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Open questions and future works
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e Historical review of deep learning
e Introduction to classical deep models
e Why does deep learning work?
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Neural network
Back propagation
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 Solve general learning problems
 Tied with biological system
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Neural network
Back propagation

i’ Nature

1986

 Solve general learning problems
 Tied with biological system

But it is given up...

e Hard to train
e Insufficient computational resources

e Small training sets
e Does not work well



Neural network
Back propagation
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1986

SVM
Boosting

Decision tree
KNN

Flat structures

Loose tie with biological systems
Specific methods for specific tasks

— Hand crafted features (GMM-HMM, SIFT, LBP, HOG)

Deep Hierarchy

Flat Processing Scheme

Task A1

Task A2
Task A3
Task An
Task B1

Task B2
Task B3

Task Bn

Level 5A

Level 5B

Level 4

Level 3

Level 2

Level 1

Task 1

Task 2
Task 3
Task 4
Task 5
Task 6
Task 7
Task 8

Task n

Some kind of Features

Kruger et al. TPAMI’13



Neural network
Back propagation
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Deep belief net
Science

|

 Unsupervised & Layer-wised pre-training

e Better designs for modeling and training
(normalization, nonlinearity, dropout)

New development of computer architectures
— GPU
— Multi-core computer systems

e Large scale databases

Big Data!
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1986 2006 2011

deep learning results

task hours of DNN-HMM | GMM-HMM
training data with same data

Switchboard (test set 1) 309 18.5 274

Switchboard (test set 2) 309 16.1 23.6

English Broadcast News | 50 17.5 18.8

Bing Voice Search 24 30.4 36.2

(Sentence error rates)

Google Voice Input 5,870 12.3

Youtube 1,400 47.6 523

A
Deep Networks Advance State of Art in Speech /4
Deep Learning leads to breakthrough in speech recognition at MSR. M’CMSOft@
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1986 2006 2011 2012

Description
1 U. Toronto 0.15315 Deep learning
2 U. Tokyo 0.26172 Hand-crafted
3 U. Oxford 0.26979 features and
4 Xerox/INRIA  0.27058 'c2rning models.

Bottleneck.

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

A. Krizhevsky, L. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS, 2012.



Examples from ImageNet
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1000 ObjECt classes that we recagnlze
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poster created by Fengjun Lv using VIPBase
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images courtesy of ImageNet (http://www.image-net.org/challenges/LSVRC/2010/index)
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 ImageNet 2013 — image classification chaIIenge

T S 7

0.11197 Deep learning
2 NUS 0.12535 Deep learning
3 Oxford 0.13555 Deep learning

MSRA, IBM, Adobe, NEC, Clarifai, Berkley, U. Tokyo, UCLA, UIUC, Toronto .... Top 20
groups all used deep learning

e |ImageNet 2013 — object detection challenge

UvA-Euvision 0.22581 Hand-crafted features
2 NEC-MU 0.20895 Hand-crafted features
3 NYU 0.19400 Deep learning



Neural network Deep belief net
Back propagation Science Speech IMAGENET
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 ImageNet 2014 — Image classification chaIIenge

T S 7

Google 0.06656 Deep learning
2 Oxford 0.07325 Deep learning
3 MSRA 0.08062 Deep learning

e ImageNet 2014 — object detection challenge

Rank | Name ____| Mean Average Precision

1 Google 0.43933 Deep learning
2 CUHK 0.40656 Deep learning
3 Deeplnsight 0.40452 Deep learning
4 UvA-Euvision 0.35421 Deep learning
5 Berkley Vision  0.34521 Deep learning
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 Google and Baidu announced their deep
learning based visual search engines (2013)

— Google

e “on our test set we saw double the average precision when
compared to other approaches we had tried. We acquired
the rights to the technology and went full speed ahead
adapting it to run at large scale on Google’s computers. We
took cutting edge research straight out of an academic
research lab and launched it, in just a little over six months.”

— Baidu
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 Deep learning achieves 99.15% face verification
accuracy on Labeled Faces in the Wild (LFW),
close to human performance

Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint
|dentification-Verification. NIPS, 2014.
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Unrestricted, Labeled Outside Data Results

attribute classifiersil 0.8525 £ 0.0060

Simile classifiersil 0.2414 + 0.0041

attribute and Simile classifierstl 0.8554 £ 0.0035

Multiple LE + compl® 0.8445 + 0.0046
szsociate-Predictld 0.,9057 £ 0,0056
Tom-ws-Peted? 0.92310 + 0.0135

Tom-vs-Pete + Attribute<? 0.9330 £ 0.0128

combined Joint Bayesian?® 0.9242 £ 0.0108

high-dirm LBPZ7 0,9517 + 0.0113

DFDE3 0.8402 + 0.0044

TL Joint Bayesian 0.9633 £ 0.0108

face,com re011bi? 0.9130 £ 0.0030

— Facet+40 0,9727 £ 0,0065
‘ DeepFace-ensemble?! 0.9735 + 0.0025
- Conuket-REMYE 0.9252 + 0.0038
POOF-gradhist® 0.9313 £ 0.0040

POOF-HOGH 0,9280 + 0.0047

‘ FR+FCNT® 0.9645 + 0.0025
- DeeplDdt 0.9745 + 0.0026
GaussianFace®? 0.9852 £ 0.0066

- DeeplDz+d 0.9915 + 0.0013

Tahle 6: Mean classification accuracy 0 and standard error of the mean Sg.
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DeepLlearning

With massive
amounts of
CDI‘I‘IE!J[EJ.UDI‘IBJ power,
machines can now
rECQ%]nize objects and
translate speech in
real time. Artificial
intelligence is finally
getting smart.

Temporary Social
Media

Messages that quickly

self-destruct could
enhance the privacy
of online
communications and
make people freer to
be spontaneous.

Memory lmplants

A maverick
neuroscientist
believes he has
deciphered the code
by which the brain
forms long-term
memaories. Next:
testing a prosthetic
implant for people

suffering from long-
term memnory lnes

Smart Watches

The designers of the
Pebble watch realized
that a mobile phone is
more useful if you
don't have to take it

ruit o wenir pne kst

Intreduction [he 10 Technologies Pasl Year:
Prenatal DNA Additive Baxter: The Blue-
Sequencing Manufacturing Collar Robot
Reading the DNA of

fetuses will be the
next frontier of the

nomic revolution.

ut do you really want

to know about the
genetic problems or
musical aptitude of
your unborn child?

Skeptical about 3-D
printing? GE, the
world's largest
manufacturer, is on
the verge of using the
technology to make

Rodney Brooks's
newest creation is
easy to interact with,
but the complex
innovations behind the
robot show just how
hard it is to get along

Ultra-Efficient Solar
Power

Doubling the
efficiency of a solar
cell would completely
change the
economics of
renewable energy.
MNanotechnology just

might make it
mnesible

jet parts. with people. 5
BigData from Cheap Supergrids
Phones

Collecting and
analyzing information
from simple cell
phones can provide
surprising insights into
how people move
about and behave -
and even help us

understand the
enrpar nf disssasa

A new high-power
circuit breaker could
finally make highly
efficient DC power

riricle nractical
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BUSIMNESS MEWS

Is Google Cornering the
Market on Deep Learning?

A cutting-edge corner of science is being wooed by Silicon Valley, to
the dismay of some academics.

By Antonio Regalado on January 28, 2014

How much are a dozen deep-learning researchers
worth? Apparently, more than $400 million.

The acquisition, aimed at adding skilled experts rather than specific products, marks an
acceleration in efforts by Google, Facebook, and other Internet firms to monpololize the
biggest brains in artificial intelligence research.
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BUSIMNESS MEWS

Is Google Cornering the
Market on Deep Learning?

A cutting-edge corner of science is being wooed by Silicon Valley, to
the dismay of some academics.

By Antonio Regalado on January 28, 2014

How much are a dozen deep-learning researchers
worth? Apparently, more than $400 million.

Yoshua Bengio, an Al researcher at the University of Montreal, estimates that there are
only about 50 experts worldwide in deep learning, many of whom are still graduate
students. He estimated that DeepMind employed about a dozen of them on its staff of
about 50. “I think this is the main reason that Google bought DeepMind. It has one of the
largest concentrations of deep learning experts,” Bengio says.
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NEWS Orl uccp NINEg
Baidu established Institute of Deep Learning 2012
Hinton’s group won ImageNet Contest Oct. 2012
Hinton joined Google March 2013
Google announced deep learning based visual search engine March 2013
Baidu announced deep learning based visual search engine June 2013
Yahoo acquired startup LookFlow working on deep learning Oct. 2013
Facebook established a new Al lab in NewYork and recruited Yann Dec. 2013
LeCun
Google Acquires DeepMind for USD 400 Million January 2014
Baidu established a new lab at Shenzhen, China 2014
Baidu established a new lab at silicon valley and Andrwe Ng is the May 2014
director
Deep learning reached human performance on face verification on LFW | June 2014
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* Introduction to classical deep models
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e Convolutional Neural Networks (CNN)

— Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based Learning Applied to
Document Recognition,” Proceedings of the IEEE, Vol. 86, pp. 2278-2324, 1998.

 Deep Belief Net (DBN)

— G. E. Hinton, S. Osindero, and Y. Teh, “A Fast Learning Algorithm for Deep Belief Nets,”
Neural Computation, Vol. 18, pp. 1527-1544, 2006.

e Auto-encoder

— G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural
Networks,” Science, Vol. 313, pp. 504-507, July 2006.
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e Convolutional Neural Networks (CNN)
— First proposed by Fukushima in 1980

— Improved by LeCun, Bottou, Bengio and Haffner in 1998

T A T 5 S
_ _ HENENEEZEEE earned
Convolution Pooling HENESREEER filters
) 2 A e




D~
Dd

CKpropagat
W W —-nvy J(W)

W is the parameter of the network; J is the objective function

0 Target values I
t ¥
Output layer I
Feedforward T ‘1, Back error
operation propagation
Hidden layers I
T I
Input layer I v

D. E. Rumelhart, G. E. Hinton, R. J. Williams, “Learning Representations by Back-propagation Errors,” Nature, Vol. 323,
pp. 533-536, 1986.
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* Deep belief net pre.training:

— Hinton’06

e Good initialization point

 Make use of unlabeled data

P(xlhlth) = p(xlhl) p(hlth)

( h) e—E(X,hl)
P(X, 1) =
ZE_E(X’hl)
X,y

E(x,h;)=b' x+c' h;+h,' Wx

h

RBM

ep Moadaels
A
Initial point
=
y
hz
RBM
h;




A
\ 9

doolildl

Neon
Deep Mo

e Auto-encoder
— Hinton and Salakhutdinov 2006

Encoding: h, = o(W x+b,)
h, = o(W,h,+b,)

Decoding: hy = 6(W’,h,+b,)
X = o(W’;h,+b,)
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e Why does deep learning work?



Feature Learning vs Feature Engineering
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eature Engineering
The performance of a pattern recognition system heavily
depends on feature representations

Manually designed features dominate the applications of
image and video understanding in the past

— Reply on human domain knowledge much more than data

— Feature design is separate from training the classifier

— If handcrafted features have multiple parameters, it is hard to
manually tune them

— Developing effective features for new applications is slow



Handcrafted Features for Face Recognition

2 parameters 3 parameters

?:}5;2 0?/:*1\; 1
benzafiusc=o

] 5 0
Geometric features Pixel vector Gabor filters Local binary patterns

| | | |

—

1980s 1992 1997 2006
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e Learning transformations of the data that make it easier to
extract useful information when building classifiers or
predictors

Jointly learning feature transformations and classifiers makes their
integration optimal

Learn the values of a huge number of parameters in feature
representations

4

o
—h

Faster to get teatur

erep
Make better use of big data
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e Deep learning is about learning hierarchical feature

representations
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e Good feature representations should be able to disentangle
multiple factors coupled in the data

@ E r-" |dentity: face recognition Pixel n ﬂj—)view
o

eeee ||ovee ) ) . o
Pose: pose estimation Pixel 2 Ideal
—>| Feature p—> ﬂ
l Expression: expression recognition Transform PS

EXIIIIIIIITN |
I . .
Age: timat i i
( ) @ ge: age estimation Pixel 1 expression




Example 1: deep learning generic image features

e Hinton group’s groundbreaking work on ImageNet

— They did not have much experience on general image classification on
ImageNet

— It took one week to train the network with 60 Million parameters

— The learned feature representations are effective on other datasets

(e.g. Pascal VOC) and other tasks (object detection, segmentation,
tracking, and image retrieval)

\ -
N

.\ i
I~ 5 . S . | — _
11 \\ . e 3 + == : — N > >
—| = - 57 - 13 N - 13 N - % (13 dense dense
224 5 = N T 3\ -~
55 384 384 256 100¢
Max
256 _ L |
Max Max pooling 4096 4006
Stride\\| o | P°°liNg pooling
224

of 4
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mite  container shi motor scooter

mite container ship motor scooter leapard

black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard

starfish drilling platform golfcart Egyptian cat

¢

mushroom cherry adagascar cat

convertible agaric dalmatian squirrel monkey

grille mushroom grape spider monkey

:—I pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri

fire engine | dead-man's-fingers currant howler monkey




Top hidden layer can be used as feature for retrieval




Example 2: deep learning face identity features
by recovering canonical-view face images

d’j bo} L
BELRE
’5]‘!].
gl > .uﬂi b

Reconstruction examples from LFW

Z. Zhu, P. Luo, X. Wang, and X. Tang, “Deep Learning Identity Preserving Face Space,” ICCV 2013.



e Deep model can disentangle hidden factors through feature

extraction over mulhnln |::\n:\rc
/ALl UG LIWVI | \J VL] rl y\-ld

* No 3D model; no prior information on pose and lighting condition
e Model multiple complex transforms

e Reconstructing the whole face is a much strong supervision than
predicting 0/1 class label and helps to avoid overfitting

Feature Extraction Layers Reconstruction Layer
=48 X 48 X 32

FIP
n,=24X24X32 n;=24X24X32

n,=96 X 96 n,=96 X 96

4
W
5X5 Locally | 5X5 Locally 5X5 Locally M Fully
Connected and | Connected and Connected g Connected Y

Pooling Pooling

Arbitrary view Canonical view
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Comparlson on Muiti-PIE

LGBP [26] 37.7 62.5 59.2 36.1 593 V
VAAM [17] 74.1 91 95.7 95.7 895 748 869 V
FA-EGFCI[3] 84.7 95 99.3 99 929 85.2 92.7

SA-EGFCJ[3] 93 98.7 99.7 99.7 983 936 972 V¥

LE[4] + LDA 869 955 999 99.7 955 818 93.2 X
CRBM[9] + LDA 80.3 90.5 949 964 883 898 876 «x

Ours 95.6 98.5 100.0 99.3 985 978 983 «x
[3] A. Asthana, T. K. Marks, M. J. Jones, K. H. Tieu, and M. Rohith. Fully [17] S.Li, X. Liu, X. Chai, H. Zhang, S. Lao, and S. Shan. Morphable displacement
automatic pose-invariant face recognition via 3d pose normalization. In ICCV, field based image Tawhlﬂg for face recognition across pose. In ECCV, pages
pages 937-944,2011. 1,5,6 102-115.2012. 1,2,5,6

[4] Z. Cao, Q. Yin, X. Tang, and J. Sun. Face recognition with learning-based [26] W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang. Local gabor binary

descriptor. In CVPR, pages 2707-2714, 2010. 2, 3,6 pattern histogram sequence (lgbphs): A novel non-statistical model for face
’ ’ T representation and recognition. In ICCV, volume 1, pages 786791, 2005. 5, 6

[9] G. B. Huang, H. Lee, and E. Learned-Miller. Learning hierarchical represen-
tations for face verification with convolutional deep belief networks. In CVPR,
pages 2518-2525,2012. 3,6



Deep learning 3D model from 2D images,
mimicking human brain activities

- el o D

'3
iy oy ey e e

Z. Zhu, P. Luo, X. Wang, and X. Tang, “Deep Learning and Disentangling Face Representation by Multi-View
Perception,” NIPS 2014.



Example 3: deep learning face identity features
from predicting 10,000 classes

e At training stage, each input image is classified into 10,000
identities with 160 hidden identity features in the top layers

 The hidden identity features can be well generalized to other
tasks (e.g. verification) and identities outside the training set

e As adding the number of classes to be predicted, the
generalization power of the learned features also improves

Convolutional

Convolutional

layer 2

-_-_.'-.'r s
R N i e 5 5
£ e

0
1 20 Max-pooling
Input layer layer 1

3

40

40 Max- pooling

layer 2

layer 3

40

dhem {[;—
b13b

60

layer

Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification-

Verification. NIPS, 2014.

3

Convolutional Convolutional — -|g
|E‘5.I'E‘I‘d- 169’ ‘
.22 .

e o i S [
G 2T
- -

/-
60 Max- poollng

Dee h|dﬂen-
J‘é

Bl |

Soft-max
layer
3

ntity ° :
features n
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Deep Structures vs Shallow Structures
(Why deep?)
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* Athree-layer neural network (with one hidden layer) can
represent any classification function

e Most machine learning tools (such as SVM, boosting, and

KNN) can be approximated as neural networks with one or
two hidden layers

e Shallow models divide the feature space into regions and

match templates in local regions. O(N) parameters are needed
to represent N regions

sVM  9(z) =b+ > a;K(z, ;)




Deep Machines are More Efficient for
Representing Certain Classes of Functions

 Theoretical results show that an architecture with insufficient
depth can require many more computational elements,
potentially exponentially more (with respect to input size),
than architectures whose depth is matched to the task
(Hastad 1986, Hastad and Goldmann 1991)

* |t also means many more parameters to learn



e Take the d-bit parity function as an example

. d .
X ... X d 1, if 37, Xiseven
X X € 10,1} H{ —1, otherwise

e d-bit logical parity circuits of depth 2 have exponential
size (Andrew Yao, 1985)

@ ®

no@ ® X
Reusepartial ® @© © “— O(d)
computation & & & I
@ R8 B
= N “&, %
M= ] = @ RO B
A x X2 REER S X3 X, X X5 X Y % % %
Shallow structure Deep structure

 There are functions computable with a polynomial-size logic
gates circuits of depth k that require exponential size when
restricted to depth k -1 (Hastad, 1986)



e Architectures with multiple levels naturally provide sharing
and re-use of components

s % NN
L N TR
Ovahenn

- -
¥ '-'.' L] -

s DL
EENSRCS
‘ . ‘o -":
BUBED =¥

Honglak Lee, NIPS’'10



Humans Understand the World through
Multiple Levels of Abstractions

e We do not interpret a scene image with pixels

— Objects (sky, cars, roads, buildings, pedestrians) -> parts (wheels,
doors, heads) -> texture -> edges -> pixels

— Attributes: blue sky, red car

e Itis natural for humans to decompose a complex problem into
sub-problems through multiple levels of representations

buliding




Humans Understand the World through
Multiple Levels of Abstractions

e Humans learn abstract concepts on top of less abstract ones

e Humans can imagine new pictures by re-configuring these
abstractions at multiple levels. Thus our brain has good
generalization can recognize things never seen before.

— Our brain can estimate shape, lighting and pose from a face image and
generate new images under various lightings and poses. That’s why we

have good face recognition capability.
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Human Brains Process Visual Signals
through Multiple Layers

e Avisual cortical area consists of six layers (Kruger et al. 2013)

Hyppocampus Prefrontal cortex

Memory (non motor) FEF, SC, Occulomotor F5 (Hand control)
Premotor

FEF, 5C

" Dorsal

§
§
| §
£ pathway g
N
&

od ) \ g 4 o a PMD M“_}VI ﬂm "
% ' . . “ i oy Aip j

oa"‘q_ e ‘.%k - Vestibular information about } .{ f\\f
o, % V3/V3A arm, eye and head position -.,;/ \\ ,‘/ 2]
% N = oY |

‘o"c,*_ z V2 | Occipital TE
% | ~ cortex
\"Al
-~ VISUAL CORTEX
1 = ")




Joint Learning vs Separate Learning



* Domain knowledge could be helpful for designing new
deep models and training strategies

* How to formulate a vision problem with deep learning?
— Make use of experience and insights obtained in CV research
— Sequential design/learning vs joint learning
— Effectively train a deep model (layerwise pre-training + fine tuning)

N Spatial pyramid F . .
Feature 5| Quantization e o eature &S filt
3 . ) 5 _ iltering
extraction (visual words) (hlstograms n Classification extraction
local regions)
Conventional object recognition scheme Quantization <> filtering

Spatial oy multi-level
pyramid pooling

224

s 96 Filtering & max Filtering & Filtering & Krizhevsky
pooling max pooling  max pooling NIPS’ 12




What if we treat an existing deep model as
a black box in pedestrian detection?

convolutions subsampling convolutions full

l l connection

subsampling output

T

convolutions subsampling
nput 1st stage 2nd stage classifier

ConvNet-U-MS

— Sermnet, K. Kavukcuoglu, S. Chintala, and LeCun, “Pedestrian Detection with
Unsupervised Multi-Stage Feature Learning,” CVPR 2013.
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Feature Part deformation Occlusion
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 N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
CVPR, 2005. (6000 citations)

* P. Felzenszwalb, D. McAlester, and D. Ramanan. A Discriminatively Trained,
Multiscale, Deformable Part Model. CVPR, 2008. (2000 citations)

e W. Ouyang and X. Wang. A Discriminative Deep Model for Pedestrian Detection
with Occlusion Handling. CVPR, 2012.
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W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.
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e Design the filters in the second
convolutional layer with variable sizes

—
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Part models

Level 2

Level 1

ec

+ A vre
LUl D

Part models learned
from HOG

Head-shoulder
at level 2

Head-torso
at level 3

Legs
at level 2

Torso
at level 2

Head-shoulder
at level 3

Full-body
at level 3

Learned filtered at the second
convolutional layer



Summed map

Part score

Low High
value value

M, D,

Part detection

map Deformation maps




Visibility Reasoning with Deep Belief Net

;LH_I _ O_(BZT w + Cl—|—1 4 gl—l—l l—l—l)

J

Correlates with part detection score
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e Caltech — Test dataset (largest, most widely used)
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Rapid object detection using a boosted cascade of simple features
P Viola, M Jones - ... Vision and Pattern Recognition, 2001. CVPR .., 2001 - ieeexplore.ieee.org.org

Abstract This paper describes a machine learning approach for visual object detection which |
Is capable of processing images extremely rapidly and achieving high detection rates. This
work is distinguished by three key contributions. The first is the introduction of a new ...

Cited by 7647 Related articles All 201 versions Importinto BibTeX More«
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e Caltech — Test dataset (largest, most widely used)
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Histograms of oriented gradients for human detection

N Dalal, B Triggs - ... and Pattern Recognition, 2005. CVPR 2005 ..., 2005 - ieeexplore.ieee.org
.. We study the issue of feature sets for human detection, showing that lo- cally normalized
Histogram of Oriented Gradient (HOG) de- scriptors provide excellent performance relative

to other ex- isting feature sets including wavelets [17,22]. ...

Cited by 5438 Related articles All 106 versions Import into BibTeX More~
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Object detection with discriminatively trained part-based models

PF Felzenszwalb, RB Girshick... - Pattern Analysis and ..., 2010 - ieeexplore.ieee.org
Abstract We describe an object detection system based on mixtures of multiscale
deformable part models. Our system is able to represent highly variable object classes and
achieves state-of-the-art results in the PASCAL object detection challenges. While ...

Cited by 964 Related articles All 43 versions Import into BibTeX More~
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W. Ouyang and X. Wang, "A Discriminative Deep Model for Pedestrian Detection with Occlusion Handling,” CVPR 2012.

W. Ouyang, X. Zeng and X. Wang, "Modeling Mutual Visibility Relationship in Pedestrian Detection ", CVPR 2013.

W. Ouyang, Xiaogang Wang, "S

ingle-Pedestrian Detection aided by Multi-pedestrian Detection ", CVPR 2013.

X. Zeng, W. Ouyang and X. Wang, ” A Cascaded Deep Learning Architecture for Pedestrian Detection,” ICCV 2013.
W. Ouyang and Xiaogang Wang, “Joint Deep Learning for Pedestrian Detection,” IEEE ICCV 2013.
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Large learning capacity makes high dimensional
data transforms possible



 How to make use of the large learning capacity of
deep models?

— High dimensional data transform
— Hierarchical nonlinear representations

,. SVM + feature @ E ES_‘;“‘
/I ’ smoothness, shape prior... ' =

Output | eeee || eeee || ®eee

High-dimensional |
data transform 00000000000

I i
Input a
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 P. Luo, X. Wang and X. Tang, “Hierarchical Face
Parsing via Deep Learning,” CVPR 2012




Motivations

Recast face segmentation as a cross-modality data
transformation problem

Cross modality autoencoder

Data of two different modalities share the same
representations in the deep model

Deep models can be used to learn shape priors for
segmentation



Training Segmentators
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Automatically learns hierarchical feature representations from
data and disentangles hidden factors of input data through
multi-level nonlinear mappings

For some tasks, the expressive power of deep models
increases exponentially as their architectures go deep

Jointly optimize all the components in a vision and crate
synergy through close interactions among them

Benefitting the large learning capacity of deep models, we
also recast some classical computer vision challenges as high-
dimensional data transform problems and solve them from
new perspectives

It is more effective to train deep models with challenging
tasks and rich predictions
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 Deep learning for object recognition



Part Il: Deep Learning Object
Recognition

Deep learning for object recognition on
mageNet

Deep learning for face recognition

— Learn identity features from joint verification-
identification signals

— Learn 3D face models from 2D images



CNN for Object Recognition on ImageNet

Krizhevsky, Sutskever, and Hinton, NIPS 2012

Trained on one million images of 1000 categories
collected from the web with two GPUs; 2GB RAM on

each GPU; 5GB of system memory

Training lasts for one week

Rank _|Name _____|Errorrate | _ Description

1
2
3
4

U. Toronto
U. Tokyo

U. Oxford
Xerox/INRIA

0.15315
0.26172
0.26979
0.27058

Deep learning

Hand-crafted
features and
learning models.
Bottleneck.
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Max-pooling layers follow 1%, 2"9, and 5" convolutional layers

The number of neurons in each layer is given by 253440,
186624, 64896, 43264, 4096, 4096, 1000

650000 neurons, 60 million parameters, 630 million
connections
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 Normalize the input by subtracting the mean image on the
training set

Input image (256 x 256) Mean image

Krizhevsky 2012
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e Rectified linear unit leads to sparse responses of neurons,
such that weights can be effectively updated with BP

f(x) = tanh(x) f(x) = max(0, x)

Sigmoid (slow to train) Rectified linear unit (quick to train) \/

Krizhevsky 2012
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e The neural net has 60M parameters and it overfits

* Image regions are randomly cropped with shift; their
horizontal reflections are also included

Krizhevsky 2012
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DUropout

Randomly set some input features and the outputs of hidden
units as zero during the training process

Feature co-adaptation: a feature is only helpful when other
specific features are present

— Because of the existence of noise and data corruption, some features
or the responses of hidden nodes can be misdetected

Dropout prevents feature co-adaptation and can significantly
improve the generalization of the trained network

Can be considered as another approach to regularization
It can be viewed as averaging over many neural networks

Slower convergence
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grille mushroom grape spider monkey
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Krizhevsky 2012



balance beam
cinema
marimba
parallel bars

computer keyboard

bottlecap

arter snake

bottlecap

diamondback

magnetic compass || thresher || | leatherback turtle Walker hound
puck plow sandbar English foxhound

stopwatch tractor echidna muzzle

disk brake || tow truck armadillo Italian greyhound

Krizhevsky 2012
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Directly use the feature representations learned from ImageNet and
replace handcrafted features with them in image classification, scene
recognition, fine grained object recognition, attribute recognition, image
retrieval (Razavian et al. 2014, Gong et al. 2014)

Use ImageNet to pre-train the model (good initialization), and use target
dataset to fine-tune it (Girshick et al. CVPR 2014)
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Fix the bottom layers and only fine tune the top layers
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e More than 20 layers

e Add supervision at multiple layers
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e The error rate is reduced from 15.3% to F‘H‘
6.6%
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 Deep learning for face recognition

— Learn identity features from joint verification-
identification signals

)
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Huang et al. CVPR’12 87% Unsupervised
Sun et al. ICCV’13 92.52% 5 87,628
DeepFace (CVPR’14) 97.35% 6+ 67 7,000,000
Sun et al. (CVPR’14) 97.45% 5 202,599

Sun et al. (arXiv’'14) 99.15% 18 202,599

The first deep learning work on face recognition was done by Huang et al. in 2012. With
unsupervised iearning, the accuracy was 87%

Our work at ICCV’13 achieved result (92.52%) comparable with state-of-the-art
Our work at CVPR’14 reached 97.45% close to “human cropped” performance (97.53%)

DeepFace developed by Facebook also at CVPR’14 used 73-point 3D face alignment and 7
million training data (35 times larger than us)

Our most recent work reached 99.15% close to “human funneled” performance (99.20%)

Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification-Verification.
NIPS, 2014.



Intra-personal variation

Inter-personal variation

How to separate the two types of variations?



Nicole Kidman

Nicole Kidman
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e QOut of 6000 image pairs on the LFW test set, 51 pairs
are misclassified with the deep model

 We randomly mixed them and presented them to 10
Chinese subjects for evaluation. Their averaged
verification accuracy is 56%, close to random guess
(50%)
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Eigenface (1992)
Linear discriminant analysis (LDA) (PAMI’97)

Bayesian face recognition (PR’00)
Unified subspace analysis (PAMI’'04)
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P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition Using Class
Specific Linear Projection,” TPAMI, Vol. 19, pp. 711-720, 1997.
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LDA seeks for linear feature mapping which maximizes the distance
between class centers under the constraint what the intrapersonal
variation is constant

¥, = fix;l = Wiy,
f7 = argmax Z |Fi%ed = fiRgd)?
.*
Y

5.8, Z | fix;) — f':xj :]|2 =1

(et



Trainingimages

A=X,—X,

Eigenvalues

B. Moghaddam, T. Jebara, and A. Pentland, “Bayesian Face Recognition,” Pattern Recognition, Vol. 33, pp. 1771-1782, 2000.
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e Further do PCA on class centers after reducing
intrapersonal variation with whitening
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 Eigenface: PCA on images to reduce dimensionality
and remove noise (when later steps increase
intrapersonal difference, some noise could be
magnified in wrong directions)

* Bayesianface: PCA on intrapersonal difference
vectors to extract the patterns of intrapersonal
variations, and depress them by dividing eigenvalues

 Fisherface: PCA on class centers to make them as far
as possible and extract identity information

X. Wang and X. Tang, “A Unified Framework for Subspace Face Recognition,” TPAMI, Vol. 26, pp. 1222-1228, 2004.
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e A lot of information has been lost when
calculating the difference A = X; — X,

b
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e Linear models with shallow structures cannot
separate intra- and inter-personal variations,
which are complex, nonlinear, and in high-
dimensional image space
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e Extract identity preserving features through
hierarchical nonlinear mappings

e Model complex intra- and inter-personal
variations with large learning capacity



Learn Identity Features from Different
Supervisory Tasks

e Face identification: classify an image into one
of N identity classes

— multi-class classification problem

* Face verification: verify whether a pair of
images belong to the same identity or not

— binary classification problem



Minimize the intra-personal variation under the constraint
that the distance between classes is constant (i.e. contracting
the volume of the image space without reducing the distance

between classes) N

y = f(x); g = softmax()

f* —algmm Z £ (i) — £

(i.j)efY;

<.t |g(f(x ))_gkf(x.f )| =1, label(x;) # label(xj)



Learn ldentity Features with
Verification Signal

Extract relational features with learned filter pairs

y = f (6 + kY s at + k%« 2?)
These relational features are further processed through
multiple layers to extract global features

The fully connected layer can be used as features to combine
with multiple ConvNets

Convolutional Fully-
layer 1 Convolutional connected
7 layer 2 Convolutional layer
1 layer 3 Convolutional, Soft-max
g . . layer 4{,,.;" layer
+ 2&3332}5 '—?52"’?@52 A s NS AR
a0 60 80
| 50 70 40 . 60" Max-pooling 80
20 Max-pooling Malé-y%?rozmg layer 3

2
Input layer layer 1

Y. Sun, X. Wang, and X. Tang, “Hybrid Deep Learning for Computing Face Similarities,” Proc. ICCV, 2013.
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e 10 face regions, 3 scales, color/gray and 8 modes
e Base on three-point alignment
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RBM Combines Features Extracted by
Multiple ConvNets

RBM output layer/ —
face verification prediction

RBM hidden layer (0@ 09000 @)
i 3
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_ Feature extraction layer
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e Qutside training data: the CelebFaces dataset has 87,628 face
images of 5,436 celebrities. Its identities have no overlap with
LFW

hid hid+out out
dimension 38,400 38,880 480

each dim (%) 60.25 60.58 86.63
PCA+LDA (%) 94.55 94.42 93.41
SVM linear (%) | 95.12 95.04 93.45
SVM rbf (%) 94.95 94.89 94.00
classRBM (%) 95.56 95.32 93.79

Taking the last hidden layer (hid) as features for combination is more
effective than using the output of CNNs (out)
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 More regions improve performance
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* Fine tuning RBM and ConvNets improves the
performance

* Averaging 5 RBMs (each is trained with a randomly
generated training set) can improves performance

LEW (%) | CelebFaces (%)
Single ConvNet 85.05 88.46
RBM 93.45 95.56
Fine-tuning 93.58 96.60
Model averaging 93.83 97.08

LFW: only using training images from LFW with unrestricted protocol
CelebFaces: using CelebFaces as training set without training images from LFW
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e Unrestricted protocol without outside training data

Method Accuracy (%)
ConvINet-RBM previous [43] 91.75 4+ 0.48
VMRS [3] 92.05 £ 0.45
CMD+SLBP [23] 92.58 4+ 1.36
VisionLabs ver. 1.0 [1] 92.90 4 0.31
Fisher vector faces [41] 03.03 4+ 1.05
High-dim LBP [13] 03.18 &+ 1.07
Aurora [19] 03.24 +0.44

ConvNet-REM

93.83 + 0.52

true positive rate

0.7 }i

------- ConvNet-RBM previous (unrestrict) [43]

CMD+SLBP [23]

VisionLabs ver. 1.0 [1]

Fisher vector faces [41]
— High-dim LBP (unrestrict) [13]
Aurora [19]

ConvNet- RBM (unrestnct)

063

0. 2 0. 3
false positive rate

0.4
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e Unrestricted protocol using outside training data

Method Accuracy (%)
Joint Bayesian [12] 092.42 + 1.08
ConvNet-RBM previous [43] 92.52 + 0.38
Tom-vs-Pete (with attributes) [4] 093.30 £ 1.28

High-dim LBP [13]

95.17 £ 1.13

TL Joint Bayesian [10]

96.33 = 1.08

ConvNet-RBM

97.08 + 0.28

true positive rate

0.7

0.6

Joint Bayesian (WDRef) [12]
— ConvNet-RBM previous (CelebFaces) [43]

Tom-vs-Pete (with attributes) [4]
— High-dim LBP (WDRef) [13]

TL Joint Bayesian [10]
ConvNet-RBM (CelebFaces)
0.1 0.2 0.3

0.4
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Use the last hidden layer instead of the output of
CNNs as features

Fusion of features from more face regions (CNNs)
improves the performance

Fine tuning RBM and CNNs improves performance

» Averaging the outputs of multiple RBMs improves
the performance

Drawbacks: computational cost is high and features
cannot be computed offline



Learn ldentity Features with
ldentification Signal

(1,0,0)
\

Soft-max
layer 1 Convolutional Iaier
layer 2 Convolutional Convolutional -9
1 layer 3 layer4 160" |
LT/
ﬁ:: (BT A 2 |
q VRR [ b sl .
40 20 60 - e TSN |T
50 20 40 i Max-pooling ~--. |1}
1 Max-pooling alz-pec;crzmg layer 3 ~la]
Input layer layer 1 4 De? hidden
identity .9,
features n
(DeeplD)

Y. Sun, X. Wang, and X. Tang, “Deep Learning Face Representation from Predicting 10,000 classes,” Proc. CVPR, 2014.



During training, each image is classified into 10,000
identities with 160 identity features in the top layer

These features keep rich inter-personal variations

Features from the last two convolutional layers are

effective

The hidden identity features can be well generalized
to other tasks (e.g. verification) and identities

outside the training set

Convolutional Sl:}lgt—n':_ax

layer 1 Convolutional ye
layer 2 Convolutional Convolutional [

1 layer 3 layer 4 1@9 !

B 4: e ﬁ:: -k T2 m:i"‘::‘:f-u_ 2 - .-;1'.
e MR |4 zﬁ[ b |48 N s

40 B0 . e 9
20 80 a0 ) 60 Max-pooling .
1 20 Max-pooling alzvpeﬁﬂz'”g layer 3

Input layer layer 1 Deaﬂa h|d7den-
entity - :
features n

(DeeplD)



 High-dimensional prediction is more challenging, but
also adds stronger supervision to the network

* As adding the number of classes to be predicted, the
generalization power of the learned features also

iImproves

Convolutional Sl:}lft—n':_ax
layer 1 Convolutional aye
layer 2 Convolutional Convolutional [
/ 1 layer 3 layer 4 16‘9 r‘
s YRR A A )R
4{] ED 60 --_-"'u,_h-‘-"n_\_ --h: 'III‘-._‘ )
350 a0 40 Max-pooling .- |1 ©
1 Max-pooling Malz- pe':;'j;!mg layer 3 '
Input layer layer 1 Y DEEJJ h|dder1
entity - :
features n

(DeeplD)



Extract Features from Multiple ConvNets

Multiple ConvNets

n~10000 n =~ 10000
OO -+ OO Identityclasses QO -« -+ OO
Deep hidden % ‘l‘ _______ .
identity features | O . O 160 oo |O. .. O] 160
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Learn ldentity Features with
ldentification Signal

e After combining hidden identity features from
multiple CovNets and further reducing
dimensionality with PCA, each face image has 150-
dimenional features as signature

e These features can be further processed by other
classifiers in face verification. Interestingly, we find
Joint Bayesian is more effective than cascading
another neural network to classify these features
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 We enlarge CelebFaces dataset to CelebFaces+, which include
202,599 images of 10,117 celebrities. CelebFaces+ has no
overlap with LFW on identities

Method Accuracy (%) | No. of points | No. of images Feature dimension
Joint Bayesian [¥] 92.42 (o) S5 99,773 2000 x 4
ConvNet-RBM [ 1] 92.52 (o) 3 87,628 N/A
CMD+SLBP [17] 92.58 (u) 3 N/A 2302
Fisher vector faces [2Y] 93.03 (u) 9 N/A 128 x 2
Tom-vs-Pete classifiers [] 93.30 (o+r) 95 20,639 5000
High-dim LBP [Y] 95.17 (o) 27 99,773 2000

TL Joint Bayesian [0] 96.33 (0+u) 27 99,773 2000
DeepFace [3”] 97.25 (o+u) 6+ 67 4,400,000 + 3,000,000 | 4096 x 4
DeepID on CelebFaces 96.05 (o) 5 87,628 150
DeepID on CelebFaces+ 97.05 (o) 5 202,599 150
DeeplD on CelebFaces+ with transfer | 97.45 (o+u) 5 202,599 150

“0” denotes using outside training data, however, without using training data from LFW

“o+u” denotes using outside training data and LFW data in the unrestricted protocol for

training
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ication Signals
e Every two feature vectors extracted from the same
identity should are close to each other

31 = 515 if g = 1
Verif(fiff'ayi':eve) — 2 1t 112 9 tJ
T smax (0,m — || fi — fjll,)" ifyy =—1

f;and f; are feature vectors extracted from two face images in comparison

y; = 1 means they are from the same identity; y; = -1means different identities

m is a margin to be learned

Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification-Verification.
NIPS, 2014.



Balancing Identification and
Verification Signhals with Parameter A

100 "'"':"""'"":""""'"i'""'""'i"'""'"'-""'"""-"""'""i
i i i L2 Norm

----Joint Bayesian

| - i xt= T
o e =
- = ' ' L

©
o

* !

LY

i

?

;

i

'
hhhhhhhhhh
=

e e

verification accuracy (%)

s S

75 | _ | . i _ i i | |
ﬁﬁ_»\i’laﬁ_»\v&?ﬁﬁ_»ﬁ?:ﬁﬁ g_»‘p&?? ﬁ_»\ﬁ’f &

A = 0: only identification signal
A = +oo: only verification signal



Rich Identity Information Improves

Feature Learning

e Face verification accuracies with the number of
training identities
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e 25 face regions at different scales and locations
around landmarks are selected to build 25 neural
networks

e Allthe 160 X 25 hidden identity features are further
compressed into a 180-dimensional feature vector
with PCA as a signature for each image

 With a single Titan GPU, the feature extraction
process takes 35ms per image
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High-dim TL Joint DeepFace | DeepliD [4] | DeepliD2 [5]
LBP [1] Bayesian [2] E]
Accuracy 95.17 96.33 97.35 97.45 99.15

(%)
[1] Chen, Cao, Wen, and Sun. Blessing of dimensionality: High-dimensional feature and
its efficient compression for face verification. CVPR, 2013.

[2] Cao, Wipf, Wen, Duan, and Sun. A practical transfer learning algorithm for face
verification. ICCV, 2013.

[3] Taigman, Yang, Ranzato, and Wolf. DeepFace: Closing the gap to human-level
performance in face verification. CVPR, 2014.

[4] Sun, Wang, and Tang. Deep learning face representation from predicting 10,000
classes. CVPR, 2014.

[5] Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification-
Verification. NIPS, 2014.



Unified subspace analysis

* Identification signal isin S;
verification signal isin S,

* Maximize distance between

classes under constraint
that intrapersonal variation
Is constant

e Linear feature mapping

Joint deep learning

Learn features by joint
identification-verification

Minimize intra-personal
variation under constraint
that the distance between
classes is constant

Hierarchical nonlinear
feature extraction

il UIIaaUulLIWIE I VWV 1 IHivi CuUJvw.Jd

(‘nnnr::aln::hnn pn\/\lnr iNcreases

with more training identities

 Need to be careful when magnifying the inter-personal difference;
Unsupervised learning many be a good choice to remove noise

We still do not know limit of deep learning yet
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 Deep learning for face recognition

— Learn 3D face models from 2D images



Deep Learning Multi-view
Representation from 2D Images

e Inspired by brain behaviors [Winrich et al. Science 2010]
e |dentity and view represented by different sets of neurons

e Given an image under arbitrary view, its viewpoint can be
estimated and its full spectrum of views can be reconstructed

3 fkﬂm"f—'ﬂ g i
I £
0 A e e e i i

Z.Zhu, P. Luo, X. Wang, and X. Tang, “Deep Learning and Disentangling Face Representation by Multi-View Perception,”
NIPS 2014.



Deep Learning Multi-view
Representation from 2D Images

x and y are input and ouput images of
the same identity but in different views;

v is the view label of the output image;

h'd are neurons encoding identity
features

h'are neurons encoding view features

h"are neurons encoding features to
X reconstruct the output images



Ave. | 0°  —15° +15° —30° +30° —45° +45° —60° +60°
Raw Pixels+LDA 367 | 813 592 583 355 373 210 197 128 7.63
LBP [1]+LDA 502 | 89.1 774 791 568 559 352 297 162 146
Landmark LBP [6]+LDA | 632 | 949 839 89 714 682 528 483 355 32.1
CNN+LDA 58.1 | 646 662 628 607 63.6 564 579 464 442
FIP [28]+LDA 729 | 943 914 900 789 825 66.1 620 493 425
RL [28]+LDA 708 | 943 905 898 775 80.0 636 59.5 446 389
MTL+RL+LDA 748 | 938 917 89.6 80.1 833 704 638 515 502
MVP,_, 4+LDA 615 | 925 854 849 643 670 51.6 454 351 283
1
MVP,_,4+LDA 793 | 957 933 922 834 839 752 706 602 60.0
2
MVPy+LDA 726 | 91.0 867 841 746 742 685 638 557  56.0
MVPy, - +LDA 623 | 834 773 731 620 639 573 532 444 469

Face recognition accuracies across views and illuminations on the Multi-PIE
dataset. The first and the second best performances are in bold.

[1] T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary patterns: Application to face

recognition. TPAMI, 28:2037-2041, 2006.

[6] Dong Chen, Xudong Cao, Fang Wen, and Jian Sun. Blessing of dimensionality: High-dimensional feature

and its efficient compression for face verification. In CVPR, 2013.

[28] Z.Zhu, P. Luo, X. Wang, and X. Tang. Deep learning identity preserving face space. In ICCV, 2013.




Deep Learning Multi-view
Representation from 2D Images

e Interpolate and predict images under viewpoints unobserved
in the training set

Tl v v e ey vl - o
v 7% Cn &g vy ey o x| Crlely e g
T 5 o s AR Ty e

(b)
The training set onIy has viewpoints of 0°, 30°, and 60°. (a): the reconstructed
images under 15° and 45° when the input is taken under 0°. (b) The input images
are under 15° and 45°.
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 Deep learning for object segmentation
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* Image patches centered at each pixel are used as the
input of a CNN, and the CNN predicts a class label for
each pixel

Image patches around
each pixel location

Trained CNN

Class label for each pixel

Farabet et al. TPAMI 2013 Pinheiro and Collobert ICML 2014
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CidasSity segirneritation rroposdi
 Determines which segmentation proposal can best

represent objects on interest

=Segmentatio
Proposals

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation” CVPR 2014
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P. Luo, X. Wang, and X. Tang, “Pedestrian Parsing via Deep Decompositional Network,” ICCV 2013.
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For patch-by-patch scanning, large patch size leads to better
segmentation result, because it can make better use of the large
learning capacity of deep models to capture contextual information

There is a lot of redundant computation in patch-by-patch scanning.
So feedforward operation is slow.

An image could provide one million training patches. However, only
a small portion of it can be used for training, due to the efficiency

Directly mapping input images to segmentation maps with fully
connected networks essentially learns a different classifier for each
location. It is not invariance to large geometric transforms as CNN
does. It’s only suitable to structured images like faces and
pedestrians.
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Deep learning significantly outperforms conventional vision
systems on large scale image classification

Feature representation learned from ImageNet can be well
generalized to other tasks and datasets

In face recognition, identity preserving features can be
effectively learned by joint identification-verification signals

3D face models can be learned from 2D images; identity and
pose information is encoded by different sets of neurons

We still do not see the limit of the deep model yet, as the size
of the training set increases

In segmentation, larger patches lead to better performance
because of the large learning capacity of deep models. It is
also possible to directly predict the segmentation map.
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 Deep learning for object detection



Part IV: Deep Learning for Object
Detection

* Pedestrian Detection
e Human part localization

e General object detection

Human pose estimation

Pedestrian detection



Part IV: Deep Learning for Object
Detection

Jointly optimize the detection pipeline
Multi-stage deep learning (cascaded detectors)
Mixture components

Integrate segmentation and detection to
depress background clutters

Contextual modeling
Pre-training

Model deformation of object parts, which are
shared across classes



Joint Deep Learning:

<> Jointly optimize the detection pipeline



What if we treat an existing deep model as
a black box in pedestrian detection?

convolutions subsampling convolutions full

l l connection

subsampling output

T

convolutions subsampling
nput 1st stage 2nd stage classifier

ConvNet-U-MS

— Sermnet, K. Kavukcuoglu, S. Chintala, and LeCun, “Pedestrian Detection with
Unsupervised Multi-Stage Feature Learning,” CVPR 2013.
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 N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
CVPR, 2005. (6000 citations)

* P. Felzenszwalb, D. McAlester, and D. Ramanan. A Discriminatively Trained,
Multiscale, Deformable Part Model. CVPR, 2008. (2000 citations)

e W. Ouyang and X. Wang. A Discriminative Deep Model for Pedestrian Detection
with Occlusion Handling. CVPR, 2012.
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W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.




~A A -l- NA+tA~tFAve
I\V,IUU I L LT LTULUI DS

ng P

e Design the filters in the second
convolutional layer with variable sizes

Part models learned
from HOG
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Multi-Stage Contextual Deep Learning:

< Train different detectors for different types of samples
<> Model contextual information

<> Stage-by-stage pretraining strategies

X.Zeng, W. Ouyang and X. Wang, "Multi-Stage Contextual Deep Learning for Pedestrian Detection," ICCV 2013



Motivated by Cascaded Classifiers and
Contextual Boost

* The classifier of each stage deals with a specific set

of samples

 The score map output by one classifier can serve as
contextual information for the next classifier

.
i. LeL@>
@F ILFILF_
alﬁ’m

Conventional cascaded classifiers for detection

m

+** Only pass one detection
score to the next stage

¢ Classifiers are trained
sequentially



e Simulate the cascaded classifiers by mining hard samples to train the network

e Cascaded classifiers are jointly optimized instead of being trained sequentially

* The deep model keeps the score map output by the current classifier and it
serves as contextual information to support the decision at the next stage

* To avoid overfitting, a stage-wise pre-training scheme is proposed to regularize
optimization
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Unsupervised pre-train W, ;,, layer-by-layer, setting W, ,,, =0, F,, =0

Fine-tune all the W, ;,, with supervised BP
Train F;,; and W, ., with BP stage-by-stage

A correctly classified sample at the previous stage does not influence the

update of parameters

Stage-by-stage training can be considered as adding regularization
constraints to parameters, i.e. some parameters are constrained to be

zeros in the early training stages
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False positives of Net-NoneFilters
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Comparison of Different Training Strategies
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10 10°
false positives per image

Network-BP: use back propagation to update all the parameters without pre-training
PretrainTransferMatrix-BP: the transfer matrices are unsupervised pertrained, and then
all the parameters are fine-tuned

Multi-stage: our multi-stage training strategy



Switchable Deep Network

<> Use mixture components to model complex variations of
body parts

<> Use salience maps to depress background clutters

<> Help detection with segmentation information

P. Luo, Y. Tian, X. Wang, and X. Tang, "Switchable Deep Network for Pedestrian Detection", CVPR 2014



Switchable Deep Network for
Pedestrian Detection

Background clutter and large variations of pedestrian
appearance.

Proposed Solution. A Switchable Deep Network (SDN)
for learning the foreground map and removing the effect
background clutter.



Switchable Deep Network for
Pedestrian Detection

e Switchable Restricted Boltzmann Machine

K
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Switchable Deep Network for
Pedestrian Detection

e Switchable Restricted Boltzmann Machine

Background Foreground
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Human Part Localization

<> Contextual information is important to segmentation as
well as detection



Human part localization

e Facial Keypoint Detection
* Human pose estimation
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e Y.Sun, X. Wang and X. Tang, “Deep Convolutional Network
Cascade for Facial Point Detection,” CVPR 2013
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Comparison with Liang et al. [6], Valstar et al. [7], Luxand Face SDK [ 1] and Microsofi
Research Face SDK [2] on BiolD and LFPW.

Relative improvement = :E
average error of th od m oompanson
Average errors on BlolD Accuracy Improvements on BloID
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Comparison with Belhumeur et al. [4], Cao et al. [5] on LFPW test images.
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http://www.luxand.com/facesdk/

http://research.microsoft.com/en-us/projects/facesdk/.

0. Jesorsky, K. J. Kirchberg, and R. Frischholz. Robust face detection using the hausdorff distance. In Proc. AVBPA, 2001.

P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Kumar. Localizing parts of faces using a consensus of exemplars. In Proc. CVPR, 2011.
X. Cao, Y. Wei, F. Wen, and J. Sun. Face alignment by explicit shape regression. In Proc. CVPR, 2012.

L. Liang, R. Xiao, F. Wen, and J. Sun. Face alighment via component-based discriminative search. In Proc. ECCV, 2008.

M. Valstar, B. Martinez, X. Binefa, and M. Pantic. Facial point detection using boosted regression and graph models. In Proc. CVPR, 2010.



Validation.
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e The first network that takes the whole face as input needs
deep structures to extract high-level features

e Take the full face as input to make full use of texture context
information over the entire face to locate each keypoint

e Since the networks are trained to predict all the keypoints
simultaneously, the geometric constraints among keypoints
are implicitly encoded
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 W. Ouyang, X. Chu and X. Wang, “Multi-source Deep
Learning for Human Pose Estimation” CVPR 2014.




Multiple information sources

* Appearance

Appearance |




Multiple information sources

* Appearance
 Appearance mixture type

Appearance !

Mixture type —

V " Head
top




Multiple information sources

* Appearance
e Appearance mixture type
e Deformation

Appearance |
score

Mixture type Deformation

V Head
top
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Method | Torso | Uleg |Lleg Uarm |Larm | head | Total _

Yang&Ramanan CVPR'11 82.9 68.8 60.5 63.4 42.4 82.4 63.6
Multi-source deep learning 89,3 78.0 72.0 67.8 47.8 89.3 71.0

Method

Yang&Ramanan CVPR’11 81.8 65.0 55.1 46.8 37.7 79.8 57.0
Multi-source deep learning  89.1 72.9 62.4 56.3 47.6 89.1 65.6

Method
Yang&Ramanan CVPR’11 82.9 70.3 67.0 56.0 39.8 79.3 62.8
Multi-source deep learning  85.8 76.5 72.2 63.3 46.6 83.1 68.6

Up to 8.6 percent accuracy improvement with global geometric constraints



Left: mixtire-of-parts (Yang&Ramanan CVPR’11)
Right: Multi-source deep learning



General Object Detection

<> Pretraining

<> Model deformation of object parts, which are shared across

classes
<> Contextual modeling
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Pascal VOC Image-net ILSVRC
~ 20 object classes ~ 200 object classes
Training: ~ 5,700 images Training: ~ 395,000 images

Testing: ~10,000 images Testing: ~ 40,000 images

Person
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[Regionlets. Wang et al. ICCV’13] [SegDPM. Fidler et al. CVPR’13]




70
R-CNN
60 583%
50
__ 40 A
&
(a8
o 30
£
20
o
10
0
VOC'oT7

\AJi+lh CNINI FAAF 1 1A
VVILII CININ ITCALUICO
R-CNN R-CNN
53.7% 53.3%
A A
% <& &
&
&

VOC’08 VOC’09 VOC'10 VOC’ll VOC’12
PASCAL VOC challenge dataset

APost-
competition
results (2013 -
present)

¢ Top
competition
results (2007 -
2012)

R. Girshick, J. Donahue, T. Darrell, J. Malik, “Rich Feature Hierarchies for Accurate Object Detection and Semantic

Segmentation,” CVPR, 2014.



aeroplane? no.

person? yes.

tvmonitor? no.

Input image Extract regipn Compute CNN 2-class linear SVM
proposals (~2k/image) features

Region:
91.6%/98% recall rate on ImageNet/PASCAL
Selective Search [van de Sande, Uijlings et al. IJCV 2013].

Deep model from Krizhevsky, Sutskever & Hinton. NIPS 2012

SVM: Liblinear
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e Pretrain for the 1000-way ILSVRC image

classification task (1.2 million images)
 Fine-tune the CNN for detection

» Transfer the representation learned from ILSVRC
Classification to PASCAL (or ImageNet) detection

F iLl L_%
j ___________ > T
E Det —___T:ine-tune

Network from Krizhevsky, Sutskever & Hinton. NIPS 2012
Also called “AlexNet”
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GoogleNet 0.43933 Deep learning
2 CUHK DeeplD-Net 0.40656 Deep learning
3 Deeplnsight 0.40452 Deep learning
4 UvA-Euvision 0.35421 Deep learning

5 Berkley Vision 0.34521 Deep learning



DeeplD-Net: deformable deep convolutional
neural networks for generic object detection

W. Ouyang, et al. “DeeplID-Net: multi-stage and deformable deep convolutional neural networks for object detection,”
arXiv:1409.3505, 2014.
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bounding boxes results bounding boxes




Mean ap 31.4 to 40.67 (new result on )

Proposed | Detection o Refined

Image bounding boxes results bounding boxes

DeeplD-Net

: DeeplD-Net

LI Pretrain, def
N - pooling layer,
sub-box,
bounding boxes hinge-loss
Model
averaging

: (———=
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DeeplD-Net

. convé| def6; conv7

128 I

onvés defés; conv7s
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128 128




Proposed | Detectio | Refined

Image bounding boxes results bounding boxes

DeeplD-Net

f-

1 Pretrain, 0z

§ o ' _ ooling layer, 3
Image Proposed Remaining hsitrj]b:fl(zzs
bounding boxes bounding boxes g
Model
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Deep model training — pretrain

 RCNN (Cls+Det)

— Pretrain on image-level annotation with 1000 classes
— Finetune on object-level annotation with 200 classes
— Gap: classification vs. detection, 1000 vs. 200

Image classification Object detection



Result and discussion

* |nvestigation

e Better pretraining on 1000 classes
e Object-level annotation is more suitable for pretraining

e Conclusions

 The supervisory tasks should match at the pre-training
and fine-turning stages

e Although an application only involves detecting a small
number of classes, it is better to pretraing with many
classes outside the application

_ Image annotation Object annotation

200 classes (Det) 20.7 28.0
1000 classes (Cls-Loc) 31.8 36
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Deformation

— Learning deformation [a] is effective in computer vision society.
— Missing in deep model.

— We propose a new deformation constrained pooling layer.
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[a] P. Felzenszwalb, R. B. Grishick, D.McAllister, and D. Ramanan. Object detection with discriminatively trained part based models. IEEE Trans. PAMI,
32:1627-1645, 2010.



Deformation Layer [b]

. (z,y)
B, =M, H Z Cn.pDnp Sp = 1(1;&}3: b, Y

ﬁer

Convolution
result M r\ £

mput
Global

~max > O
max

Output b

Deformation
penalty

[b] Wanli Ouyang, Xiaogang Wang, "Joint Deep Learning for Pedestrian Detection ", ICCV 2013.



Modeling Part Detectors

e Different parts have different sizes
e Design the filters with variable sizes

Part models learned
from HOG

Head-torso Head-shoulder Legs

N
at level 3 at level 2 at level 2
Level 3 . . .
| |
3o it
Level 2

. |
SR I ﬁ m Head-shoulder Full-body Torso
L ) at level 3 at level 3 at level 2

Part models Learned filtered at the second
convolutional layer

=0




Deformation layer for repeated patterns

Pedestrian detection General object detection

Assume no repeated pattern Repeated patterns




Deformation layer for repeated patterns

Pedestrian detection General object detection

Assume no repeated pattern Repeated patterns

Only consider one object class  Patterns shared across different object classes




Deformation constrained pooling layer

Can capture multiple patterns simultaneously

i,je{_R’... ,R}

A Y I".
input Convolution Hi
result M (- _I_‘\,

/

Deformation
penalty

N

{m(km-x—l-z,kyyﬂ) B Z Cnd;ﬂ

n=1
< | |
filter +
put ('uﬁ;nlmim:'-_
result M If_T_'\._ Global
N ma:
a
Output b
Max . M
pooling
» Deformation
penall
Output B




Our deep model with deformation layer

Existing deep model (clarifai-fast)

convs fc6  fc7

%":‘;;;‘conv6 | def6, conv7/, 00
\ _
Layers with "":j;-‘_‘ 128 128~
def-pooling
layers convé; defé; conv7
4 g ’ ’ Patterns shared across
E—»ﬂ{ - different classes
128 [28
Cls+Det
Net structure AlexNet Clarifai Clarifai+Def layer

Mean AP on val2 0.299 0.360 0.385
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Context modeling

Existing deep model (clarifai-fast)

e Use the 1000 class
Image classification
score.
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Context modeling

e Use the 1000-class Image classification score.
— ~1% mAP improvement.

— Volleyball: improve ap by 8.4% on val2.

/ Volleyball
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Proposed | Detectio | Refined
bounding boxes results bounding boxes

Image

DeeplD-Net
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bounding boxes bounding boxes g
Model
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Model averaging

 Not only change parameters

— Net structure: AlexNet(A), Clarifai (C), Deep-ID Net (D),
DeeplD Net2 (D2)

— Pretrain: Classification (C), Localization (L)

— Region rejection or not

— Loss of net, softmax (S), Hinge loss (H)

— Choose different sets of models for different object class

Net structure A A C C D D D2 D D D
Pretrain C C+L C C+L C+L C+L L L L L
Reject region? Y N Y Y Y Y Y Y Y Y
Loss of net S S S H H H H H H H
Mean ap 0.31 0.312 0.321 0.336 0.353 0.36 0.37 0.37 0371 0.374
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Component analysis

Box Loc+ | +Def [+cont| +bbox | Model
Detection Pipeline | RCNN | rejection | Clarifai | Det |[layer| ext | regr. | avg.

mMAP on val2 29.9 30.9 31.8 36.0 38.5 39.2 40.1 424
mAP on test 38.0 38.6 394 41.7

DeeplD-Net

: DeeplD-Net

__[ Pretrain, def-
s pooling layer, |

I =

bounding boxes bounding boxes g
Model

averaging

‘:"'___: ——l




Summary

Bounding rejection. Save feature extraction by about
10 times, slightly improve mAP (~1%).

Pre-training with object-level annotation, more
classes. 4.2% mAP

Def-pooling layer. 2.5% mAP improvement
Contextual modeling. 1% mAP improvement

Model averaging. 2.3% mAP improvement. Different
model designs and training schemes lead to high
diversity
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e Open questions and future works



Concerns” on de p rMinNg

e C1: Weak on theoretical support (convergence,
bound, local minimum, why it works)
— It's true. That’s why deep learning papers were not

accepted by the computer vision/image processing
community for a long time. Any theoretical studies in the

future are important.



Most computer
vision/multimedia papers

Motivations

Deep learning papers for
computer vision/multimedia

!

Motivations

New objective function

|

!

New optimization algorithm

New network structure and
new objective function

!

|

Theoretical analysis

Back propagation (standard)

|

|

Experimental results

Super experimental results

That’s probably one of the reasons that computer vision and image
processing people think deep learning papers are lack of novelty and

theoretical contribution ®
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e C2:ltis hard for computer vision/image processing people to
have innovative contributions to deep learning. Our job
becomes preparing the data + using deep learning as a black
box. That’s the end of our research life.

— That’s not true. Computer vision and image processing researchers
have developed many systems with deep architectures. But we just
didn’t know how to jointly learn all the components. Our research

experience and insights can help to design new deep models and pre-
training strategies.

— Many machine learning models and algorithms were motivated by
computer vision and image processing applications. However,
computer vision and multimedia did not have close interaction with
neural networks in the past 15 years. We expect fast development of
deep learning driven by applications.
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1s” on deep learning
e (C3:Since the goal of neural networks is to solve the
general learning problem, why do we need domain

knowledge?

— The most successful deep model on image and video
related applications is convolutional neural network, which
has used domain knowledge (filtering, pooling)

— Domain knowledge is important especially when the
training data is not large enough
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e C4: Good results achieved by deep learning come

from manually tuning network structures and
learning rates, and trying different initializations

— That’s not true. One round evaluation may take several
weeks. There is no time to test all the settings.

— Designing and training deep models does require a lot of
empirical experience and insights. There are also a lot of
tricks and guidance provided by deep learning researchers.
Most of them make sense intuitively but without strict
proof.
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 C5: Deep learning is more suitable for industry rather
than research groups in universities
— Industry has big data and computation resources

— Research groups from universities can contribute on model
design, training algorithms and new applications
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e C6: Deep learning has different behaviors when the
scale of training data is different

— Pre-training is useful when the training data small, but
does not make big difference when the training data is
large enough

— So far, the performance of deep learning keep increasing
with the size of training data. We don’t see its limit yet.

— Shall we spend more effort on data annotation or model
design?
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 Explore deep learning in new applications

— Worthy to try if the applications require features or
learning, and have enough training data

— We once had many doubts on deep. (Does it work for
vision? Does it work for segmentation? Does it work for
low-level vision?) But deep learning has given us a lot of
surprises.

— Applications will inspire many new deep models

e |ncorporate domain knowledge into deep learning

e |Integrate existing machine learning models with
deep learning
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ruLture work>s
Deep learning to extract dynamic features for video

analysis
Deep models for structured data
Theoretical studies on deep learning

Quantitative analysis on how to design network
structures and how to choose nonlinear operations
of different layers in order to achieve feature
Invariance

New optimization and training algorithms

Parallel computing systems to train very large
networks with larger training data



Home Join Us Projects

Multimedia Laboratory

/ Deep Learning

Introduction Publications Slides Dieep Learning Bibliographey Lseful Links

Description Download
E A demo code that allows you to input a pedestrian image and then compute the [abel map. Zip
} Reference:
: N 1. P. Luo, ¥.Wang, and X. Tang, "Pedestrian Parsing via Deep Decompositional Meural MNetwark," in Procesdings of [EEE International Conference on
H L/t AN Camputer Vision (1CCY) 2013 [FDF] [Project Page]
A demo code that shows you how the frontal-wiew face image of a query face image is reconstructed. Zip
Reference:

1. Z. Zhu, P. Luo, ¥, Wang, and . Tang, "Deep Learning ldentity Preserving Face Space," in Proceedings of [EEE [nfernational Conference on
Compufer Vision (1CCV) 2013 [POF] [Froject Page]

hatlab training and testing source code for pedestrian detection using the proposed approach. Models trained on INRIA and Caltech are provided. YWWebpage

Reference:
1. Wanli Cuyang, Xiaogang Wang, "Jaint Deep Learning for Pedestrian Detection”, in Proceedings of [EEE infernaiional Conference on Compalier vision
(ICCY) 2013 [PDF] [Froject Page]
2. wWanli Ouyang, Xigogang Wang, "A Discriminative Deep Model for Pedestrian Detection with Occlusion Handling", in Proceedings of IEEE Conference
on Compufer Wision and Paftern Recognition (VPR 2012 [FDF] [Froject Pade]

Executable files for the face detector and facial point detector. WWebpage

Reference:
1. %, 5un, ¥, Wang and X Tang, "Deep Convolutional Network Cascade for Facial Point Detection," in Proseedings of [EEE Conference on Cormpuier

Wigion and Paifern Recognition (CVPR), pp. 3476-3483, 2013 [FOF] [Project Page]

http://mmlab.ie.cuhk.edu.hk/project_deep_learning.html
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