidden function in the macrocell, the pin goes to the h
impedance or floating state. If you do not use the macrocell, th
pin goes to a driven state with a constant value.

Note This does not apply to the MACH 435 because
these outputs have built-in pull-ups on the outputs,
providing a default input when left unconnected.

Forcin g Outputs Driven

To force an output to be driven

1 Assign all outputs to pins so that the unused pins are kno

2 In your .pi file, place fuse statements with the syntax

INTACT fuse #
BLOWN fuse #

to modify the implementation.

After placing a node on the corresponding shadow pin, its sig
is present on the pin. Otherwise, the pin asserts either high
low depending on how other unused internal resources are
dispensed.

8-50 MACH 1-4 Device-Specific Fitting

wn.

high
re

Use the fuse statements in
Appendix C, AMD MACH
Device Tables to configure
floating outputs. Just replace the
BLOWN keyword with INTACT.
Example

An example .pi file looks like this with outputs on pins
2-9 and intent to assert the OE on pins 14 to 21.

DEVICE TARGET 'PART_NUMBER AMD MACH110-15JC';
o1:2; o2:3; o3:4; o4:5;
o5:6; o6:7; o7:8; o8:9;

"Assert OE on remaining outputs
INTACT 6230 ; BLOWN 6231 ; " Pin 14:
INTACT 6238 ; BLOWN 6239 ; " Pin 15:
INTACT 6246 ; BLOWN 6247 ; " Pin 16:
INTACT 6254 ; BLOWN 6255 ; " Pin 17:
INTACT 6262 ; BLOWN 6263 ; " Pin 18:
INTACT 6270 ; BLOWN 6271 ; " Pin 19:
INTACT 6278 ; BLOWN 6279 ; " Pin 20:
INTACT 6286 ; BLOWN 6287 ; " Pin 21:

END DEVICE;

Forcin g Outputs Floatin g

To force an output to float

1 Assign all outputs to pins so that the unused pins are kno

2 In your .pi file, place fuse statements with the syntax:

INTACT fuse #
INTACT fuse #

to modify the implementation.

When placing a node on the corresponding shadow pin, its
signal is present on the pin. Otherwise, the pin asserts either
or low depending on how other unused internal resources a
dispensed.

MACH 1xx and 2xx: Driving or Floating Unused Outputs 8-51
Example

An example .pi file would look like this with outputs on pins
2-9 and intent to float the OE on pins 14 to 21.

DEVICE TARGET 'PART_NUMBER AMD MACH110-15JC';
o1:2; o2:3; o3:4; o4:5;
o5:6; o6:7; o7:8; o8:9;

"Float OE on remaining outputs
INTACT 6230 ; INTACT 6231 ; " Pin 14:
INTACT 6238 ; INTACT 6239 ; " Pin 15:
INTACT 6246 ; INTACT 6247 ; " Pin 16:
INTACT 6254 ; INTACT 6255 ; " Pin 17:
INTACT 6262 ; INTACT 6263 ; " Pin 18:
INTACT 6270 ; INTACT 6271 ; " Pin 19:
INTACT 6278 ; INTACT 6279 ; " Pin 20:
INTACT 6286 ; INTACT 6287 ; " Pin 21:

END DEVICE;

8-52 MACH 1-4 Device-Specific Fitting

g.

te

d
The MACH Report File
The PLSyn fitter writes a complete description of a fitted
MACH device showing:

• Resource utilization

• All signal and routing information

• Full placement details including internal nodes

Obtainin g a Report File
PLSyn creates a report file when fitting for targeted MACH
devices; not during automatic device selection and partitionin

To obtain a MACH report file on the first fittin g

Either:

• Use the DEVICE and TARGET properties in your .pi file
using the syntax:

DEVICE TARGET 'part_number amd part #';
END DEVICE;

in the simplest case.

• Put empty DEVICE constructs into your .pi file. This
forces a report file while allowing the program the comple
freedom to partition the design.

Example

The following PIL partitions a design into two MACH110’s an
produces a report for each device.

DEVICE TARGET 'PART_NUMBER AMD MACH110-15JC';
END DEVICE ;

DEVICE TARGET 'PART_NUMBER AMD MACH110-15JC';
END DEVICE ;

The MACH Report File 8-53

ut

n,

nd

ms.

.
 as

To obtain a MACH report file when usin g
automatic partitionin g

1 Run the PLSyn fitter the first time.

2 Copy the .npi file to a new .pi file.

3 Run the PLSyn fitter the second time using the new .pi file.

Contents of the Report File
The report file contains device-specific fitting information abo
the internal resources of the MACH device. It shows exactly
which macrocells and routing paths each signal uses.

The report file is not a replacement for the documentation
(.doc) file. It does not list the equations for any given functio
or give a simple pinout diagram. It gives in depth information
that the documentation file does not provide.

The report file serves two purposes:

• When the design fits, it describes the specific placement a
routing of the solution.

• If a design fails to fit, it provides information to help you
understand why the fit attempt failed, how far the fitting
proceeded, and what aspect of the fitting caused proble

For MACH 1xx and 2xx devices, the report file format is
slightly different from that for the MACH 3xx and 4xx devices
However, the report file has the same sections of information
summarized here and described in greater detail in the
remainder of this chapter.

Failure Disclaimers If the design fails when partitioning
or during place-and-route, PLSyn writes a disclaimer
immediately following the heading. This alerts you that the
design did not fit successfully and to the possibility that
information might be missing or inconsistent.

8-54 MACH 1-4 Device-Specific Fitting

 its

al.

e,
.

the

g
Summar y Statistics Summarizes the number of inputs,
nodes, and outputs for your design by PAL block.

Device Resource Utilization Reports utilization
statistics for the different resource types for each device and
PAL blocks.

Partitioner Report Shows how the design is partitioned
into PAL blocks.

Clock Assi gnments Shows which pin clocks are used in
which PAL blocks for MACH 3xx and 4xx devices.

Signal Director y Lists all inputs, outputs, and nodes on
the device with specific assignment information for each sign

Resource Assi gnment Map Shows device details (in
physical order by pin and macrocell) and which signals use
which resources.

Failure Disclaimers
If the design fails when partitioning or during place-and-rout
PLSyn writes a disclaimer immediately following the heading
This alerts you that the design did not fit successfully and to
possibility that information might be missing or inconsistent.

There are different disclaimers depending on where the fittin
failed and the device type that PLSyn attempted to fit.

If a MACH 435 or MACH 1xx or 2xx device desi gn
fails when partitionin g

The following disclaimer is printed:

FAILURE-TO-PARTITION DISCLAIMER:

The following partitioner reports show the
last failed attempts to partition the

The MACH Report File 8-55

d/or

lly
design. Partitions which violate device
limits are indicated. Also, if there are
more Block partitions than blocks in the
device, the partition will fail.

Because of different fitting algorithms for the two MACH
families, MACH 1 and 2 family devices have a different fit
disclaimer from MACH 3 and 4 family devices.

If a MACH 1xx or 2xx famil y device fails when
fittin g

The following disclaimer is printed:

FAILURE-TO-FIT DISCLAIMER:

The following report represents the final
status of a failed fit attempt. The report
is accurate but incomplete. It indicates
which signals were not placed or routed.
In the 'SIGNAL DIRECTORY' signal lines
preceded by '-' represent signals which
could not be placed. Founts ending in '--'
represent signals which could not be
routed.

The Signal Directory information indicates how far the fitting
process proceeded before PLSyn gave up. The un-routed an
unplaced signals should point to the cause of the fitting
problems. To achieve a fit, try modifying the design or manua
direct the partitioner.

8-56 MACH 1-4 Device-Specific Fitting

,

d

s
ys
If a MACH 4xx desi gn fails when fittin g

The following disclaimer is printed:

FAILURE-TO-FIT DISCLAIMER:

The following report represents the final
status of a failed fit attempt. The
'SUMMARY STATISTICS', 'RESOURCE
UTILIZATION', and 'CLOCK ASSIGNMENTS'
sections are accurate. The 'SIGNAL
DIRECTORY' is accurate except for pin and
macrocell designations. The RESOURCE
ASSIGNMENT MAP may have missing or
redundant signals and conflicting resource
assignments.

This disclaimer includes statistics showing which resource
proved most troublesome during the fit operation. Use this
information to decide how to modify your design before
attempting another fit.

Example

The relative conflict levels for each resource type listed here
indicate the reason for failure when fitting:

Pins 3
Input Regs 0
Macrocells 0
PTERMs 352
Feedbacks 0
Fanouts 0

The PTERMs value of 352 indicates that the PLSyn fitter ha
trouble assigning product terms.

Summar y Statistics
This section summarizes the number of inputs, nodes, and
outputs for your design by PAL block and how many function
per block. Because the MACH 3 and 4 families have more wa
to fit a function, the PLSyn fitter provides more statistics for
these designs.

The MACH Report File 8-57

The sum total of Outputs, Tri-
states, and Nodes should equal
the total Functions by block and
the total of the Macrocells and
Input Registers/Latch statistics.
The numbers for Xor Equations
on down are not mutually
exclusive nor should they match
the total number of functions.
Sample: MACH 1xx and 2xx statistics

5 Inputs
0 Registered/Latched Inputs
11 Outputs
0 Tri-states
0 Nodes

Functions by block (8, 3, 0, 0)

Sample: MACH 3xx and 4xx statistics

4 Inputs
0 Outputs
32 Tri-states
0 Nodes

Functions by block (4, 4, 4, 4, 4, 4, 4, 4)
D Register Macrocells 2
T Register Macrocells 26
D Latch Macrocells 2
Combinatorial Macrocells 2
D Input Registers 0
D Input Latches 0

Xor Equations 0
Asynchronous Equations 0
Single-PTERM Equations 32
Total PTERMs Required 32

8-58 MACH 1-4 Device-Specific Fitting

es
o

tic
Device Resource Utilization
This section provides utilization statistics for the resource typ
of each device and its PAL blocks. The section is broken int
two parts:

• Global resource utilization statistics.

• Resource statistics for each PAL block.

The statistics for the MACH 1 and 2 families are slightly
different to those for the MACH 3 and 4 families. These
examples show the global statistics and one PAL block statis
set for each device family.

Sample: MACH 1xx and 2xx resource statistics

Resource Available Used Remaining %

Clocks: 2 1 1 50

Pins: 38 35 3 92

Input Lines: 88 72 16 81

I/O Macro: 32 16 16 50

Total Macro: 64 48 16 75

PTERMS: 256 48 64 75

PAL_BLOCK A

Input Lines: 22 18 4 81

I/O Macro: 8 4 4 50

Total Macro: 16 12 4 75

 PTERMs: 64 12 16 75

The MACH Report File 8-59

n

Sample: MACH 3xx and 4xx resource statistics

The resource utilization statistics are defined as follows:

Resource Available Used Remaining %

Clocks: 4 1 3 25

Pins: 70 67 3 95

Input Regs: 64 0 64 0

Macrocells: 128 96 32 0

 PTERMs: 640 314 326 49

Feedbacks: 192 125 67 65

 Fanouts: 264 161 103 60

PAL_BLOCK A

Blk Clocks: 4 1 3 25

I/O Pins: 8 8 0 100

Input Regs: 8 0 8 0

Macrocells: 16 12 4 75

 PTERMs: 80 42 38 52

Feedbacks: 24 16 8 66

 Fanouts: 33 18 15 54

Clocks Clock pins used for clock signals

Pins Input and I/O pins used in any capacity

Input Lines Array inputs

I/O Macro Output macrocells

Total Macro Output and buried macrocells

I/O Pins Number of bonded-out pin feedbacks

Input Re gs Macrocells used as input registers

Macrocells Macrocells without output/buried distinction

Pterms AND array rows used in equation generatio

Feedbacks Inputs to the Switch Matrix

Fanouts Inputs to the AND Arrays

Blk Clocks Number of selectable clock lines for each
block

8-60 MACH 1-4 Device-Specific Fitting

re

te

t

nd

ins

t

L

Note In the MACH 3 and 4
families, the clock signals can
vary from one PAL block to
another.
Partitioner Report
This section shows how the functions (outputs and nodes) a
partitioned into PAL blocks including:

• Which signals must be routed to the PAL block to genera
the functions assigned to the block.

• How many unique clocks, enables, and register set/rese
equations the assigned functions require.

Clock Assi gnments
The Clock Assignments sections is specific to the MACH 3 a
4 families, and shows:

• which clocks are required in which PAL blocks, and

• which phase (true or inverted) is needed.

The Clock Assignments section can have zero to four clock p
listed depending on how many clocks the design uses.

Example

This report describes two clocks where:

• CLK0 is on pin 62 and is used in its true sense in all eigh
PAL blocks.

• CLK1 is on pin 23 and is used in its inverted sense in PA
block D.

CLOCK ASSIGNMENTS:
Notes: block usage 'H' indicates used in TRUE sense.

block usage 'L' indicates used in INVERSEsense.

clock signal [35] CLK1
pin 23
block usage , , , L, , , ,

clock signal [34] CLK0
pin 62
block usage H , H , H , H , H , H , H , H

The MACH Report File 8-61

es

s

ata
Signal Director y
The Signal Directory section lists all inputs, outputs, and nod
on the device with specific assignment information for each
signal. The format of this section for the MACH 1 and 2 familie
is different from that for the MACH 3 and 4 families.

Sample: MACH 1xx and 2xx Si gnal Director y
section

SIGNAL DIRECTORY:

Notes: Leading '-' indicates signal not assigned.
Trailing '+' indicates feedback path is from pin.
Functions with '0' Clusters are input registered.

Every input, output, and node is listed in this directory. The d
columns are defined as follows:

Sample: MACH 3xx and 4xx Si gnal Director y

SIGNAL DIRECTORY:

Signal
Name

Source
Type

PalBlk
Clusters

Pal Block Inputs

0 A_10___p2 Cmb Output D 1 D11

1 A_11___p3 Cmb Output D 1 D10

2 A_8___p4 Cmb Output D 1 D09

3 A_9___p5 Cmb Output D 1 D15

4 A_19___p9 Input A01 +

5 RESET___p10 Input A05 B05 C05 D05 +

6 A_20___p11 Input D21 +

Signal # The index number used to reference
the signal

Signal Name The user identifier for the signal

Source Type {Input | Hidden | Output | Biput |
Internal} with register type qualifiers

PalBlk Pal Block where output or node is
assigned

Clusters: Used Number of Pterm Clusters used to
generate function

Clusters: Unused
PTs

Unused Pterms left in used clusters

Pal Block Inputs Array input lines for Signal Fanouts

8-62 MACH 1-4 Device-Specific Fitting
Notes:Register type suffix '_X' indicates XOR used;
Register type suffix '_A' indicates Asynchronous mode used;
Register type suffix '_LT' indicates function is LOW_TRUE.
'RS_SWAP' flags functions which are preset at power-on.
'OE' flags tri-state functions.

[0] Output: SAO_8_
Pin 72 (I/O) Block G Macrocell_G14 1 PTERM COMB

[1] Output: SAO_7_
Pin 48 (I/O) Block E Macrocell_E10 1 PTERM COMB

[2] Output: SAO_6_
Pin 45 (I/O) Block E Macrocell_E00 1 PTERM COMB

...

[32] Reg. Input: NBDIR
Pin 3 (I/O) Block A Unary_of_3 1 PTERM LATCH

[33] Reg. Input: NCDIR
Pin 78 (I/O) Block H Unary_of_78 1 PTERM LATCH

[34] Node: ST4
Block D Macrocell_D03 13 PTERM DFF_A

[35] Node: ST3
Block H Macrocell_H09 15 PTERM DFF_A

...

[44] Input: ADIR
Pin 5 (I/O) Block A

[45] Input: BDIR
Pin 3 (I/O) Block A

The MACH Report File 8-63

al
ses

ne
e,

the
pin
e
ts.
g

s

ws
 of
 3

ere
rray
Each of the entries has two lines:

• The first line contains the signal index (in brackets), sign
type, and signal name. The Resource Assignment Map u
the signal index shown here since there is not always
enough room for the full signal name. The Signal type is o
of the following: Input, Reg. Input, Reg., Feedback, Nod
Tri-state, or Output.

• The second line contains the assignment information for
signal. If the signal appears on a pin, PLSyn reports the
number and type. Function and Inputs on I/O pins provid
the block number of the pin and/or macrocell assignmen
Functions provide macrocell assignment information alon
with specifics on how PLSyn fit the function. This include
the number of PTERMs the function requires, and the
register type used to implement the function. These are
noted in the Notes section at the top.

Resource Assi gnment Map
This section follows the physical layout of the device and sho
signal assignments. As with the Signal Directory, the format
this section is different for the MACH 1 and 2 and the MACH
and 4 families.

The MACH 1 and 2 families are simpler to represent since th
is a one-to-one relationship between pins, macrocells, and a
inputs.

8-64 MACH 1-4 Device-Specific Fitting

ta
Sample: MACH 1xx and 2xx Resource
Assi gnment Map

RESOURCE ASSIGNMENT MAP:

Every input, output, and node is listed in this directory. The da
columns are defined as follows:

MINC
Node#

Node
Type

Pin/Macro
ID

Signal
Name

1 Vcc/Gnd PWR

2 I/O IO-00 (34) A_13

45 Shadow A00 (34) A_13

46 Buried A01 (64) B_16

3 I/O IO-01 (24) A_17

47 Shadow A02 (61) C_13

48 Buried A03

...

8 I/O IO-06 (32) A_15

57 Shadow A12 (32) A_15

58 Buried A13

9 I/O IO-07 (31) A_20

59 Shadow A14 (65) B_17

60 Buried A15 (63) C_15

10 Input IO (6) A_24

11 Input I1 (30) A_21

12 Vcc/Gnd PWR

13 In/Clk I2/C0 (8) CLK2

14 I/O IO-08 (21) A_30

75 Shadow B14

76 Buried B15 (53) B_25

MINC Node # The physical pin number or internal node
number

Node Type {Vcc/Gnd | Shadow | Buried | I/O | Input |
In/Clk}

Pin/Macro ID Pin or macrocell identifier

Signal # Signal index (see SIGNAL DIRECTORY)

Signal Name Signal name

The MACH Report File 8-65

cent

 pin

are

08 C08 D11 E08 G08 H19

H00

C03 D03 E03 G03 H03
If the same signal is assigned to a shadow node and the adja
I/O pin, the signal is an output. If these two are different, the
signal on the shadow pin is a node, and the signal on the I/O
is an input.

The MACH 3 and 4 families are more complex to represent
since the paths between pins, macrocells, and array inputs
programmable.

Sample: MACH 3xx and 4xx Resource
Assi gnment Map

Resource Assignment Map

Notes:Signal index '[###]' refers to SIGNAL DIRECTORY entry ###.
Signal index '[N/C]' is specified 'NO_CONNECT' in the .pi file.
Signal index '[---]' indicates no signal present.
Resource 'IR' is input register; 'MC' is macrocell.
PTERM Cluster 'E' is equation cluster (2 PTERMs).
PTERM Cluster 'A' is async cluster (2 PTERMs).
PTERM Cluster 'S' is single cluster (1 PTERM).
Cluster Steering 'd': down one macrocell (by macrocell number).
Cluster Steering 'u': up one macrocell.
Cluster Steering 'U': up two macrocells.
Cluster Steering '=': to adjacent macrocell.
Cluster Steering '-': cluster not used.

--PINOUT-- ---------PLACEMENT--------- -------------------------- ROUTING------------------------

Pin [Sig] InReg/ [Sig] PTERMs Feedback-------------------------- Fanout-------------------------

___ _____ MCell_ _____ EAS ID_ [Sig] Src Block and Input Line________________

1 PWR

2 PWR

3 [45] IR 0 [32] A00 [32] IR A08 B

MC A00 [24] === A01 [---] -

MC A01 [---] ddd A02 [---] -

4 [---] IR 1 [---] A03 [---] -

MC A02 [42] === A04 [42] MC

MC A03 [---] uuu A05 [---] -

5 [44] IR 2 [31] A06 [31] IR A03 B03

MC A04 [---] UUU A07 [---] -

MC A05 [---] --- A08 [---] -

8-66 MACH 1-4 Device-Specific Fitting

ta

s

e

s
 or

r
Every input, output, and node is listed in this directory. The da
columns are defined as follows:

PTERM steerin g of clusters

The report shows PTERM steering for three PTERM cluster
per macrocell. The three clusters are:

PINOUT Signals on physical pins

Pin Physical pin number

[Sig] Signal index of pin signal

PLACEMENT Resources used to generate nodes and
outputs

InReg/Mcell Input Register (IR) or Macrocell (MC)
identifier

[Sig] Signal index of node or output

PTERMs EAS PTERM steering (See below)

ROUTING Signals into and out of switch matrix

Feedback ID Identifier of switch matrix input

Feedback [Si g] Signal index of feedback signal

Feedback Src Source directed to switch matrix { Pin | IR |
MC }

Fanout PAL block inputs assigned to signal

E Equation which consists of two PTERMs which ar
always part of the data equation

A Asynchronous which consists of the two PTERM
which are either used as part of the data equation
used as asynchronous clock and reset.

S Single consists of the single PTERM which is eithe
part of the data equation or half of the XOR
equation.

The MACH Report File 8-67
The following character flags indicate the steering of these
clusters:

Note “Up” and “down” do not mean physically higher or
lower in the printout. Up refers to a lower-
numbered macrocell, while down refers to a
higher-numbered macrocell. In odd numbered PAL
blocks (blocks B, D, F, H) the macrocells are
numbered in reverse order compared to the pins.
Since this printout is ordered by physical pins, the
macrocells in those blocks show up in reverse
order. However, down from any macrocell 3 is
always macrocell 4.

= Local macrocell

u Up one macrocell

d Down one macrocell

U Up two macrocells

MACH 5 Device-Specific
Fittin g
9

Chapter Overview
This chapter describes how to control the fitting process for
specific MACH 5 devices. Topics include:

• A comparison of MACH 5 devices to other MACH
architectures, page 9-2

• Tips and device details, pages 9-5 through 9-20

• The document file, page 9-21

Supplement

9-2 MACH 5 Device-Specific Fitting

s.
g

h
than

 to

AL
ent

s.
H

d
f

y
Comparin g the MACH 5
to Other MACH
Architectures
AMD’s MACH5xx architecture represents a departure from
previous MACH (MACH1xx/2xx/3xx/4xx) families. The
earlier MACH families have extremely predictable timing
because all signals follow the same paths through internal
matrices. The MACH 1 and 2 families have a single internal
matrix through which all input signals are routed to PAL block
The MACH 3 and 4 families extend internal routability by usin
Input, Central and Output matrices (see Figure 9-1).

The MACH 5 architecture has a hierarchical interconnect
system with internal routability of 100%. It also allows you to
send signals directly to the PAL blocks without going throug
the interconnect matrices (as long as equations have fewer
16 pterms). Even if functions have more than 16 pterms, the
Block Interconnect (see Figure 9-2) can connect the signals
another PAL block within the segment.

When equations become too large to fit into a segment (4 P
blocks), they can be routed to other segments via the Segm
Interconnect. This means that tpd becomes longer with
increased equation size, with boundaries at 16 and 48 pterm
However, this increased tpd is offset by the fact that the MAC
5 can connect any two signals internally. This lessens the
necessity of having to use up I/O pins to connect signals (an
eliminates some of the timing problems created by going “of
chip”). Thus the MACH 5 can make refitting much easier.

The major differences between MACH1xx/2xx/3xx/4xx and
MACH5 are shown graphically in the following two figures.

MACH1xx/2xx/3xx/4xx
• Timing paths are the same for all signals, making for ver

predictable propagation delays.

Comparing the MACH 5 to Other MACH Architectures 9-3

ld
Figure 9-1 Simplified MACH 1xx/2xx/3xx/4xx Block
Diagrams

• To maintain timing paths, all I/Os go through a Switch
Matrix (MACH 1 and 2) or an Input Switch Matrix (MACH
3 and 4). There are no direct paths from the outside wor
(except clocks) to the macrocells.

 Sw itch
M atrix

P A L B locks

I/O P ins

N ote : D iag ra m is g re atly s im pl ifie d
for il lus tra tio n . F or a ctu al
b lock d ia g rams, see the

A M D M AC H 1 , 2 , 3 , and 4 F am ily D ata B oo k.

M A CH 1 and 2

Input
Sw itch
M a tr ix

PAL B lo cksI/O P ins

N ote : D ia g ram is grea tly s imp li fied
fo r illus tra tion . Fo r actua l
b lo ck d iag ram s, se e the

A M D M A C H 1, 2 , 3, an d 4 F a m ily D a ta Bo ok.

M A C H 3 and 4

C en tra l
S w itch
M a trix

O u tp ut
Sw itch
M atrix

9-4 MACH 5 Device-Specific Fitting

s.

ith
ng-

H
y
• Highly configurable, due to use of internal routing matrice

MACH5xx
• While timing paths are not all the same for the MACH 5

(unlike previous MACH families), this less predictable
nature has significant advantages. For example, a block w
bonded-out I/O pins could be used as a fast PLD for timi
critical signals. These signals need not go through the
internal interconnect matrices.

• The use of hierarchical interconnect matrices in the MAC
5 yields increased internal routability (up to 100%). To sa
it another way, any two signals in an MACH 5 can be
connected via the interconnect matrices.

Figure 9-2 Simplified 5xx Block Diagram

S e gm ent
4 Blocks

B lock
16 M acro ce lls

S egm e nt
In te rconne ct

B lo ck
In te rco nn ect

C LK

4N ote : A ctua l num b er o f b locks
va ries w ith d ev ice . N u m ber shown
he re is only fo r illus tra tion .

I/O to B locks
(no te , n o t eve ry

b lock has bond ed
ou t p ins)

Using the .pi File to Control MACH 5 Fitting 9-5

ith

ed
 an

For additional device-specific
information, refer to the MACH
Family Data Book from AMD.

See Chapter 6, Controlling the
Fitting Process Using the .pi
File and the PIL Reference in
PLSyn online help for more
information on the .pi file.
Usin g the .pi File to
Control MACH 5 Fittin g
MACH 5 devices are handled like any other PLD with full
support for automatic device selection and partitioning. As w
PLDs, you can also control implementation using the .pi file.

The following is a list of .pi file properties unique to the
MACH 5.

Routin g in a Segment
and Block
The SECTION construct and the TARGET statement are us
to specify how signals are routed in a Segment and Block of
MACH 5 device.

Syntax

TARGET S<seg_id> [B <block_id>]

where

seg_id is an optional segment identifier from 0..7

block_id is an optional block identifier from a..d

You can specify just the targeted segment with:

TARGET 'S0';"section targeted at segment 0

or specify both targeted segment and block with:

TARGET 'S0Ba' "section targeted at segment 0, block A

Example

DEVICE

FANOUT POWER

FORCE_LOCAL_FB SLEW_RATE

LOCAL_TOGGLE_FEEDBACK

9-6 MACH 5 Device-Specific Fitting

t is,

ere

an
TARGET 'TEMPLATE MV256_68 QFP-100-M256':
"place group into MV256

SECTION
TARGET 'S1';
"force q1 into MACH5 segment 1

q1:8;
END SECTION;

SECTION
TARGET 'S0Ba';
"force out7..out10 into
"MACH5 segment 0
"block A
...
out7:5, out8:6;
"assignment with physical pin
"or node numbers

END SECTION;

END DEVICE;

Assi gnin g Pins and
Nodes
An MACH 5 device has both physical (or absolute) pins (the
ones on the device package) and relative node numbers (tha
node locations within the device). For each node number th
is a corresponding node name (which is generally easier to
remember than the node number).

Figure 9-3 Mach 5 Architecture

There are two feedbacks associated with each macrocell in
MACH 5:

P in
F eedb ack

M a cro cell
F e edba ck

T o A rra y

T o Array

P rog ra m mab le
P o la rity

Assigning Pins and Nodes 9-7

he

he

to a
 a

all

ual
• Macrocell feedback which feeds back immediately after t
macrocell, to the Block Interconnect.

• Pin feedback which feeds back after the tristate buffer. T
pin feedback may or may not bond-out to a physical pin.

Syntax

[S< seg_id >][B< block_id >] < feedback_id >

where

seg_id is an optional segment identifier from 0..7 (for
MACH 5)

block_id is an optional block identifier from a..d

feedback_id = M<mcell_no> | P<mcell_no>

mcell_no is the macrocell number from 0..16

M<mcell_no> is the macrocell feedback

P<mcell_no> is the pin feedback

Note that there is a node number for every pin feedback,
regardless of whether or not the pin feedback is bonded-out
physical pin. If the pin feedback is bonded-out, there is also
corresponding absolute (physical) pin number. If you specify
absolute (physical) pin numbers, they will be reproduced in
output files of the fitter.

The following table defines relative node names and their virt
pin numbers.

Note Virtual pin numbers are defined for internal device
use only and are unique for the entire MACH 5
family.

Table 9-1 MACH 5 Node Names and Pin Numbers

Relative Node Names Virtual Pin Names

S0BaM00..S0BaM15 0-15

S0BaP00..S0BaP15 16-31

S0BbM00..S0BbM15 32-47

S0BbP00..S0BbP15 48-63

S0BcM00..S0BcM15 64-79

9-8 MACH 5 Device-Specific Fitting
Example

INPUT j1:S2BaM00 "route j1 to mux S2BaM00

S0BcP00..S0BcP15 80-95

S0BdM00..S0BcM15 96-111

S0BdP00..S0BcP15 112-127

S1BaM00..S1BaM15 128-143

S1BaP00..S0BaP15 144-159

S1BbM00..S1BbM15 160-175

S1BbP00..S1BbP15 176-191

S1BcM00..S1BcM15 192-207

S1BcP00..S1BcP15 208-223

S1BdM00..S1BdM15 224-239

S1BdP00..S1BdP15 240-255

S7BaM00..S7BaM15 896-911

S7BaP00..S7BaP15 912-927

S7BbM00..S7BbM15 928-943

S7BbP00..S7BbP15 944-959

S7BcM00..S7BcM15 960-975

S7BcP00..S7BcP15 976-991

S7BdM00..S7BdM15 992-1007

S7BdP00..S7BdP15 1008-1023

Table 9-1 MACH 5 Node Names and Pin Numbers

Relative Node Names Virtual Pin Names

Placing a Signal on an Input Register or Latch 9-9

hs,

For more information on unaries,
see Accessing Internal Points
in a PLD Device on page 7-2.

Note There might be
exceptions (unknown at this
time) that will not allow
placement of such dual
feedback equations on the
same macrocell internal/pin
feedback. One possible
example is lack of routing
resources.
Placin g a Signal on an
Input Re gister or Latch
The .pi file property UNARY is used to place a signal on an
input register or input latch. The UNARY property must be
specified on the output signal of the unary function.

Example

Source File
INPUT ui, iclk;
OUTPUT uo CLOCKED_BY iclk;
uo = ui;

Physical Information File
DEVICE
SECTION
 TARGET 'S0Ba';
 INPUT ui;
 OUTPUT uo { UNARY };
END DEVICE;

Usin g Dual Feedback
Dual feedback is the simultaneous use of both feedback pat
internal and pin. There are no DSL or .pi constructs for
specifying dual feedback.

To specif y dual feedback

1 Write an intermediate node equation.

2 Set the pin feedback equal to node feedback.

The PLSyn fitter looks for such dual feedback equations and
places them on the internal and pin feedback of the same
macrocell.

Note The node collapsing in the optimizer will collapse
the intermediate node away unless you preserve
the intermediate node in the .pi file.

9-10 MACH 5 Device-Specific Fitting

cks
 in

el
Example

INPUT i1, i2, i3, i4;
OUTPUTS out1, out2, out3;
OUTPUT pin_fb; "pin_fb has to be placed

"on bonded out pin. If you
"consider this wasting an
"I/O pin, declare this a
"node instead.

NODE node_fb;

node_fb = i1 * i2 + i3 * i4;
"node feedback equation

pin_fb = node_fb;
"intermediate node equation

out1 = i2 * i3 * node_fb;
"node feedback used

out2 = i2 + i4 * pin_fb;
"pin feedback used

out3 = i2 * node_fb + i3 * pin_fb;
"both node and pin feedback
"on same eqn

Forcin g the Feedback
Path to be Local
There are cases, for timing reasons, you may want all feedba
to be contained within the same PAL block. You can do this
the MACH 5 with the FORCE_LOCAL_FB property. This
property can be used at the DEVICE, SECTION, or signal lev
in the .pi file.

Examples

Source File
INPUT clk, rst, load, up_down, data[7..0] ;iclk;
OUTPUT count[7..0] CLOCKED_BY clk RESET_BY rst;
IF load = 0 THEN

IF up_down = 1 THEN
count = count .+. 1;

ELSE
count = count .-. 1;

END IF;
ELSE

Forcing the Feedback Path to be Local 9-11
count = data;
END IF; = ui;

Physical Information File (Case 1)
"This example shows the use of the FORCE_LOCAL_FB at a
"device level. This forces local feedback on all fanout
"signals in the device.

DEVICE
TARGET 'PART_NUMBER AMD MACH 5-256/160-7HC';
{FORCE_LOCAL_FB}; "force local feedback on

"all signals in the device
END DEVICE;

9-12 MACH 5 Device-Specific Fitting

w

l’s
Physical Information File (Case 2)
"This example shows the use of the FORCE_LOCAL_FB in a
"GROUP and SECTION. Note that you have to specify
"FORCE_LOCAL_FB at the signal level in a GROUP.

DEVICE
TARGET 'PART_NUMBER AMD MACH 5-256/160-7HC';
GROUP

COUNT[7];
COUNT[6];
COUNT[5];
COUNT[4];
DATA[7];{FORCE_LOCAL_FB};
DATA[6];{FORCE_LOCAL_FB];

END GROUP;

SECTION
TARGET ‘S1Bb’;
{FORCE_LOCAL_FB};
COUNT[3];
COUNT[2];
COUNT[1];
COUNT[0];
DATA[5];
DATA[4];

END SECTION
END DEVICE;

Specif ying Fanout
To route a signal between two points, the fitter needs to kno
the signal’s:

• Fanout destinations: The PAL block inputs are the signa
destinations.

• Path: If the destination is within a segment, no path
information is required. If the fanout crosses segment
boundaries via the segment interconnect bus, the
intersegment line has to be specified.

Specifying Fanout 9-13

ack
Syntax

{FANOUTS
’S< seg_id >B<block_id >M<mux_id ><mux_line >
S<intersegment_line >'};

where

seg_id = 0 .. 7

block_id = a | b | c | d (must be lower case)

mux_id = 0 .. 31

mux_line = 0 .. 7

intersegment_line = 0 .. 191

You can use the syntax shown above to specify a local feedb
by using I7 for mux_line. This assumes an 8:1 Level 1 mux.

Example

A FANOUT specification of S0BaM01S100 means route to:

• Level 1 mux S0BaM0.

• Select line 1 via intersegment line 100.

DEVICE
" fully specified signal, NOT within a section
" The third fanout for j1 specifies a local feedback
INPUT j1:S2BaM00 { FANOUTS 'S2BaM0,S1BaM1I1,S2BaM00I7' };
NODE j2:S3BaP15 { FANOUTS 'S2BaM1I7' }; "This line will

"produce an error, local feedback incorrectly specified
NODE j2:S3BaP15 { FANOUTS 'I7' };

"correct j2 fanout spec, local feedback

SECTION
TARGET 'S0Ba'; "force out7..out8 into

"MACH5 segment 0 block A
q1:M00; "placements are local to block
INPUT i1:P01 { FANOUTS 'M0I0,S1BbM2I3' };

" 2 fanouts: 1st fanout is
" S0BaM0I0 if fully specified

NODE f1:M01 { FANOUTS 'M15I10' };
"route to L1 mux 15, line 15 of this
"block signal origin is M01 of this
"block. Note that i2 has been removed
"from this section and the fanout moved
"to its block of origin.

END SECTION;

SECTION
TARGET 'S1Bb'; "force out7..out8 into

9-14 MACH 5 Device-Specific Fitting

of
.

al).

e

es

ck,
"MACH5 segment 1 block b
q2:M00; "placements are local to block
INPUT i2:P02; { FANOUTS 'M0I1,S0BaM0I1' };

" 2 fanouts
f2:M01 { FANOUTS 'M1I2' }; "route to L1

"mux 1, line 2 of this block
"Note that i1 has been removed from
"this section and the fanout moved
"to its block of origin.

END SECTION;

END DEVICE;

Implementin g Toggle
Register Feedback
A toggle (T) register is implemented by taking the feedback
the register output Q and XORing it with the D register input
The toggle feedback can be

• A local feedback.

• Routed via a level 2 demux and the segment bus (non-loc

The property LOCAL_TOGGLE_FEEDBACK is used to forc
local toggle feedback.

The LOCAL_TOGGLE_FEEDBACK property can be
specified at the device, SECTION or signal (outputs and nod
only) level.

If a local feedback path cannot be found for the toggle feedba
the fitter generates a warning.

Implementin g Dual-
Edge Clockin g
The MACH 5 has three clocking options:

• Selectable positive/negative edge clocking.

Implementing Dual-Edge Clocking 9-15

e

ou
 by
• Clocking on both edges.

• Complementary clocking, creating an inverse of clock lin
3 (CLK2) on clock line 4 (CLK3).

The DSL control modifier CLOCKED_BY BOTH_EDGES lets
you make use of either or both edges of the specified clock. Y
can use enables to specify negative or positive edge clocking
means of two keywords:

• CLOCK_ENABLED_BY NEG_EDGE

• CLOCK_ENABLED_BY POS_EDGE.

If a CLOCK_ENABLED_BY is not specified with the
CLOCKED_BY BOTH_EDGES construct, the equation
defaults to clocking on BOTH edges.

Complementary clocking is available if the macrocell is not
controlled by a CLOCKED_BY BOTH_EDGES construct.
Complementary clocking uses clock line 3 (CLK2) as the
primary clock and clock line 4 (CLK3) as the inverted clock.

Syntax

OUTPUT signal_name CLOCKED_BY BOTH_EDGES_OF clk_name
CLOCK_ENABLED_BY POS_EDGE enable_name ;
CLOCK_ENABLED_BY NEG_EDGE enable_name ;

9-16 MACH 5 Device-Specific Fitting

the

ed.

.
e.

sier
n

Example
INPUT clk1, clk2, ce1, ce2;
OUTPUT out1 CLOCKED_BY BOTH_EDGES_OF clk1;

"clocks out1 on both edges of clk1

OUTPUT out2 CLOCKED_BY BOTH_EDGES_OF clk2
CLOCK_ENABLED_BY POS_EDGE_OF ce1
CLOCK_ENABLED_BY NEG_EDGE_OF ce2;
"clocks out2 on either edge of clk2,
"determined by enables ce1 and ce2

Specif ying Reserve
Capacit y
The MACH_UTILIZATION property specifies the amount of
reserve capacity to leave available in a device. This affects
use of pterms and macrocells.

Syntax

{MACH_UTILIZATION percent } ;

where percent is the percentage of device resources to be us
The range of values is 0 to 100.

The unused resources are distributed throughout the device
There are two reasons to reserve some resources in a devic

• To allow for expansion of logic.

• To ease and speed the fitting process. Simply put, it is ea
for the fitter to place and route a solution at 80% utilizatio
than at 100% utilization. If design iteration speed is more
important than density (for example, earlier in the design
cycle or for refitting), set the utilization factor to a lower
value.

Constraining the Size of Combinatorial Nodes 9-17

ow

e

ize

s
t
and
ns
Constrainin g the Size of
Combinatorial Nodes
You can constrain the size of combinatorial nodes PLSyn
collapses during the optimization process, thereby affecting h
the logic fits into MACH devices.

To constrain the size of combinatorial nodes

1 Use the MAX_PTERMS property in your .pi file using the
syntax:

{MAX_PTERMS p};

where p is the maximum number of PTERMs to which th
optimizer can collapse.

The PLSyn optimizer collapses combinatorial nodes up to a s
specified by MAX_PTERMS.

Makin g Adjustments

Usin g lower MAX_PTERMS generall y results in

• Less node collapsing

• Smaller functions

• Slower implementation

• May increase routing requirements

If the value is low, the design will typically be implemented a
a larger number of smaller equations. This makes placemen
somewhat easier because smaller functions do not place dem
on the pterm allocation mechanism, but more smaller functio
may require more routing resources and may require more
overall macrocell logic.

9-18 MACH 5 Device-Specific Fitting

ut
use

ally

r

ey

iple
ge
he
Usin g higher MAX_PTERMS generall y results in

• More node collapsing

• Larger functions

• Faster implementation

• May increase routing requirements

Fewer larger functions may ease the routing requirements, b
be harder to place, because the demand for pterms may ca
conflicts in placing functions together in a PAL block.

Note For optimal fitting, you should try a number of
values to determine the best value for your design.

To see the exact effect of chan ging the optimizin g
parameters

1 After optimizing, open the .doc file.

2 Check the number of nodes. The number of nodes gener
goes down as the MAX_PTERMS parameter goes up.

A Few Considerations
• Either High or Low MAX_PTERMS can cause greate

routing demand.

• Lower MAX_PTERMS can produce more internal
nodes which must be routed to the equations where th
are used.

• Higher MAX_PTERMS can allow a node to be
collapsed into multiple equations so that the signals
required to generate the node may be needed in mult
places. Furthermore, large equations may require lar
numbers of signals to be routed into the block where t
equation is placed, producing a locally high routing
demand.

Controlling Power Levels 9-19

d in

ce

t
Other Optimizin g Parameters
For general purposes, the following parameters may be use
the .pi file for designs targeting MACH5 devices.

Controllin g Power
Levels
The syntax for specifying power level is:

POWER LOW | MED_LOW | MED_HIGH | HIGH

Power levels can be specified at a signal, SECTION or devi
level. The fitter will check the power levels for consistency
across the various levels. Error messages will be printed ou
when the power levels specified do not match. If none is
specified, the default power level will be HIGH.

Example

SECTION
TARGET 'S1Bb'; "force out7..out8 into MACH5

"segment 1 block b
q2:M00; "placements are local to block
INPUT o2:P02; { FANOUTS 'M0I0', POWER LOW };

"power level for o2 is low
f2:M01 { FANOUTS 'M1I1' };"Use default slew rate

"which is FAST
END SECTION;

MAX_PTERMS 32

MAX_XOR_PTERMS 31

MACH_UTILIZATION 100

MAX_SYMBOLS 32

POLARITY_CONTROL TRUE

XOR_POLARITY_CONTROL TRUE

9-20 MACH 5 Device-Specific Fitting

el.
e
ill

 to

el
ate
Controllin g Slew Rates
The syntax for specifying slew rate is:

SLEW_RATE SLOW | FAST

Slew rate can be specified for signal, SECTION or device lev
The fitter will check the slew rates for consistency across th
various levels. If slew rates specified do not match, the fitter w
generate an error.

Example

SECTION
TARGET 'S1Bb';"force out7..out8 into MACH5

"segment 1 block b
q2:M00; "placements are local to block

"{ SLEW_RATE FAST }
INPUT o2:P02; { FANOUTS 'M0I0', SLEW_RATE SLOW };

"slew_rate is SLOW

f2:M01 { FANOUTS 'MII1' }; "Use default slew
"rate which is FAST

END SECTION;

There is also a factory-programmed device-level downgrade
SLOW. When set to SLOW, it overrides the FAST slew rate
attribute for individual signals. If individual signals are
explicitly specified with a FAST slew rate and the device-lev
slew rate has been downgraded to SLOW, the fitter will gener
a warning.

The Document File 9-21

ny,
er

n

ns.

.

The Document File
The document file, design_name.doc , contains information
about the various stages of compilation and partitioning. The
following information is contained in the .doc file:

• Information about the design (title, designer, date, compa
etc.) and switch values specified for compiler and optimiz
functions.

• Explicit (or reduced) design equations that are realized i
the final layout.

• A list of the solutions generated for the design.

• Partitioning criteria used in generating the device solutio

• Pinout diagrams of the device solution selected.

• A list of possible devices for the templates in the solution

• A wire list.

9-22 MACH 5 Device-Specific Fitting
The Report File
In addition to the .doc file, a report file, design_name.rpt ,
will be generated for an MACH 5 device. The report file
generally contains the sections described below.

Headin g
This section generally contains the following information:

• Date when the design was run through the fitter

• Part type and device number

• Package type

• User supplied design information

Example

DATE: Fri Jan 26 14:44:48 1996

DESIGN: prob1.fb
DEVICE: MV256_160:1

The Report File 9-23

Summar y Statistics
This section summarizes the design in terms of number-of-
clocks, inputs, nodes and outputs at the device level and its
various sub-partitions namely, segments and PAL blocks.
Power levels for each block are specified here.

Example

SUMMARY STATISTICS:

 10 Inputs
 32 Outputs
 0 Tri-states
124 Nodes

Functions by block:
 S0: 8 7 12 12
 S1: 8 7 12 12
 S2: 8 7 12 12
 S3: 8 7 12 12

D Register Macrocells 36
T Register Macrocells 24
D Latch Macrocells 0
Combinatorial Macrocells 92
D Input Registers 0
D Input Latches 0

Xor Equations 24
Single-Pterm Equations 23
Total Pterms Required 867

9-24 MACH 5 Device-Specific Fitting

d

Power Resource Utilization
The POWER SUMMARY section shows the following:

• Number of blocks with power set to LOW

• Number of blocks with power set to MED_LOW

• Number of blocks with power set to MED_HIGH

• Number of blocks with power set to HIGH

Example

POWER SUMMARY:

Number of blocks with power set to LOW is 0
Number of blocks with power set to MED_LOW is 0
Number of blocks with power set to MED_HIGH is 0
Number of blocks with power set to HIGH is 16

Device Resource Utilization
The DEVICE RESOURCE UTILIZATION section provides
utilization statistics for the different device resources at the
device, segment and PAL block partitions. A table is provide
for each partition with the following columns:

Resource Name of resource; the resources available
for each block may be different

Available Available resource count for the partition

Used Used resource count for the partition

Remainin g Unused resource count for the partition

Percent Percentage resource utilization for the
partition

The Report File 9-25

s

e:

to
The resource types referenced in these tables are defined a
follows:

The resource types for the device and segment partitions ar

The resource types for the PAL block partitions are divided in
two groups:

Clocks Clock pins used for clock signals

Pins Input and I/O pins used in any capacity

I/O Pins Number of bonded-out pin feedbacks

Input Re gs Macrocells used as input registers

Macrocells Macrocells without output/buried
distinction

Pterms AND array rows used in equation
generation

Feedbacks Inputs to the Switch Matrix

Fanouts Inputs to the AND Arrays

Blk Clocks Number of selectable clock lines for each
block

Clocks Pins

Input Regs Macrocells

Pterms Feedbacks

Fanouts

Clock generator
block:

Clocks

Pterms

Blk Clocks

Macrocell block: I/O Pins

Input Regs

Macrocells

Pterms

Feedbacks

Fanouts

9-26 MACH 5 Device-Specific Fitting
Example

 DEVICE RESOURCE UTILIZATION:

Resource Available Used Remaining %

DEVICE

Clock Pins: 4 1 3 25

I/O Pins: 160 41 119 25

Input Regs: 32 0 32 0

Macrocells 256 156 100 60

Control Pterms 144 16 128 11

Cluster Pterms 1024 876 148 85

1-pt Clusters: 256 180 76 70

3-pt Clusters: 256 252 4 98

Signal Resources 512 133 379 25

Array Inputs 512 264 248 51

Intersegment Lines: 128 9 119 7

SEGMENT 0

Clock Pins: 4 1 3 25

Pins: 40 17 23 42

Input Regs: 8 0 8 0

Macrocells: 64 39 25 60

Control Pterms: 36 4 32 11

Cluster Pterms: 256 219 37 85

1-pt Clusters: 64 45 19 70

3-pt Clusters: 64 63 1 98

Signal Resources: 128 40 88 31

Array Inputs: 128 66 62 51

Segment Lines: 128 40 88 31

CONTROL BLOCK ‘S0Ba’

Clock Pins: 4 1 3 25

Blk Pins: 4 1 3 25

Enable Pterms: 2 0 2 0

Init Pterms: 3 1 2 33

Clock Pterms: 4 0 4 0

MACROCELL BLOCK ‘S0Ba’

I/O Pins: 16 8 8 50

Input Regs: 2 0 2 0

Macrocells 16 8 8 50

Cluster Pterms 64 61 3 95

1-pt Cluster 16 14 2 87

3-pt Clusters: 16 16 0 10

Signal Resources 32 10 22 31

Array Inputs 32 14 18 43

The Report File 9-27

 the

Partition Groups
This section shows how functions (outputs and nodes) are
assigned to the PAL blocks. It shows which signals must be
routed to the PAL block to generate the functions assigned to
block. It also shows how many unique clocks, enables and
register preset/reset equations are required for the assigned
functions.

Example

PARTITION GROUPS:

Block 'S0Ba'Partition 0; Group-type FIXED_GROUP;
1 Clocks; 0 Enables; 1 Register Sets
8 Functions
O3[4] O3[2] O3[1]
prep_4.12.large-0prep_4.12.large-1prep_4.12.large-2
prep_4.12.large-3prep_4.12.large-4

15 Signals
clk rst q8[7]
q8[6] q8[5] q8[4]
q8[3] q8[2] q8[1]
q8[0] prep_4.12.large-0prep_4.12.large-1
prep_4.12.large-2prep_4.12.large-3prep_4.12.large-4

Block 'S0Bb'Partition 1; Group-type FIXED_GROUP;
1 Clocks; 0 Enables; 1 Register Sets
7 Functions
q8[5] q8[4] prep_4.11.large-0
prep_4.11.large-1prep_4.11.large-2prep_4.11.large-3
prep_4.11.large-4

15 Signals

clk rst q7[7]
q7[6] q7[5] q7[4]
q7[3] q7[2] q7[1]
q7[0] prep_4.11.large-0prep_4.11.large-1
prep_4.11.large-2prep_4.11.large-3prep_4.11.large-4

Block 'S0Bc'Partition 2; Group-type FIXED_GROUP;
1 Clocks; 0 Enables; 1 Register Sets
12 Functions
q7[7] q7[6] q7[1]
q7[0] q8[7] q8[6]
q8[3] q8[2] q8[1]
q8[0] prep_4.10.large-0 prep_4.10.large-3

9-28 MACH 5 Device-Specific Fitting

ed
20 Signals
I[7] I[6] I[5]
I[4] I[3] I[2]
I[1] I[0] clk
rst prep_4.10.large-0prep_4.10.large-1
prep_4.10.large-2prep_4.10.large-3prep_4.10.large-4
prep_4.11.large-0prep_4.11.large-1prep_4.11.large-2
prep_4.11.large-3prep_4.11.large-4

Signal Director y
Clocks, inputs, outputs and nodes on the part are listed with
specific assignment information for each signal. Slew rate
which is on a per-signal basis on the MACH 5 will also be list
here.

The signal directory table will have the following columns:

Signal # The index number used to reference
the signal

Signal Name The user identifier for the signal

Source Type {Input | Hidden | Output | Biput |
Internal} with register type qualifiers

PalBlk Pal Block where output or node is
assigned

Clusters: Used Number of Pterm Clusters used to
generate function

Clusters: Unused
PTs

Unused Pterms left in used clusters

Pal Block Inputs Array input lines for Signal Fanouts

The Report File 9-29
Example
SIGNAL DIRECTORY:

Notes:
Register type suffix '_X' indicates XOR used;
Register type suffix '_LT' indicates function is LOW_TRUE.
'RS_SWAP' flags functions which are preset at power-on.
'OE' flags tri-state functions.

[0] Output: O[7]
Pin 168 (I/OBlock S3Bd Macrocell_02 4 Pterm COMB

[1] Output: O[6]
Pin 169 (I/O)Block S3Bd Macrocell_03 2 Pterm COMB

[2] Output: O[5]
Pin 170 (I/O)Block S3Bd Macrocell_04 2 Pterm COMB

[3] Output: O[4]
Pin 165 (I/O)Block S3Ba Macrocell_00 1 Pterm COMB

[4] Output: O[3]
Pin 171 (I/O)Block S3Bd Macrocell_05 2 Pterm COMB

[5] Output: O[2]
Pin 163 (I/O) Block S3Ba Macrocell_02 1 Pterm COMB

[6] Output: O[1]
Pin 164 (I/O)Block S3Ba Macrocell_01 3 Pterm COMB

[7] Output: O[0]
Pin 172 (I/O)Block S3Bd Macrocell_06 2 Pterm COMB

[8] Node: q1[7]
S3BcM2 Block S3Bc Macrocell_02 4 Pterm COMB

[9] Node: q1[6]
S3BcM1 Block S3Bc Macrocell_01 2 Pterm COMB

[10] Node: q1[5]
S3BdM1 Block S3Bd Macrocell_01 2 Pterm COMB

[11] Node: q1[4]
S3BdM0 Block S3Bd Macrocell_00 1 Pterm COMB

[12] Node: q1[3]
S3BdM12 Block S3Bd Macrocell_12 2 Pterm COMB

9-30 MACH 5 Device-Specific Fitting

t
Fanout Table
The headings in the table have the following meanings:

Signal_Src Signal name from the SIGNAL
DIRECTORY LIST

ISL# Intersegment line number to which
Signal_Src connects

SL# Segment line number

Src SL# Segment line number for the same segmen
as the source signal

The Report File 9-31

L# Mux Blk SL# Mux

6 M16I3

7 M22I5

4 M18I4

5 M17I4

04 M06I5

116 M29I4 S1Bc 119 M30I6

98 M09I5 S2Bd 98 M31I5

102 M19I5

117 M13I1 S0Bc 117 M04I5

101 M21I3 S1Bb 101 M00I1

101 M18I5 S2Ba 114 M12I0

114 M24I6 S2Bd 114 M07I6

100 M12I1 S3Bc 100 M08I5

86 M04I3 S1Bc 87 M01I4

65 M22I3 S2Bd 65 M01I3

71 M18I3

119 M05I6 S1Bc 99 M19I5

115 M01I5 S2Bd 115 M11I6

111 M30I6

89 M07I4 S1Bc 73 M06I3

92 M14I4 S2Bd 92 M03I4

88 M02I4
Example
FANOUT TABLE:

PASS/ Src Fanouts-------------

FAIL Signal_Src ISL# SL# Blk SL# Mux Blk S

Block S0Ba:

PASS[151] S0BaM3 --- --- S0Ba 66 M17I2 S0Bd 6

PASS[152] S0BaM4 --- --- S0Ba 97 M24I0 S0Bd 9

PASS[153] S0BaM5 --- --- S0Ba 74 M16I1 S0Bd 7

PASS[154] S0BaM8 --- --- S0Ba 75 M27I2 S0Bd 7

PASS [155] S0BaM11 --- --- S0Ba 104 M07I0 S0Bd 1

PASS [162] S0BaP4 35 116 S0Bc 116 M11I5 S0Bd

S1Bd 119 M05I6 S2Bc

S3Bc 102 M22I5 S3Bd

PASS [165] S0BaP5 11 117 S0Ba 117 M01I0 S0Bb

S0Bd 117 M03I6 S1Ba

S1Bc 101 M15I5 S1Bd

S2Bb 114 M04I1 S2Bc

S3Ba 100 M29I0 S3Bb

S3Bd 100 M13I5

PASS [156] S0BaP6 90 86 S0Bc 86 M10I3 S0Bd

S1Bd 87 M28I4 S2Bc

S3Bc 71 M20I3 S3Bd

PASS [163] S0BaP7 23 119 S0Bc 119 M03I5 S0Bd

S1Bd 99 M16I5 S2Bc

S3Bc 111 M31I5 S3Bd

PASS [157] S0BaP9 126 89 S0Bc 89 M09I4 S0Bd

S1Bd 73 M23I5 S2Bc

S3Bc 88 M10I4 S3Bd

9-32 MACH 5 Device-Specific Fitting

BLOCK CONFIGURATION TABLES:
Notes: '*' indicates that the pin is bonded-out
BLOCK 'S0Ba': POWER=HIGH
 CONTROL PTERMS:
 RST0 = rst ;
 BLOCK CLOCKS:
 BLK_CLK 2 (PIN_CLOCK,POL=HIGH) : c
 BLK_CLK 3 (PIN_CLOCK,POL=LOW) : c
ARRAY INPUTS:

[---] [165] [---] [138] [

[140] [---] [---] [---] [---

[153] [151] [---] [---] [

[152] [---] [137] [154]
Power Table

Example

POWER TABLE:

 BLOCK A BLOCK B BLOCK C BLOCK D
SEGMENT 0: HIGH HIGH HIGH HIGH
SEGMENT 1: HIGH HIGH HIGH HIGH
SEGMENT 2: HIGH HIGH HIGH HIGH
SEGMENT 3: HIGH HIGH HIGH HIGH

Block Confi guration Tables

Example

Note Array inputs I0 through I31 are are assigned signal
names from the SIGNAL DIRECTORY list.

lk ;
lk ;

139] [---] [135] [155] Inputs I0 to I7

] [---] [---] [---] Inputs I8 to I15

136] [134] [133] [---] Inputs I16 to I23

[---] [---] [---] [---] Inputs I24 to I31

The Report File 9-33

s:

f
re

l

Node OE Pin

[---] VCC [120] *

[---] VCC [123] *

[---] VCC [122] *

[151] GND [---] *

[152] GND [162] *

W [153] GND [165] *

GND [156] *

GND [163] *

W [154] GND [---] *

GND [157] *

GND [---] *
In the following segment, labels have the following meaning

Example

Pterms Used Number of pterms used on this macrocell; i
the column has 1+7, it means 7 pterms we
used and one pterm was steered from
elsewhere

Pterms Avl Number of pterms available for this
macrocell

PT Map Indicates whether pterm was applied to the
XOR or product term cluster (OR input)

POL Indicates polarity of the signal

CLK Indicates which clock from the clock
generator was used

Reg Ctrl Indicates whether signal was combinatoria
or registered

Slew Slew rate set

OE Indicates whether the output enable was
high or low

Node Relative node number

Pin Actual pin number

C C C C C C C C C C C C C C C C P C

0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 Pterms PT O L Reg

MC 0 1 2 3 4 5 Used Avl Map L K Ctrl Slew

00 1 - - - - - - - - - - - - - - - 1 0 SUM L 3 COMB FAST

01 3 - - - - - - - - - - - - - - - 3 0 SUM l 3 COMB FAST

02 - - 1 - - - - - - - - - - - - - 1 0 SUM L 3 COMB FAST

03 - 4 3 1 - - - - - - - - - - - - 1+7 0 XOR H 2 RST0 SLOW

04 - - - 3 1 4 4 - - - - - - - - - 1+11 0 XOR H 2 RST0 SLOW

05 - - - - 3 - - 4 4 - - - - - - - 11 0 SUM H 2 RST0 SLO

06 - - - - - - - - - - - - - - - - - - --- - - ---- ---- [---]

07 - - - - - - - - - - - - - - - - - - --- - - --- --- [---]

08 - - - - - - - - - 3 3 4 4 - - - 13 1 SUM H 2 RST0 SLO

09 - - - - - - - - - 1 - - - - - - - - --- - - --- --- [---]

10 - - - - - - - - - - 1 - - - - - - - --- - - --- --- [---]

ATV5000 Device-Specific
Fittin g

10
Chapter Overview
This chapter describes how to control the fitting process for
Atmel’s ATV5000 architecture. Topics include:

• General information about designing with the ATV5000,
page 10-2

• Tips and device details, pages 10-2 through 10-17

• The report file, page 10-18

10-2 ATV5000 Device-Specific Fitting

00,

t

See Chapter 6, Controlling the
Fitting Process Using the .pi
Fileand the PIL Reference in
PLSyn online help for more
information on the .pi file.
Designin g with the
ATV5000
The Atmel ATV5000 CPLD is supported by PLSyn through
automatic device selection and automatic partitioning/fitting.
The ATV5000 is a sophisticated device, with many unique
features. ATV5000-Specific Optimization

There are several .pi properties that control optimization of the
design. While these properties are not specific to the ATV50
they provide a means of tuning the optimization to best fit a
design into ATV5000 parts.

Constrainin g the Size of
Combinatorial Nodes
The MAX_PTERMS and MAX_SYMBOLS properties are the
key optimizer properties for fitting into the ATV5000. For mos
designs, the following settings for MAX_PTERMS and
MAX_SYMBOLS are suggested:

{
MAX_PTERMS 13,
MAX_SYMBOLS 40
}

Constraining the Size of Combinatorial Nodes 10-3

m

es
ng
ing
,

the

ch
on
e

ese
to
The Effect of MAX_PTERMS
The MAX_PTERMS property is the most critical property for
optimizing a design for the ATV5000. The effect of changing
MAX_PTERMS is summarized here.

Usin g higher MAX_PTERMS generall y results in
this

• Fewer leftover combinatorial nodes

• Larger functions

• Faster implementation

• Increased number of sum terms required

Setting MAX_PTERMS higher may increase the number of su
terms needed. The PLSyn fitter may place small registered
nodes on logic cell register Q2 or on the buried logic cells.
However, as MAX_PTERMS is increased, the registered nod
increase in size beyond the capacity of the sum terms feedi
register Q2 and the buried logic cells. The only option remain
may be to use more logic cell sum-terms to feed register Q1
possibly leaving register Q2 unusable.

Usin g lower MAX_PTERMS generall y results in
this

• More leftover combinatorial nodes

• Smaller functions

• Slower implementation

• Increased regionalization requirements

Setting MAX_PTERMS lower may increase regionalization
requirements. The regionalization requirements depend on
number of universal PTERMs in each function. Increasing
MAX_PTERMS may increase the number of PTERMs in ea
function, but the number of universal PTERMs in each functi
does not necessarily also increase. This is so because in th
ATV5000, combinatorial shadow nodes feed back into the
universal bus. Lowering MAX_PTERMS will cause more
combinatorial nodes to remain after node collapsing, and th
additional combinatorial nodes may cause certain PTERMs

10-4 ATV5000 Device-Specific Fitting

 the

es

de
ver,

 the
e of

ngs

t

be universal rather than regional, possibly increasing
regionalization requirements.

To see the exact effect of chan ging the optimizin g
parameters

1 Open the .doc file after optimizing and check the number
of nodes. The number of nodes generally goes down as
MAX_PTERMS parameter goes up.

It is advantageous to keep the number of combinatorial nod
low. This is because the combinatorial shadow nodes in the
ATV5000 (the nodes in the logic cell where combinatorial no
signals are placed) do double duty as RU converters. Howe
this depends on the particular design. If there are not many
signals that must be routed from a quadrant's regional bus to
universal bus, it may be more advantageous to keep the siz
the functions smaller.

In critical fitting cases, it may be necessary to try several setti
for MAX_PTERMS to get satisfactory results.

The Effect of MAX_SYMBOLS
Increasing MAX_SYMBOLS will increase the number of
inputs per PTERM in output and node signals. We suggest
setting MAX_SYMBOLS to 40 because the smallest produc
terms are the regional product terms, which have 40 input
signals available. Increasing MAX_SYMBOLS will potentially
create PTERMs that are too big for the regional rows in the
ATV5000.

Specifying Device Utilization 10-5

e

re

gic.

g
e a

.g.,
Specif ying Device
Utilization
To specif y the amount of reserve capacit y to
leave available in a device

1 Use the ATV5_UTILIZATION property in your .pi file
using the syntax:

{ATV5_UTILIZATION percent};

where percent if the percentage of device resources to b
used. The range of values is 0 to 100.

This affects the use of PTERMs, macrocells, and pins.The
unused resources are distributed throughout the device. The
are two reasons to reserve some resources in a device:

• Resources may be reserved to allow for expansion of lo

• Resources may be reserved to ease and speed the fittin
process. It is easier for the PLSyn fitter to place and rout
solution at 80% utilization than at 100% utilization. If
design iteration speed is more important than density (e
earlier in the design cycle), set the utilization factor to a
lower value.

Usin g the Flip-Flop
Clock Option
The flip-flop clock option in the ATV5000 architecture can
provide the clock for the registers from two locations:

• One product term.

• One product term ANDed with a clock pin signal.

The PLSyn fitter uses this flip-flop clock option to:

• Provide enabled clocking functionality.

10-6 ATV5000 Device-Specific Fitting

til

gle

ck

 be

For more information on
CLOCK_ENABLED_BY, refer to
the PIL Reference in PLSyn
online help.
• Allow you to control the source of the clock signal.

Enablin g Clockin g
A registered output or node signal may be declared in the .src
file to have a clock enable through the DSL
CLOCK_ENABLED_BY declaration. The PLSyn fitter will
implement clock enable functionality by using the flip-flop
clock option as follows:

• The clock signal is placed on the regional clock pin.

• The PTERM given in the CLOCK_ENABLED_BY
declaration is placed on the clock product term.

Therefore, the clock signal will not be seen by the register un
the CLOCK_ENABLED_BY PTERM is asserted.

The clock for the registered output or node signal must be a
single signal. The clock enable may be a single signal or a sin
PTERM.

There is no on-chip synchronization circuitry between the clo
signal and the clock product term. It is your responsibility to
assure that the signals that feed the flip-flop clock option are
glitch-free.

Example

SOURCE FILE

INPUT i, clk, ce1..ce2;
OUTPUT o CLOCKED_BY clk CLOCK_ENABLED_BY
ce1*ce2;
o = i;

Controllin g the Clock Source
The flip-flop clock option in the ATV5000 allows the clock for
registered output and node signals (with no clock enable), to
provided by one of two sources:

Using the Flip-Flop Clock Option 10-7

e

 on

d
• a dedicated clock pin, one per quadrant

• the clock product term

By default, the PLSyn fitter will place the clock on the clock
product term, saving the quadrant clock pin for inputs to the
regional bus. However, if you need the speed provided by th
quadrant clock pin, you can specify that the clock be placed
the quadrant clock pin. This is done through the
CLOCK_BY_PIN .pi property.

This property cannot be used if the signal is clocked by an
equation (for example, CLOCKED_BY a*b).

Example

SOURCE FILE

INPUT i, clk;
OUTPUT o CLOCKED_BY clk;
o = i;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';
o {CLOCK_BY_PIN}; "Force the clock to

"come from the quadrant clock pin
END DEVICE;

You can also explicitly specify that the clock is to be supplie
by the clock product term. This is done through the
CLOCK_BY_ROW .pi property.

CLOCK_BY_ROW is the default for registered outputs and
nodes.

Example

SOURCE FILE

INPUT i, clk1..clk2;
OUTPUT o CLOCKED_BY clk1*clk2;
o = i;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';

10-8 ATV5000 Device-Specific Fitting
o {CLOCK_BY_ROW};
END DEVICE;

Using the I/O Pin Latches 10-9

t
gh

es,

nal

y,

00.
nd

al
ge.
ay

ge

ics

For more information on unaries,
see Accessing Internal Points
in a PLD Device on page 7-2.
Usin g the I/O Pin
Latches
The I/O pins in the ATV5000 architecture can direct an inpu
signal through a latch. You can use the I/O pin latches throu
the latched unary concept.

The PLSyn fitter considers the I/O pin latches to be unary nod
and hence possible locations for placing unary functions.

To declare a unary function in your design, declare a node sig
in the .src file with the following characteristics:

• Declared as a latched node signal.

• Latched by either a low-true or an inverted signal.

• Fed by a single signal.

The PLSyn fitter may place the unary functions automaticall
or you can place them manually through .pi file assignments.
See the following section for the unary pin names.

Identif ying Pins and
Nodes
This section describes the pin and node names for the ATV50
This information is useful to manually assign signals to pins a
nodes in the .pi file. It is also useful for interpreting where
signals were fit in the .rpt and the .npi files.

The ATV5000 has both physical pins and virtual pins. Physic
pins are the pins that physically appear on the device packa
Virtual pins are device node locations where node signals m
be placed.

Physical pins are referenced by the pin number in the packa
diagram.

Virtual pins are named according to their characteristics and
their location in the device. The names imply the characterist

10-10 ATV5000 Device-Specific Fitting

d
ey

he

ered

m

nals

.

l
e
of the device nodes, their location within the logic cell or burie
logic cell, and the physical pin number of the logic cell that th
are associated with.

REG_SHADOW_OF_ Registered shadow pins are
located on register Q1, with the logic cell disconnected from t
I/O pin. The I/O pin then functions as an input. Registered
shadow pins have access to sum terms A, B, and C. Regist
node signals may be placed on registered shadow pins.

COMB_SHADOW_OF_ Combinatorial shadow pins are
located on sum term B, with the feedback going into the
universal bus. Combinatorial shadow pins have access to su
term B. Combinatorial node signals may be placed on
combinatorial shadow pins.

BURIED_OF_ Buried pins are located on register Q2.
Buried pins have access to sum term C. Registered node sig
may be placed on buried pins.

UNARY_OF_ Unary pins are located on the I/O pin latch
Unary functions may be placed of binary pins.

BLMC Designator for the buried logic cells. Combinatoria
node signals or registered node signals may be placed on th
buried logic cells.

Targeting Quadrants in the ATV5000 10-11

ced
 is

in
ion.

t

e
 a

me

e

For more information on
GROUP, refer to the PIL
Reference in PLSyn online help.
Targetin g Quadrants in
the ATV5000
You can specify which output and node signals are to be pla
together in the same quadrant of a device. This specification
done in the .pi file. There are several reasons for explicitly
grouping signals in the ATV5000, including:

• Critical timing may require you to keep a group of signals
the same quadrant, minimizing speed lost in RU convers

• PCB layout may be easier when related signals are kep
together.

• Critical fitting cases may require you to manually tune th
partitions created by the PLSyn fitter in order to achieve
successful fit.

Usin g the GROUP Construct
The .pi file GROUP construct allows you to specify a set of
output and node signals that are to be fit together into the sa
quadrant, without specifying which quadrant and without
keeping multiple GROUPs from being fit together in the sam
quadrant.

10-12 ATV5000 Device-Specific Fitting

f

N

For more information on
SECTION, refer to the PIL
Reference in PLSyn online help.
Example

SOURCE FILE

INPUT i[8];
OUTPUT ogroup1[8];
OUTPUT ogroup2[8];
ogroup1 = i;
ogroup2 = i;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';
GROUP

ogroup1; "all ogroup1 signals will go
"into the same quadrant

END GROUP;

GROUP
ogroup2; "all ogroup2 signals may or

"may not also go into
"ogroup1's quadrant

END GROUP;
END DEVICE;

Usin g the SECTION Construct
The .pi file SECTION construct allows you to specify a set o
signals that are to be fit together in the same quadrant. Two
different SECTIONS will not be fit into the same quadrant.

In addition, you can specify which quadrant to fit the SECTIO
into with the TARGET construct.

Syntax is:

TARGET 'quadrant_name';

The list below details the names of the quadrants in the
ATV5000.

Targeting Quadrants in the ATV5000 10-13

ill
Quadrant Names

Quadrant 1
Quadrant 2
Quadrant 3
Quadrant 4

If a SECTION isn't targeted to a specific quadrant, PLSyn w
place the SECTION into a quadrant automatically.

Example

SOURCE FILE

INPUT i[8];
OUTPUT ogroup1[8];
OUTPUT ogroup2[8];
ogroup1 = i;
ogroup2 = i;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';
SECTION

TARGET 'Quadrant 1';
ogroup1; "all ogroup1 signals

"will go into quadrant 1
END GROUP;

SECTION
TARGET 'Quadrant 2';
ogroup2; "all ogroup2 signals

"will go into quadrant 2
END GROUP;

END DEVICE;

10-14 ATV5000 Device-Specific Fitting

s.

or
ls
ow
al
ow
r,

ed

n
you
ls, to
ugh
Placin g Node Si gnals on
Buried Lo gic Cells
The PLSyn fitter will not automatically place node signals on
the buried logic cells. However, you can manually place
combinatorial or registered node signals on the buried node
This is accomplished through pin assignments in the .pi file.

You can sometimes reduce the number of resources used f
regionalization by manually placing combinatorial node signa
on the buried logic cells rather than on the combinatorial shad
nodes. Since the buried logic cells feed back into the region
bus rather than the universal bus, as the combinatorial shad
nodes do, regionalization resources may be saved. Howeve
you must weigh this savings against potentially incurring RU
conversion if the signal placed on a buried logic cell is need
in another quadrant.

The PLSyn fitter uses the buried logic cells for regionalizatio
when fitting output and node signals. We recommended that
do not assign node signals, especially registered node signa
the buried logic cells unless you are sure that you have eno
buried logic cells to satisfy regionalization requirements.

Example

SOURCE FILE

input i, clk;
node n clocked_by clk;
n = i;

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';
n: BLMC23; "place node n on buried

"logic cell 23
END DEVICE;

Understanding RU Conversion 10-15

t's

us,
nals
ion

l to
ing
 the
an

 it
rial

0.

nly
ant
Understandin g RU
Conversion
When a design is partitioned across the quadrants of an
ATV5000, there are often signals fed back into one quadran
regional bus via the Q1 and Q2 register feedbacks that are
needed by output or node signals in a different quadrant. By
routing the necessary regional bus signals to the universal b
the signals can become available to the output and node sig
in other quadrants. This routing process is called RU convers
(Regional - Universal conversion).

The PLSyn fitter performs RU conversion automatically by
using the logic cell configuration that gives sum term B a
feedback path into the universal bus. The regional bus signa
be RU converted is placed on one of the regional rows feed
sum term B, and the signal then takes the feedback path into
universal bus. In this configuration, sum term B functions as
RU converter.

When a logic cell's sum term B is used as an RU converter,
becomes unavailable for any other use (such as a combinato
shadow node).

Understandin g
Regionalization
Regionalization is the process of manipulating a universal
PTERM so that it may be fit on a regional row in the ATV500
Regionalization is used during the process of fitting the
PTERMs of an output or node signal.

Universal and re gional PTERMs

Universal PTERMs have at least one signal that is available o
in the universal bus or in the regional bus of a different quadr

10-16 ATV5000 Device-Specific Fitting

Ms

al

nal

 is

d

 by
l
put

 go
ster

.

than the output or node signal is assigned to. Universal PTER
can go only on the universal rows of the ATV5000.

All the signals of regional PTERMs are available in the region
bus of the same quadrant that the output or node signal is
assigned to. Regional PTERMs may go on universal or regio
rows of the ATV5000.

Regionalization, sum-term combinin g, and fittin g
PTERMs

In a difficult-to-fit design, the key to directing PLSyn’s PLSyn
fitter to a successful fit is simply understanding how the fitter
attempting to fit the universal PTERMs. It also helps to know
how sum-term combining and regionalization are interrelate
for a particular design. You can use the .rpt file to obtain much
information about the results of sum term combining and
regionalization for a fit attempt.

When the PLSyn fitter fits the PTERMs of an output or node
signal, it attempts to get enough regional and universal rows
combining sum terms. If this fails to supply enough universa
rows, then regionalization is used to convert some of the out
or node signal's universal PTERMs to regional PTERMs,
allowing placement of PTERMs on the otherwise unused
regional rows.

In addition, if a node signal has a universal PTERM that must
on the regional row feeding the asynchronous preset of regi
Q2, regionalization will be used to convert that universal
PTERM to a regional PTERM.

Regionalization is handled automatically by the PLSyn fitter
There are no provisions to manually force regionalization of
PTERMs.

There are two basic techniques used in regionalization:

• signal regionalization

• PTERM regionalization

Understanding Regionalization 10-17

ut

ry
UR

Ms
ic
f
.

als
sal

ew
ew
nd

ut/
ers

How PLS yn Does
Regionalization
The Plsyn fitter always performs signal regionalization via inp
pins when attempting to fit a design. This is done before any
other regionalization technique is used.

UR conversion and PTERM regionalization are complementa
regionalization techniques. Some designs can only be fit via
conversion, but others can be fit only via PTERM
regionalization.

During a fit attempt, the PLSyn fitter varies the number of
buried logic cells available per quadrant for PTERM
regionalization, from 0 to 6, as it attempts to place the PTER
of output and node signals. The remainder of the buried log
cells are used for UR conversion. This allows the best mix o
these complementary regionalization techniques to be used

Signal Regionalization
Signal regionalization is the process of routing universal sign
to the regional bus of a quadrant. By regionalizing the univer
signals in a universal PTERM, the universal PTERM may
become regional. Often, many universal PTERMs that have f
universal signals can be regionalized by regionalizing just a f
universal signals. The PLSyn fitter uses the input/clock pins a
UR conversion to regionalize signals.

Usin g input pins

The PLSyn fitter will place universal input signals on any inp
clock pins that are not used to supply clock signals to regist
or latches. The fitter uses the path from the pins into all four
regional buses to regionalize the universal input signals.

Input signals are selected for regionalization via input pins
based on the number of universal PTERMs that need each
universal input signal across the entire device.

10-18 ATV5000 Device-Specific Fitting

ss
m

al
g

 in

e

s

l

sal
he

Usin g feedback paths (UR conversion)

UR conversion (Universal - Regional conversion) is the proce
of regionalizing universal signals, using the feedback path fro
the buried logic cells into the regional bus.

The PLSyn fitter performs UR conversion by placing a univers
signal on the universal row of a buried logic cell and configurin
the buried logic cell for combinatorial operation. When used
this manner, the buried logic cell functions as a UR converter.

PTERM Regionalization
Pterm regionalization is the process of regionalizing an entir
universal PTERM, using a buried logic cell. Since the entire
universal PTERM is regionalized at once, universal PTERM
that have a lot of universal signals can be regionalized via
PTERM regionalization.

The PLSyn fitter performs PTERM regionalization by placing
the entire universal PTERM on the universal row of a buried
logic cell and configuring the buried logic cell for combinatoria
operation. Therefore, a signal representing the entire univer
PTERM is available in the regional bus, and substitutes for t
original universal PTERM in any output or node signals that
have the universal PTERM in their equations.

The Report File 10-19

es

 the

t,

The Report File
The .rpt file is written by the PLSyn fitter during the process
of fitting part or all of a design into ATV5000 devices. The
.rpt file is useful as an aid in:

• Understanding why designs do not fit.

• Directing the PLSyn fitter to success in fitting a difficult
design.

• Determining how a design was fit and the device resourc
that were used.

The .rpt file is complementary to the .doc file. It contains
information about the design and about the attempt made by
PLSyn fitter to implement the design. This information is
specific to the ATV5000. In-depth information about the inpu
output, and node signals is given, along with assignments to
device resources made by the PLSyn fitter.

Obtainin g Report File

To obtain a report file

1 Create a .pi file with a DEVICE that is targeted towards an
ATV5000.

No other specifications in the .pi file are necessary. PLSyn will
generate automatically a report file named
design_name<nn>.rpt where <nn> is a sequence number
representing the edition of the report.

10-20 ATV5000 Device-Specific Fitting

s

Example

PHYSICAL INFORMATION FILE

DEVICE
TARGET 'TEMPLATE ATV5000 JLCC-68-STD';

END DEVICE;

If you think the design will take more than one device, put a
many DEVICEs in the .pi file as you think the design will
need. A different .rpt file will be created for each device in the
solution, named design_name01.rpt ,
design_name02.rpt , and so on.

Pin assignments, properties, and other .pi file constructs may
be placed in the DEVICEs if needed. They will not affect
creation of the .rpt file.

Headin g
The header contains the date and time the design was run
through PLSyn. It also contains the user-supplied design
information from the .src file. This gives a way of identifying
the .rpt file.

DATE: Fri Sep 2 15:18:45 1994Date design was run

DESIGN: drink Design name
DEVICE: ATV5000:1 Part name and position in PI file

DEVICE statement list

TITLE: drink User-supplied information from
ENGINEER: ATV5000 Designer.src file
COMPANY: Atmel Corporation
PROJECT: ATV5000 .rpt example
REVISION: 1.0
COMMENT: Example of ATV5000 .rpt file using example drink.src

The Report File 10-21

h

re

Ms

may
nt.
Failure-to-Partition Disclaimer
If the PLSyn fitter fails to partition the design successfully
across the quadrants of the device, a disclaimer is printed
immediately following the heading. This lets you know that
partitioning failed.

If the design partitions successfully, no disclaimer will be
printed.

Partitioner Report
This section shows:

• The functions (output and node signals) assigned to eac
quadrant.

• The signals that must be available in each quadrant.

• How many unique clocks, latch enables, enables, and
register reset/preset equations are in each quadrant.

Signal Director y
This section contains information about the design that is
specific to the ATV5000. All input, output and node signals
assigned to the device are listed.

For each signal, the buses that the signals are available in a
listed.

For output and node signals, the universal and regional PTER
are listed. Also shown for output and node signals is the
equation form used (DFF, TFF, or DeMorganized).

The information in the signal directory is taken before any
device resources are assigned to. Therefore, some signals
become available in different buses during function placeme
Also, some universal PTERMs may be regionalized during
function placement.

10-22 ATV5000 Device-Specific Fitting

ble
ble

le
6
Example
SIGNAL DIRECTORY:

Notes: Universal PTERMs may become regional
during function placement.
'BAR' indicates DeMorganized form equation used.
'DFF' indicates D flip-flop form equation used.
'TFF' indicates T flip-flop form equation used.

Input: nickel
Buses: Univ

Input: dime
Buses: Univ

Output:return_dime
Buses: Univ
Universal PTERMs:

/nickel*/dime*quarter*/drink_machine-1*drink_machine-2;
/nickel*/dime*quarter*drink_machine-0*

drink_machine-1*/drink_machine-2 ;
Regional PTERMs:

/drink_machine-0*drink_machine-1*drink_machine-2 ;

Node:DFF drink_machine-0
Buses: Univ Q1
Universal PTERMs:

nickel*/drink_machine-0*/drink_machine-2 ;
nickel*/drink_machine-0*/drink_machine-1 ;
/nickel*/quarter*drink_machine-0*/drink_machine-2 ;

 /dime*quarter*/drink_machine-0*/drink_machine-1*
/drink_machine-2 ;

/nickel*/dime*/quarter*drink_machine-0*
/drink_machine-1 ;

/nickel*dime*drink_machine-0*/drink_machine-2 ;
Regional PTERMs:

In this example, the input signals nickel and dime are availa
in the universal bus. The output signal return_dime is availa
in the universal bus, has two universal PTERMs, and one
regional PTERM. The node signal drink_machine-0 is availab
in the universal bus and quadrant 1's regional bus, and has
universal PTERMs.

The Report File 10-23

nt

the
l

e

d.

vel
n
Signals Universalized on Sum
Term B
The signals that underwent RU conversion are listed here,
quadrant by quadrant, as follows:

SIGNALS UNIVERSALIZED ON SUM TERM B:

Quadrant 1

drink_machine-2
drink_machine-1
drink_machine-0

In this example, RU conversion was performed only in quadra
1.

Signals Re gionalized on Input
Pins
Signals that were regionalized on input/clock pins are listed
here. Signals that only supply register clocks or latches from
input/clock pins are listed also, since they are available in al
regional buses.

Function Placement Report
The function placement report provides information about th
actions of the PLSyn fitter during output and node signal
placement. Information about UR conversion, PTERM
regionalization, and output/node signal placement is provide
If the PLSyn fitter failed to fit the design, this information is
especially valuable as an aid in guiding the PLSyn fitter to a
successful fit.

Quadrant sections

The function placement report is organized on an primary le
around quadrant sections. In each quadrant section, functio

10-24 ATV5000 Device-Specific Fitting

on
, if

h

 is
or

nt.
e at
 of
h
ing

on

t

pt
g

ic

ring
as
d by
placement progress for each quadrant is reported. Informati
about quadrant 1 is reported first, then quadrants 2, 3, and 4
any functions were assigned to those quadrants. Within eac
quadrant section, each line in the .rpt file is preceded by a
quadrant indicator to remind you of the current quadrant.

Fit attempt sections

Within each quadrant section, the function placement report
organized on a secondary level around fit attempt sections f
each quadrant. Each fit attempt section contains information
about function placement for a fit attempt within each quadra
Each fit attempt represents an attempt the PLSyn fitter mad
placing the functions in the quadrant, with a different number
buried logic cells available for PTERM regionalization in eac
fit attempt. There may be up to 7 fit attempts. See the preced
section on Understanding Regionalization for more informati
on regionalization and the fitting process.

Within each fit attempt section is an UR conversion report, a
PTERM regionalization report, and an output/node signal
placement report. These three reports give information abou
regionalization and function placement progress for a fit
attempt.

UR conversion report

The signals that underwent UR conversion during the fit attem
are listed in this table, along with the buried logic cells servin
as UR converters.

Pterm re gionalization report

The PTERMs that underwent PTERM regionalization during
the fit attempt are listed in this table, along with the buried log
cells each PTERM was regionalized on.

Output/node si gnal placement report

Each output and node signal that was successfully placed du
the fit attempt is listed in this table, with the pin the signal w
assigned to and the sum terms in the logic cell that were use

The Report File 10-25

as

ple

t/
lso
is

s
the signal. This lets you examine how sum term combining w
performed.

Example

The output/node signal placement report for the drink exam
for quadrant 1, fit attempt 1 looks like:

Q1: OUTPUT/NODE SIGNAL PLACEMENT REPORT:
Q1:
Q1: Device Pin Sum terms used Signal
Q1: ---
Q1: REG_SHADOW_OF_13 a b drink_machine-0
Q1: REG_SHADOW_OF_12 a b drink_machine-1
Q1: REG_SHADOW_OF_11 a b drink_machine-2

Input Si gnal Placement Report
This table lists each input signal that was placed on an inpu
clock or I/O pin. Signals that were regionalized via input are a
listed. If all the input signals could not be placed, the failure
notes.

Failure-to-Fit Disclaimer
If the PLSyn fitter fails to place all output, node, and input
signals in the partitioned design, a disclaimer is printed
immediately following the input signal placement report. Thi
lets you know that fitting failed.

If the design fit successfully, a message is printed with the
number of functions successfully fit in the device.

The Documentation File
file
t a
A

Appendix Overview
This appendix describes the sections of the documentation
that PLSyn creates whenever you try to physically implemen
programmable logic design.

A-2 The Documentation File

out

.

Summar y of
Documentation File
Contents
PLSyn generates a documentation file for the design through
the physical implementation process. This file is called
design_name.doc , by default, and contains the following
information:

• Compiler and optimizer run-time options (switch values)

• Reduced design equations.

• Solutions generated for the design.

• Partitioning criteria.

• Pinout diagrams for the chosen implementation.

• A list of possible devices for each architecture in the
solution list.

• A wire list.

To view the documentation file

1 In PLSyn, from the File menu, select Examine Doc File.

Reduced Design Equations A-3

nal
 to

ou

Example: If you specify a JK flip-
flop as part of the design, the
PLSyn compiler generates
equations for all other flip-flop
types as well. The synthesized
equations are simply logically-
equivalent versions of the flip-
flop you specified.
Reduced Desi gn
Equations
When compiling and optimizing your programmable logic,
PLSyn synthesizes the equations which represent the logic
thereby creating additional alternative equations. The additio
equations give the PLSyn fitter more options when attempting
fit your design. This also means that the .doc file might include
equations in addition to those supplied by you in the design
source file.

Equation Extensions Used in the
.doc File
Table 10-1 lists equation types and the equation extension y
might see in the .doc file.

Table 10-1 Equation Extensions Used in the .doc File

.doc File
Extensio
n

Description Example

.XORL* if y =a (+) b, then y.xorl = a

(left side of XOR operation)

Y.XORL

.XORR* if y =a (+) b, then y.xorr = b

(right side of XOR operation)

Y.XORR

.EQN Combinatorial equation

(no CLOCKED_BY on output,
biput, or node)

A.EQN

.D D flip-flop equation FLOP.D

.J J flip-flop equation FLOP.J

.K K flip-flop equation FLOP.K

.S S flip-flop equation FLOP.S

.R R flip-flop equation FLOP.R

.T T flip-flop equation FLOP.T

A-4 The Documentation File

yn Note PLSyn can always
generate the complemented
(DeMorgan) version of the
equations. But when the
version of an equation is non-
complemented, PLSyn might
not be able to generate it
because of its size.
DeMorgan Equations
In addition to the equations listed in the previous table, PLS
might generate DeMorgan versions of the same equations.
These, too, are candidates for device fitting.

In the .doc file, PLSyn marks the DeMorgan version of an
equation with a tilde (~) after the equation name.

Example

Suppose you have declared equations as follows:

INPUT a, b, oe;
OUTPUT or1 ENABLED_BY oe;
or1 = a + b;

*. The compiler/optimizer may generate an XOR equation,
even if none was specified in the original .dsl file. Exam-
ples include synthesis from T flops, arithmetic operators
.+. and .-., etc.

.CLK clock equation X.CLK = /A

OUTPUT x CLOCKED_BY /a

.RESET reset equation X.RESET = RST

OUTPUT x CLOCKED_BY /a
RESET_BY rst

.PRESET preset equation X.PRESET = PRST

OUTPUT x CLOCKED_BY /a
PRESET_BY prst

.OE OE enabled equation X.OE = OE

OUTPUT x ENABLED_BY oe

.LATCH latched equation X.LATCH = LAT1

OUTPUT X LATCHED_BY
lat1

.CE clock-enabled equation X.CE = CE

Table 10-1 Equation Extensions Used in the .doc File

.doc File
Extensio
n

Description Example

Reduced Design Equations A-5

s:

r

ne.

,
After synthesis, PLSyn writes the .doc file equations as follow

OR1.EQN = A + B;
.OE = OE;
OR1.EQN(~) = /A * /B;
.OE(~) = /OE;

Equation Displa y
Equations can fall into four categories:

By default, the .doc file includes either:

• the version of the equation that was used during fitting, o

• the primary equation version if fitting has not yet been do

Primary Equations used to describe the signal.

Synthesized Equations generated by the compiler/
optimizer.

DeMorgan Complemented equations generated by the
compiler/optimizer.

Fit Form of the equations (primary, synthesized
or the DeMorgan of the two) that PLSyn
actually fits into the device.

A-6 The Documentation File

t

yn

 to

he
Partitionin g Criteria
The Partitioning Criteria section lists the constraints in effec
during the partitioning/fitting process.

Note A warning appears in the .doc file if you updated
the constraints used during partitioning after
PLSyn generated the solutions. This tells you that
the partitioning criteria displayed in the .doc file
might be incorrect.

PLSyn writes the partitioning criteria to the .doc file after
having created the list of possible devices from the available
(.avl) file and the enabled constraints.

Solutions List
The Solutions List section lists the architectures that the PLS
fitter found to fit your programmable logic. This is the same
information that PLSyn displays in the solutions list in the
PLSyn window.

Fuse Map Files
The Fuse Map Files section associates which fuse maps go
which device for a particular solution. You will only see this
section if you ran the Fuse Map Generator command from t
Tools menu.

Pinout Diagrams A-7

ur

the
rs’

le
Pinout Dia grams
The Pinout Diagrams section contains for each device in yo
chosen implementation either:

• a diagram, for a DIP or CDIP package type, or,

• a pinout table, for all other package types.

that shows the device, the pin types (INPUT, OUTPUT,
BIPUT), and an indicator of the signal/pin placement. PLSyn
writes this information to the .doc file after having completed
fitting and partitioning.

Possible Devices List
When PLSyn generates device solutions, the solution list in
PLSyn window contains architecture names, not manufacture
names, for devices. The Possible Devices List section in the
.doc file provides a list of the actual devices that are availab
for a given architecture.

Wire List
The Wire List section lists for your chosen implementation,
which signals to connect to which pins.

Summar y of Files
ses.
B

Appendix Overview
This appendix describes each of the file types that PLSyn u

B-2 Summary of Files

File
Extension

Description

.afb Database contain
for simulations an

.avl Available parts file
to create a custom

.cst Constraint file. A
partitioning constr

.doc Design document
implementation.

.dsl DSL source code
based, the file na
reserved for use b

.edf EDIF netlist conta
logic.

.fb Database contain
implementation d

.j1,.j2, ... Fuse map files, in

.log PLSyn log/error fi
implementation.

.npi PIL file containing
fitting/partitioning.
implementation on
the .pi file.

.pi Physical informat
fitting, and partitio
the .pi file to con

.sch Schematic file.

.slb Symbol library file

.plb Package library fi

.tv Test vectors file.
Files Used b y PLSyn

Source

ing compiled logic equations. Used
d as input to the PLSyn optimizer.

PLSyn compiler

. You can copy plsynlib.avl
 available file for your site.

System-installed plsynlib.avl file

temporary file used to specify the
aints and priorities.

PLSyn

ation file, updated during physical PLSyn

 files. If the design is schematic-
med design_name.dsl is
y PLSyn.

user, schematic-to-DSL translator

ining the design’s programmable Schematics

ing optimized logic equations and
ata.

PLSyn

 JEDEC format. PLSyn fuse maps generator

le, updated during physical PLSyn

 a description of the design’s
 Can be used to repeat the
 subsequent iterations by copying to

PLSyn, after fuse map is generated

ion file containing optimization,
ning statements. You can customize
trol the implementation.

For new designs, a copy of
default .pi, found in the MicroSim
root directory

Schematics

. Schematics

le. Schematics

PSpice/PLogic

AMD MACH Device Tables
e
he
C

Appendix Overview
This appendix contains lookup tables for pin names and fus
commands for AMD MACH device architectures. These are t
notations you can use in your .pi file.

Pin Name Tables on page C-2 lists the pin reference name for
each macrocell in a PAL block.

MACH 1xx and 2xx: Fuse Commands for Driving Outputs on
page C-12 lists the fuse commands you can use to force the
named pin to be driven.

C-2 AMD MACH Device Tables

ell

he
Pin Name Tables
The following tables list the reference name for each macroc
in a PAL block.

To determine the exact name for a pin

Replace the ## characters in the listed Reference Name with t
corresponding two digit Macrocell Number.

MACH 110

MACH 111, 111SP

Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 2-9 MACROCELL_A## 00 - 07

14-21 08 - 15

B 24-31 MACROCELL_B## 00 - 07

36-43 08 - 15

Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 2-9 MACROCELL_A## 00 - 07

14-21 08 - 15

B 24-31 MACROCELL_B## 15 - 08

36-43 07 - 00

Pin Name Tables C-3
MACH 120, 121

MACH 130, 131, 131SP

Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 2-7 MACROCELL_A## 00 - 05

9-14 06-11

B 21-26 MACROCELL_B## 11-06

28-33 05 - 00

C 36-41 MACROCELL_C## 00 - 05

43-48 06-11

D 55-60 MACROCELL_D## 11-06

62-67 05 - 00

Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 3-10 MACROCELL_A## 00 - 07

12-19 08 - 15

B 24-31 MACROCELL_B## 15 - 08

33-40 07- 00

C 45-52 MACROCELL_C## 00 - 07

54-61 08 - 15

D 66-73 MACROCELL_D## 15 - 08

75-82 07- 00

C-4 AMD MACH Device Tables
MACH 210, 211, 211SP

Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 2-9 MACROCELL_A## 00,02,04,
06,08,10,
12,14

01,03,05,
07,09,11,
13,15

B 14-21 MACROCELL_B## 14,12,10,
08,06,04,
02,00

15,13,11,
09,07,05,
03,01

C 21-31 MACROCELL_C## 00,02,04,
06,08,10,
12,14

01,03,05,
07,09,11,
13,15

D 36-43 MACROCELL_D## 14,12,10,
08,06,04,
02,00

15,13,11,
09,07,05,
03,01

Pin Name Tables C-5
MACH 215

Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 2-9 MACROCELL_A## 00,02,04,
06,08,10,
12,14

IN_REG_A## 01,03,05,
07,09,11,
13,15

B 14-21 MACROCELL_B## 14,12,10,
08,06,04,
02,00

IN_REG_B## 15,13,11,
09,07,05,
03,00

C 24-31 MACROCELL_C## 00,02,04,
06,

08,10,12,
14

IN_REG_C## 01,03,05,
07,09,11,
13,15

D 36-43 MACROCELL_D## 14,12,10,
08,06,04,
02,00

IN_REG_D## 15,13,11,
09,07,05,
03,00

C-6 AMD MACH Device Tables
MACH 220, 221, 221SP

Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 2-7 MACROCELL_A## 00,02,04,
06,08,10

01,03,05,
07,09,11

B 9-14 MACROCELL_B## 10,08,06,
04,02,00

11,09,07,
05,03,01

C 21-26 MACROCELL_C## 00,02,04,
06,08,10

01,03,05,
07,09,11

D 28-33 MACROCELL_D## 10,08,06,
04,02,00

11,09,07,
05,03,01

E 36-41 MACROCELL_E## 00,02,04,
06,08,10

01,03,05,
07,09,11

F 43-48 MACROCELL_F## 10,08,06,
04,02,00

11,09,07,
05,03,01

G 55-60 MACROCELL_G## 00,02,04,
06,08,10

01,03,05,
07,09,11

H 62-67 MACROCELL_H## 10,08,06,
04,02,00

11,09,07,
05,03,01

Pin Name Tables C-7
MACH 230, 231

 Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 3-10 MACROCELL_A## 00,02,04,
06,08,10,
12,14

01,03,05,
07,09,11,
13,15

B 12-19 MACROCELL_B## 14,12,10,
08,06,04,
02,00

15,13,11,
09,07,05,
03,01

C 24-31 MACROCELL_C## 00,02,04,
06,08,10,
12,14

01,03,05,
07,09,11,
13,15

D 33-40 MACROCELL_D## 14,12,10,
08,06,04,
02,00

15,13,11,
09,07,05,
03,01

E 45-52 MACROCELL_E## 00,02,04,
06,08,10,
12,14

01,03,05,
07,09,11,
13,15

F 54-61 MACROCELL_F## 14,12,10,
08,06,04,
02,00

15,13,11,
09,07,05,
03,01

G 66-73 MACROCELL_G## 00,02,04,
06,08,10,
12,14

01,03,05,
07,09,11,
13,15

H 75-82 MACROCELL_H## 14,12,10,
08,06,04,
02,00

15,13,11,
09,07,05,
03,01

C-8 AMD MACH Device Tables
MACH 435, 436

 Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

A 3-10 MACROCELL_A## 00 - 15

IN_REG_A## 00 - 07

B 12-19 MACROCELL_B## 00 - 15

IN_REG_B## 07 - 00

C 24-31 MACROCELL_C## 00 - 15

IN_REG_C## 00 - 07

D 33-40 MACROCELL_D## 00 - 15

IN_REG_D## 07 - 00

E 45-52 MACROCELL_E## 00 - 15

IN_REG_E## 00 - 07

F 45-52 MACROCELL_F## 00 - 15

IN_REG_F## 07 - 00

G 66-73 MACROCELL_G## 00 - 15

IN_REG_G## 00 - 07

H 75-82 MACROCELL_H## 00 - 15

IN_REG_H## 07 - 00

Pin Name Tables C-9
MACH 445, 446

Macrocell Number (##)

Bloc
k

Pins Reference Name Output Buried Input

B 5-12 MACROCELL_B## 00 - 15

IN_REG_B## 07 - 00

C 19-26 MACROCELL_C## 00 - 15

IN_REG_C## 00 - 07

D 31-38 MACROCELL_D## 00 - 15

IN_REG_D## 07 - 00

E 43-50 MACROCELL_E## 00 - 15

IN_REG_E## 00 - 07

F 55-62 MACROCELL_F## 00 - 15

IN_REG_F## 07 - 00

G 69-76 MACROCELL_G## 00 - 15

IN_REG_G## 00 - 07

H 81-88 MACROCELL_H## 00 - 15

IN_REG_H## 07 - 00

A 93-100 MACROCELL_G## 00 - 15

IN_REG_G## 00 - 07

C-10 AMD MACH Device Tables
MACH 465, 466

Macrocell Number (##)

Bloc
k

Pins Reference Name
Outpu
t

Burie
d

Input

C 3-10 MACROCELL_C## 00 - 15

IN_REG_C## 07 - 00

D 13-20 MACROCELL_D## 00 - 15

IN_REG_D## 07 - 00

E 32-39 MACROCELL_E## 00 - 15

IN_REG_E## 00 - 07

F 42-49 MACROCELL_F## 00 - 15

IN_REG_F## 00 - 07

G 54-61 MACROCELL_G## 00 - 15

IN_REG_G## 07 - 00

H 64-71 MACROCELL_H## 00 - 15

IN_REG_H## 07 - 00

I 86-93 MACROCELL_I## 00 - 15

IN_REG_I## 00 - 07

J 96-103 MACROCELL_J## 00 - 15

IN_REG_J## 00 - 07

K 107-114 MACROCELL_K## 00 - 15

IN_REG_K## 07 - 00

L 117-124 MACROCELL_L## 00 - 15

IN_REG_L## 07 - 00

M 136-143 MACROCELL_M## 00 - 15

IN_REG_M## 00 - 07

N 146-153 MACROCELL_N## 00 - 15

IN_REG_N## 00 - 07

O 158-165 MACROCELL_O## 00 - 15

IN_REG_O## 07 - 00

P 168-175 MACROCELL_P## 00 - 15

IN_REG_P## 07 - 00

Pin Name Tables C-11
A 190-197 MACROCELL_A## 00 - 15

IN_REG_A## 00 - 07

B 200-207 MACROCELL_B## 00 - 15

IN_REG_B## 00 - 07

Macrocell Number (##)

Bloc
k

Pins Reference Name
Outpu
t

Burie
d

Input

C-12 AMD MACH Device Tables
MACH 1xx and 2xx: Fuse
Commands for Drivin g
Outputs
The following tables give the fuse commands for the .pi file to
force the named pin to be driven.

MACH 110

Table 10-2 MACH 110 OE Fuse Commands

Pin 02: INTACT 6166 ; BLOWN 6167 ;

Pin 03: INTACT 6174 ; BLOWN 6175 ;

Pin 04: INTACT 6182 ; BLOWN 6183 ;

Pin 05: INTACT 6190 ; BLOWN 6191 ;

Pin 06: INTACT 6198 ; BLOWN 6199 ;

Pin 07: INTACT 6206 ; BLOWN 6207 ;

Pin 08: INTACT 6214 ; BLOWN 6215 ;

Pin 09: INTACT 6222 ; BLOWN 6223 ;

Pin 14: INTACT 6230 ; BLOWN 6231 ;

Pin 15: INTACT 6238 ; BLOWN 6239 ;

Pin 16: INTACT 6246 ; BLOWN 6247 ;

Pin 17: INTACT 6254 ; BLOWN 6255 ;

Pin 18: INTACT 6262 ; BLOWN 6263 ;

Pin 19: INTACT 6270 ; BLOWN 6271 ;

Pin 20: INTACT 6278 ; BLOWN 6279 ;

Pin 21: INTACT 6286 ; BLOWN 6287 ;

Pin 24: INTACT 6294 ; BLOWN 6295 ;

Pin 25: INTACT 6302 ; BLOWN 6303 ;

Pin 26: INTACT 6310 ; BLOWN 6311 ;

Pin 27: INTACT 6318 ; BLOWN 6319 ;

Pin 28: INTACT 6326 ; BLOWN 6327 ;

Pin 29: INTACT 6334 ; BLOWN 6335 ;

Pin 30: INTACT 6342 ; BLOWN 6343 ;

Pin 31: INTACT 6350 ; BLOWN 6351 ;

Pin 36: INTACT 6358 ; BLOWN 6359 ;

Pin 37: INTACT 6366 ; BLOWN 6367 ;

MACH 1xx and 2xx: Fuse Commands for Driving Outputs C-13
MACH 120

Pin 38: INTACT 6374 ; BLOWN 6375 ;

Pin 39: INTACT 6382 ; BLOWN 6383 ;

Pin 40: INTACT 6390 ; BLOWN 6391 ;

Pin 41: INTACT 6398 ; BLOWN 6399 ;

Pin 42: INTACT 6406 ; BLOWN 6407 ;

Pin 43: INTACT 6414 ; BLOWN 6415 ;

Table 10-3 MACH 120 OE Fuse Commands

Pin 02: INTACT 2918 ; BLOWN 2919 ;

Pin 03: INTACT 2927 ; BLOWN 2928 ;

Pin 04: INTACT 2936 ; BLOWN 2937 ;

Pin 05: INTACT 2945 ; BLOWN 2946 ;

Pin 06: INTACT 2954 ; BLOWN 2955 ;

Pin 07: INTACT 2963 ; BLOWN 2964 ;

Pin 09: INTACT 2972 ; BLOWN 2973 ;

Pin 10: INTACT 2981 ; BLOWN 2982 ;

Pin 11: INTACT 2990 ; BLOWN 2991 ;

Pin 12: INTACT 2999 ; BLOWN 3000 ;

Pin 13: INTACT 3008 ; BLOWN 3009 ;

Pin 14: INTACT 3017 ; BLOWN 3018 ;

Pin 21: INTACT 6037 ; BLOWN 6038 ;

Pin 22: INTACT 6028 ; BLOWN 6029 ;

Pin 23: INTACT 6019 ; BLOWN 6020 ;

Pin 24: INTACT 6010 ; BLOWN 6011 ;

Pin 25: INTACT 6001 ; BLOWN 6002 ;

Pin 26: INTACT 5992 ; BLOWN 5993 ;

Pin 28: INTACT 5983 ; BLOWN 5984 ;

Pin 29: INTACT 5974 ; BLOWN 5975 ;

Pin 30: INTACT 5965 ; BLOWN 5966 ;

Pin 31: INTACT 5956 ; BLOWN 5957 ;

Pin 32: INTACT 5947 ; BLOWN 5948 ;

Pin 33: INTACT 5938 ; BLOWN 5939 ;

Pin 36: INTACT 8958 ; BLOWN 8959 ;

Pin 37: INTACT 8967 ; BLOWN 8968 ;

Table 10-2 MACH 110 OE Fuse Commands

C-14 AMD MACH Device Tables
MACH 130

Pin 38: INTACT 8976 ; BLOWN 8977 ;

Pin 39: INTACT 8985 ; BLOWN 8986 ;

Pin 40: INTACT 8994 ; BLOWN 8995 ;

Pin 41: INTACT 9003 ; BLOWN 9004 ;

Pin 43: INTACT 9012 ; BLOWN 9013 ;

Pin 44: INTACT 9021 ; BLOWN 9022 ;

Pin 45: INTACT 9030 ; BLOWN 9031 ;

Pin 46: INTACT 9039 ; BLOWN 9040 ;

Pin 47: INTACT 9048 ; BLOWN 9049 ;

Pin 48: INTACT 9057 ; BLOWN 9058 ;

Pin 55: INTACT 12077 ; BLOWN 12078 ;

Pin 56: INTACT 12068 ; BLOWN 12069 ;

Pin 57: INTACT 12059 ; BLOWN 12060 ;

Pin 58: INTACT 12050 ; BLOWN 12051 ;

Pin 59: INTACT 12041 ; BLOWN 12042 ;

Pin 60: INTACT 12032 ; BLOWN 12033 ;

Pin 62: INTACT 12023 ; BLOWN 12024 ;

Pin 63: INTACT 12014 ; BLOWN 12015 ;

Pin 64: INTACT 12005 ; BLOWN 12006 ;

Pin 65: INTACT 11996 ; BLOWN 11997 ;

Pin 66: INTACT 11987 ; BLOWN 11988 ;

Pin 67: INTACT 11978 ; BLOWN 11979 ;

Table 10-4 MACH 130 OE Fuse Commands

Pin 03: INTACT 3750 ; BLOWN 3751 ;

Pin 04: INTACT 3759 ; BLOWN 3760 ;

Pin 05: INTACT 3768 ; BLOWN 3769 ;

Pin 06: INTACT 3777 ; BLOWN 3778 ;

Pin 07: INTACT 3786 ; BLOWN 3787 ;

Pin 08: INTACT 3795 ; BLOWN 3796 ;

Pin 09: INTACT 3804 ; BLOWN 3805 ;

Pin 10: INTACT 3813 ; BLOWN 3814 ;

Pin 12: INTACT 3822 ; BLOWN 3823 ;

Pin 13: INTACT 3831 ; BLOWN 3832 ;

Table 10-3 MACH 120 OE Fuse Commands (continued)

MACH 1xx and 2xx: Fuse Commands for Driving Outputs C-15
Pin 14: INTACT 3840 ; BLOWN 3841 ;

Pin 15: INTACT 3849 ; BLOWN 3850 ;

Pin 16: INTACT 3858 ; BLOWN 3859 ;

Pin 17: INTACT 3867 ; BLOWN 3868 ;

Pin 18: INTACT 3876 ; BLOWN 3877 ;

Pin 19: INTACT 3885 ; BLOWN 3886 ;

Pin 24: INTACT 7773 ; BLOWN 7774 ;

Pin 25: INTACT 7764 ; BLOWN 7765 ;

Pin 26: INTACT 7755 ; BLOWN 7756 ;

Pin 27: INTACT 7746 ; BLOWN 7747 ;

Pin 28: INTACT 7737 ; BLOWN 7738 ;

Pin 29: INTACT 7728 ; BLOWN 7729 ;

Pin 30: INTACT 7719 ; BLOWN 7720 ;

Pin 31: INTACT 7710 ; BLOWN 7711 ;

Pin 33: INTACT 7701 ; BLOWN 7702 ;

Pin 34: INTACT 7692 ; BLOWN 7693 ;

Pin 35: INTACT 7683 ; BLOWN 7684 ;

Pin 36: INTACT 7674 ; BLOWN 7675 ;

Pin 37: INTACT 7665 ; BLOWN 7666 ;

Pin 38: INTACT 7656 ; BLOWN 7657 ;

Pin 39: INTACT 7647 ; BLOWN 7648 ;

Pin 40: INTACT 7638 ; BLOWN 7639 ;

Pin 45: INTACT 11526 ; BLOWN 11527 ;

Pin 46: INTACT 11535 ; BLOWN 11536 ;

Pin 47: INTACT 11544 ; BLOWN 11545 ;

Pin 48: INTACT 11553 ; BLOWN 11554 ;

Pin 49: INTACT 11562 ; BLOWN 11563 ;

Pin 50: INTACT 11571 ; BLOWN 11572 ;

Pin 51: INTACT 11580 ; BLOWN 11581 ;

Pin 52: INTACT 11589 ; BLOWN 11590 ;

Pin 54: INTACT 11598 ; BLOWN 11599 ;

Pin 55: INTACT 11607 ; BLOWN 11608 ;

Pin 56: INTACT 11616 ; BLOWN 11617 ;

Pin 57: INTACT 11625 ; BLOWN 11626 ;

Pin 58: INTACT 11634 ; BLOWN 11635 ;

Pin 59: INTACT 11643 ; BLOWN 11644 ;

Table 10-4 MACH 130 OE Fuse Commands (continued)

C-16 AMD MACH Device Tables
MACH 210

Pin 60: INTACT 11652 ; BLOWN 11653 ;

Pin 61: INTACT 11661 ; BLOWN 11662 ;

Pin 66: INTACT 15549 ; BLOWN 15550 ;

Pin 67: INTACT 15540 ; BLOWN 15541 ;

Pin 68: INTACT 15531 ; BLOWN 15532 ;

Pin 69: INTACT 15522 ; BLOWN 15523 ;

Pin 70: INTACT 15513 ; BLOWN 15514 ;

Pin 71: INTACT 15504 ; BLOWN 15505 ;

Pin 72: INTACT 15495 ; BLOWN 15496 ;

Pin 73: INTACT 15486 ; BLOWN 15487 ;

Pin 75: INTACT 15477 ; BLOWN 15478 ;

Pin 76: INTACT 15468 ; BLOWN 15469 ;

Pin 77: INTACT 15459 ; BLOWN 15460 ;

Pin 78: INTACT 15450 ; BLOWN 15451 ;

Pin 79: INTACT 15441 ; BLOWN 15442 ;

Pin 80: INTACT 15432 ; BLOWN 15433 ;

Pin 81: INTACT 15423 ; BLOWN 15424 ;

Pin 82: INTACT 15414 ; BLOWN 15415 ;

Table 10-5 MACH 210 OE Fuse Commands

Pin 02: INTACT 3086 ; BLOWN 3087 ;

Pin 03: INTACT 3102 ; BLOWN 3103 ;

Pin 04: INTACT 3118 ; BLOWN 3119 ;

Pin 05: INTACT 3134 ; BLOWN 3135 ;

Pin 06: INTACT 3150 ; BLOWN 3151 ;

Pin 07: INTACT 3166 ; BLOWN 3167 ;

Pin 08: INTACT 3182 ; BLOWN 3183 ;

Pin 09: INTACT 3198 ; BLOWN 3199 ;

Pin 14: INTACT 6406 ; BLOWN 6407 ;

Pin 15: INTACT 6390 ; BLOWN 6391 ;

Pin 16: INTACT 6374 ; BLOWN 6375 ;

Pin 17: INTACT 6358 ; BLOWN 6359 ;

Pin 18: INTACT 6342 ; BLOWN 6343 ;

Pin 19: INTACT 6326 ; BLOWN 6327 ;

Table 10-4 MACH 130 OE Fuse Commands (continued)

MACH 1xx and 2xx: Fuse Commands for Driving Outputs C-17
MACH 215

Pin 20: INTACT 6310 ; BLOWN 6311 ;

Pin 21: INTACT 6294 ; BLOWN 6295 ;

Pin 24: INTACT 9502 ; BLOWN 9503 ;

Pin 25: INTACT 9518 ; BLOWN 9519 ;

Pin 26: INTACT 9534 ; BLOWN 9535 ;

Pin 27: INTACT 9550 ; BLOWN 9551 ;

Pin 28: INTACT 9566 ; BLOWN 9567 ;

Pin 29: INTACT 9582 ; BLOWN 9583 ;

Pin 30: INTACT 9598 ; BLOWN 9599 ;

Pin 31: INTACT 9614 ; BLOWN 9615 ;

Pin 36: INTACT 12822 ; BLOWN 12823 ;

Pin 37: INTACT 12806 ; BLOWN 12807 ;

Pin 38: INTACT 12790 ; BLOWN 12791 ;

Pin 39: INTACT 12774 ; BLOWN 12775 ;

Pin 40: INTACT 12758 ; BLOWN 12759 ;

Pin 41: INTACT 12742 ; BLOWN 12743 ;

Pin 42: INTACT 12726 ; BLOWN 12727 ;

Pin 43: INTACT 12710 ; BLOWN 12711 ;

Table 10-6 MACH 215 OE Fuse Commands

Pin 02: BLOWN 88 .. 131 ;

Pin 03: BLOWN 440 .. 483 ;

Pin 04: BLOWN 792 .. 835 ;

Pin 05: BLOWN 1144 .. 1187 ;

Pin 06: BLOWN 1496 .. 1539 ;

Pin 07: BLOWN 1848 .. 1891 ;

Pin 08: BLOWN 2200 .. 2243 ;

Pin 09: BLOWN 2552 .. 2595 ;

Pin 14: BLOWN 5536 .. 5579 ;

Pin 15: BLOWN 5184 .. 5227 ;

Pin 16: BLOWN 4832 .. 4875 ;

Pin 17: BLOWN 4480 .. 4523 ;

Pin 18: BLOWN 4128 .. 4171 ;

Pin 19: BLOWN 3776 .. 3819 ;

Table 10-5 MACH 210 OE Fuse Commands (continued)

C-18 AMD MACH Device Tables
MACH 220

Pin 20: BLOWN 3424 .. 3467 ;

Pin 21: BLOWN 3072 .. 3115 ;

Pin 24: BLOWN 6056 .. 6099 ;

Pin 25: BLOWN 6408 .. 6451 ;

Pin 26: BLOWN 6760 .. 6803 ;

Pin 27: BLOWN 7112 .. 7155 ;

Pin 28: BLOWN 7464 .. 7507 ;

Pin 29: BLOWN 7816 .. 7859 ;

Pin 30: BLOWN 8168 .. 8211 ;

Pin 31: BLOWN 8520 .. 8563 ;

Pin 36: BLOWN 11504 .. 11547 ;

Pin 37: BLOWN 11152 .. 11195 ;

Pin 38: BLOWN 10800 .. 10843 ;

Pin 39: BLOWN 10448 .. 10491 ;

Pin 40: BLOWN 10096 .. 10139 ;

Pin 41: BLOWN 9744 .. 9787 ;

Pin 42: BLOWN 9392 .. 9435 ;

Pin 43: BLOWN 9040 .. 9083 ;

Table 10-7 MACH 220 OE Fuse Commands

Pin 02: INTACT 2814 ; BLOWN 2815 ;

Pin 03: INTACT 2830 ; BLOWN 2831 ;

Pin 04: INTACT 2846 ; BLOWN 2847 ;

Pin 05: INTACT 2862 ; BLOWN 2863 ;

Pin 06: INTACT 2878 ; BLOWN 2879 ;

Pin 07: INTACT 2894 ; BLOWN 2895 ;

Pin 09: INTACT 5798 ; BLOWN 5799 ;

Pin 10: INTACT 5782 ; BLOWN 5783 ;

Pin 11: INTACT 5766 ; BLOWN 5767 ;

Pin 12: INTACT 5750 ; BLOWN 5751 ;

Pin 13: INTACT 5734 ; BLOWN 5735 ;

Pin 14: INTACT 5718 ; BLOWN 5719 ;

Pin 21: INTACT 8622 ; BLOWN 8623 ;

Pin 22: INTACT 8638 ; BLOWN 8639 ;

Table 10-6 MACH 215 OE Fuse Commands (continued)

MACH 1xx and 2xx: Fuse Commands for Driving Outputs C-19
Pin 23: INTACT 8654 ; BLOWN 8655 ;

Pin 24: INTACT 8670 ; BLOWN 8671 ;

Pin 25: INTACT 8686 ; BLOWN 8687 ;

Pin 26: INTACT 8702 ; BLOWN 8703 ;

Pin 28: INTACT 11606 ; BLOWN 11607 ;

Pin 29: INTACT 11590 ; BLOWN 11591 ;

Pin 30: INTACT 11574 ; BLOWN 11575 ;

Pin 31: INTACT 11558 ; BLOWN 11559 ;

Pin 32: INTACT 11542 ; BLOWN 11543 ;

Pin 33: INTACT 11526 ; BLOWN 11527 ;

Pin 36: INTACT 14430 ; BLOWN 14431 ;

Pin 37: INTACT 14446 ; BLOWN 14447 ;

Pin 38: INTACT 14462 ; BLOWN 14463 ;

Pin 39: INTACT 14478 ; BLOWN 14479 ;

Pin 40: INTACT 14494 ; BLOWN 14495 ;

Pin 41: INTACT 14510 ; BLOWN 14511 ;

Pin 43: INTACT 17414 ; BLOWN 17415 ;

Pin 44: INTACT 17398 ; BLOWN 17399 ;

Pin 45: INTACT 17382 ; BLOWN 17383 ;

Pin 46: INTACT 17366 ; BLOWN 17367 ;

Pin 47: INTACT 17350 ; BLOWN 17351 ;

Pin 48: INTACT 17334 ; BLOWN 17335 ;

Pin 55: INTACT 20238 ; BLOWN 20239 ;

Pin 56: INTACT 20254 ; BLOWN 20255 ;

Pin 57: INTACT 20270 ; BLOWN 20271 ;

Pin 58: INTACT 20286 ; BLOWN 20287 ;

Pin 59: INTACT 20302 ; BLOWN 20303 ;

Pin 60: INTACT 20318 ; BLOWN 20319 ;

Pin 62: INTACT 23222 ; BLOWN 23223 ;

Table 10-7 MACH 220 OE Fuse Commands (continued)

C-20 AMD MACH Device Tables
MACH 230

Table 10-8 MACH 230 OE Fuse Commands

Pin 03: INTACT 3646 ; BLOWN 3647 ;

Pin 04: INTACT 3662 ; BLOWN 3663 ;

Pin 05: INTACT 3678 ; BLOWN 3679 ;

Pin 06: INTACT 3694 ; BLOWN 3695 ;

Pin 07: INTACT 3710 ; BLOWN 3711 ;

Pin 08: INTACT 3726 ; BLOWN 3727 ;

Pin 09: INTACT 3742 ; BLOWN 3743 ;

Pin 10: INTACT 3758 ; BLOWN 3759 ;

Pin 12: INTACT 7526 ; BLOWN 7527 ;

Pin 13: INTACT 7510 ; BLOWN 7511 ;

Pin 14: INTACT 7494 ; BLOWN 7495 ;

Pin 15: INTACT 7478 ; BLOWN 7479 ;

Pin 16: INTACT 7462 ; BLOWN 7463 ;

Pin 17: INTACT 7446 ; BLOWN 7447 ;

Pin 18: INTACT 7430 ; BLOWN 7431 ;

Pin 19: INTACT 7414 ; BLOWN 7415 ;

Pin 24: INTACT 11182 ; BLOWN 11183 ;

Pin 25: INTACT 11198 ; BLOWN 11199 ;

Pin 26: INTACT 11214 ; BLOWN 11215 ;

Pin 27: INTACT 11230 ; BLOWN 11231 ;

Pin 28: INTACT 11246 ; BLOWN 11247 ;

Pin 29: INTACT 11262 ; BLOWN 11263 ;

Pin 30: INTACT 11278 ; BLOWN 11279 ;

Pin 31: INTACT 11294 ; BLOWN 11295 ;

Pin 33: INTACT 15062 ; BLOWN 15063 ;

Pin 34: INTACT 15046 ; BLOWN 15047 ;

Pin 35: INTACT 15030 ; BLOWN 15031 ;

Pin 36: INTACT 15014 ; BLOWN 15015 ;

Pin 37: INTACT 14998 ; BLOWN 14999 ;

Pin 38: INTACT 14982 ; BLOWN 14983 ;

Pin 39: INTACT 14966 ; BLOWN 14967 ;

Pin 40: INTACT 14950 ; BLOWN 14951 ;

Pin 45: INTACT 18718 ; BLOWN 18719 ;

Pin 46: INTACT 18734 ; BLOWN 18735 ;

Pin 47: INTACT 18750 ; BLOWN 18751 ;

MACH 1xx and 2xx: Fuse Commands for Driving Outputs C-21
Pin 48: INTACT 18766 ; BLOWN 18767 ;

Pin 49: INTACT 18782 ; BLOWN 18783 ;

Pin 50: INTACT 18798 ; BLOWN 18799 ;

Pin 51: INTACT 18814 ; BLOWN 18815 ;

Pin 52: INTACT 18830 ; BLOWN 18831 ;

Pin 54: INTACT 22598 ; BLOWN 22599 ;

Pin 55: INTACT 22582 ; BLOWN 22583 ;

Pin 56: INTACT 22566 ; BLOWN 22567 ;

Pin 57: INTACT 22550 ; BLOWN 22551 ;

Pin 58: INTACT 22534 ; BLOWN 22535 ;

Pin 59: INTACT 22518 ; BLOWN 22519 ;

Pin 60: INTACT 22502 ; BLOWN 22503 ;

Pin 61: INTACT 22486 ; BLOWN 22487 ;

Pin 66: INTACT 26254 ; BLOWN 26255 ;

Pin 67: INTACT 26270 ; BLOWN 26271 ;

Pin 68: INTACT 26286 ; BLOWN 26287 ;

Pin 69: INTACT 26302 ; BLOWN 26303 ;

Pin 70: INTACT 26318 ; BLOWN 26319 ;

Pin 71: INTACT 26334 ; BLOWN 26335 ;

Pin 72: INTACT 26350 ; BLOWN 26351 ;

Pin 73: INTACT 26366 ; BLOWN 26367 ;

Pin 75: INTACT 30134 ; BLOWN 30135 ;

Pin 76: INTACT 30118 ; BLOWN 30119 ;

Pin 77: INTACT 30102 ; BLOWN 30103 ;

Pin 78: INTACT 30086 ; BLOWN 30087 ;

Pin 79: INTACT 30070 ; BLOWN 30071 ;

Pin 80: INTACT 30054 ; BLOWN 30055 ;

Pin 81: INTACT 30038 ; BLOWN 30039 ;

Pin 82: INTACT 30022 ; BLOWN 30023 ;

Table 10-8 MACH 230 OE Fuse Commands (continued)

Index
Symbols
.afb, B-2
.avl, 5-16, B-2
.cst, B-2
.doc, A-3, B-2

MACH5, 9-21
.dsl, 3-4, B-2
.edf, B-2
.fb, B-2
.lg, B-2
.npi, 5-28, B-2
.pi, B-2
.plb, B-2
.sch, B-2
.slb, B-2
.tv, B-2

A
A/D interface, 4-4
active-low nodes, 3-15
architecture constraint, 5-18
available file, 5-16
Available File text box, 5-20

B
back annotation, 5-28
back annotation (schematic), 5-28
blocks

creating DSL, 3-6

C
changing designs with PLDs, 5-30
Compile Library command, 5-8
Compiler command, 5-7
compiling, 1-3, 5-7, 5-8

command, 5-7
Create Nodes option, 5-9
Output Warnings option, 5-8
Product Term option, 5-9

constants, 3-16
constraints, 1-4

architecture, 5-18
available file, 5-20
current usage, 5-19
device template, 5-18
frequency, 5-19
logic family, 5-18
manufacturer, 5-18

Index-2
number of devices, 5-20
package type, 5-18
propagation delay, 5-19
setting up, 5-18
temperature, 5-18
user-defined, 5-20

converting nodes, 3-15
Create Nodes check box, 5-9
creating

DSL blocks, 3-6
fuse maps, 5-27
PCB netlists, 5-29

current constraint, 5-19

D
defining pin names, 3-6
DeMorgan

equations, A-4
optimization method, 5-11

design flow, 1-2
device

accessing internal points, 7-2
constraints, 5-18
maximum number, 5-20
programming, 1-5
selection, 1-5, 5-26

Device Templates button, 5-19
device templates constraint, 5-18
dig_prim.lib, 3-2
dig_prim.slb, 3-2
directed partitioning

16V8HD, 22VP10, and 16VP10 devices, 7-17
AMD MACH devices, 8-2, 9-5
controlling equation size, 6-10
FIT_AS_OUTPUT property, 6-6
fitting signals together, 6-13
fitting to a single device, 6-16
fitting to multiple devices, 6-17
maintaining pin assignments, 6-15
mixing automatic and directed modes, 6-17
P1800 devices, 7-16
PLD utilization, 6-5
specifying devices, 6-14
specifying footprints, 6-18
synthesis control properties, 6-9

document file
MACH5, 9-21
reduced design equations, A-3

don’t care generation, 5-11
DSL blocks, 3-4

changing the interface, 3-8
creating, 3-6
placing, 3-5
procedures, 3-5

DSL Model Editor, 3-7

E
editing a DSL Model, 3-7
equation

display, A-5
extensions, A-3

exclusive-OR synthesis, 5-12

F
FANOUTS property (MACH5), 9-13
file extensions, B-1
fitting, 1-4

introduction, 5-14
starting, 5-25

FLOAT_NODES property, 8-34
FORCE_INTERNAL_FB property, 8-38
FORCE_LOCAL_FB property (MACH5), 9-11
frequency

constraint, 5-19
priority, 5-24

Fuse Map Generator command, 5-27
fuse maps

creating, 5-27
Fuse Map Generator command, 5-27

G
generic logic symbols, 3-2

H
HI symbol, 3-16
hidden node, 7-2
HIGH property (MACH5), 9-19

I
I/O models, 4-5

Index-3
I/O parameters, 4-5
INCLUDE statement, 3-12
interface nodes

naming & labeling, 3-14
internal nodes, 3-13

J
JEDEC file, 4-6, 6-12, B-2

L
labeling interface nodes, 3-14
library, 5-7, 5-8
LO symbol, 3-16
LOCAL_TOGGLE_FEEDBACK property (MACH5), 9-

14
logic

constants, 3-16
minimization, 5-12
symbols, 3-2

Logic Family button, 5-19
logic family constraints, 5-18
LOW property (MACH5), 9-19
LOW_TRUE port, 3-15

M
MACH_UTILIZATION property (MACH5), 9-16
MACH_ZERO_HOLD_INPUT property, 8-47
Manufacturer button, 5-19
manufacturer constraints, 5-18
markers, 4-11
Max Current Usage text box, 5-19
Max Devices text box, 5-20
Max Frequency text box, 5-19
Max Prop Delay text box, 5-19
MED_HIGH property (MACH5), 9-19
MED_LOW property (MACH5), 9-19

N
naming restrictions, 3-16
Navigate/Push command, 3-6
netlist

PCB, 5-29
node collapsing, 5-12
node naming restrictions, 3-14

nodes
active-low, 3-15

non-programmable logic, 1-3
Number of Pins priority, 5-23

O
optimization, 5-10

command, 5-10
DeMorganization, 5-11
don’t care generation, 5-11
exclusive-OR, 5-12
logic minimization, 5-12
node collapsing, 5-12
register synthesis, 5-11
selecting method, 5-13
XOR synthesis, 5-12

Optimizer command, 5-10
Options command, 5-7, 5-8, 5-9

compiler options
Create Nodes text box, 5-9
Output Warnings checkbox, 5-8
Product Term text box, 5-9

optimizer options
Optimization Method list, 5-13

P
Package Type button, 5-19
package type constraints, 5-18
parameter

Edit Parameter dialog box controls, 5-19, 5-23
partitioning, 1-4

criteria, A-6
introduction, 5-14
starting, 5-25

PCB netlists
creating, 5-29

physical nodes, 3-15
PIL (Physical Implementation Language), 6-2
pin naming, 3-6
pinout

diagrams, A-7
preserving, 8-27

PLDs
change designs with, 5-30
designing with, 1-3, 3-1
simulation, 1-3
symbols, 3-2

Index-4
PLogic, 4-5
PLSyn

design flow, 1-2
product overview, xviii
standard features, xxiii
starting, 5-5

plsynlib.avl, 5-16
Price priority, 5-23
priorities, 1-4, 5-23

frequency, 5-24
number of pins, 5-23
price, 5-23
propagation delay, 5-24
size, 5-24
supply current, 5-24
user-defined, 5-24

Probe markers
using, 4-11

procedures
DSL block, 3-5

product overview, xviii
Product Term text box, 5-9
programmable logic

design methods, 1-2
designing with, 3-1
Interface nodes, 3-14
internal nodes, 3-13
node name restrictions, 3-14
simulation, 4-1

Prop Delay priority, 5-24
propagation delay constraint, 5-19

R
reduced design equations, A-3
register synthesis, 5-11

S
schematic

back-annotation page, 5-28
selecting devices, 5-26
shadow node, 7-3
SIGNATURE property, 8-48
simulation, 1-3

A/D interface, 4-4
setting up and starting, 4-3
test vectors, 4-6
timing, 1-5, 4-6

with programmable logic, 4-1
Size priority, 5-24
SLEW_RATE property (MACH5), 9-20
solutions list, A-6
source code

using existing DSL source, 3-9
starting PLSyn, 5-5
supply current priority, 5-24
symbols

74xx series, 3-3
generic logic, 3-2
PLDs, 1-3, 3-2

T
Temperature button, 5-19
temperature constraints, 5-18
test vectors, 4-6
timing simulations, 1-5, 4-6
Tools menu

Compile Library command, 5-8
Compiler command, 5-7
Fuse Map Generator command, 5-27
Optimizer command, 5-10
Options command, 5-7, 5-8, 5-9
Update Schematic command, 5-28

U
unary node, 7-4
Update Schematic command, 5-28
updating the schematic, 5-28
USE statement, 3-12
User 1 priority, 5-24
User 1 text box, 5-20
User 2 priority, 5-24
User 2 text box, 5-20
using Probe markers, 4-11

W
wire list, A-7

X
XOR synthesis, 5-12

	Contents
	Figures
	Tables
	Before You Begin
	Welcome to MicroSim
	MicroSim PLSyn Overview
	How to Use this Guide
	Typographical Conventions

	Related Documentation
	Online Help

	The PLSyn Features In Your Configuration

	The Programmable Logic Design Process—An Overview
	Chapter Overview
	Steps for Designing Systems with Programmable Logi...
	Design
	Simulate
	Set Constraints and Priorities
	Fit and Partition
	Select Device
	Simulate with Timing
	Program Device

	Primer: How to Define Programmable Logic
	Chapter Overview
	Implementing a 3-to-8 Decoder with Programmable Lo...
	Design Phase: Defining Programmable Logic using Sc...
	Converting 74LS Symbols to Programmable Logic
	Verifying Functionality using Simulation

	Implementation Phase: Fitting and Partitioning the...
	Setting Constraints
	Setting Priorities
	Partitioning and Fitting
	Verifying Timing Behavior using Simulation
	Creating Device Programming Files
	Back Annotating the Schematic

	Using a DSL Block to Define the Programmable Logic...
	Before You Begin
	Loading the Design
	Adding a DSL Block
	Defining DSL Source Code
	Equivalent Ways to Define the Decoder with DSL

	Designing with Programmable Logic
	Chapter Overview
	The Different Ways to Specify Programmable Logic i...
	Using Programmable Logic Symbols
	Generic Logic Symbols
	74xx Series Logic Symbols

	Using DSL Blocks
	What Are DSL Blocks?
	What Are DSL Procedures?
	Creating a DSL Block in Your Schematic
	Using the MicroSim Text Editor to Define DSL�Proce...
	Changing the DSL Block Interface
	Using Existing DSL Source Code
	Structuring DSL Source Files
	Calling DSL Procedures and Functions from within a...

	Understanding Programmable Logic Nodes
	Labeling Nodes
	Creating Active-Low Interface Nodes
	Converting Internal Nodes to Interface Nodes
	Creating Physical Nodes
	Assigning a Logic 0 or 1 to an Input

	Guidelines for Entering Programmable Logic

	Simulating Programmable Logic Designs
	Chapter Overview
	Introduction to Simulating with PLogic or PSpice A...
	Setting Up Simulations
	Displaying the Dialog Box for Simulation Setup
	Defining Simulation Setup Options for Programmable...

	Starting Simulations
	How the Simulator Uses Programmable Logic I/O Mode...
	Simulating with Timing
	Generating Test Vectors
	Enabling Test Vector Generation
	How the Simulator Responds
	Using the “Sample Window” Control
	Example: How the Simulator Creates Test Vectors
	Troubleshooting Test Vector Differences

	Using Probe Markers

	Creating the Physical Implementation
	Chapter Overview
	Overview of the Physical Implementation Process
	If You Want More Control

	Where to Find Status and Design Information
	Activating and Loading PLSyn
	Activating PLSyn
	Loading a Different Design
	The PLSyn Main Window

	Compiling the Logic
	Manually Compiling Logic
	Compiling DSL Libraries
	Responding to Compile-Time Status and Errors
	Controlling Node Generation During Compilation
	Resolving “Out of Memory” Conditions

	Optimizing the Logic Equations
	How the PLSyn Optimizer Synthesizes Logic Equation...
	Choosing the Optimization Method

	Overview of Fitting and Partitioning Logic
	If You Don’t Have the Partitioning Option
	How the PLSyn Fitter Works

	Limiting the PLD Parts Available for Search
	Constraining Devices
	Setting Up User-Defined Constraints
	How PLSyn Calculates Maximum Propagation Delay
	The Default Constraints File

	Prioritizing the Solutions
	Using Constraints and Priorities Together

	Running the PLSyn Fitter and Partitioner
	Selecting Devices
	Creating Fuse Maps
	Including Test Vectors
	The Implementation-Specific Physical Information F...

	Updating the Schematic
	Creating PCB Netlists
	When You Change the Design

	Controlling the Fitting Process Using the .pi File...
	Chapter Overview
	Introduction to the .pi File
	Why Use the .pi File?
	Using the Default .pi File
	Referring to Nodes in Your Design

	Controlling PLD Utilization
	Fitting a Node as an OUTPUT or NODE
	Controlling How Signals Are Fit Together
	Disabling Outputs for Test
	Controlling Synthesis
	Controlling the Size of Equations
	Specifying Devices without Specifying Signals
	Specifying JEDEC File Names
	More Examples Using the .pi File
	Forcing Signals to be Fit Together in the Same Dev...
	Using Specific Devices
	Maintaining Pin Assignments
	Fitting the Design into One Device
	Fitting the Design into Multiple Devices
	Mixing Automatic and Directed Partitioning
	Refitting a Design into the Same Footprint

	PLD Device-Specific Fitting
	Chapter Overview
	Accessing Internal Points in a PLD Device
	The Kinds of Nodes
	Unary Nodes in the P330 and P331

	Fitting Specific Device Architectures
	22V10, 750, and 2500: Handling Synchronous Preset
	P22V10I: Assigning Combinatorial Output During Fee...
	P750B AND P2500B: Controlling Clock Source
	P1800: Controlling Quadrant- Based Architectures
	P16V8HD, P22VP10, and P16VP10: Accessing the Open-...

	MACH 1-4 Device-Specific Fitting
	Chapter Overview
	Designing with MACH Devices
	When You Have Fitting Problems

	Summary of MACH Devices
	Output Enable Functions
	Register Reset/Preset Functions
	Packaging

	Using Standard Clock Functions
	Using Complex Clock Functions
	Clock Limitations

	Implementing Hazard- Free Combinatorial Latches
	Basic Latch Circuit
	Creating a Hazard-Free Latch

	Specifying Reserve Capacity
	Targeting PAL Blocks
	Using Signal Groups
	Using Device Sections

	Constraining the Size of Combinatorial Nodes
	Making Adjustments
	Optimizing MACH 4xx Devices Using MAX_XOR_PTERMS
	A Few Considerations
	Other Optimizing Parameters

	Understanding Pin Naming and Numbering
	Achieving Satisfactory Pinouts
	MACH 2xx, 4xx: Using Input Registers
	Understanding Input Register Pin Names
	MACH 2xx and 4xx Compared
	Input Registration
	Finding Signals Fit as Unary
	Forcing a Function to be Fit as Unary
	Preventing a Function from Being Fit as Unary

	Preserving Pinouts when Refitting
	Plan for Refitting
	Method 1: Creating a Two-Level .pi File
	Method 2: Floating Nodes

	When Fitting into One Device Fails
	Using the “Default” Signal Reference
	Using a Second Device

	Accessing the MACH Internal Feedback Path
	MACH 215, 4xx: Fitting Asynchronous Functions
	PTERM Clock and RESET and PRESET
	More Than One RESET/PRESET Pair per PAL Block

	MACH 4xx: Using XOR T�Equations
	MACH 4xx: Controlling Asynchronous Mode
	MACH 4xx: Controlling T-Flop Synthesis
	Normal Operation
	DFF-Only Fitting
	Using the T-Equation

	MACH 4xx: Controlling Power-On Reset
	What Is a Logical Reset?
	The Nominal Case
	Exception Cases

	MACH 230 and 435: Possible Pin Incompatibility Bet...
	MACH 445 and 465: Configuring for Zero- Hold Time
	MACH 445 and 465: Accessing Signature Bits
	MACH 1xx and 2xx: Driving or Floating Unused Outpu...
	Forcing Outputs Driven
	Forcing Outputs Floating

	The MACH Report File
	Obtaining a Report File
	Contents of the Report File
	Failure Disclaimers
	Summary Statistics
	Device Resource Utilization
	Partitioner Report
	Clock Assignments
	Signal Directory
	Resource Assignment Map

	MACH 5 Device-Specific Fitting
	Chapter Overview
	Comparing the MACH 5 to Other MACH Architectures
	MACH1xx/2xx/3xx/4xx
	MACH5xx

	Using the .pi File to Control MACH 5 Fitting
	Routing in a Segment and Block
	Assigning Pins and Nodes
	Placing a Signal on an Input Register or Latch
	Using Dual Feedback
	Forcing the Feedback Path to be Local
	Specifying Fanout
	Implementing Toggle Register Feedback
	Implementing Dual- Edge Clocking
	Specifying Reserve Capacity
	Constraining the Size of Combinatorial Nodes
	Making Adjustments
	A Few Considerations
	Other Optimizing Parameters

	Controlling Power Levels
	Controlling Slew Rates
	The Document File
	The Report File
	Heading
	Summary Statistics
	Power Resource Utilization
	Device Resource Utilization
	Partition Groups
	Signal Directory
	Fanout Table
	Power Table
	Block Configuration Tables

	ATV5000 Device-Specific Fitting
	Chapter Overview
	Designing with the ATV5000
	Constraining the Size of Combinatorial Nodes
	The Effect of MAX_PTERMS
	The Effect of MAX_SYMBOLS

	Specifying Device Utilization
	Using the Flip-Flop Clock Option
	Enabling Clocking
	Controlling the Clock Source

	Using the I/O Pin Latches
	Identifying Pins and Nodes
	Targeting Quadrants in the ATV5000
	Using the GROUP Construct
	Using the SECTION Construct

	Placing Node Signals on Buried Logic Cells
	Understanding RU Conversion
	Understanding Regionalization
	How PLSyn Does Regionalization
	Signal Regionalization
	PTERM Regionalization

	The Report File
	Obtaining Report File
	Heading
	Failure-to-Partition Disclaimer
	Partitioner Report
	Signal Directory
	Signals Universalized on Sum Term B
	Signals Regionalized on Input Pins
	Function Placement Report
	Input Signal Placement Report
	Failure-to-Fit Disclaimer

	The Documentation File
	Appendix Overview
	Summary of Documentation File Contents
	Reduced Design Equations
	Equation Extensions Used in the .doc File
	DeMorgan Equations
	Equation Display

	Partitioning Criteria
	Solutions List
	Fuse Map Files
	Pinout Diagrams
	Possible Devices List
	Wire List

	Summary of Files
	Appendix Overview
	Files Used by PLSyn

	AMD MACH Device Tables
	Appendix Overview
	Pin Name Tables
	MACH 1xx and 2xx: Fuse Commands for Driving Output...

	Index

