Deep Learning in Object Detection, Segmentation and Recognition

Xiaogang Wang
Department of Electronic Engineering, The Chinese University of Hong Kong
Outline

• Introduction to deep learning
• Deep learning for object recognition
• Deep learning for object segmentation
• Deep learning for object detection
• Open questions and future works
Part I: Introduction to Deep Learning

- Historical review of deep learning
- Introduction to classical deep models
- Why does deep learning work?
Machine Learning

\[x \rightarrow F(x) \rightarrow y \]

Class label (Classification)
Vector (Estimation)

Object recognition
\{dog, cat, horse, flower, ...\}

Super resolution
High-resolution image

Low-resolution image
Neural network
Back propagation

Nature

1986

- Solve general learning problems
- Tied with biological system
Neural network
Back propagation

1986

\[g(x) = f(\sum_{i=1}^{d} x_i w_i + w_0) = f(w^T x) \]
Neural network
Back propagation

Nature 1986

1986

- Solve general learning problems
- Tied with biological system
 But it is given up...
- Hard to train
- Insufficient computational resources
- Small training sets
- Does not work well
• SVM
• Boosting
• Decision tree
• KNN
• ...

• Flat structures
• Loose tie with biological systems
• Specific methods for specific tasks
 – Hand crafted features (GMM-HMM, SIFT, LBP, HOG)

Kruger et al. TPAMI’13
• Unsupervised & Layer-wised pre-training
• Better designs for modeling and training (normalization, nonlinearity, dropout)
• New development of computer architectures
 – GPU
 – Multi-core computer systems
• Large scale databases

Big Data!
Deep Networks Advance State of Art in Speech

Deep Learning leads to breakthrough in speech recognition at MSR.

<table>
<thead>
<tr>
<th>task</th>
<th>hours of training data</th>
<th>DNN-HMM</th>
<th>GMM-HMM with same data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switchboard (test set 1)</td>
<td>309</td>
<td>18.5</td>
<td>27.4</td>
</tr>
<tr>
<td>Switchboard (test set 2)</td>
<td>309</td>
<td>16.1</td>
<td>23.6</td>
</tr>
<tr>
<td>English Broadcast News</td>
<td>50</td>
<td>17.5</td>
<td>18.8</td>
</tr>
<tr>
<td>Bing Voice Search (Sentence error rates)</td>
<td>24</td>
<td>30.4</td>
<td>36.2</td>
</tr>
<tr>
<td>Google Voice Input</td>
<td>5,870</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>Youtube</td>
<td>1,400</td>
<td>47.6</td>
<td>52.3</td>
</tr>
<tr>
<td>Rank</td>
<td>Name</td>
<td>Error rate</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>U. Toronto</td>
<td>0.15315</td>
<td>Deep learning</td>
</tr>
<tr>
<td>2</td>
<td>U. Tokyo</td>
<td>0.26172</td>
<td>Hand-crafted features and learning models.</td>
</tr>
<tr>
<td>3</td>
<td>U. Oxford</td>
<td>0.26979</td>
<td>Bottleneck.</td>
</tr>
<tr>
<td>4</td>
<td>Xerox/INRIA</td>
<td>0.27058</td>
<td></td>
</tr>
</tbody>
</table>

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

1000 object classes that we recognize

Examples from ImageNet

• ImageNet 2013 – image classification challenge

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Error rate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NYU</td>
<td>0.11197</td>
<td>Deep learning</td>
</tr>
<tr>
<td>2</td>
<td>NUS</td>
<td>0.12535</td>
<td>Deep learning</td>
</tr>
<tr>
<td>3</td>
<td>Oxford</td>
<td>0.13555</td>
<td>Deep learning</td>
</tr>
</tbody>
</table>

MSRA, IBM, Adobe, NEC, Clarifai, Berkley, U. Tokyo, UCLA, UIUC, Toronto Top 20 groups all used deep learning

• ImageNet 2013 – object detection challenge

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Mean Average Precision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UvA-Euvisio</td>
<td>0.22581</td>
<td>Hand-crafted features</td>
</tr>
<tr>
<td>2</td>
<td>NEC-MU</td>
<td>0.20895</td>
<td>Hand-crafted features</td>
</tr>
<tr>
<td>3</td>
<td>NYU</td>
<td>0.19400</td>
<td>Deep learning</td>
</tr>
</tbody>
</table>
• **ImageNet 2014 – Image classification challenge**

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Error rate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Google</td>
<td>0.06656</td>
<td>Deep learning</td>
</tr>
<tr>
<td>2</td>
<td>Oxford</td>
<td>0.07325</td>
<td>Deep learning</td>
</tr>
<tr>
<td>3</td>
<td>MSRA</td>
<td>0.08062</td>
<td>Deep learning</td>
</tr>
</tbody>
</table>

• **ImageNet 2014 – object detection challenge**

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Mean Average Precision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Google</td>
<td>0.43933</td>
<td>Deep learning</td>
</tr>
<tr>
<td>2</td>
<td>CUHK</td>
<td>0.40656</td>
<td>Deep learning</td>
</tr>
<tr>
<td>3</td>
<td>DeepInsight</td>
<td>0.40452</td>
<td>Deep learning</td>
</tr>
<tr>
<td>4</td>
<td>UvA-Euvisison</td>
<td>0.35421</td>
<td>Deep learning</td>
</tr>
<tr>
<td>5</td>
<td>Berkley Vision</td>
<td>0.34521</td>
<td>Deep learning</td>
</tr>
</tbody>
</table>
• Google and Baidu announced their deep learning based visual search engines (2013)

 – Google
 • “on our test set we saw double the average precision when compared to other approaches we had tried. We acquired the rights to the technology and went full speed ahead adapting it to run at large scale on Google’s computers. We took cutting edge research straight out of an academic research lab and launched it, in just a little over six months.”

 – Baidu
• Deep learning achieves 99.15% face verification accuracy on Labeled Faces in the Wild (LFW), close to human performance

Labeled Faces in the Wild (2007)

Best results without deep learning

Random guess (50%)
Eigenface (60%)

TL Joint Bayesian (96.33%), 2013
Human cropped (97.53%)

Our deep learning result (99.15%)
Human funneled (99.20%)
Unrestricted, Labeled Outside Data Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute classifiers</td>
<td>0.8525 ± 0.0060</td>
</tr>
<tr>
<td>Simile classifiers</td>
<td>0.8414 ± 0.0041</td>
</tr>
<tr>
<td>Attribute and Simile classifiers</td>
<td>0.8554 ± 0.0035</td>
</tr>
<tr>
<td>Multiple LE + comp</td>
<td>0.84±5 ± 0.00±0</td>
</tr>
<tr>
<td>Associate-Predict</td>
<td>0.9057 ± 0.0056</td>
</tr>
<tr>
<td>Tom-vs-Pete</td>
<td>0.9310 ± 0.0135</td>
</tr>
<tr>
<td>Tom-vs-Pete + Attribute</td>
<td>0.9330 ± 0.0128</td>
</tr>
<tr>
<td>combined Joint Bayesian</td>
<td>0.9242 ± 0.0108</td>
</tr>
<tr>
<td>high-dim LBP</td>
<td>0.9517 ± 0.0113</td>
</tr>
<tr>
<td>DFD</td>
<td>0.8402 ± 0.0044</td>
</tr>
<tr>
<td>TL Joint Bayesian</td>
<td>0.9633 ± 0.0108</td>
</tr>
<tr>
<td>face.com r2011b</td>
<td>0.9130 ± 0.0030</td>
</tr>
<tr>
<td>Face++</td>
<td>0.9727 ± 0.0065</td>
</tr>
<tr>
<td>Deep-face-ensemble</td>
<td>0.9735 ± 0.0025</td>
</tr>
<tr>
<td>ConvNet-RBM</td>
<td>0.9252 ± 0.0038</td>
</tr>
<tr>
<td>POOF-gradhist</td>
<td>0.9313 ± 0.0040</td>
</tr>
<tr>
<td>POOF-HOG</td>
<td>0.9280 ± 0.0047</td>
</tr>
<tr>
<td>FR+FCN</td>
<td>0.9645 ± 0.0025</td>
</tr>
<tr>
<td>DeepID</td>
<td>0.9745 ± 0.0026</td>
</tr>
<tr>
<td>GaussianFace</td>
<td>0.9852 ± 0.0066</td>
</tr>
<tr>
<td>DeepID2</td>
<td>0.9915 ± 0.0013</td>
</tr>
</tbody>
</table>

Table 6: Mean classification accuracy $\hat{\mu}$ and standard error of the mean S_E.
10 BREAKTHROUGHS TECHNOLOGIES 2013

Deep Learning
With massive amounts of computational power, machines can now recognize objects and translate speech in real time. Artificial intelligence is finally getting smart.

Temporary Social Media
Messages that quickly self-destruct could enhance the privacy of online communications and make people freer to be spontaneous.

Prenatal DNA Sequencing
Reading the DNA of fetuses will be the next frontier of the genomic revolution. But do you really want to know about the genetic problems or musical aptitude of your unborn child?

Additive Manufacturing
Skeptical about 3D printing? GE, the world's largest manufacturer, is on the verge of using the technology to make jet parts.

Baxter: The Blue-Collar Robot
Rocney Brooks's newest creation is easy to interact with, but the complex innovations behind the robot show just how hard it is to get along with people.

Memory Implants
A maverick neuroscientist believes he has deciphered the code by which the brain forms long-term memories. Next: testing a prosthetic implant for people suffering from long-term memory loss.

Smart Watches
The designers of the Pebble watch realized that a mobile phone is more useful if you don’t have to take it out of your pocket.

Ultra-Efficient Solar Power
Doubling the efficiency of a solar cell would completely change the economics of renewable energy. Nanotechnology just might make it possible.

Big Data from Cheap Phones
Collecting and analyzing information from simple cell phones can provide surprising insights into how people move about and behave—and even help us understand the spread of diseases.

Supergrids
A new high-power circuit breaker could finally make highly efficient DC power grids practical.
Is Google Cornering the Market on Deep Learning?

A cutting-edge corner of science is being wooed by Silicon Valley, to the dismay of some academics.

By Antonio Regalado on January 29, 2014

How much are a dozen deep-learning researchers worth? Apparently, more than $400 million.

The acquisition, aimed at adding skilled experts rather than specific products, marks an acceleration in efforts by Google, Facebook, and other Internet firms to monopolize the biggest brains in artificial intelligence research.
Yoshua Bengio, an AI researcher at the University of Montreal, estimates that there are only about 50 experts worldwide in deep learning, many of whom are still graduate students. He estimated that DeepMind employed about a dozen of them on its staff of about 50. “I think this is the main reason that Google bought DeepMind. It has one of the largest concentrations of deep learning experts,” Bengio says.
News on Deep Learning

<table>
<thead>
<tr>
<th>Event</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baidu established Institute of Deep Learning</td>
<td>2012</td>
</tr>
<tr>
<td>Hinton joined Google</td>
<td>March 2013</td>
</tr>
<tr>
<td>Google announced deep learning based visual search engine</td>
<td>March 2013</td>
</tr>
<tr>
<td>Baidu announced deep learning based visual search engine</td>
<td>June 2013</td>
</tr>
<tr>
<td>Yahoo acquired startup LookFlow working on deep learning</td>
<td>Oct. 2013</td>
</tr>
<tr>
<td>Facebook established a new AI lab in New York and recruited Yann LeCun</td>
<td>Dec. 2013</td>
</tr>
<tr>
<td>Google Acquires DeepMind for USD 400 Million</td>
<td>January 2014</td>
</tr>
<tr>
<td>Baidu established a new lab at Shenzhen, China</td>
<td>2014</td>
</tr>
<tr>
<td>Baidu established a new lab at silicon valley and Andrew Ng is the director</td>
<td>May 2014</td>
</tr>
<tr>
<td>Deep learning reached human performance on face verification on LFW</td>
<td>June 2014</td>
</tr>
</tbody>
</table>
Introduction to Deep Learning

- Historical review of deep learning
- **Introduction to classical deep models**
- Why does deep learning work?
Introduction on Classical Deep Models

• Convolutional Neural Networks (CNN)

• Deep Belief Net (DBN)

• Auto-encoder
Classical Deep Models

- Convolutional Neural Networks (CNN)
 - First proposed by Fukushima in 1980
 - Improved by LeCun, Bottou, Bengio and Haffner in 1998
Backpropagation

\[\mathbf{W} \leftarrow \mathbf{W} - \eta \nabla J(\mathbf{W}) \]

\(\mathbf{W} \) is the parameter of the network; \(J \) is the objective function

Classical Deep Models

• Deep belief net
 – Hinton’06

Pre-training:
 • Good initialization point
 • Make use of unlabeled data

\[
P(x, h_1, h_2) = p(x \mid h_1) \ p(h_1, h_2)
\]

\[
P(x, h_1) = \frac{e^{-E(x, h_1)}}{\sum_{x, h_1} e^{-E(x, h_1)}}
\]

\[
E(x, h_1) = b' x + c' h_1 + h_1' Wx
\]
Classical Deep Models

• Auto-encoder
 – Hinton and Salakhutdinov 2006

Encoding: \[h_1 = \sigma(W_1x+b_1) \]
\[h_2 = \sigma(W_2h_1+b_2) \]

Decoding: \[\tilde{h}_1 = \sigma(W'_2h_2+b_3) \]
\[\tilde{x} = \sigma(W'_1h_1+b_4) \]
Introduction to Deep Learning

- Historical review of deep learning
- Introduction to classical deep models
- **Why does deep learning work?**
Feature Learning vs Feature Engineering
Feature Engineering

- The performance of a pattern recognition system heavily depends on feature representations
- Manually designed features dominate the applications of image and video understanding in the past
 - Reply on human domain knowledge much more than data
 - Feature design is separate from training the classifier
 - If handcrafted features have multiple parameters, it is hard to manually tune them
 - Developing effective features for new applications is slow
Handcrafted Features for Face Recognition

- Geometric features
- Pixel vector
- Gabor filters
- Local binary patterns

- 1980s
- 1992
- 1997
- 2006
Feature Learning

• Learning transformations of the data that make it easier to extract useful information when building classifiers or predictors
 – Jointly learning feature transformations and classifiers makes their integration optimal
 – Learn the values of a huge number of parameters in feature representations
 – Faster to get feature representations for new applications
 – Make better use of big data
Deep Learning Means Feature Learning

• Deep learning is about learning hierarchical feature representations

\[y = F(W^k \cdot F(W^{k-1} \cdot F(\ldots F(W^0 \cdot x))) \]

• Good feature representations should be able to disentangle multiple factors coupled in the data
Example 1: deep learning generic image features

- Hinton group’s groundbreaking work on ImageNet
 - They did not have much experience on general image classification on ImageNet
 - It took one week to train the network with 60 Million parameters
 - The learned feature representations are effective on other datasets (e.g. Pascal VOC) and other tasks (object detection, segmentation, tracking, and image retrieval)
96 learned low-level filters
Image classification result

- Mite
- Container ship
- Motor scooter
- Leopard
- Grille
- Mushroom
- Cherry
- Madagascar cat

Examples of classification results:
- Mite: black widow, cockroach, tick, starfish
- Container ship: lifeboat, amphibian, fireboat, drilling platform
- Motor scooter: go-kart, moped, bumper car, golfcart
- Leopard: jaguar, cheetah, snow leopard, Egyptian cat
- Grille: convertible, grille, pickup, beach wagon, fire engine
- Mushroom: agaric, mushroom, jelly fungus, gill fungus, dead-man's-fingers
- Cherry: dalmatian, grape, elderberry, fordshire bulterrier, currant
- Madagascar cat: squirrel monkey, spider monkey, titi, indri, howler monkey
Top hidden layer can be used as feature for retrieval
Example 2: deep learning face identity features by recovering canonical-view face images

Reconstruction examples from LFW

• Deep model can disentangle hidden factors through feature extraction over multiple layers
• No 3D model; no prior information on pose and lighting condition
• Model multiple complex transforms
• Reconstructing the whole face is a much stronger supervision than predicting 0/1 class label and helps to avoid overfitting
Comparison on Multi-PIE

<table>
<thead>
<tr>
<th>Method</th>
<th>-45°</th>
<th>-30°</th>
<th>-15°</th>
<th>+15°</th>
<th>+30°</th>
<th>+45°</th>
<th>Avg</th>
<th>Pose</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGBP [26]</td>
<td>37.7</td>
<td>62.5</td>
<td>77</td>
<td>83</td>
<td>59.2</td>
<td>36.1</td>
<td>59.3</td>
<td>✓</td>
</tr>
<tr>
<td>VAAM [17]</td>
<td>74.1</td>
<td>91</td>
<td>95.7</td>
<td>95.7</td>
<td>89.5</td>
<td>74.8</td>
<td>86.9</td>
<td>✓</td>
</tr>
<tr>
<td>FA-EGFC[3]</td>
<td>84.7</td>
<td>95</td>
<td>99.3</td>
<td>99</td>
<td>92.9</td>
<td>85.2</td>
<td>92.7</td>
<td>✗</td>
</tr>
<tr>
<td>SA-EGFC[3]</td>
<td>93</td>
<td>98.7</td>
<td>99.7</td>
<td>99.7</td>
<td>98.3</td>
<td>93.6</td>
<td>97.2</td>
<td>✓</td>
</tr>
<tr>
<td>LE[4] + LDA</td>
<td>86.9</td>
<td>95.5</td>
<td>99.9</td>
<td>99.7</td>
<td>95.5</td>
<td>81.8</td>
<td>93.2</td>
<td>✗</td>
</tr>
<tr>
<td>CRBM[9] + LDA</td>
<td>80.3</td>
<td>90.5</td>
<td>94.9</td>
<td>96.4</td>
<td>88.3</td>
<td>89.8</td>
<td>87.6</td>
<td>✗</td>
</tr>
<tr>
<td>Ours</td>
<td>95.6</td>
<td>98.5</td>
<td>100.0</td>
<td>99.3</td>
<td>98.5</td>
<td>97.8</td>
<td>98.3</td>
<td>✗</td>
</tr>
</tbody>
</table>

Deep learning 3D model from 2D images, mimicking human brain activities

Example 3: deep learning face identity features from predicting 10,000 classes

- At training stage, each input image is classified into 10,000 identities with 160 hidden identity features in the top layers.
- The hidden identity features can be well generalized to other tasks (e.g. verification) and identities outside the training set.
- As adding the number of classes to be predicted, the generalization power of the learned features also improves.

Deep Structures vs Shallow Structures
(Why deep?)
Shallow Structures

• A three-layer neural network (with one hidden layer) can represent any classification function
• Most machine learning tools (such as SVM, boosting, and KNN) can be approximated as neural networks with one or two hidden layers
• Shallow models divide the feature space into regions and match templates in local regions. $O(N)$ parameters are needed to represent N regions
Deep Machines are More Efficient for Representing Certain Classes of Functions

• Theoretical results show that an architecture with insufficient depth can require many more computational elements, potentially exponentially more (with respect to input size), than architectures whose depth is matched to the task (Hastad 1986, Hastad and Goldmann 1991)

• It also means many more parameters to learn
• Take the d-bit parity function as an example

\[(X_1, \ldots, X_d) \in \{0, 1\}^d \mapsto \begin{cases} 1, & \text{if } \sum_{i=1}^{d} X_i \text{ is even} \\ -1, & \text{otherwise} \end{cases}\]

• d-bit logical parity circuits of depth 2 have exponential size (Andrew Yao, 1985)

• There are functions computable with a polynomial-size logic gates circuits of depth k that require exponential size when restricted to depth k -1 (Hastad, 1986)
Architectures with multiple levels naturally provide sharing and re-use of components.

Honglak Lee, NIPS’10
Humans Understand the World through Multiple Levels of Abstractions

• We do not interpret a scene image with pixels
 – Objects (sky, cars, roads, buildings, pedestrians) -> parts (wheels, doors, heads) -> texture -> edges -> pixels
 – Attributes: blue sky, red car

• It is natural for humans to decompose a complex problem into sub-problems through multiple levels of representations
Humans Understand the World through Multiple Levels of Abstractions

- Humans learn abstract concepts on top of less abstract ones.
- Humans can imagine new pictures by re-configuring these abstractions at multiple levels. Thus our brain has good generalization can recognize things never seen before.
 - Our brain can estimate shape, lighting and pose from a face image and generate new images under various lightings and poses. That’s why we have good face recognition capability.
Local and Global Representations
Human Brains Process Visual Signals through Multiple Layers

- A visual cortical area consists of six layers (Kruger et al. 2013)
Joint Learning vs Separate Learning
• Domain knowledge could be helpful for designing new deep models and training strategies

• How to formulate a vision problem with deep learning?
 – Make use of experience and insights obtained in CV research
 – Sequential design/learning vs joint learning
 – Effectively train a deep model (layerwise pre-training + fine tuning)

Feature extraction \[\rightarrow\] Quantization (visual words) \[\rightarrow\] Spatial pyramid (histograms in local regions) \[\rightarrow\] Classification

Conventional object recognition scheme

Feature extraction \leftrightarrow filtering
Quantization \leftrightarrow filtering
Spatial pyramid \leftrightarrow multi-level pooling

Krizhevsky NIPS’12
What if we treat an existing deep model as a black box in pedestrian detection?

ConvNet–U–MS

Results on Caltech Test

Results on ETHZ

Our Joint Deep Learning Model

Modeling Part Detectors

• Design the filters in the second convolutional layer with variable sizes

Part models learned from HOG

Part models

Learned filtered at the second convolutional layer
Deformation Layer

- M_p: Part detection map
- $D_{1,p}$, $D_{2,p}$, $D_{3,p}$, $D_{4,p}$: Deformation maps
- Summed map
- Global max pooling
- Part score S_p
Visibility Reasoning with Deep Belief Net

\[\tilde{h}_{j}^{l+1} = \sigma(\tilde{h}^{lT} w_{*,j}^{l} + c_{j}^{l+1} + g_{j}^{l+1} s_{j}^{l+1}) \]

Correlates with part detection score
Experimental Results

- Caltech – Test dataset (largest, most widely used)
Experimental Results

- Caltech – Test dataset (largest, most widely used)
Experimental Results

- Caltech – Test dataset (largest, most widely used)

Histograms of oriented gradients for human detection

N Dalal, B Triggs - ... and Pattern Recognition, 2005. CVPR 2005 ... , 2005 - ieeexplore.ieee.org

... We study the issue of feature sets for human detection, showing that locally normalized Histogram of Oriented Gradient (HOG) descriptors provide excellent performance relative to other existing feature sets including wavelets [17,22]....
Experimental Results

- Caltech – Test dataset (largest, most widely used)

Object detection with discriminatively trained part-based models

PF Felzenszwalb, RB Girshick… - Pattern Analysis and ..., 2010 - ieeexplore.ieee.org

Abstract We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While ...

Cited by 964 Related articles All 43 versions Import into BibTeX More ▼
Experimental Results

- Caltech – Test dataset (largest, most widely used)

Large learning capacity makes high dimensional data transforms possible
• How to make use of the large learning capacity of deep models?
 – **High dimensional data transform**
 – Hierarchical nonlinear representations

SVM + feature smoothness, shape prior...
Face Parsing

Motivations

• Recast face segmentation as a cross-modality data transformation problem
• Cross modality autoencoder
• Data of two different modalities share the same representations in the deep model
• Deep models can be used to learn shape priors for segmentation
Training Segmentators
Summary

• Automatically learns hierarchical feature representations from data and disentangles hidden factors of input data through multi-level nonlinear mappings
• For some tasks, the expressive power of deep models increases exponentially as their architectures go deep
• Jointly optimize all the components in a vision and crate synergy through close interactions among them
• Benefitting the large learning capacity of deep models, we also recast some classical computer vision challenges as high-dimensional data transform problems and solve them from new perspectives
• It is more effective to train deep models with challenging tasks and rich predictions
References

Outline

• Introduction to deep learning
• **Deep learning for object recognition**
• Deep learning for object segmentation
• Deep learning for object detection
• Open questions and future works
Part II: Deep Learning Object Recognition

• Deep learning for object recognition on ImageNet

• Deep learning for face recognition
 – Learn identity features from joint verification-identification signals
 – Learn 3D face models from 2D images
CNN for Object Recognition on ImageNet

- Krizhevsky, Sutskever, and Hinton, NIPS 2012
- Trained on one million images of 1000 categories collected from the web with two GPUs; 2GB RAM on each GPU; 5GB of system memory
- Training lasts for one week

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Error rate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U. Toronto</td>
<td>0.15315</td>
<td>Deep learning</td>
</tr>
<tr>
<td>2</td>
<td>U. Tokyo</td>
<td>0.26172</td>
<td>Hand-crafted features and learning models.</td>
</tr>
<tr>
<td>3</td>
<td>U. Oxford</td>
<td>0.26979</td>
<td>Bottleneck.</td>
</tr>
<tr>
<td>4</td>
<td>Xerox/INRIA</td>
<td>0.27058</td>
<td></td>
</tr>
</tbody>
</table>
Model Architecture

- Max-pooling layers follow 1st, 2nd, and 5th convolutional layers.
- The number of neurons in each layer is given by 253440, 186624, 64896, 43264, 4096, 4096, 1000.
- 650000 neurons, 60 million parameters, 630 million connections.
Normalization

- Normalize the input by subtracting the mean image on the training set

Input image (256 x 256)
Mean image

Krizhevsky 2012
Activation Function

- Rectified linear unit leads to sparse responses of neurons, such that weights can be effectively updated with BP

Krizhevsky 2012

![Sigmoid (slow to train)](image1)

![Rectified linear unit (quick to train)](image2)

Krizhevsky 2012
Data Augmentation

• The neural net has 60M parameters and it overfits
• Image regions are randomly cropped with shift; their horizontal reflections are also included
Dropout

• Randomly set some input features and the outputs of hidden units as zero during the training process
• Feature co-adaptation: a feature is only helpful when other specific features are present
 – Because of the existence of noise and data corruption, some features or the responses of hidden nodes can be misdetected
• Dropout prevents feature co-adaptation and can significantly improve the generalization of the trained network
• Can be considered as another approach to regularization
• It can be viewed as averaging over many neural networks
• Slower convergence
Classification Result

Krizhevsky 2012
Detection Result

<table>
<thead>
<tr>
<th>bookshop</th>
<th>coyote</th>
<th>cradle</th>
<th>wood rabbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>balance beam</td>
<td>grey fox</td>
<td>cradle</td>
<td>hare</td>
</tr>
<tr>
<td>cinema</td>
<td>kit fox</td>
<td>bassinet</td>
<td>wood rabbit</td>
</tr>
<tr>
<td>marimba</td>
<td>red fox</td>
<td>diaper</td>
<td>grey fox</td>
</tr>
<tr>
<td>parallel bars</td>
<td>coyote</td>
<td>crib</td>
<td>coyote</td>
</tr>
<tr>
<td>computer keyboard</td>
<td>dhole</td>
<td>bath towel</td>
<td>wallaby</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bottlecap</th>
<th>harvester</th>
<th>garter snake</th>
<th>Walker hound</th>
</tr>
</thead>
<tbody>
<tr>
<td>bottlecap</td>
<td>harvester</td>
<td>diamondback</td>
<td>beagle</td>
</tr>
<tr>
<td>magnetic compass</td>
<td>plow</td>
<td>leatherback turtle</td>
<td>Walker hound</td>
</tr>
<tr>
<td>puck</td>
<td>tractor</td>
<td>sandbar</td>
<td>English foxhound</td>
</tr>
<tr>
<td>stopwatch</td>
<td>tow truck</td>
<td>echidna</td>
<td>muzzle</td>
</tr>
<tr>
<td>disk brake</td>
<td></td>
<td>armadillo</td>
<td>Italian greyhound</td>
</tr>
</tbody>
</table>
Image Retrieval

Krizhevsky 2012
Adaptation to Smaller Datasets

- Directly use the feature representations learned from ImageNet and replace handcrafted features with them in image classification, scene recognition, fine grained object recognition, attribute recognition, image retrieval (Razavian et al. 2014, Gong et al. 2014)
- Use ImageNet to pre-train the model (good initialization), and use target dataset to fine-tune it (Girshick et al. CVPR 2014)
- Fix the bottom layers and only fine tune the top layers
GoogLeNet

- More than 20 layers
- Add supervision at multiple layers
- The error rate is reduced from 15.3% to 6.6%
Deep Learning Object Recognition

• Deep learning for object recognition on ImageNet

• Deep learning for face recognition
 – Learn identity features from joint verification-identification signals
 – Learn 3D face models from 2D images
Deep Learning Results on LFW

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy (%)</th>
<th># points</th>
<th># training images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huang et al. CVPR’12</td>
<td>87%</td>
<td>3</td>
<td>Unsupervised</td>
</tr>
<tr>
<td>Sun et al. ICCV’13</td>
<td>92.52%</td>
<td>5</td>
<td>87,628</td>
</tr>
<tr>
<td>DeepFace (CVPR’14)</td>
<td>97.35%</td>
<td>6 + 67</td>
<td>7,000,000</td>
</tr>
<tr>
<td>Sun et al. (CVPR’14)</td>
<td>97.45%</td>
<td>5</td>
<td>202,599</td>
</tr>
<tr>
<td>Sun et al. (arXiv’14)</td>
<td>99.15%</td>
<td>18</td>
<td>202,599</td>
</tr>
</tbody>
</table>

- The first deep learning work on face recognition was done by Huang et al. in 2012. With unsupervised learning, the accuracy was 87%.
- Our work at ICCV’13 achieved result (92.52%) comparable with state-of-the-art.
- Our work at CVPR’14 reached **97.45%** close to “human cropped” performance (**97.53%**).
- DeepFace developed by Facebook also at CVPR’14 used 73-point 3D face alignment and 7 million training data (35 times larger than us).
- Our most recent work reached **99.15%** close to “human funneled” performance (**99.20%**).

Eternal Topic on Face Recognition

Intra-personal variation

Inter-personal variation

How to separate the two types of variations?
Are they the same person or not?

Nicole Kidman

Nicole Kidman
Are they the same person or not?

Coo d’Este Melina Kanakaredes
Are they the same person or not?

Elijah Wood Stefano Gabbana
Are they the same person or not?

Jim O’Brien Jim O’Brien
Are they the same person or not?

Jacqueline Obradors Julie Taymor
• Out of 6000 image pairs on the LFW test set, 51 pairs are misclassified with the deep model
• We randomly mixed them and presented them to 10 Chinese subjects for evaluation. Their averaged verification accuracy is 56%, close to random guess (50%)
Go Back to the Starting Point

- Eigenface (1992)
- Linear discriminant analysis (LDA) (PAMI’97)
- Bayesian face recognition (PR’00)
- Unified subspace analysis (PAMI’04)
Linear Discriminate Analysis (PAMI’97)

\[W^* = \arg \max_W \frac{|W' S_b W|}{|W' S_w W|} \]

\[S_b = \sum n_k (\bar{x}_k - \bar{x})(\bar{x}_k - \bar{x})^t \propto \sum (\bar{x}_k - \bar{x}_k')(\bar{x}_k - \bar{x}_k')^t \]

\[S_w = \sum \sum (x_i - \bar{x}_k)(x_i - \bar{x}_k)^t \propto \sum (x_i - x_j)(x_i - x_j)^t \]

\[W^* = \arg \max_W |W^t S_i W| \quad \text{s.t.} \quad |W^t S_y W| = 1 \]

LDA seeks for linear feature mapping which maximizes the distance between class centers under the constraint what the intrapersonal variation is constant

\[y_i = f(x_i) = W^t x_i \]

\[f^* = \arg \max_{f^*} \sum_{k,k'} |f(\bar{x}_k) - f(\bar{x}_{k'})|^2 \]

\[\text{s.t.} \quad \sum_{(i,j) \in \Omega_i} |f(x_i) - f(x_j)|^2 = 1 \]
Intrapersonal Subspace

\[\Delta_k = \mathbf{x}_{\text{new}} - \bar{\mathbf{x}}_k \]

\[y_{ki} = \mathbf{e}_i^t (\mathbf{x}_{\text{new}} - \bar{\mathbf{x}}_k) \]

\[r^2(\Delta_k) = \sum_{i=1}^{d'} \frac{y_{ki}^2}{\lambda_i} \]

Scatter Class Centers

- Further do PCA on class centers after reducing intrapersonal variation with whitening
Unified Subspace Analysis (PAMI’04)

• Eigenface: PCA on images to reduce dimensionality and remove noise (when later steps increase intrapersonal difference, some noise could be magnified in wrong directions)

• Bayesianface: PCA on intrapersonal difference vectors to extract the patterns of intrapersonal variations, and depress them by dividing eigenvalues

• Fisherface: PCA on class centers to make them as far as possible and extract identity information

Limitations of Existing Approaches

- A lot of information has been lost when calculating the difference $\Delta = X_1 - X_2$

- Linear models with shallow structures cannot separate intra- and inter-personal variations, which are complex, nonlinear, and in high-dimensional image space
Deep Learning for Face Recognition

- Extract identity preserving features through hierarchical nonlinear mappings
- Model complex intra- and inter-personal variations with large learning capacity
Learn Identity Features from Different Supervisory Tasks

• Face identification: classify an image into one of N identity classes
 – multi-class classification problem
• Face verification: verify whether a pair of images belong to the same identity or not
 – binary classification problem
Minimize the intra-personal variation under the constraint that the distance between classes is constant (i.e. contracting the volume of the image space without reducing the distance between classes)

\[y = f(x); \quad g = \text{softmax}(\cdot) \]

\[f^* = \arg \min_f \sum_{(i,j) \in \Omega_f} ||f(x_i) - f(x_j)||^2 \]

s.t. \[|g(f(x_i)) - g(f(x_j))| = 1, \quad \text{label}(x_i) \neq \text{label}(x_j) \]
Learn Identity Features with Verification Signal

- Extract relational features with learned filter pairs
 \[y^j = f(b^j + k_1^j * x^1 + k_2^j * x^2) \]
- These relational features are further processed through multiple layers to extract global features
- The fully connected layer can be used as features to combine with multiple ConvNets

Generate Multiple CNNs

- 10 face regions, 3 scales, color/gray and 8 modes
- Base on three-point alignment

Regions and scales
RBM Combines Features Extracted by Multiple ConvNets
Results on LFW

- Outside training data: the CelebFaces dataset has 87,628 face images of 5,436 celebrities. Its identities have no overlap with LFW.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>hid</th>
<th>hid+out</th>
<th>out</th>
</tr>
</thead>
<tbody>
<tr>
<td>dimension</td>
<td>38,400</td>
<td>38,880</td>
<td>480</td>
</tr>
<tr>
<td>each dim (%)</td>
<td>60.25</td>
<td>60.58</td>
<td>86.63</td>
</tr>
<tr>
<td>PCA+LDA (%)</td>
<td>94.55</td>
<td>94.42</td>
<td>93.41</td>
</tr>
<tr>
<td>SVM linear (%)</td>
<td>95.12</td>
<td>95.04</td>
<td>93.45</td>
</tr>
<tr>
<td>SVM rbf (%)</td>
<td>94.95</td>
<td>94.89</td>
<td>94.00</td>
</tr>
<tr>
<td>classRBM (%)</td>
<td>95.56</td>
<td>95.32</td>
<td>93.79</td>
</tr>
</tbody>
</table>

Taking the last hidden layer (hid) as features for combination is more effective than using the output of CNNs (out).
Results on LFW

• More regions improve performance
Results on LFW

• Fine tuning RBM and ConvNets improves the performance

• Averaging 5 RBMs (each is trained with a randomly generated training set) can improve performance

<table>
<thead>
<tr>
<th></th>
<th>LFW (%)</th>
<th>CelebFaces (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single ConvNet</td>
<td>85.05</td>
<td>88.46</td>
</tr>
<tr>
<td>RBM</td>
<td>93.45</td>
<td>95.56</td>
</tr>
<tr>
<td>Fine-tuning</td>
<td>93.58</td>
<td>96.60</td>
</tr>
<tr>
<td>Model averaging</td>
<td>93.83</td>
<td>97.08</td>
</tr>
</tbody>
</table>

LFW: only using training images from LFW with unrestricted protocol
CelebFaces: using CelebFaces as training set without training images from LFW
Results on LFW

- Unrestricted protocol without outside training data

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConvNet-RBM previous [43]</td>
<td>91.75 ± 0.48</td>
</tr>
<tr>
<td>VMRS [3]</td>
<td>92.05 ± 0.45</td>
</tr>
<tr>
<td>CMD+SLBP [23]</td>
<td>92.58 ± 1.36</td>
</tr>
<tr>
<td>VisionLabs ver. 1.0 [1]</td>
<td>92.90 ± 0.31</td>
</tr>
<tr>
<td>Fisher vector faces [41]</td>
<td>93.03 ± 1.05</td>
</tr>
<tr>
<td>High-dim LBP [13]</td>
<td>93.18 ± 1.07</td>
</tr>
<tr>
<td>Aurora [19]</td>
<td>93.24 ± 0.44</td>
</tr>
<tr>
<td>ConvNet-RBM</td>
<td>93.83 ± 0.52</td>
</tr>
</tbody>
</table>
Results on LFW

- Unrestricted protocol using outside training data

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint Bayesian [12]</td>
<td>92.42 ± 1.08</td>
</tr>
<tr>
<td>ConvNet-RBM previous [43]</td>
<td>92.52 ± 0.38</td>
</tr>
<tr>
<td>Tom-vs-Pete (with attributes) [4]</td>
<td>93.30 ± 1.28</td>
</tr>
<tr>
<td>High-dim LBP [13]</td>
<td>95.17 ± 1.13</td>
</tr>
<tr>
<td>TL Joint Bayesian [10]</td>
<td>96.33 ± 1.08</td>
</tr>
<tr>
<td>ConvNet-RBM</td>
<td>97.08 ± 0.28</td>
</tr>
</tbody>
</table>
Summary of Results

- Use the last hidden layer instead of the output of CNNs as features
- Fusion of features from more face regions (CNNs) improves the performance
- Fine tuning RBM and CNNs improves performance
- Averaging the outputs of multiple RBMs improves the performance
- Drawbacks: computational cost is high and features cannot be computed offline
Learn Identity Features with Identification Signal

• During training, each image is classified into 10,000 identities with 160 identity features in the top layer.
• These features keep rich inter-personal variations.
• Features from the last two convolutional layers are effective.
• The hidden identity features can be well generalized to other tasks (e.g. verification) and identities outside the training set.
• High-dimensional prediction is more challenging, but also adds stronger supervision to the network
• As adding the number of classes to be predicted, the generalization power of the learned features also improves
Extract Features from Multiple ConvNets
Learn Identity Features with Identification Signal

- After combining hidden identity features from multiple CovNets and further reducing dimensionality with PCA, each face image has 150-dimensional features as signature.
- These features can be further processed by other classifiers in face verification. Interestingly, we find Joint Bayesian is more effective than cascading another neural network to classify these features.
Result on LFW

- We enlarge CelebFaces dataset to CelebFaces+, which include 202,599 images of 10,117 celebrities. CelebFaces+ has no overlap with LFW on identities.

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy (%)</th>
<th>No. of points</th>
<th>No. of images</th>
<th>Feature dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint Bayesian [8]</td>
<td>92.42 (o)</td>
<td>5</td>
<td>99,773</td>
<td>2000 × 4</td>
</tr>
<tr>
<td>ConvNet-RBM [31]</td>
<td>92.52 (o)</td>
<td>3</td>
<td>87,628</td>
<td>N/A</td>
</tr>
<tr>
<td>CMD+SLBP [17]</td>
<td>92.58 (u)</td>
<td>3</td>
<td>N/A</td>
<td>2302</td>
</tr>
<tr>
<td>Fisher vector faces [29]</td>
<td>93.03 (u)</td>
<td>9</td>
<td>N/A</td>
<td>128 × 2</td>
</tr>
<tr>
<td>Tom-vs-Pete classifiers [2]</td>
<td>93.30 (o+r)</td>
<td>95</td>
<td>20,639</td>
<td>5000</td>
</tr>
<tr>
<td>High-dim LBP [9]</td>
<td>95.17 (o)</td>
<td>27</td>
<td>99,773</td>
<td>2000</td>
</tr>
<tr>
<td>DeepFace [32]</td>
<td>97.25 (o+u)</td>
<td>6 + 67</td>
<td>4,400,000 + 3,000,000</td>
<td>4096 × 4</td>
</tr>
<tr>
<td>DeepID on CelebFaces</td>
<td>96.05 (o)</td>
<td>5</td>
<td>87,628</td>
<td>150</td>
</tr>
<tr>
<td>DeepID on CelebFaces+</td>
<td>97.05 (o)</td>
<td>5</td>
<td>202,599</td>
<td>150</td>
</tr>
<tr>
<td>DeepID on CelebFaces+ with transfer</td>
<td>97.45 (o+u)</td>
<td>5</td>
<td>202,599</td>
<td>150</td>
</tr>
</tbody>
</table>

“o” denotes using outside training data, however, without using training data from LFW.
“o+u” denotes using outside training data and LFW data in the unrestricted protocol for training.
Joint Identification-Verification Signals

• Every two feature vectors extracted from the same identity should be close to each other

\[
\text{Verif}(f_i, f_j, y_{ij}, \theta_{ve}) = \begin{cases}
\frac{1}{2} \|f_i - f_j\|_2^2 & \text{if } y_{ij} = 1 \\
\frac{1}{2} \max(0, m - \|f_i - f_j\|_2)^2 & \text{if } y_{ij} = -1
\end{cases}
\]

- \(f_i\) and \(f_j\) are feature vectors extracted from two face images in comparison
- \(y_{ij} = 1\) means they are from the same identity; \(y_{ij} = -1\) means different identities
- \(m\) is a margin to be learned

Balancing Identification and Verification Signals with Parameter λ

$\lambda = 0$: only identification signal
$\lambda = +\infty$: only verification signal
Rich Identity Information Improves Feature Learning

- Face verification accuracies with the number of training identities
Final Result

- 25 face regions at different scales and locations around landmarks are selected to build 25 neural networks
- All the 160 X 25 hidden identity features are further compressed into a 180-dimensional feature vector with PCA as a signature for each image
- With a single Titan GPU, the feature extraction process takes 35ms per image
Final Result

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy (%)</td>
<td>95.17</td>
<td>96.33</td>
<td>97.35</td>
<td>97.45</td>
<td>99.15</td>
</tr>
</tbody>
</table>

Unified subspace analysis

- Identification signal is in S_b; verification signal is in S_w
- Maximize distance between classes under constraint that intrapersonal variation is constant
- Linear feature mapping

Joint deep learning

- Learn features by joint identification-verification
- Minimize intra-personal variation under constraint that the distance between classes is constant
- Hierarchical nonlinear feature extraction
- Generalization power increases with more training identities

- Need to be careful when magnifying the inter-personal difference; Unsupervised learning may be a good choice to remove noise

We still do not know limit of deep learning yet
Outline

• Deep learning for object recognition on ImageNet

• Deep learning for face recognition
 – Learn identity features from joint verification-identification signals
 – Learn 3D face models from 2D images
Deep Learning Multi-view Representation from 2D Images

- Inspired by brain behaviors [Winrich et al. Science 2010]
- Identity and view represented by different sets of neurons
- Given an image under arbitrary view, its viewpoint can be estimated and its full spectrum of views can be reconstructed

Deep Learning Multi-view Representation from 2D Images

x and y are input and output images of the same identity but in different views;

v is the view label of the output image;

h^id are neurons encoding identity features

h^v are neurons encoding view features

h^r are neurons encoding features to reconstruct the output images
<table>
<thead>
<tr>
<th>Method</th>
<th>Avg.</th>
<th>0°</th>
<th>−15°</th>
<th>+15°</th>
<th>−30°</th>
<th>+30°</th>
<th>−45°</th>
<th>+45°</th>
<th>−60°</th>
<th>+60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Pixels+LDA</td>
<td>36.7</td>
<td>81.3</td>
<td>59.2</td>
<td>58.3</td>
<td>35.5</td>
<td>37.3</td>
<td>21.0</td>
<td>19.7</td>
<td>12.8</td>
<td>7.63</td>
</tr>
<tr>
<td>LBP [1]+LDA</td>
<td>50.2</td>
<td>89.1</td>
<td>77.4</td>
<td>79.1</td>
<td>56.8</td>
<td>55.9</td>
<td>35.2</td>
<td>29.7</td>
<td>16.2</td>
<td>14.6</td>
</tr>
<tr>
<td>Landmark LBP [6]+LDA</td>
<td>63.2</td>
<td>94.9</td>
<td>83.9</td>
<td>82.9</td>
<td>71.4</td>
<td>68.2</td>
<td>52.8</td>
<td>48.3</td>
<td>35.5</td>
<td>32.1</td>
</tr>
<tr>
<td>CNN+LDA</td>
<td>58.1</td>
<td>64.6</td>
<td>66.2</td>
<td>62.8</td>
<td>60.7</td>
<td>63.6</td>
<td>56.4</td>
<td>57.9</td>
<td>46.4</td>
<td>44.2</td>
</tr>
<tr>
<td>FIP [28]+LDA</td>
<td>72.9</td>
<td>94.3</td>
<td>91.4</td>
<td>90.0</td>
<td>78.9</td>
<td>82.5</td>
<td>66.1</td>
<td>62.0</td>
<td>49.3</td>
<td>42.5</td>
</tr>
<tr>
<td>RL [28]+LDA</td>
<td>70.8</td>
<td>94.3</td>
<td>90.5</td>
<td>89.8</td>
<td>77.5</td>
<td>80.0</td>
<td>63.6</td>
<td>59.5</td>
<td>44.6</td>
<td>38.9</td>
</tr>
<tr>
<td>MTL+RL+LDA</td>
<td>74.8</td>
<td>93.8</td>
<td>91.7</td>
<td>89.6</td>
<td>80.1</td>
<td>83.3</td>
<td>70.4</td>
<td>63.8</td>
<td>51.5</td>
<td>50.2</td>
</tr>
<tr>
<td>MVP$_{h_1^{id}}$+LDA</td>
<td>61.5</td>
<td>92.5</td>
<td>85.4</td>
<td>84.9</td>
<td>64.3</td>
<td>67.0</td>
<td>51.6</td>
<td>45.4</td>
<td>35.1</td>
<td>28.3</td>
</tr>
<tr>
<td>MVP$_{h_2^{id}}$+LDA</td>
<td>79.3</td>
<td>95.7</td>
<td>93.3</td>
<td>92.2</td>
<td>83.4</td>
<td>83.9</td>
<td>75.2</td>
<td>70.6</td>
<td>60.2</td>
<td>60.0</td>
</tr>
<tr>
<td>MVP$_{h_3^{r}}$+LDA</td>
<td>72.6</td>
<td>91.0</td>
<td>86.7</td>
<td>84.1</td>
<td>74.6</td>
<td>74.2</td>
<td>68.5</td>
<td>63.8</td>
<td>55.7</td>
<td>56.0</td>
</tr>
<tr>
<td>MVP$_{h_4^{r}}$+LDA</td>
<td>62.3</td>
<td>83.4</td>
<td>77.3</td>
<td>73.1</td>
<td>62.0</td>
<td>63.9</td>
<td>57.3</td>
<td>53.2</td>
<td>44.4</td>
<td>46.9</td>
</tr>
</tbody>
</table>

Face recognition accuracies across views and illuminations on the Multi-PIE dataset. The first and the second best performances are in bold.

Deep Learning Multi-view Representation from 2D Images

• Interpolate and predict images under viewpoints unobserved in the training set

(a) The training set only has viewpoints of 0°, 30°, and 60°. (a): the reconstructed images under 15° and 45° when the input is taken under 0°. (b) The input images are under 15° and 45°.
Outline

• Introduction to deep learning
• Deep learning for object recognition
• Deep learning for object segmentation
• Deep learning for object detection
• Open questions and future works
Pixelwise Classification

- Image patches centered at each pixel are used as the input of a CNN, and the CNN predicts a class label for each pixel.
Classify Segmentation Proposal

- Determines which segmentation proposal can best represent objects of interest

Direct Predict Segmentation Maps

Discussions

• For patch-by-patch scanning, large patch size leads to better segmentation result, because it can make better use of the large learning capacity of deep models to capture contextual information.

• There is a lot of redundant computation in patch-by-patch scanning. So feedforward operation is slow.

• An image could provide one million training patches. However, only a small portion of it can be used for training, due to the efficiency bottleneck of forward and backward propagation.

• Directly mapping input images to segmentation maps with fully connected networks essentially learns a different classifier for each location. It is not invariance to large geometric transforms as CNN does. It’s only suitable to structured images like faces and pedestrians.
Summary

- Deep learning significantly outperforms conventional vision systems on large scale image classification.
- Feature representation learned from ImageNet can be well generalized to other tasks and datasets.
- In face recognition, identity preserving features can be effectively learned by joint identification-verification signals.
- 3D face models can be learned from 2D images; identity and pose information is encoded by different sets of neurons.
- We still do not see the limit of the deep model yet, as the size of the training set increases.
- In segmentation, larger patches lead to better performance because of the large learning capacity of deep models. It is also possible to directly predict the segmentation map.
References

Outline

• Introduction to deep learning
• Deep learning for object recognition
• Deep learning for object segmentation
• **Deep learning for object detection**
• Open questions and future works
Part IV: Deep Learning for Object Detection

- Pedestrian Detection
- Human part localization
- General object detection
Part IV: Deep Learning for Object Detection

• Jointly optimize the detection pipeline
• Multi-stage deep learning (cascaded detectors)
• Mixture components
• Integrate segmentation and detection to depress background clutters
• Contextual modeling
• Pre-training
• Model deformation of object parts, which are shared across classes
Joint Deep Learning:

- Jointly optimize the detection pipeline
What if we treat an existing deep model as a black box in pedestrian detection?

ConvNet–U–MS

Results on ETHZ

Results on Caltech Test

Our Joint Deep Learning Model

Modeling Part Detectors

• Design the filters in the second convolutional layer with variable sizes

Part models

Learned filtered at the second convolutional layer
Our Joint Deep Learning Model

![Diagram of the model](image)
Deformation Layer
Visibility Reasoning with Deep Belief Net
Results on Caltech Test

Results on ETHZ
Multi-Stage Contextual Deep Learning:

- Train different detectors for different types of samples
- Model contextual information
- Stage-by-stage pretraining strategies

Motivated by Cascaded Classifiers and Contextual Boost

- The classifier of each stage deals with a specific set of samples
- The score map output by one classifier can serve as contextual information for the next classifier

Conventional cascaded classifiers for detection

- Only pass one detection score to the next stage
- Classifiers are trained sequentially
• Simulate the cascaded classifiers by mining hard samples to train the network stage-by-stage
• Cascaded classifiers are jointly optimized instead of being trained sequentially
• The deep model keeps the score map output by the current classifier and it serves as contextual information to support the decision at the next stage
• To avoid overfitting, a stage-wise pre-training scheme is proposed to regularize optimization
Training Strategies

- Unsupervised pre-train $W_{h,i+1}$ layer-by-layer, setting $W_{s,i+1} = 0, F_{i+1} = 0$
- Fine-tune all the $W_{h,i+1}$ with supervised BP
- Train F_{i+1} and $W_{s,i+1}$ with BP stage-by-stage
- A correctly classified sample at the previous stage does not influence the update of parameters
- Stage-by-stage training can be considered as adding regularization constraints to parameters, i.e. some parameters are constrained to be zeros in the early training stages

Log error function:
$$E = -l \log y - (1 - l) \log (1 - y)$$

Gradients for updating parameters:
$$d\theta_{i,j} = -\frac{\partial E}{\partial \theta_{i,j}} = -\frac{\partial E}{\partial y} \frac{\partial y}{\partial \theta_{i,j}} = -(y - l) \frac{\partial y}{\partial \theta_{i,j}}$$
Experimental Results

Caltech

ETHZ
Comparison of Different Training Strategies

Network-BP: use back propagation to update all the parameters without pre-training

PretrainTransferMatrix-BP: the transfer matrices are unsupervised pretrained, and then all the parameters are fine-tuned

Multi-stage: our multi-stage training strategy
Switchable Deep Network

✧ Use mixture components to model complex variations of body parts
✧ Use salience maps to depress background clutters
✧ Help detection with segmentation information

Switchable Deep Network for Pedestrian Detection

- **Background clutter** and large variations of pedestrian appearance.
- **Proposed Solution.** A Switchable Deep Network (SDN) for learning the foreground map and removing the effect background clutter.
Switchable Deep Network for Pedestrian Detection

- Switchable Restricted Boltzmann Machine

\[
E(x, y, h, s, m; \Theta) = - \sum_{k=1}^{K} s_k h_k^T (W_k (x \circ m_k) + b_k) - \sum_{k=1}^{K} s_k c_k^T (y \circ m_k) - y^T U \sum_{k=1}^{K} s_k h_k - d^T y,
\]

(a) RBM

(b) Switchable RBM
Switchable Deep Network for Pedestrian Detection

- Switchable Restricted Boltzmann Machine
Switchable Deep Network for Pedestrian Detection

(a) Performance on Caltech Test

(b) Performance on ETH
Human Part Localization

- Contextual information is important to segmentation as well as detection
Human part localization

- Facial Keypoint Detection
- Human pose estimation

Sun et al. CVPR’ 13

Ouyang et al. CVPR’ 14
Facial Keypoint Detection

Comparison with Liang et al. [6], Valstar et al. [7], Luxand Face SDK [1] and Microsoft Research Face SDK [2] on BioID and LFPW.

Relative improvement = \frac{\text{reduced average error}}{\text{average error of the method in comparison}}.

Validation.

BioID.

LFPW.
Benefits of Using Deep Model

- The first network that takes the whole face as input needs deep structures to extract high-level features.
- Take the full face as input to make full use of texture context information over the entire face to locate each keypoint.
- Since the networks are trained to predict all the keypoints simultaneously, the geometric constraints among keypoints are implicitly encoded.
Human pose estimation

Multiple information sources

- Appearance
Multiple information sources

• Appearance
• Appearance mixture type
Multiple information sources

- Appearance
- Appearance mixture type
- Deformation
Multi-source deep model
Experimental results

<table>
<thead>
<tr>
<th>Method</th>
<th>Torso</th>
<th>U.leg</th>
<th>L.leg</th>
<th>U.arm</th>
<th>L.arm</th>
<th>head</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang&Ramanan CVPR’11</td>
<td>82.9</td>
<td>68.8</td>
<td>60.5</td>
<td>63.4</td>
<td>42.4</td>
<td>82.4</td>
<td>63.6</td>
</tr>
<tr>
<td>Multi-source deep learning</td>
<td>89.3</td>
<td>78.0</td>
<td>72.0</td>
<td>67.8</td>
<td>47.8</td>
<td>89.3</td>
<td>71.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Torso</th>
<th>U.leg</th>
<th>L.leg</th>
<th>U.arm</th>
<th>L.arm</th>
<th>head</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang&Ramanan CVPR’11</td>
<td>81.8</td>
<td>65.0</td>
<td>55.1</td>
<td>46.8</td>
<td>37.7</td>
<td>79.8</td>
<td>57.0</td>
</tr>
<tr>
<td>Multi-source deep learning</td>
<td>89.1</td>
<td>72.9</td>
<td>62.4</td>
<td>56.3</td>
<td>47.6</td>
<td>89.1</td>
<td>65.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Torso</th>
<th>U.leg</th>
<th>L.leg</th>
<th>U.arm</th>
<th>L.arm</th>
<th>head</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang&Ramanan CVPR’11</td>
<td>82.9</td>
<td>70.3</td>
<td>67.0</td>
<td>56.0</td>
<td>39.8</td>
<td>79.3</td>
<td>62.8</td>
</tr>
<tr>
<td>Multi-source deep learning</td>
<td>85.8</td>
<td>76.5</td>
<td>72.2</td>
<td>63.3</td>
<td>46.6</td>
<td>83.1</td>
<td>68.6</td>
</tr>
</tbody>
</table>

Up to 8.6 percent accuracy improvement with global geometric constraints
Experimental results

Left: mixture-of-parts (Yang & Ramanan CVPR’11)
Right: Multi-source deep learning
General Object Detection

✧ Pretraining
✧ Model deformation of object parts, which are shared across classes
✧ Contextual modeling
Object detection

Pascal VOC
~ 20 object classes
Training: ~ 5,700 images
Testing: ~10,000 images

Image-net ILSVRC
~ 200 object classes
Training: ~ 395,000 images
Testing: ~ 40,000 images
SIFT, HOG, LBP, DPM ...

PASCAL VOC challenge dataset

[Regionlets. Wang et al. ICCV’13] [SegDPM. Fidler et al. CVPR’13]
With CNN features

R-CNN: regions + CNN features

Input image

Extract region proposals (~2k/image)

Compute CNN features

2-class linear SVM

Region:
91.6%/98% recall rate on ImageNet/PASCAL
Selective Search [van de Sande, Uijlings et al. IJCV 2013].

Deep model from Krizhevsky, Sutskever & Hinton. NIPS 2012

SVM: Liblinear
RCNN: deep model training

- Pretrain for the 1000-way ILSVRC image classification task (1.2 million images)
- Fine-tune the CNN for detection
 - Transfer the representation learned from ILSVRC Classification to PASCAL (or ImageNet) detection

Network from Krizhevsky, Sutskever & Hinton. NIPS 2012
Also called “AlexNet”
Experimental results on ILSVRC 2013

<table>
<thead>
<tr>
<th>Team</th>
<th>mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>*R-CNN BB</td>
<td>31.4%</td>
</tr>
<tr>
<td>*OverFeat (2)</td>
<td>24.3%</td>
</tr>
<tr>
<td>UvA–Euvision</td>
<td>22.6%</td>
</tr>
<tr>
<td>*NEC–MU</td>
<td>20.9%</td>
</tr>
<tr>
<td>*OverFeat (1)</td>
<td>19.4%</td>
</tr>
<tr>
<td>Toronto A</td>
<td>11.5%</td>
</tr>
<tr>
<td>SYSU_Vision</td>
<td>10.5%</td>
</tr>
<tr>
<td>GPU_UCLA</td>
<td>9.8%</td>
</tr>
<tr>
<td>Delta</td>
<td>6.1%</td>
</tr>
<tr>
<td>UIUC–IFP</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

*Post competition result

*Competition result result
Experimental results on ILSVRC 2014

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Mean AP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GoogLeNet</td>
<td>0.43933</td>
<td>Deep learning</td>
</tr>
<tr>
<td>2</td>
<td>CUHK DeepID-Net</td>
<td>0.40656</td>
<td>Deep learning</td>
</tr>
<tr>
<td>3</td>
<td>DeepInsight</td>
<td>0.40452</td>
<td>Deep learning</td>
</tr>
<tr>
<td>4</td>
<td>UvA-Euvisioin</td>
<td>0.35421</td>
<td>Deep learning</td>
</tr>
<tr>
<td>5</td>
<td>Berkley Vision</td>
<td>0.34521</td>
<td>Deep learning</td>
</tr>
</tbody>
</table>
DeepID-Net: deformable deep convolutional neural networks for generic object detection

RCNN

Image $\xrightarrow{\text{Selective search}}$ Proposed bounding boxes $\xrightarrow{\text{AlexNet+ SVM}}$ Detection results $\xrightarrow{\text{Bounding box regression}}$ Refined bounding boxes
RCNN

Mean ap 31.4 to 40.67 (new result on)

Selective search

Proposed bounding boxes

AlexNet+
SVM

Detection results

Bounding box regression

Refined bounding boxes

DeepID-Net

Selective search

Proposed bounding boxes

Box rejection

Remaining bounding boxes

DeepID-Net
Pretrain, deppooling layer, sub-box, hinge-loss

Context modelin

Model averaging

Bounding box regression

person

horse

person

horse

person

horse

person

horse
RCNN

Image

Proposed bounding boxes

Detection results

Bounding box regression

Refined bounding boxes

DeepID-Net

Image

Proposed bounding boxes

Remaining bounding boxes

Bounding box regression

DeepID-Net

Pretrain, deep-pooling layer, sub-box, hinge-loss

Context modeling

Model averaging
DeepID-Net

Existing deep model (clarifai-fast)

Layers with def-pooling layers

conv5 → fc6 → fc7

conv6_1 → def6_1 → conv7_1

conv6_3 → def6_3 → conv7_3

128 → 128 → 128

...
Deep model training – pretrain

- RCNN (Cls+Det)
 - Pretrain on image-level annotation with 1000 classes
 - Finetune on object-level annotation with 200 classes
 - Gap: classification vs. detection, 1000 vs. 200

Image classification

Object detection
Result and discussion

• Investigation
 • Better pretraining on 1000 classes
 • Object-level annotation is more suitable for pretraining

• Conclusions
 • The supervisory tasks should match at the pre-training and fine-turning stages
 • Although an application only involves detecting a small number of classes, it is better to pretraining with many classes outside the application

<table>
<thead>
<tr>
<th></th>
<th>Image annotation</th>
<th>Object annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 classes (Det)</td>
<td>20.7</td>
<td>28.0</td>
</tr>
<tr>
<td>1000 classes (Cls-Loc)</td>
<td>31.8</td>
<td>36</td>
</tr>
</tbody>
</table>
RCNN

DeepID-Net
Deformation

– Learning deformation [a] is effective in computer vision society.
– Missing in deep model.
– We propose a new deformation constrained pooling layer.

Deformation Layer [b]

\[B_p = M_p + \sum_{n=1}^{N} c_{n,p} D_{n,p} \]

\[s_p = \max_{(x,y)} b_p^{(x,y)} \]

Modeling Part Detectors

- Different parts have different sizes
- Design the filters with variable sizes
Deformation layer for repeated patterns

<table>
<thead>
<tr>
<th>Pedestrian detection</th>
<th>General object detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assume no repeated pattern</td>
<td>Repeated patterns</td>
</tr>
</tbody>
</table>
Deformation layer for repeated patterns

<table>
<thead>
<tr>
<th>Pedestrian detection</th>
<th>General object detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assume no repeated pattern</td>
<td>Repeated patterns</td>
</tr>
<tr>
<td>Only consider one object class</td>
<td>Patterns shared across different object classes</td>
</tr>
</tbody>
</table>
Deformation constrained pooling layer

Can capture multiple patterns simultaneously

\[
b(x, y) = \max_{i, j \in \{-R, \ldots, R\}} \left\{ m\left(k_x \cdot x + i, k_y \cdot y + j\right) - \sum_{n=1}^{N} c_n d_n^{i, j}\right\},
\]
Our deep model with deformation layer

- Existing deep model (clarifai-fast)
- Training scheme
 - Cls+Det
 - Loc+Det
 - Loc+Det

- Net structure
 - AlexNet
 - Clarifai
 - Clarifai+Def layer

- Mean AP on val2
 - 0.299
 - 0.360
 - 0.385
RCNN

Image → Selective search → Proposed bounding boxes → AlexNet+ SVM → Detection results → Bounding box regression → Refined bounding boxes

DeepID-Net

Image → Selective search → Proposed bounding boxes → Box rejection → Remaining bounding boxes → DeepID-Net pretrain, deep-pooling layer, sub-box, hinge-loss → Context modeling → Model averaging
Context modeling

- Use the 1000 class Image classification score.
- ~1% mAP improvement.
Context modeling

- Use the 1000-class Image classification score.
 - ~1% mAP improvement.
 - Volleyball: improve ap by 8.4% on val2.
RCNN

Image ➔ Selective search ➔ Proposed bounding boxes ➔ AlexNet+ SVM ➔ Detection results ➔ Bounding box regression ➔ Refined bounding boxes

DeepID-Net

Image ➔ Selective search ➔ Proposed bounding boxes ➔ Box rejection ➔ Remaining bounding boxes ➔ DeepID-Net pretrain, de-f-pooling layer, sub-box, hinge-loss ➔ Context modeling ➔ Bounding box regression ➔ Model averaging ➔ Refined bounding boxes
Model averaging

- Not only change parameters
 - Net structure: AlexNet(A), Clarifai (C), Deep-ID Net (D), DeepID Net2 (D2)
 - Pretrain: Classification (C), Localization (L)
 - Region rejection or not
 - Loss of net, softmax (S), Hinge loss (H)
 - Choose different sets of models for different object class

<table>
<thead>
<tr>
<th>Model</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net structure</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>D2</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Pretrain</td>
<td>C</td>
<td>C+L</td>
<td>C</td>
<td>C+L</td>
<td>C+L</td>
<td>C+L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Reject region?</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Loss of net</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Mean ap</td>
<td>0.31</td>
<td>0.312</td>
<td>0.321</td>
<td>0.336</td>
<td>0.353</td>
<td>0.36</td>
<td>0.37</td>
<td>0.37</td>
<td>0.371</td>
<td>0.374</td>
</tr>
</tbody>
</table>
RCNN

Image

Selective search

Proposed bounding boxes

AlexNet+

SVM

Detection results

Bounding box regression

Refined bounding boxes

DeepID-Net

Image

Selective search

Proposed bounding boxes

Box rejection

Remaining bounding boxes

DeepID-Net

Pretrain, deep-pooling layer, sub-box, hinge-loss

Context modeling

Model averaging

Bounding box regression

person

horse
Component analysis

<table>
<thead>
<tr>
<th>Detection Pipeline</th>
<th>RCNN</th>
<th>Box rejection</th>
<th>Clarifai</th>
<th>Loc+ Det +Def layer</th>
<th>+cont ext +bbox regr.</th>
<th>Model avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mAP on val2</td>
<td>29.9</td>
<td>30.9</td>
<td>31.8</td>
<td>36.0</td>
<td>38.5</td>
<td>40.1</td>
</tr>
<tr>
<td>mAP on test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.0</td>
</tr>
</tbody>
</table>

DeepID-Net

- Selective search
- Box rejection
- Proposed bounding boxes
- Remaining bounding boxes
- Bounding box regression
- DeepID-Net: Pretrain, def-pooling layer, sub-box, hinge-loss
- Context modeling
- Model averaging
Summary

• Bounding rejection. Save feature extraction by about 10 times, slightly improve mAP (~1%).
• Pre-training with object-level annotation, more classes. 4.2% mAP
• Def-pooling layer. 2.5% mAP improvement
• Contextual modeling. 1% mAP improvement
• Model averaging. 2.3% mAP improvement. Different model designs and training schemes lead to high diversity
• W. Ouyang and X. Wang, "Joint Deep Learning for Pedestrian Detection," ICCV 2013
Reference

Outline

• Introduction to deep learning
• Deep learning for object recognition
• Deep learning for object segmentation
• Deep learning for object detection
• Open questions and future works
“Concerns” on deep learning

• C1: Weak on theoretical support (convergence, bound, local minimum, why it works)
 – It’s true. That’s why deep learning papers were not accepted by the computer vision/image processing community for a long time. Any theoretical studies in the future are important.
That’s probably one of the reasons that computer vision and image processing people think deep learning papers are lack of novelty and theoretical contribution 😞
“Concerns” on deep learning

- C2: It is hard for computer vision/image processing people to have innovative contributions to deep learning. Our job becomes preparing the data + using deep learning as a black box. That’s the end of our research life.
 - That’s not true. Computer vision and image processing researchers have developed many systems with deep architectures. But we just didn’t know how to jointly learn all the components. Our research experience and insights can help to design new deep models and pre-training strategies.
 - Many machine learning models and algorithms were motivated by computer vision and image processing applications. However, computer vision and multimedia did not have close interaction with neural networks in the past 15 years. We expect fast development of deep learning driven by applications.
“Concerns” on deep learning

• C3: Since the goal of neural networks is to solve the general learning problem, why do we need domain knowledge?
 – The most successful deep model on image and video related applications is convolutional neural network, which has used domain knowledge (filtering, pooling)
 – Domain knowledge is important especially when the training data is not large enough
“Concerns” on deep learning

• C4: Good results achieved by deep learning come from manually tuning network structures and learning rates, and trying different initializations
 – That’s not true. One round evaluation may take several weeks. There is no time to test all the settings.
 – Designing and training deep models does require a lot of empirical experience and insights. There are also a lot of tricks and guidance provided by deep learning researchers. Most of them make sense intuitively but without strict proof.
“Concerns” on deep learning

- C5: Deep learning is more suitable for industry rather than research groups in universities
 - Industry has big data and computation resources
 - Research groups from universities can contribute on model design, training algorithms and new applications
“Concerns” on deep learning

• C6: Deep learning has different behaviors when the scale of training data is different
 – Pre-training is useful when the training data small, but does not make big difference when the training data is large enough
 – So far, the performance of deep learning keep increasing with the size of training data. We don’t see its limit yet.
 – Shall we spend more effort on data annotation or model design?
Future works

• Explore deep learning in new applications
 – Worthy to try if the applications require features or learning, and have enough training data
 – We once had many doubts on deep. (Does it work for vision? Does it work for segmentation? Does it work for low-level vision?) But deep learning has given us a lot of surprises.
 – Applications will inspire many new deep models

• Incorporate domain knowledge into deep learning

• Integrate existing machine learning models with deep learning
Future works

• Deep learning to extract dynamic features for video analysis
• Deep models for structured data
• Theoretical studies on deep learning
• Quantitative analysis on how to design network structures and how to choose nonlinear operations of different layers in order to achieve feature invariance
• New optimization and training algorithms
• Parallel computing systems to train very large networks with larger training data
Multimedia Laboratory
Projects / Deep Learning

Description

A demo code that allows you to input a pedestrian image and then compute the label map.

Reference:

A demo code that shows you how the frontal-view face image of a query face image is reconstructed.

Reference:

Matlab training and testing source code for pedestrian detection using the proposed approach. Models trained on INRIA and Caltech are provided.

Reference:

Executable files for the face detector and facial point detector.

Reference:

http://mmlab.ie.cuhk.edu.hk/project_deep_learning.html
Thank you!

http://mmlab.ie.cuhk.edu.hk/
http://www.ee.cuhk.edu.hk/~xgwang/