
Multi-Stage Contextual Deep Learning for Pedestrian Detection

Xingyu Zeng Wanli Ouyang Xiaogang Wang
Department of Electronic Engineering, The Chinese University of Hong Kong

Shatin, New Territories, Hong Kong
{xyzeng, wlouyang, xgwang}@ee.cuhk.edu.hk

Abstract

Cascaded classifiers1 have been widely used in pedes-
trian detection and achieved great success. These classi-
fiers are trained sequentially without joint optimization. In
this paper, we propose a new deep model that can jointly
train multi-stage classifiers through several stages of back-
propagation. It keeps the score map output by a classifier
within a local region and uses it as contextual information
to support the decision at the next stage. Through a spe-
cific design of the training strategy, this deep architecture
is able to simulate the cascaded classifiers by mining hard
samples to train the network stage-by-stage. Each classi-
fier handles samples at a different difficulty level. Unsu-
pervised pre-training and specifically designed stage-wise
supervised training are used to regularize the optimization
problem. Both theoretical analysis and experimental re-
sults show that the training strategy helps to avoid overfit-
ting. Experimental results on three datasets (Caltech, ETH
and TUD-Brussels) show that our approach outperforms
the state-of-the-art approaches.

1. Introduction

Pedestrian detection is one of the fundamental problems
in computer vision with numerous important applications.
Due to various challenges, such as variations of views,
poses, lightings and occlusions, pedestrian detection is dif-
ficult and unlikely to be well solved with one simple holistic
classifier. For example, the visual cue of a pedestrian with a
side view is different from that with a frontal view. It is diffi-
cult for a single detector to well capture the two visual cues
simultaneously. In order to handle the complex appearance
variation of pedestrians, many approaches choose a group

1Cascading means concatenation of multiple classifiers and the output
of a classifier is used as additional input to the next classifier in the cascade.
Specifically in detection literature, cascaded classifiers often indicate early
rejecting samples. Our proposed deep model cascades classifiers but does
not early rejects samples. We choose the term multi-stage for our model to
avoid confusion.
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Figure 1. Our multi-stage contextual deep model. This architecture
can deal with complex distributed samples using multiple stages
of classifiers. In each stage, a classifier deals with samples at a
different difficulty level.

of classifiers to make the pedestrian versus non-pedestrian
decision stage by stage [49, 2]. Different classifiers take
care of different portions of samples. The cascaded classi-
fiers are usually trained sequentially. Hard samples which
cannot be well classified at early stages are used to train
classifiers at later stages.

Intuitively, it is desirable to jointly optimize these clas-
sifiers, since they create synergy through close interaction.
Moreover, although early classifiers cannot make final de-
cisions on hard samples, their output provides contextual
information to support decisions at later stages. However,
with too many parameters and relatively few training sam-
ples, the classifiers easily overfit training data. To jointly
train a large number of classification parameters, we pro-
pose a deep model that can learn these classifiers together
and keep the training process from overfitting in the mean-
while. Figure 1 shows its architecture, in which the outputs
of classifiers are represented as hidden nodes in each layer.
Each layer takes images features and the output of its previ-
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ous layer as input, then outputs new decision scores.
The contribution of this paper is four-folds:

• The group of classifiers in the deep model choose train-
ing samples stage by stage. The training is split into
several back-propagation (BP) stages. Due to the de-
sign of our training procedure, the gradients of clas-
sifier parameters at the current stage are mainly influ-
enced by the samples misclassified by the classifiers at
the previous stages. At each BP stage, the whole deep
model has been initialized with a good starting point
learned at the previous stage and the additional classi-
fiers focus on the misclassified hard samples.

• The group of classifiers are jointly optimized. At each
BP stage, classifiers at the previous stages jointly work
with the classifier at the current stage in dealing with
misclassified samples.

• We propose a training procedure that helps to avoid
overfitting. Both unsupervised pre-training and specif-
ically designed stage-wise supervised training are used
to regularize the optimization problem. It is differ-
ent than standard BP, which optimizes the network as
whole. With standard BP, an easy training sample can
influence classifiers at any stage, since these stages are
not distinguished or separately trained. The search pa-
rameter space is huge and it is easy to overfit.

• Existing cascaded classifiers only pass a single score to
the next stage, while our deep model keeps the score
map within a local region and it serves as contextual
information to support the decision at the next stage.

2. Related work
Newly designed features constantly improve detection

performance. Seminal works on feature design include
Haar-like features [49], scale-invariant feature transform
(SIFT) [33], dense SIFT [48], histogram of gradients
(HOG) [6], gradient histogram [12], local binary pattern
(LBP) [1], color histogram [51], and color self similar-
ity (CSS) [51]. Other cues like depth [20], segmentation
[16, 18] and motion [7] also improve the detection perfor-
mance. We use the modified HOG and CSS features.

Most approaches consider pedestrian detection as a clas-
sification task by scanning an image with sliding windows
whose sizes are changeable. A large number of genera-
tive and discriminative classification approaches have been
developed. The generative methods, such as [17], calcu-
late the probability of a window enclosing a pedestrian.
The discriminative classifiers, such as boosting classifiers
[49, 12, 55, 10, 11, 15] and SVM [24, 56, 36, 24, 56], seek
for parameters to separate positive and negative samples.

Part-based models have shown to be effective in object
detection and recognition [24, 23, 4]. The deformable part

based model in [24, 56] is able to detect objects with some
pose changes. This model is then extended to cascaded clas-
sifiers in [23] to boost the computational speed. Poselet in
[4] is able to handle the appearance variation of parts.

As pedestrians have diverse appearance, mixture of parts
has been used in many approaches [18, 8, 4]. Mixture
models train classifiers through supervised or unsupervised
clustering. Differently, cascaded classifiers are trained with
misclassified training samples stage by stage.

Cascaded classifiers have two advantages: (1) they can
provide piecewise linear classification hyperplanes, and (2)
they help to save the computational load of sliding window
object detection. Therefore, many approaches have used
cascade [49, 12, 55, 10, 3, 9, 2, 23]. While the cascade
structure has worked well in many fields, the hard threshold-
ing for each cascaded classifier discards a lot of information
collected at each stage classifier. To avoid such disadvan-
tages, recent detection approaches have used soft cascade
[3, 10, 2, 9, 12], which collects the classification scores ex-
tracted by each stage of classifiers and then combines the
classification scores for the final decision. However, soft
cascade still learns the classifiers stage by stage without
joint optimization. Classifiers at different stages cannot co-
operate with each other in the training procedure.

Recently, deep models have been successfully applied
in hand written digit recognition [27, 26, 31, 37], object
segmentation [34, 35], face recognition [5, 47, 57], scene
understanding [43, 21], object detection [40] [41] [38] [39]
and recognition [28, 30, 29, 46, 25]. Sermanet et al. [46] un-
supervised learned multi-stage features with a deep model.
However, they did not add an extra classifier at each stage
and classification scores were not passed between stages
as contextual information. Hinton et al. [26] proved that
adding a new layer, if done correctly, creates a model that
has a better variational lower bound on the log probability
of the training data. However, the connection between deep
models and multi-stage classifiers is unknown. This paper
is complementary to the recent deep models in that we have
built the connection between deep models and multi-stage
classifiers, such that the cascaded classifiers can be jointly
optimized.

3. Proposed deep architecture

3.1. Feature preparation

Our basic classification model consists of 15× 5 blocks
of HOG and CSS features with 36 dimensions per block.
The widely used version of HOG feature in [24] contains
31-dimensional feature vector, where the feature set is aug-
mented to include both contrast sensitive and contrast insen-
sitive features. In this implementation, 9 bins of unsigned
gradient orientations, 18 bins of signed gradient orientations
and 4 bins of overall gradient energy in four nearby cells are
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Figure 2. The discriminative power of the 31 dimensional HOG
features. The 2th, 3rd, 8th, 9th, 11th, 18th dimensions are darker
than other dimensions. DPk values are shown under the maps.

used. Denote the within-class variance of the kth feature in
the (i, j)th block by V w

i,j,k, for i = 1, . . . , 15, j = 1, . . . 5.
Denote the between-class variance of the kth feature in the
(i, j)th block by V b

i,j,k. The discriminative power of this
feature is computed by

DPk =
1

15× 5

5∑
j=1

15∑
i=1

(
V w
i,j,k − V b

i,j,k

)
. (1)

The discriminative power of the 31 bins is shown in Fig.
2. We discard 6 bins with the least discriminative power.
Therefore, the HOG features with 25-dimensions per block
are used to reduce computational load.

Color self similarity (CSS) [51] captures the pairwise
statistics of spatially localized color distributions. Extensive
experiments in [51, 9] show that CSS consistently improves
pedestrian detection performance. It is obtained by com-
puting the color histogram similarity between each pair of
blocks. Since there are 15×5 blocks, CSS in [51] has 2, 775
dimensions. The high dimensionality of CSS makes feature
extraction time-consuming. In order to reduce computation,
the original 2, 775 dimensional CSS feature is modified to
a 825 dimensional feature. Denote the block at position
(i, j) as Bi,j where i represents horizontal index. In our de-
sign, CSS feature forBi,j is CS(Bi,j , Bi+di,j+dj

) for di =
−2,−1, 1, 2, dj = −7, . . . ,−1, 1, . . . , 7. Since CSS fea-
ture is symmetric, i.e. CS(Bi,j , Bi′,j′) = CS(Bi′,j′ , Bi,j),
the dimension for each block is 11.

In order to make use of contextual information in local
regions, detection scores in a 3 × 3 spatial local region of
11 pyramids are used in our deep model. Since a pedestrian
window contains 15 × 5 × 36 features, the 3 × 3 detection
scores for a specific pyramid is obtained by filtering the lo-
cal 17 × 7 × 36 feature pyramid with 15 × 5 × 36 filters.
Figure 3 shows an example of constructing the feature map
from 3 window sizes. Contextual feature has been proved

Figure 3. Construction of the feature map from three feature pyra-
mids of different sizes. Here we only draw 3 out of 11 pyramids
for the sake of page limit.
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Figure 4. The proposed deep Learning Architecture. The whole
architecture is built on the feature maps introduced in Section 3.1.
We apply different filters Fi on the same feature map f and obtain
different score maps si. In this figure, the number of hidden layers
is 2 and 3 classifiers are used. For the sake of convenience, we
regard the input layer score map s0 as h0.

to be useful in [9]. The contextual score map is used in our
paper, but not used in [9].

3.2. The deep architecture for inference

Figure 4 shows our proposed deep model. There are
three types of nodes in the deep architecture.

• f is the input feature maps introduced in Section 3.1.

• si+1(∀ i ≤ L) is the score maps at layer i, which rep-
resent the scores of the corresponding classifier. The
input score map s0 is obtained with linear SVM and
also serves as the input layer. For the sake of conve-
nience, we also regard s0 as h0.

• hi(∀ i ≤ L) is the hidden nodes for layer i. They
transfer contextual information between classifiers.

There are three types of weights connecting these nodes.

• Fi+1 is the classifier at layer i used to filter the feature
map and obtain the score map si+1.

3



• Wh,i is the weights (transfer matrix) to connect hidden
nodes hi−1 and hi.

• Ws,i is the weights to connect score map si and hidden
nodes hi. As input s0 is regarded as h0, the weight
matrix Ws,0 between h0 and h1 is denoted by Wh,1.

The input feature map f has 11 pyramids, each of which
has 17 × 7 × 36 features. This input is used by multiple
classifiers, which are learned in different layers. At the in-
ference stage, classifier Fi+1 filters the feature map f and
outputs the score map si+1:

si+1 =
1

1 + e−Fi+1⊗f
, (2)

where ⊗ denotes the filtering operation. An initial score
map s0 is obtained by filtering the feature map f with a clas-
sifier F0 that is learned by linear SVM. F0 is fixed and s0
is used as the contextual detection score information.

After score map si is obtained with Eq. 2, si and hi−1

are fully connected to the hidden nodes in hi and we have

h1 =
1

1 + e−(Wh,1s0+Ws,1s1)
, (3)

hi+1 =
1

1 + e−(Wh,i+1hi+Ws,i+1si+1)
,∀i ≤ L− 1(4)

Finally, the probability of a window containing a pedestrian
is obtained as follows:

y =
1

1 + e−(Wh,L+1hL+Ws,L+1sL+1)
. (5)

3.3. Stage-by-stage training of the deep model

The training procedure is summarized in Algorithm 1. It
consists of two steps. The deep model is first trained by ex-
cluding additional classifiers at all the layers to reach a good
initialization point. Training this simplified model avoids
overfitting. Then the classifier at each layer is added one by
one. At each stage t, all the existing classifiers up to layer
t are jointly optimized. Each round of optimization finds
a better local minimum around the good initialization point
reached in the previous training stages.

• Step 1.1 (1 and 2 in Algorithm 1): the layer-by-layer
unsupervised pre-training approach in [26] is used to
train the hidden-to-hidden transfer matrices Wh,i+1.
In this step, we set Ws,i+1 = 0 and Fi+1 = 0 for
i = 0, . . . , L.

• Step 1.2 (3 in Algorithm 1): BP is used for fine-tuning
all the Wh,i+1 together, with Ws,i+1 = 0 and Fi+1 =
0.

• Step 2.1 (4 in Algorithm 1): filters Fi+1, for i =
0, . . . , L, are randomly initialized in order to search
for extra discriminative information in the next step.

Algorithm 1: Stage-by-Stage Training
Input: Training set: Ψ = {s0, f}

Filter of linear SVM: W0

Number of hidden layers: L
Output: Transfer matrices: Wh,i+1, Ws,i+1,

New filters: Fi+1, i = 0 . . . L.
1 Set elements in Ws,i+1 and Fi+1 to be 0;
2 Unsupervised pretrain all transfer matrices Wh,i+1;
3 BP to fine tune all the transfer matrices Wh,i+1, while

keeping Ws,i+1 and Fi+1 as 0;
4 Randomly initialize Fi+1 ;
5 for t=0 to L do
6 Use BP to update parameters from layer 0 to layer

t, i.e. Fi+1,Wh,i+1,Ws,i+1, 0 ≤ i ≤ t;
7 end
8 Output Wh,i+1,Ws,i+1,Fi+1, i = 0 . . . L.

• Step 2.2 (5-7 in Algorithm 1): cascaded filters Fi+1 for
i = 0, . . . , L are trained using BP stage-by-stage. In
stage t, classifiers Fi+1 and weights Ws,i+1 (∀ i ≤ t)
up to layer t are jointly updated.

3.4. Analysis

3.4.1 Analysis on Step 1

Since Ws,i is set to 0, step 1 can be considered as training a
deep belief net (DBN) [26] with input s0, hidden nodes hi,
and label y. Step 1.1 is used for unsupervised pretraining
and step 1.2 is for fine tuning. In this step, the DBN uses
the contextual score map obtained by linear SVM as input
for classifying samples. A majority of samples would be
correctly classified by this DBN.

3.4.2 Analysis on Step 2

The properties of the training strategy in step 2 are ex-
plained in four-folds. First, it simulates the soft-cascade
structure. We use the log error function as the target func-
tion. Denote the label of a sample by l ∈ {1, 0}. Positive
samples have l = 1 and negative samples have l = 0. The
log error function is defined as

E = −l log y − (1− l) log (1− y). (6)

Denote the set of parameters Fi+1,Wh,i+1 and Ws,i+1 at
layer i by Θi = {Fi+1,Wh,i+1, Ws,i+1}, where θi,j is
the jth element of Θi. At the BP stage, the gradient for
updating Wh,i+1 and Ws,i+1 can be formulated as follows:

dθi,j = − ∂E

∂θi,j
= −∂E

∂y

∂y

∂θi,j
= −(y − l) ∂y

∂θi,j
. (7)
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Denote the nth training sample as xn. Denote its estimated
label as yn. Denote its ground truth label by ln. The param-
eters Θi in Eq. 7 are trained at step 2.2 in Algorithm 1. At
the start of loop t, Ws,i+1 = 0. If yn = ln, i.e. a training
sample has already been correctly classified, dθi,j in Eq. 7
is 0 for sample xn. Therefore, a correctly classified sample
at the previous stage does not influence the update of pa-
rameters. For misclassified examples, the magnitude of the
dθi,j is larger when the the estimation error is larger. The
update of parameters is mainly influenced by misclassified
examples. Therefore, with our training strategy, a new clas-
sifier is introduced at each stage to help deal with misclassi-
fied samples while the correctly classified samples have no
influence on the new classifier. This is the core idea of our
multi-stage training.

Second, t + 1 classifiers (i.e. their parameters Θi for
i = 0, . . . , t) are jointly optimized at stage t in step 2.2, such
that these classifiers can better cooperate with each other.

Third, the deep model retains the contextual information
of features and detection scores. The convolutional clas-
sifiers Fi use contextual features (which cover larger re-
gions around the pedestrian with pyramids) for obtaining
the score map. The score map is the second level of con-
textual information, and we pass the distributions of scores
in local regions to the next hidden layer. Score maps in dif-
ferent layers jointly deal with the classification task. Tradi-
tional cascades often lose such information. When a detec-
tion window is rejected at an early cascade stage, its features
and its detection scores are not available at the next stage.

Fourth, the whole training procedure helps to avoid over-
fitting. Deep models are so powerful that they easily over-
fit the training data. We pretrain transfer matrices Wh,i

first in an unsupervised way, which has been proved to pro-
vide better generalization capability [19]. The supervised
stage-by-stage training can be considered as adding regu-
larization constraints to parameters, i.e. some parameters
are constrained to be zeros in the early training strategies.
At each stage, the whole network is initialized with a good
point reached by previous training strategies and the addi-
tional filters deal with misclassified hard samples. It is im-
portant to set Ws,t+1 = 0 and Ft+1 = 0 in the previous
training strategies; otherwise, it become standard BP. With
standard BP, even an easy training sample can influence any
classifier. Training samples will not be assigned to different
classifiers according to their difficulty levels. The parameter
space of the whole model is huge and it is easy to overfit.

4. Experiments
At both training and testing stages, we use the HOG and

CSS features described in Section 3.1 and a linear SVM
classifier to generate score maps as the input of the bottom
layer. A conservative threshold is used to prune samples and
to reduce the computational load. The score map in each

layer is generated in a 3×3 window and we combine 11
pyramids with the maximum score aligned to be the center
of score map. Our experiments show that the extra testing
time required by our network is less than 10% of the SVM
we used, while training time of our strategy is two times
more than standard BP .

We use log-average miss rate, i.e. the average of nine
FPPI rates evenly spaced in log-space in the range from
10−2 to 100, to indicate the overall performance as sug-
gested in [14] and plot miss rate vs False-Positive-Per-
Image(FPPI) curves using the evaluation code provided in
[14].

4.1. Overall Performance

The experiments are conducted on three public datasets,
the Caltech dataset [14], the ETHZ dataset [20] and the
TUD-Brussels dataset [54]. We focus on the reasonable
subset, i.e. images with 50-pixel or taller, unoccluded or
partially occluded pedestrians. The performance of our pro-
posed model is compared with other relevant approaches:
VJ [50], Shapelet [44], PoseInv [32], ConvNet-U-MS [46],
FtrMine [13], HikSvm [36], HOG [6], MultiFtr [53], Pls
[45], HogLbp [52], LatSvm-V1 [22], LatSvm-V2 [24],
MultiFtr+CSS [51], FPDW [11], ChnFtrs [12], DN-HOG
[38] MultiFr+Motion [51], MultiResC [42], CrossTalk [10],
Contextual Boost [9] whose results are published in [14].
Our model is denoted as ContDeepNet.

4.1.1 Performance on Caltech

We use the Caltech Training Dataset as training data, and
test on the Caltech Testing Dataset. Figure 5 shows the
experimental results. The compared approaches have used
many features, such as Haar-like features, shapelet, HOG,
LBP, CSS. Part based models, which are not used in this
paper, are used in [24, 9]. Linear SVMs are used in
[6, 52], kernel SVM is used in [36], and cascade classi-
fiers are used in [50, 11, 12, 10, 9]. Deep models are
used in [46, 38]. Both MultiResC [42] and Contextual-
Boost [9] use HOG+CSS as features like us. Contextual
Boost uses cascaded classifiers but it does not optimize the
classifiers jointly. They have log-average miss rate 48%.
These two approaches have the lowest log-average miss rate
among existing approaches. The log-average miss rate of
our proposed method decreases to 45% with 3% improve-
ment compared with MultiResC and Contextual Boost.

4.1.2 Performance on ETHZ

Figure 6 shows the experimental results on the ETHZ
pedestrian dataset. As most approaches are trained on the
INRIA training dataset and test on this dataset, our proposed
deep model is also trained on the INIRA training dataset.
The ConvNet-U-MS stands for the results of the convo-
lutional network model reported in [46]. The log-average
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Figure 5. Comparison on the Caltech testing dataset. ContDeepNet
is our proposed multi-stage contextual deep model trained on the
Caltech training dataset.
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Figure 6. Comparison on the ETHZ dataset. Our ContDeepNet is
trained on the INRIA training dataset.

miss rate of our approach is 48% and has 2% improvement
over the ConvNet-U-MS, which is the lowest among exist-
ing approaches. ConvNet-U-MS used a deep model to learn
low-level features. But it does not employ contextual score
maps or multi-stage classifiers.

4.1.3 Performance on TUD-Brussels

Figure 7 shows the experimental results on the TUD-
Brussels pedestrian dataset. The model is trained on the
INRIA training dataset. The log-average miss rate of our
approach is 63%. There are a few methods outperforming
ours. They have employed more features. The best per-
forming MultiFtr+Motion [51] used motion features.

4.2. Comparsion on Architectures

In this section, we show the experimental results when
different architectures are used. We compare the perfor-
mance of two 3-layer deep networks. The first network,
denoted by DeepNetNoFilter, has no additional classifiers.
And the second network is our proposed ContDeepNet with
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Figure 7. Comparison on the TUD dataset. Our ContDeepNet is
trained on the INRIA training dataset.
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45 ContDeepNet

Figure 8. Comparison of different deep architectures on the Cal-
tech Test dataset. DeepNetNoFilter is the same as ContDeepNet,
except that it has no additional classifiers.

3 additional classifiers. Both networks are the same in other
aspects, trained on the Caltech Train dataset and tested on
the Caltech Test dataset.

As shown in Figure 8, the log-average miss rate de-
creases by 6% when including additional classifiers. Fig.9
shows the detection samples that are correctly classified by
ContDeepNet but misclassified by DeepNetNoFilter. They
are selected from the 300 detection samples of the two ap-
proaches with the highest detection scores. The additional
classifiers help our deep model on handling hard samples.
For example, the false positives of bus light, tyre, and trunk
are correctly rejected and the false negatives of pedestrians
with side view, blurring effect, occlusions and riding bicy-
cles, are correctly detected.

4.3. Comparsion on Training Strategies

We design a set of experiments with the same archi-
tecture as our ContDeepNet but different training strate-
gies. Figure 10 shows the expeimental results. The first
training strategy, denoted by BP, randomly initializes all
the parameters without layer-wise pretraining, then applies
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False positives of Net-NoneFilters

False negatives of Net-NoneFilters

Figure 9. Detection results that are missclassified by DeepNet-
NoFilter but correctly classified by ContDeepNet. Results are ob-
tained from the 300 detection samples of the two approaches with
the highest detection scores.
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Figure 10. Results of the same architecture as our ContDeep-
Net but with different training strategies on the Caltech test
dataset. BP means the whole network is trained with BP only.
PretrainTransferMatrix-BP means the transfer matrices are unsu-
pervised pretrained, and then all the parameters of the network are
fine-tuned with BP. Multi-stage is the training strategy proposed
by us.

back-propagation to simultaneously update all the transfer
matrices and filters. The second algorithm, denoted by
PretrainTransferMatrix-BP, adopts the method introduced
in [26] to unsupervised pretrain all the transfer matrices and
then uses BP to fine tune the whole network. Our proposed
training strategy (Multi-Stage) has the same unsupervised
pretraining procedure. However, it employs state-by-stage
BP instead of the standard BP to train the whole network.
The experimental results show the effectiveness of our train-

ing strategies.

5. Conclusion
In this paper, we propose a new multi-stage contextual

deep model and specially designed training strategies for
pedestrian detection. It simulates the cascaded classifiers.
Contextual information from pyramids of feature maps and
score maps propagate through the cascade. All the classi-
fiers in the deep model are jointly trained through multiple
stages of back-propagation. Overfitting is avoided through
unsupervised pre-training and the designed multi-stage su-
pervised training.
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