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Activity Analysis Using Topic Models
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Sparse scenes in a single camera view

Objects can be detected and tracked

Trajectories of objects are used for activity analysis

Cluster trajectories into different activity categories

Detect abnormal trajectories
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Activity 1 Activity 2 Activity 3

Sparse scenes in multiple camera views

Objects can be detected and tracked in each of the camera views

 It is challenging to track objects across camera views

The topology of camera views may be arbitrary and unknown

Cluster trajectories observed in different camera views without tracking objects 

across camera views and without knowing the topology of camera views
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Crowded Scenes

 It is challenging to detect and track objects in crowded environments

Many different types of activities happen simultaneously in crowded scenes

 Learn the models of activities from tracklets (highly fragmented trajectories) or 

local motions (optical flows)

Tracklets Local motions
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Near Fields

 In far fields, objects are small in size and their activities are mainly distinguished by 

their positions and velocities

 In near fields, objects are in larger sizes, and more features such as shape, appearance 

and motions can be used for activity analysis

 Use space-time interest points as features for activity analysis

From Niebles et al. BMVC’06



8

Why topic models?

 Unsupervised

 Save labeling effort

 Suitable for processing large scale datasets

 Easy to transfer across different scenes

 Topic models are hierarchical Bayesian models

 Model complex activities in a principled way

 Jointly model simple activities and complex activities at different 

hierarchical levels

 Add priors to hierarchical Bayesian models

 Dynamically update the models of activities over time

 Learn the models of activities across camera views
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Why topic models?

 Can be extended to nonparametric Bayesian models

 Automatically learn the number of activity categories driven by 

data

 Model the co-occurrence of motion features

 Co-occurrence of motion features widely exists in many types 

of activities

 No other strong constraints on the distributions of activity 

models

 Can be well applied to different scenes and different types of 

activities
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Topic models

From Blei, Journal of Machine Learning Research, 2003
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Applying topic models to activity analysis

 Features = ?

 Words = ?

 Documents = ?

 Topics = ?

 How to extend the models by adding priors which capture 

the spatial and temporal information?
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Activity analysis in sparse scenes

 Features = positions and velocities of points on trajectories

 Words = points on trajectories

 Documents = trajectories

 Topics = semantic regions (intersections of paths commonly taken by objects)

 Identity co-occurrence : two feature values are observed on the same trajectory 

and they are related to the same object

Semantic region 1

Semantic region 2

Semantic region 3

A

B

C

X. Wang, K. Ma, G. Ng, and E. Grimson, “Trajectory Analysis and Semantic Region Modeling 

Using A Nonparametric Bayesian Model,” CVPR’08



16

jix

Nj

M

j

Two-level parametric topic model

μ

jc



jiz
Models of semantic regions

…

…

…

…

1 2

…
1 2

Models of paths

…

…

1 2 3 4 …
1 2 3 4

… …
…

j

0 c
L

Models of paths

H k
K

Models of 

semantic regions

Trajectory j

Observations on 

trajectories



Dual Hierarchical Dirichlet Processes (Dual-HDP)

Related to the nested HDP [Rodriguez et al. 2006],  Transformed HDP [Sudderth et. al IJCV’07], HDP [Teh JASA’04]
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Cluster trajectories and learn models of paths

40,453 trajectories for our experiments
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Models of semantic regions



Clusters of  trajectories



21

Top 1-20 Top 21-40 Top 41-60 Top 61-80 Top 81-100

Outlier trajectories
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X. Wang, K. Ma, G. Ng, and E. Grimson, “Trajectory Analysis and Semantic Region Modeling 

Using Nonparametric Bayesian Models,” IJCV’11
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2am-3am May 15 7am-8am May 15 1pm-2pm May 15 7pm-8pm May 15

2am-3am May 16 7am-8am May 16 1pm-2pm May 16 7pm-8pm May 16

2am-3am May 15 7am-8am May 15 1pm-2pm May 15 7pm-8pm May 15

2am-3am May 16 7am-8am May 16 1pm-2pm May 16 7pm-8pm May 16

Dynamic models of semantic regions in a parking lot
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Cluster trajectories in multiple camera views 

Four camera views Trajectories observed in four camera views

Topology of 

camera views

 Correspondence free: doesn’t track object across camera views

 No camera calibration

 Unsupervised

 The topology of camera views is unknown and arbitrary (overlapping or 

non-overlapping)

 Add smoothness prior according to the temporal co-

occurrence of trajectories observed in different camera views
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(c) The network 

connecting trajectories
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(b) Temporal extents of 

trajectories

Build a Trajectory Network

Identity co-occurrence + temporal co-occurrence

X. Wang, K. Tieu, and E. Grimson, “Correspondence‐Free Activity Analysis and 

Scene Modeling in Multiple Camera Views,” TPAMI’10.
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Model

 Codebook is the concatenation of the local codebooks of all the camera 

views. Feature value is (camera_id, location, moving_direction).

 A semantic region has a joint distribution in all camera views.

 If two trajectories are connected by an edge on the network, there is a 

smoothness constraint on their distribution over semantic regions. 

An example to describe the high level picture of our model
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Models of paths and clusters of trajectories

Activity 1 Activity 2 Activity 3

Activity 1 Activity 3Activity 2

Camera 1 Camera 2

Camera 3 Camera 4

Camera 1 Camera 2

Camera 3 Camera 4
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Learning the models of activities from tracklets

 Tracklets: fragments of trajectories obtained by weak trackers. They are 

short and very noisy.

 Trajectories extracted from the videos of the New York Grand Central 

Station: 95% trajectories are highly fragmented
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Clustering results using topic models
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Random field topic model

 MRF models the dependency between tracklets based on their spatial and 

temporal consistency and velocity similarity

 Model the sources and sinks

B. Zhou, X. Wang, and X. Tang, “Random Field Topic for Semantic Region Analysis,” 

CVPR 2011.
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Learned Models of Paths



34

Learned Models of Paths
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Activity Analysis Based on Moving Pixels

X. Wang, X. Ma, and E. Grimson, “Unsupervised Activity Perception in Crowded 

and Complicated Scenes Using Hierarchical Bayesian Models,” TPAMI’09.
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Activity Analysis Based on Moving Pixels

 Features = positions and velocities of moving pixels

 Words = moving pixels

 Documents = short video clips

 Topics = atomic activities

 Temporal co-occurrence: if two feature values are related to the same 

atomic activities, they often co-occur in the same video clips and have 

strong temporal correlation

Moving pixels in 

a short video clip

Spatial distribution of 

an atomic activity
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High level picture of our approach

Motion Features

(a)

Atomic activities 
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distributions over 

the feature codebook
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Parametric hierarchical Bayesian model
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Learned atomic activities from a traffic scene
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Global behavior I: green light for south/north traffic

vehicles incoming northbound vehicles outgoing eastboundvehicles incoming southbound

vehicles southboundvehicles northbound vehicles northbound

index of atomic activities

prior



Global behavior II: green light for east/west traffic

vehicles incoming westbound vehicles outgoing westbound vehicles outgoing southbound

vehicles outgoing eastboundvehicles incoming eastbound pedestrians westbound

index of atomic activities

prior



Global behavior III: left turn signal for east/west traffic

index of atomic activities

prior

vehicles turning left eastbound vehicles outgoing northbound vehicles outgoing northbound

vehicles incoming eastbound vehicles outgoing eastbound vehicles stopping southbound



Global behavior IV:  walk sign

index of atomic activities

prior

pedestrians outgoing eastboundpedestrians incoming eastbound pedestrians westbound

vehicles stopping vehicles stoppingpedestrians westbound



Global behavior V: northbound right turns

index of atomic activities

prior

vehicles incoming northbound vehicles outgoing eastbound
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Temporal video segmentation

green light for east/west traffic

left turn signal for east/west traffic 

walk sign

green light for south/north traffic northbound right turns
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Abnormality detection results

Top four abnormal video clips
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Interaction query

vehicles approaching

pedestrians crossing the street
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Top four retrieved jay-walking examples



51

More works

 Modeling the temporal dependencies of global behaviors and atomic 

activities (Hospedales et al. ICCV’09)

 Modeling the temporal duration of atomic activities (Varadarajan et al. 

BMVC’10, Emonet et al. ECCV’11)

 Modeling the temporal variations of the atomic activities and global 

behaviors over time (Faruquie, BMVC’09)

 Weakly supervised topic model for rare (abormal) and subtle behavior 

detection (Hospedales, et al. TPAMI’11)
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Activity analysis in near fields

J. Niebles, H. Wang, and L. Fei-fei, “Unsupervised learning of human action categories using 

spatial-temporal words,” BMVC’06

 Features = visual descriptors of space-time interest points

 Words = space-time interest points

 Documents = video sequences

 Topics = actions



Conclusions and Discussions
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 Topic models capture the co-occurrence of features and can 

be applied activity analysis under different contexts

 They are extendable by adding different types of priors

 Dynamically update the models of activities

 Activity analysis across multiple camera views

 How to better capture the spatial and temporal relationships 

of “words” and “documents”?

 How to apply topic models to very large camera networks?

 How to jointly solve low-level object detection/tracking and 

high-level activity modeling under the hierarchical Bayesian 

model?



Thank you!
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