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Abstract—The major task of traditional motion deblurring
methods is to estimate the blur kernel and restore the latent
image. In low-light conditions, the pointolite is likely to produce
saturated light streaks in captured blurred images. The light
streaks are usually double-edged swords — outliers to the
deconvolution, but a cue to kernel estimation. In this paper, we
propose a novel blind motion deblurring method for blurred
images including light streaks. The main idea is to model the
non-linear blur caused by outliers as the Huber’s M-estimation
in blind deconvolution and take the shape of the light streak
as a cue to estimate the blur kernel. Specifically, the optimal
light streak patch is selected automatically according to the
characteristics of light streaks and the blur kernel. This simple yet
effective selection strategy solves the problems of false detection
of candidate light streaks and optimal light streak in existing
methods. Then, the optimal light streak patch is parameterized
as a prior and is combined with other regularizers to estimate
the blur kernel. Compared with the state-of-the-art kernel
estimation methods, the proposed algorithm reduces the influence
of outliers on deconvolution and utilizes more information. Thus,
the restored image is more accurate. Experimental results on both
synthetic and real images demonstrate the high accuracy of our
algorithm.

Index Terms—Blind image deblurring, kernel estimation, M-
estimator, light streak, outlier.

I. INTRODUCTION

IMAGE motion deblurring is highly demanded in various
applications, such as medical analysis, remote sensing, and

computer vision. Motion blur is usually caused by the relative
motion between the scene and the camera, which is modeled
as a convolution process:

I = L⊗ k +N, (1)

where the symbol ⊗ denotes the convolution operator, and I ,
L, k and N represent the blurred image, sharp latent image,
blur kernel, and unknown sensor noise, respectively. The blur
kernel is known as the point spread function (PSF) that reflects
the trajectory of the camera. The key task of image deblurring
is to estimate L from I without specific knowledge of k, and
image deblurring can be considered a deconvolution problem.
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Thus, single image deblurring is a typical ill-posed problem.
Hence, smoothness or sparse hypotheses are always required
to constrain the latent image and the blur kernel so as to make
the problem well-posed.

Due to camera motion in the image capture process, the
high-intensity pointolite in low-light conditions, or reflected
lights in both low-light and normal illumination conditions
often produce several light streaks. When the dynamic range
of the scene is higher than that of the camera, the captured
intensities are clipped into the dynamic range of a camera,
i.e., the maximum or minimum intensity of the dynamic range.
Thus, the high-intensity light streaks are prone to be limited
by saturation. In this situation, the linear blur model (1)
is violated, and severe ringing artifacts are generated even
when the blur kernel is known or well-estimated. Hence, the
saturated pixels are outliers for the image deblurring problem.
Several methods [1]–[5] have been proposed to effectively
address the problem in the process of non-blind deconvolution.
However, they ignore the removal of adverse effects of outliers
in the process of kernel estimation. Moreover, the light streaks
usually have strong edges that violate the edge map used in the
kernel estimation process. Hence, motion deblurring of images
including saturated light streaks is much more challenging.
Furthermore, low-light images usually suffer from low contrast
and heavy noise, and therefore, a great number of salient-edge-
based methods [6]–[9] are likely to fail on low-light images.

Although saturated light streaks create issues in image
deblurring, they provide useful information for blur kernel
estimation. The most significant is that the light streaks
directly reflect the motion trajectory of the camera. Hence, the
blur kernel should have a similar shape to the light streaks.

a) Prior art: Motion deblurring has attracted consid-
erable attention and achieved significant progress in recent
years. A variety of approaches [8]–[15] have been proposed to
solve the motion blur problem. The success of most existing
algorithms can be attributed to the use of a wide range of
priors. These constraints are used to avoid local minima, dense
kernel, and visual artifacts in the restored image. Fergus et al.
[11] approximated the full posterior distribution and adopted
the ensemble learning method to solve the blur kernel and
latent image. Xue and Blu [16], [17] proposed a SURE-based
criterion to estimate the blur kernel without relying on edge
information. However, these effective methods still cannot
effectively handle images that contain outliers.

Another group of methods are the deep neural network
(DNN)-based methods [18]–[28]. A number of methods es-
timate the blur kernel by DNN and get the final latent image
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by non-blind deconvolution. The end-to-end methods learn
the latent image from the blurred image by DNN. Li et al.
[20] formulated a data-driven discriminative prior to a binary
classifier using a deep convolutional neural network. Nimisha
et al. [19] proposed a generative adversarial network (GAN)-
based unsupervised training deblurring method. However, we
have not found any attemps to deal with blurred images
including saturated outliers by utilizing DNN. In general,
the performance of DNN-based methods is closely associated
with the training data. Although most DNN-based methods
achieved good performance on synthetic datasets, their per-
formance severely decreased on real-scene images.

In recent years, there have been limited studies using light
streaks for motion deblurring. Hua and Low [29] used point
light streaks in the blurred image to directly estimate the
blur kernel. However, the light streak region was selected
manually, which relied on the user’s experience and might
not be the optimal region. Liu et al. [30] utilized light streak
information to refine the shape of the blur kernel. Hu et
al. [3], [31] detected the light streak patch automatically
and combined the light streak with other image structures to
estimate the blur kernel. They set thresholds on maximum
image intensity to detect a set of light streaks and discard
the patches that contained too many high-intensity pixels.
Nevertheless, improper thresholds led to missing detection and
false detection.

In terms of deconvolution with outliers, many approaches
have been developed in recent years. In practice, many popular
methods [32], [33] usually produce severe ringing artifacts
even when the blur kernel is known or well-estimated. To
suppress ringing artifacts, several non-blind deconvolution
methods have been developed. Whyte et al. [1] improved the
Richardson-Lucy algorithm to address saturated pixels. Cho et
al. [2] employed an expectation-maximization (EM) method to
iteratively refine the outlier classification and the latent image.
In terms of blind deconvolution, Hu et al. [3], [31] introduced
a deconvolution algorithm that combined the advantages of
the above two methods to prevent ringing artifacts. Liu et
al. [34] detected saturated regions and used non-saturated
regions in multi-scale deconvolution to refine the kernel. Pan
et al. [4] exploited reliable edges and removed outliers in the
intermediate latent images. These methods relied on saturated
region detection. It failed in the case of false detection. Dong
et al. [5] introduced a new data fidelity term in the kernel
estimation to reduce the effect of the outliers. It often failed
in the case of daylight blurred images with saturated sunshine
or reflect light.

b) Contributions and outline: The major contribution of
this paper is to propose an algorithm to eliminate the blur
from a single image including saturated light streaks by means
of an M-estimator and the light streak information. The light
streaks in a blurred image are usually double-edged swords.
On one hand, they provide a robust prior to kernel estimation.
On the other hand, they are outliers to the deconvolution. In
the proposed algorithm, Huber’s M-estimator is adopted as the
optimizing function to suppress the influence of outliers, and
a selected optimal light streak is used to preserve the shape
of the blur kernel. This algorithm is robust to outliers in the

process of blind deconvolution. Moreover, it makes full use of
light streak information to estimate the blur kernel. Compared
with the state-of-the-art algorithms, the salient edge extraction
method and the optimal light streak selection method in this
paper are much simpler, but they achieve comparable results.
Note that the proposed method is not specifically designed
for low-light images, and thus, can also be applied to normal
illumination images.

The rest of the paper is organized as follows. Section II
introduces the framework of the proposed algorithm and the
theoretical basis of Huber’s M-estimator. The iterative estima-
tions of the latent image and blur kernel are then introduced in
Section III. Next, we describe the proposed algorithm of kernel
estimation in detail in Section IV. Experimental results are
discussed in Section V, and Section VI concludes the paper.

II. ITERATIVE FRAMEWORK USING ROBUST M-ESTIMATOR

Currently, the most widely used optimization function in
deblurring methods is the least-squares (LS) estimator. How-
ever, LS estimators are sensitive to outliers. Hence, we replace
the squared residuals by a robust estimator – the Huber’s
M-estimator that has a greater resistance to outliers. M-
estimators are generalizations of the classical maximum like-
lihood estimates and have been used in denoising [35], [36],
image registration [37], [38] and geodesy [39]–[41]. In recent
decades, many M-estimators have been proposed. Among
them, Huber’s M-estimator yields good performance in terms
of fine statistical properties and relatively low computational
cost.

In this section, a framework of Huber’s M-estimator corre-
lation coefficient-based image deblurring is introduced. Fig. 1
shows the framework of the proposed deblurring method. The
proposed algorithm is iterated in a coarse-to-fine manner, and
the default number of iterations is 5.

Fig. 1. Framework of the proposed method.

A. Huber’s M-estimator

Huber’s M-estimator is based on the principles of robust
statistics. Huber’s function is a parabola around zero and
increases linearly at a given level |x| > t. Huber’s M-estimator
attempts to obtain the best of both the least-square estimator
in which it is easy to find the minimum, and the absolute
deviation estimator that is more robust, which helps restrict the
influence of outliers. The ρ-function for Huber’s M-estimator
is given as follows:



SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA 3

ρ(x) =


x2

2
if |x| < t

t(|x| − t

2
) if |x| ≥ t

(2)

where t is a positive tuning threshold. The function ρ(·) is a
symmetric positive definite function with a unique minimum
at zero and is chosen to increase slower than quadratically.

The influence function ψ = d ρ(x)
d x describes the sensitivity

of the overall estimate on the data with the residual x. For a
robust estimator, the influence of any single data point does
not introduce any significant error. This influence function is a
mixed l2 and l1 minimization problem that penalizes the small
and high residuals differently. This makes it less sensitive to
outliers. The influence function for Huber’s M-estimator is
given below:

ψ(x) =

{
x if |x| < t

tsgn(x) if |x| ≥ t
(3)

Using this estimator, an asymptotic efficiency of 95% on the
standard normal distribution is obtained with the tuning con-
stant t = 1.345σ, where σ is the estimated standard deviation
of errors. For a blurred image including saturated light streaks,
the residuals of saturated light streaks are always larger than
t. Thus, the saturated pixels are identified automatically, and
the large residuals are substituted by the constant t.

The nature of the ρ-function and the influence function ψ
defined in the above equations are shown in Fig. 2 (a) and
(b), and those of the least-squares function are shown in Fig.
2 (c) and (d). Fig. 2 (d) shows that the correspondence of the
derivation of the least-squares function increases as the resid-
ual becomes larger. However, the correspondence of ψ(x)-
function stops when the residual is larger than a threshold.
Hence, Huber’s M-estimator is more robust to outliers. From
the comparison, we can find the advantage of Huber’s M-
estimator over the least-squares function.

(a) Huber’s M-estimator: ρ-function (b) Huber’s M-estimator: ψ-function

(c) Least-squares function (d) Derivation of the least-squares function

Fig. 2. The diagrams show the comparison of Huber’s M-estimator and the
least squares function and the corresponding influence functions.

B. Image Deblurring using Huber’s M-estimator

For the deblurring problem, we define the residual vector
as

x = L⊗ k − I. (4)

The kernel is estimated by combining the light streak
information with other priors, and using Huber’s M-estimator
as the data fidelity, thus the objective function becomes

EL,k = ρ(x) + ηRL(L) + βRk(k), (5)

where RL(L) and Rk(k) are the priors on the latent images
and the kernel, η and β are the corresponding weights. We
utilize the hyper-Laplacian term to constrain the latent image,
i.e. RL(L) = |∇L|α,∇L = (∂xL, ∂yL). In terms of the kernel
prior, we combine the kernel shape and l2 regularization to
regularize the kernel, i.e. Rk(k) = β‖k0 ◦ k‖22. The symbol ◦
denotes the Hadamard product. And k0 is a 2D binary mask
matrix, in which the element is 0 if it belongs to the light
streak; otherwise, it is 1. This mask restrains the shape of the
kernel.

To solve the ill-posed deblurring problem, we iteratively
estimate the latent image L and the blur kernel k. That is to
optimize the following objective functions:

EL = ρ(L⊗ k − I) + η|∇L|α (6)

Ek = ρ(L⊗ k − I) + β‖k0 ◦ k‖22. (7)

The details of optimization and light streak selection are shown
in Section III and Section IV.

From function (2) we know that the data fidelity term
ρ(x) is a mixed l2 and l1 minimization problem. Instead of
optimizing the Huber’s M-estimator-based objective function
directly, a weighted least-squares estimator is used to replace
ρ(x) [42], [43]. Define the weight function w(x) = ψ(x)

x ,
hence, different weights are assigned to different points. The
nature of the weight function is shown in Fig. 3 (a). We
can find that a small weight w(xi) = ψ(xi)

xi
is assigned to

a large residual so as to prevent the influence of outliers. In
the deblurring problem, the saturated light streaks have large
residuals, thus the corresponding weights are small. Hence, the
influence of light streaks on the deconvolution is waning. In
terms of the least squares estimator, the weights are the same
for all the points. Hence, the weighted least-squares estimator
outperforms the least squares estimator.

(a) Weight function of Huber’s M-estimator (b) Weight function of the least-squares estimator

Fig. 3. The diagrams show the comparison of the weight functions of Huber’s
M-estimator and the least-squares estimator.
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Fig. 4 shows the comparison of results using the least-
squares estimator and Huber’s estimator. In terms of the
daylight partially saturated blurred image, the light streak is
usually caused by reflection. In this comparison, the settings
are all the same except for the optimization functions. The se-
vere ringing artifacts and the inaccurate kernel in (b) illustrate
that the least-squares estimator is sensitive to the saturated
pixels (the reflective area on the refrigerator handle). In (c),
the estimated kernel has a very similar shape to that of the
light streak. Hence, Huber’s estimator is a more appropriate
optimization function.

(a) Blurred image (b) Least squares estimator (c) Huber’s M-estimator

Fig. 4. (a) is the blurred image, (b) and (c) are the results of using the
least squares estimator and Huber’s estimator as the optimization function,
respectively. In (a), the selected optimal light streak patch is shown at the
top-left corner. In (b) and (c), the estimated kernel is shown at the top-left
corner.

III. LATENT IMAGE ESTIMATION

As introduced in Section II, the deblurring problem is
addressed by iteratively estimating the latent image and the
blur kernel. When k is fixed, L is estimated by minimizing
the energy function (6). In general, α is set to 0.5 to 0.8 so as
to well model the distribution of gradients in natural scenes
[44]. In this paper, α is set to 0.6.

The half-quadratic penalty method [45] is used to solve
the highly non-convex function. We introduce an auxiliary
variable u to substitute ∇L and change (6) to the following
optimization problem:

EL = ρ(L⊗ k − I) + η|u|α + η1‖∇L− u‖22, (8)

where η1 is a weight, and when it is close to ∞, the solution
of (8) converges to that of (6). We solve (8) by iteratively
updating u and L. By fixing all the variables except u, Eq (8)
is simplified to

Eu = η|u|α + η1‖∇L− u‖22. (9)

The Newton-Paphson method is adopted to find u.
Then, we fix u from the previous iteration, and L can be

optimized by minimizing:

EL = ρ(L⊗ k − I) + η1‖∇L− u‖22, (10)

where the iteratively reweighted least-squares (IRLS) method
[46] with the weight function w(x) is utilized to find L [42],
[43]. Iterating the above two steps twenty times is sufficient
to obtain a satisfactory latent image.

IV. KERNEL ESTIMATION WITH LIGHT STREAKS

Kernel estimation is the most pivotal step in the image de-
blurring process because a high quality latent image introduced
in Section III relies on an accurate blur kernel. In this section,
we use the light streak information as a cue to estimate the
blur kernel.

The blur kernel can be separated into trajectory (shape)
and intensity. A light streak is formed by the movement of a
small group of high-intensity pixels and represents the motion
trajectory of the camera. Therefore, we can obtain the shape
information of the blur kernel from the selected light streaks.
The kernel can be estimated by combining the light streak
with other regulations.

A. Salient Edge Extraction

Edge information violates kernel estimation when the scale
of an object is smaller than that of the blur kernel, while
effective salient edges can avoid the delta kernel and obtain
an accurate blur kernel. Therefore, we remove tiny edges from
∇L and retain the salient edges ∇S for kernel estimation.
The salient edges are extracted as the 95% largest values
of gradients, and the 95% threshold is chosen based on
numerous experiments. This salient edge selection method
has a similar performance to the popular edge extraction
method [7], [8], [13], but it is much simpler. The saturated
light streaks always violate the edge map because they have
very strong boundaries. Whereas, a reliable edge map should
only contains the salient edges of objects in a scene. The
unreliable salient edge map further leads to an inaccurate blur
kernel. However, the proposed method addresses this problem
effectively by utilizing M-estimators. As analysis in Section
II.B, the saturated light streaks are identified by Huber’s M-
estimator and are given small weights in the estimation.

B. Light Streaks Selection

In the proposed method, the optimal light streak selection
plays a vital role in kernel estimation. However, an image
may contain many light streaks, and the selection of the
optimal light streak is also a challenging problem. Hua and
Low [29] manually selected the light streak, which relied on
the users’ experience. Hu et al. [3] automatically detected the
light streak patch. However, their algorithm is sensitive to the
selected light streak, and the false selection leads to unreliable
results. Different from the priority of unsaturated light streak
in the process of the best patch detection described in [3], the
proposed method is robust to both unsaturated and saturated
light streaks, and it has been demonstrated in the later analysis
and experiments.

Based on the observations, we find that a reliable light streak
patch always possesses the following characteristics:

(1) the light streaks may not have to be saturated, as long
as their intensities are much higher than those of their
neighbors;

(2) there are salient boundaries between light streaks and
other areas;

(3) the light streak should be located at the centre of the
patch;
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(a) Blurred image (b) Intensity coefficient map

(c) Mask map (d) The optimal patch

Fig. 5. An example of optimal patch selection.

(4) the light streaks should have a sparse distribution; in
other words, the candidate light streaks are very thin;

(5) each candidate patch contains one and only one obvious
bright light streak;

(6) the shape of the light streak is similar to that of most
candidate light streaks.

Fig. 6. The optimal light streak selection. The light streaks in red and cyan
rectangles are the selected candidate light streaks. The light streak in the cyan
rectangle is the selected optimal one.

First, several candidate light streaks are selected automati-
cally from the input blurred image according to the character-
istics (1) to (4). Then the optimal light streak is selected from
the candidate light streaks according to the characteristics (5)
and (6). An example of optimal light streak selection process
is shown in Fig. 5. According to the abovementioned features
(1) and (2), we compute the intensity coefficient map of the
input image:

c =
max(I)

Ir + Ig + Ib
, (11)

where I is the blurred images, Ir, Ig and Ib indicate R, G
and B channels, respectively. The intensity coefficient map
is shown in Fig. 5 (b). Then, the pixels of the 3% smallest
values of c are set to 1, and the others are set to 0. This

mask map is shown in Fig. 5 (c). After that, several patches
containing light streaks are selected from this mask map, and
the light streak is adjusted to the centre of the patch to satisfy
the characteristic of (3). According to the characteristic (4),
we compute the sparsity of each patch and choose patches
with smaller sparsities. Our strategy is to calculate the ratio
between the number of pixels larger than 0.8 and the total
number in the patch. The smaller the ratio is, the sparser the
patch is. Afterwards, some patches containing a large light
source or multiple light streaks are removed. According to
characteristics (5) and (6), we compute the SSIM between
one patch and the other patches, and the patch with the
largest summation of SSIM values is regarded as the optimal
patch. The final selected optimal light streak patch is shown
in Fig. 5 (d).

The description of the optimal light streak selected from the
candidate light streaks is shown in Fig. 6. The light streaks in
red and cyan rectangles are the selected candidate light streaks.
Because of the limited space, we just show the mask maps of
eight typical candidate light streaks for analysis. According
to features (1), (2) and (3), a number of patches containing
high intensity pixels are selected, which are surrounded by
yellow, red and cyan rectangles. By computing the sparsity
of each patch according to the characteristic (4), patches in
yellow rectangles are excluded from the candidate patches. At
last, we choose the patch with the largest summation of SSIM
values from all the candidate patches as the optimal light streak
patch, which is in the cyan rectangle.

Additionally, note that if there is no detected optimal light
streak in the input blurred image, we set the selected patch as
an all-ones matrix. This situation often occurs under normal
lighting conditions.

C. Kernel Estimation With Shape Prior

We use the optimal light streak to guide the kernel shape and
refine the estimation of the kernel. After selecting the optimal
light streak patch, the patch is converted to a four-pixel-
width binary trajectory by skeletonization and morphology
processing. This process is shown in Fig. 7. Then, the binary
map is inverted and denoted by k0. Thus, the element in k0
equals 0 if its corresponding pixel belongs to the trajectory,
and equals 1 otherwise.

We then combine the Gaussian regularizer with the shape
prior to restraining the kernel shape and guaranteeing the
continuity of the kernel. The salient edges ∇S extracted from
the intermediate latent image obtained in the preceding step
described in Section III is used to estimate the kernel by
minimizing the energy function:

Ek = ρ(∇S ⊗ k −∇I) + β‖k0 ◦ k‖22
s.t. k(i) ≥ 0,

∑
i

k(i) = 1. (12)

The blur kernel is obtained by optimizing the convex function
(12). Under normal lighting conditions, k0 is an all-ones
matrix. In this case, (12) becomes an objective function which
has been used in many state-of-the-art blur kernel estimation
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Fig. 7. The pipeline of kernel estimation.

methods. Hence, (12) shows the generality of the proposed
algorithm.

Fig. 8 shows the comparison of the results with and without
the light streak shape prior in kernel estimation. We can see
that the kernel in (c) has a similar shape to the light streak;
however, the kernel in (b) is a delta kernel. The deblurred
image in (c) is much clearer than that in (b). The comparison
demonstrates that the shape prior plays a significant role in
kernel estimation.

(a) Blurred image (b) Without the shape prior (c) With the shape prior

Fig. 8. The comparison of the results with and without the light streak shape
prior. The estimated kernel is shown at the top-left corner.

Fig. 9 illustrates different deblurred results with different
light streaks. We find that different light streaks lead to
different deblurred images. The automatic selected light streak
patch is patch 1. We select three other patches manually and
estimate the kernels and the deblurred results. The four patches
have the same size to avoid the influence of the kernel size.
From the deblurred results shown in Fig. 9, it can be found that
the deblurred result with the automatically selected patch is of
the highest quality, and the shape of the estimated kernel is the
most similar to that of the light streaks. The results with patch
2 and patch 4 are also good enough for practical applications.
Hence, the proposed method is robust to light streak patch
selection; that is, more than one light streak patch for the
proposed kernel estimation method may be appropriate. In
terms of patch 3, the thick light streak leads to severe ringing
artifacts in the deblurred result. However, this condition is
easily excluded by our light streak selection strategy.

V. EXPERIMENTAL RESULTS

A. Experimental setting

Image deblurring benefits a number of real-world appli-
cations. In this section, to verify our algorithm, extensive

experiments are performed on both synthetic datasets and real
images with the proposed method.

We compare our method with several existing state-of-the-
art deblurring methods. In terms of the comparison on low-
light images, we mainly consider two low-light deblurring
methods, including a blind deblurring method that handles
saturated pixels and non-Gaussian noise [4], and a low-light
image deblurring method that depends on the light streak
[3]. Furthermore, we also consider five general deblurring
methods that are not designed specifically for light streak
images, including a method that relies on salient structures
for kernel estimation [47], a kernel refinement method via
iterative support detection [7], a deblurring method using L0

sparse expression [9], a blind deconvolution method using
a normalized sparsity regularization term, which gives the
lowest cost for the true sharp image [48], and a text deblurring
method using L0 regularized intensity and gradient prior [6].
In addition, we consider five DNN-based methods: a blind
image deblurring method based on a data-driven discriminative
prior [20], a blind image deblurring method that utilizes a data-
driven approach to learn effective data fitting functions from a
large set of motion-blurred images with the associated ground
truth blur kernels [23], a method learns a deep convolutional
neural network for extracting sharp edges from blurred im-
ages [18], a method that proposes a Scale-recurrent Network
(SRN-DeblurNet) for multi-scale image deblurring [28], and
a method that incorporates gyroscope measurements into a
convolutional neural network [27].

To be fair, not only do we run the algorithms under
their default configuration, but we also check whether tuning
some of their parameters (e.g., number of iterations, kernel
size) results in significant accuracy improvements–and if so,
show these results instead. In terms of DNN-based methods,
we utilize their pre-trained networks. Since the DNN-based
methods rely on the training data, their performance may
improve if they are re-trained by images including saturated
light streaks.

In this section, we illustrate the effectiveness of the proposed
algorithm from three aspects. First, we test the accuracy
of light streak selection on a publicly available dataset [3].
Second, our algorithm is performed on two synthetic datasets,
including a dataset consists of low-light images with saturated
light streaks [3], and a dataset consists of day-light motion
blurred images without saturated regions [49]. Third, we test
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(a) (b) (c) (d) (e)

Fig. 9. The diagrams show the deblurred results with four different light streak patches. (a) is the blurred image. The four patches are selected manually, and
they have the same size. They are marked with red rectangles and are numbered from 1 to 4. (b), (c), (d), and (e) are the deblurred results that correspond
to patches 1, 2, 3, and 4, respectively. The estimated blur kernels are shown at the top-left corner in images (b), (c), (d), (e).

our algorithm on several real images taken from some modern
works or taken by our own smartphone cameras. In addition,
we show the comparing results of our algorithm and the state-
of-the-art algorithms.

B. Accuracy of light streak selection

In general, accurate light streak selection improves the
accuracy of kernel estimation. We tested the accuracy of
the light streak selection method on Hu’s dataset [3]. This
synthetic dataset of uniform blurred images is created for
quantitative evaluation. They captured 11 clear low-light im-
ages and blurred each image by 14 different blur kernels firstly,
and then added Gaussian noise with 1 percent variance. The
whole set consists of 154 synthetic blurred images. We apply
our light streak selection method to all images and examine
the accuracy of the detected kernel shapes visually. In this
experiment, we set the kernels as 35 × 35-pixel patches by
default. From the analysis of Section IV-B and Fig. 9, we know
our method has a great tolerance to the selected light streak.
So we judge the selection visually. As long as the shape of the
extracted skeleton from the selected light streak is the same
as that of the ground truth kernel, we consider the light streak
selection is correct. We find that our method is successful
in 146 images; thus, we achieve an accuracy of 95%. Fig.
10 shows some optimal light streak selection results of our
method in some examples. The selected patches match the
existing described in Section IV-B. Moreover, their shapes are
the same as those of the ground truth kernels.
C. Objective evaluation on synthetic dataset

In terms of low light images with light streaks, the proposed
algorithm handles saturated pixels in deconvolution effectively
and take the light streak as a cue to estimate kernel. Even
though for daytime images without light streaks, the proposed
algorithm achieves high-quality performance. In this part, we
run our algorithm on two publicly available datasets [3] and
[49].

First, we test our deblurring method on the low-light image
dataset [3] and compare it with ten deblurring approaches
[3], [4], [6]–[9], [18], [23], [47], [48]. Each image in the

Fig. 10. The diagrams show several examples of our optimal light streak
selection results on Hu’s dataset [31].

dataset contains several saturated light streaks. We compute the
average kernel similarity (KS) [50] of each estimated kernel,
and the results are shown in Tab. I. The kernel similarities
of methods [3], [7]–[9], [48] come from [3]. The comparison
results of one example from this dataset are shown in Fig. 11.
From the results, we find that [7]–[9], [47], [48] obtain delta
kernels. The kernel similarities of [3], [4] are close to that of
ours, but the restored latent images of [4] suffers from severe
ringing artifacts around the saturated regions. And our result
illustrates clearer details than that of [3].

To test the generality of the proposed algorithm, we run
our algorithm on a publicly available dataset [49]. It contains
40 sharp images of various scenes, each blurred synthetically
with two different kernels and added Gaussian noise of three
different levels (σ = 0, 0.01, 0.02). These images contain
different numbers of structural edges. Thus, various levels
of deblurring difficulties exist for the methods under testing,
especially those that rely on salient edge selection. Because
most state-of-the-art methods do not handle noisy images
specifically, we only use the images with no additional noise
for testing. Hence, in our experiment, the number of test
blurred images is 80 in total. For the objective evaluation, we
adopt the no-reference quality assessment method introduced
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TABLE I
THE KERNEL SIMILARITIES OF DIFFERENT METHODS PERFORMED ON THE DATASET [3]

[3] [8] [7] [9] [6] [47] [48] [4] [23] [18] Our

KS 0.7069 0.5323 0.5185 0.5312 0.5419 0.5345 0.5449 0.7346 0.5295 0.4731 0.7965

(a) Blurred image (b) Hu et al. [3] (c) Cho and Lee [8] (d) Xu and Jia [7]

(e) Xu et al. [9] (f) Pan et al. [6] (g) Xu et al. [47] (h) Krishnan et al. [48]

(i) Pan et al. [4] (j) Pan et al. [23] (k) Xu et al. [18] (l) Our

Fig. 11. Comparison with state-of-the-art methods on a synthetic example from the dataset of [3]. The kernel similarities of restored images (b)-(l) are 0.8181,
0.3204, 0.3503, 0.3530, 0.6333, 0.5467, 0.4932, 0.8456, 0.5030, 0.3913 and 0.8663, respectively.

in [49] to quantitatively compare our scores against [4], [6],
[7], [9], [18], [23], [28], [47], [48] and [27]. Since the method
[3] relies heavily on the light streak, it fails on images without
the light streak. Hence, we do not compare this method on this
dataset.

When adopting the quality evaluation method, all the scores
are negative values, and a larger score value means higher
quality. For example, the scores of image A and image B
are -6 and -8, respectively, which means A has higher quality
than B. The average quality scores of different methods are
illustrated in Tab. II. We can see that the proposed method
performs the best.

Fig. 12 provides one example from the test dataset. Because
of the limited space, we only show the best 10 results. The
restored images of [27] always suffer from severe ringing
artifacts. As shown, the results with other methods, contain
various levels of visual artifacts, while the results of [4] and
our method are the clearest with richer details and fewer
artifacts. Moreover, our result gets the highest score.

D. Subjective evaluation on real images

To demonstrate the practicality of the proposed algorithm,
we test our algorithm on several real images and compare it

with other competitive methods. These images in this dataset
are all blurred images captured by camera phones or taken
from other works [1], [2], [4]. The blur is mainly caused
by camera shake. Some images are taken under low-light
conditions with lamplight, and some images are taken under
daylight conditions. Light streaks appear on these images.

Three examples shown in Fig. 13, Fig. 14 and Fig. 15
illustrate that our method outperforms the other comparative
state-of-the-art methods. In each image, the estimated kernel
is shown at the top-left corner. However, we cannot obtain the
estimated blur kernels of [28], so we do not show them in
the figures. In Fig. 13, only [4] and [23] obtain comparable
restoration results with ours, but there are ringing artifacts
around the saturated areas. In Fig. 14, the shape of the blur ker-
nels estimated by these methods except [6], [23], [4] and ours
are unreliable. The zoom-in patches located at the top-right
corners show that only the results of [4], [28] and our method
are clear enough to see the man’s appearance. However, [4]
suffers from more heavy noise and ringing artifacts than those
of ours. There are extra artifacts are produced in several areas
(the top-left corner and the bottom-right corner) of output of
the [28]. In terms of Fig. 15, all images contain light streaks,
which are the lamplights, sunshine or reflected light. We find
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TABLE II
QUANTITATIVE COMPARISONS WITH 10 STATE-OF-THE-ART DEBLURRING METHODS ON THE DATASET [49]

[7] [9] [6] [47] [48] [4] [28] [23] [18] [27] Our

Score 1 -9.58 -9.27 -9.62 -10.40 -11.76 -8.45 -11.13 -10.16 -9.79 -12.90 -8.03
Score 2 -9.03 -8.98 -8.64 -9.64 -9.80 -7.87 -10.14 -9.21 -8.20 -11.03 -7.51

(1) The row “Score 1” shows the average scores of results from images blurred with kernel 1. (2) The row “Score 2” shows the average scores of results
from images blurred with kernel 2. (3) A larger score value means higher quality. (4) Bold values indicate the best results.

(a) Blurred image (b) The ground truth (c) Xu and Jia [7] (d) Xu et al. [9]

(e) Pan et al. [6] (f) Pan et al. [47] (g) Krishnan et al. [48] (h) Pan et al. [4]

(i) Tao et al. [28] (j) Pan et al. [23] (k) Xu et al. [18] (l) Our

Fig. 12. Comparison with state-of-the-art methods on a synthetic example from the dataset of [49]. The quality scores of restored images (c)-(l) are -10.634,
-10.266, -10.235, -10.724, -10.821, -9.436 -13.463, -13.353, -12.632 and -9.231, respectively. Since we cannot obtain the estimated blur kernel of [28], we
do not show it in the figure.

that the traditional deblurring methods [6], [7], [9], [47],
[48] obtain restoration results with severe ringing artifacts or
generate delta blur kernels. The DNN-based methods [18],
[23], [27], [28] also have the same problems when we use
their pre-trained networks. Hence, we only compare with
the methods [3] and [4], which are designed specifically for
saturated outliers. From Fig. 15, we can find severe ringing
artifacts in all the results of [4] except the result in fourth row,
and some results of [3] (the third and the fourth rows).

From examples shown above, we can find that this method
is effective for low-light images with saturated light streaks or
images without light streaks. For daylight images, the shape
of the light streak can guide the kernel shape to generate an
accurate result. Fig. 4 and the fifth row in Fig. 15 show two
challenging examples of daylight brightness blurred images.

The proposed algorithm is effective and robust; however, it
fails in some cases. It fails when the blur is non-uniform or
extremely large (the kernel size is larger than the 1/4 of the
image size). Another case is that in which some streaks in the
blurred image disturb the optimal light streak patch selection.
The incorrect light streak leads to an inaccurate kernel.

VI. DISCUSSION AND CONCLUSION

In this work, we proposed a novel blind motion deblurring
method to handle outliers in blurred images by optimizing a
robust M-estimator. Saturated light streaks and pointolite in the
low-light images cause a serious problem for blind deconvolu-
tion because they violate the assumption of linear convolution
in the blurring process. The M-estimator effectively handles
the saturated pixels so as to suppress the ringing artifacts.
Additionally, we use light streak information to guide kernel
estimation. Specifically, we present a simple yet effective
method to select the optimal light streak patch according to the
properties of light streaks and the blur kernel. Then, the light
streak is used as a cue to estimate the blur kernel so that the
blur kernel and the light streak have a similar shape. Compared
with other kernel estimation methods, the proposed method
utilizes more information, and the kernel is more accurate.
Experimental results show that our algorithm not only has a
good performance on synthetic images but is also useful in
practice.
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(a) Blurred image (b) Hu et al. [3] (c) Xu and Jia [7] (d) Xu et al. [9]

(e) Pan et al. [6] (f) Pan et al. [47] (g) Krishnan et al. [48] (h) Pan et al. [4]

(i) Tao et al. [28] (j) Pan et al. [23] (k) Xu et al. [18] (l) Our

Fig. 13. Comparison with state-of-the-art methods on a real image.
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(a) Blurred image (b) Pan et al. [4] (c) Hu et al. [3] (d) Our

Fig. 15. Comparison with two state-of-the-art methods on several real images.


