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ABSTRACT
Detecting stationary crowd groups and analyzing their behav-
iors have important applications in crowd video surveillance,
but have rarely been studied. The contributions of this pa-
per are in two aspects. First, a stationary crowd detection
algorithm is proposed to estimate the stationary time of fore-
ground pixels. It employs spatial-temporal filtering and mo-
tion filtering in order to be robust to noise caused by occlu-
sions and crowd clutters. Second, in order to characterize the
emergence and dispersal processes of stationary crowds and
their behaviors during the stationary periods, three attributes
are proposed for quantitative analysis. These attributes are
recognized with a set of proposed crowd descriptors which
extract visual features from the results of stationary crowd
detection. The effectiveness of the proposed algorithms is
shown through experiments on a benchmark dataset.

Index Terms— Stationary crowd detection, stationary
crowd analysis, crowd video surveillance

1. INTRODUCTION

Crowd behavior analysis has important applications in public
areas of high security interest such as train stations, shop-
ping malls, and airports, where large population accumu-
lates. Most existing works focus on mobile crowd analy-
sis [1, 2, 3, 4, 5, 6] while little research has been done on
stationary group detection and analysis in crowded scenes
which provides a lot of interesting and valuable information
on crowd systems.

The global motion patterns of crowds are affected by both
scene structures and stationary groups. The emergence and
dispersal of stationary groups cause the dynamic variations
of crowd traffic patterns. It is of great interest to incorporate
stationary groups into dynamic modeling of mobile crowds.

When pedestrians stop walking and form a group, they
usually have special relationships, share the same goal, or are
attracted by the same event. The emergence, dispersal, dura-
tion, and states of stationary crowds are worth more attention.
For example, if a stationary crowd group grows quickly and
its members join from different directions, it may imply in-
teresting events which attract people. If a stationary crowd
disperses in a short time and its members leave towards dif-
ferent directions, it means the attraction has been resolved or
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Fig. 1. Examples of stationary crowd groups. Groups (a) and (b)
are distinguished by emergence and dispersal processes. In (a), all
the group members come together from the same direction. After
staying for a while, the group is disbanded and the members leave
in different directions. In (d), group members come from different
directions and leave towards different destinations. Their behaviors
are not planned beforehand. It may happen when friends meet acci-
dentally. Groups (c) and (d) are distinguished by their internal struc-
tures. Group (c) stays at two different places, and all its members
can well keep the local topological structures with their neighbors
during the movement. (d) is an example of pedestrians queuing up
for buying tickets. Not only the internal structure changes, but its
members are also dynamically updated.

panic arises among the crowd. The states of groups could
also be quite different. Some groups are well organized with
stable internal structures, while some group members cannot
keep stable local topological structures with their neighbors.
Some groups (like queues in front of ticket windows) even
constantly have new members joining and lose older mem-
bers at the same time. It is interesting to automatically ana-
lyze different aspects of stationary crowds and classify them
into different categories. Examples can be found in Fig. 1.

Stationary crowd detection requires estimating how long
a foreground pixel has become stationary. This is much more
challenging than simply counting how long a pixel has be-
come foreground with background subtraction methods, since
background subtraction does not distinguish different fore-
ground objects and does not track a foreground pixel locally,
while stationary groups are constantly occluded by passing by
pedestrians from time to time, and their group members lo-



cally move around. If a pixel is misclassified as background
even at a single frame, large estimation error on the stationary
time could be caused, since the stationary time will be reset
as 0 at that frame. Experimental results show that existing
background methods [7, 8, 9] cannot get satisfactory results.

Our contributions can be summarized from two aspects:
(1) A stationary crowd detection algorithm is proposed to ac-
curately estimate how long a foreground pixel has been sta-
tionary. Spatial-temporal filtering and motion filtering are
proposed to be robust to noise caused by crowd clutters, tem-
porary occlusions and local movements of group members.
(2) Three attributes are proposed to characterize the emer-
gence, dispersal, internal structures and states of stationary
crowds. Robust stationary crowd descriptors are proposed to
recognize these attributes.

2. RELATED WORKS

A lot of research work has been done on learning the global
motion patterns of crowds. Ali et al. [1] and Lin et al. [10]
computed the flow fields by accumulating crowd motions over
an extended period, and then segmented crowd flows from
Lagrangian coherent structures or using Lie algebra. Topic
models [11, 2] have been used to learn the collective crowd
behaviors by exploring the co-occurrence of moving pixels.
Zhou et al. [3] proposed a mixture model of dynamic pedes-
trian agents to learn the collective behaviors of crowd from
tracklets. All these approaches assume that the global motion
patterns of crowds are fixed over time and depend on scene
structures. The influence of stationary crowds and their dy-
namic variations are not considered.

Recently the social force model [12] and other agent-
based models have been applied to behavior analysis in com-
puter vision [13, 14]. They explicitly model the interactions
among pedestrians. The social force model is more suitable
for the cases when all the pedestrians walk around. In prac-
tice, stationary and moving pedestrians behave differently
during interactions. The social force model cannot be used
to analyze the behaviors of stationary crowds.

Many works have been done to detect groups and ana-
lyze their behaviors. However, they only consider the mov-
ing patterns of groups [15, 16]. Various features and models
[17, 18], which have been widely used to recognize differ-
ent types of group behaviors in literature, cannot be directly
used to analyze stationary crowds. Lan et al. [19] proposed
a discriminative model to jointly recognize group behaviors,
individual behaviors and interactions among pedestrians. It
is applied to single images without temporal information and
can detect some group activities. However, it relies on accu-
rate pedestrian detection and pose estimation, and its infer-
ence on a complex graphical model is manageable only when
the number of pedestrians is small. Therefore, it is not appli-
cable to large scale crowded scenes with hundreds of people,
heavy occlusions and small pedestrian sizes.
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Fig. 2. System diagram for stationary crowd detection and analysis.

3. STATIONARY CROWD DETECTION

Our approach is shown in Fig.2. At low-level processing,
the stationary time up to the current frame at each fore-
ground pixel is estimated. It provides a stationary time map
at every frame. Stationary foreground pixels are detected by
thresholding stationary time. They are grouped into station-
ary groups at every frame through mean-shift spatial cluster-
ing. Stationary groups are tracked according to spatial overlap
across frames. Since the grouping and tracking techniques are
standard, this section focuses on the estimation of stationary
time maps.

3.1. Background Modeling with Shadow Removal
The background is modeled with a set of codebooks inspired
by the work [9]. For each pixel (x0, y0), our background
modeling algorithm generates a codebook C(x0, y0) contain-
ing multiple codewords {ci}. i is codeword index. Each
ci contains a centered color vector Vi = [Ri, Gi, Bi] and a
property vector Ui = [Imax,i, Imin,i, fi, λi]. Imax,i and Imin,i

are the maximum and minimum brightness of all the pixels
assigned to ci. fi is the occurrence frequency of ci. λi is
the longest period that ci has not recurred. An illustration is
shown in Fig.3.

Let T = {P (x0, y0, t)| 0 ≤ t ≤ N} be the RGB val-
ues of pixels sampled from the training video at (x0, y0) (t
is temporal index). At the training stage, we first try to find
an existing codeword matching P (x0, y0, t). If a match can
be found, the matched codeword will be updated according
to P (x0, y0, t). Otherwise, a new codeword is created by
setting P (x0, y0, t) as the centered color vector. Foreground
and background codes are mixed in C(x0, y0) and background
codes are selected as

B(x0, y0) = {ci|ci ∈ C(x0, y0), λi ≤ Th1, fi ≥ Th2},

where Th1 and Th2 are thresholding parameters.
When detecting foreground pixels, our algorithm has one

major difference than [9]. Instead of providing binary seg-



Shadow Region 

Imax 

μImin 

Imin Vi 

ε 

P B 

G 

R 

Background Region 

Fig. 3. Codeword structure and illustration of computing the like-
lihood of assigning a pixel to a codeword. The cylinder shows the
region of codeword ci in color space. Brightness variance of ci is
constrained by Imin and Imax. ε constrains the color variance of ci.

mentation, the likelihood values of one pixel belonging to dif-
ferent codewords are computed. The likelihoods will be used
in the following filtering parts.

Let li(P ) be the likelihood of pixel P (x0, y0, t) belonging
to background code ci ∈ B(x0, y0). If P has higher bright-
ness than Vi, i.e. ||P || − ||Vi|| ≥ 0,

li(P ) =
η1

η1 + η2
× exp

(
− (‖P‖ − ‖Vi‖)2

2π(Imax,i − ‖Vi‖)2

)
(1)

+
η2

η1 + η2
× exp

(
−‖P‖

2‖Vi‖2 − 〈P, Vi〉2

2πε2‖Vi‖2

)
.

Otherwise, the shadow effect is considered since the shadows
of stationary crowds cause false alarms.

li(P ) =
η1

η1 + η2
× exp

(
− (‖Vi‖ − ‖P‖)2

2π(‖Vi‖ − µImin,i)2

)
(2)

+
η2

η1 + η2
× exp

(
−‖P‖

2‖Vi‖2 − 〈P, Vi〉2

2πε2‖Vi‖2

)
.

η1 and η2 balance brightness distance and color distance. We
set η1 = η2 = 0.5 in our experiments. µ ∈ [0, 1] is parameter
controlling the shadow area in the color space. An graphical
illustration of computing the likelihood of assigning pixel P
to codeword ci is shown in Fig.3.

3.2. Spatial-temporal Filtering
In order to estimate the stationary time of a foreground pixel
at (x, y), it is critical to detect the time points when it first be-
comes foreground and when it goes back to background. The
stationary time is estimated as the temporal length between
the two points. However, due to scene clutters, lighting varia-
tions and occlusions caused by other passing-by pedestrians,
the dynamic curves of color values at (x, y) may look quite
noisy. Misclassification at any time point may lead to large
estimation error on stationary time. Fig.4 (a1)-(a3) shows the
temporal variations of RGB channels at a single location in-
dicated by the red circle, which is at the foot of a stationary
pedestrian. At frame a , there is a sharp peak because another
pedestrian happens to pass by and occludes the location. It
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Fig. 4. Spatial-temporal filtering applied to time domain at a single
location. (a1) and (a4) show the dynamic RGB curves and likelihood
curve at a single location indicated by the red circle in (a2) and (a3).
(a5) and (a6) are the filter weights at frame a and frame b. Original
likelihoods are high at both frame a and b. The filtered likelihood at
frame a is 0.27 and 0.79 at frame b. (b1) is a noisy likelihood curve.
(b2) is the smoothed curve. After thresholding, the temporal window
for the existence of the foreground pixel is estimated in (b3).

causes noise when computing the likelihoods of belonging to
codeword ci in Fig.4 (a4). At frame b, a step change of RGB
values as well as the likelihoods is caused by the leaving of
this stationary pedestrian. We employ edge-preserving filter-
ing to remove the noise peak at frame a while preserve the
step change at frame b. As shown in Eq.(3) and (4), the fil-
tered likelihood is computed as the weighted sum of its tem-
poral neighbors. However, the weights are not only decided
by the temporal distance, but also the similarity of likelihood
values. Fig.4 (a5) and (a6) show the filter weights at the frame
a and b. They are very different because of different local dis-
tributions of likelihoods. Fig.4 (b) shows the filtering result
on a very noise dynamic likelihood curve. The same filter also
applies to the spatial domain.

Details are given below. Let z=(x, y, t) be a point in the
spatial-temporal space and O(z) be the neighbor set of z.

O(z) = {z′| |x− x′| < δx, |y − y′| < δy, |t− t′| < δt}.

The filtered likelihood of z belonging to codeword ci is

l̂i(P (z)) =
∑

z′∈O(z)

li(P (z′))×W (z, z′, i), (3)

W (z, z′, i) =
Kh(z − z′)×Kg(li(P (z))− li(P (z′)))∑

z′∈O(z)

Kh(z − z′)×Kg(li(P (z))− li(P (z′)))
. (4)

Kh(·) = (1/h)K(·/h) and Kg(·) = (1/g)K(·/g) are Gaus-
sian filters. h and g are bandwidths.

3.3. Motion Filtering

The members of stationary groups often have local move-
ments, leading to estimation errors on stationary time. For
example, in Fig.5, A is a point on the foot of a stationary
pedestrian from frame 18 to 66. At frame 67, the pedestrian
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Fig. 5. Example of motion filtering. (a) shows two images at frame
66 and 67. (b) and (c) are the accumulated stationary time at frame
67 with and without motion filtering. From (c), it is observed that
without motion filtering underestimation will be caused due to lo-
cal movements. (d) and (e) plot the accumulated stationary time at
points A and B with and without motion filtering.

slightly changes his position and become stationary again.
Starting from this moment, point A falls on the background
and its stationary time is reset as 0. In the meanwhile, since
the foot moves to a new point B, a new stationary foreground
point B is generated and starts to accumulate its stationary
time. Although the pedestrian has been staying in this re-
gion for a much longer time, the stationary time of the points
on his body are significantly underestimated due to his local
movements. Motion filtering is proposed to solve the under-
estimating. When a new stationary foreground pixel (whose
stationary time should be long enough) is generated at time
t1, it searches in its neighbor region for a matched (based on
color and disappearing time) old stationary foreground pixel.
If such a matched point is found, the stationary time of both
points are accumulated as shown in Fig.5.

4. STATIONARY CROWD CLASSIFICATION

4.1. Stationary Crowd Attributes

In order to analyze the behaviors of stationary crowds, we
define three attributes according to their emergence and dis-
persal processes, internal structures and states.

Attribute 1: pedestrians join the group from the same di-
rection within a short period, or from multiple directions over
an extended period. If this attribute is true, it indicates that
the members of the stationary crowd group have close rela-
tionship and their behaviors are planned beforehand. Other-
wise, it may imply that some interesting events happen and
they attract people.

Attribute 2: all the group members leave together in the
same direction, or disperse in many directions at different
time. If this attribute is true, it indicates that group mem-
bers have the common goal and their behaviors are planned
beforehand. Otherwise, it implies they have different destina-
tions and the event which attracts them has been resolved.

Attribute 3: the stationary crowd keeps stable structure or

not. If this attribute is true, it implies that the group members
are well organized and have stable relationships. Otherwise,
there might be some activity happening inside the group.

These attributes can reflect the relationship and the goals
of group members and can be used to analyze crowd behav-
iors in various scenarios. They need to be classified with vi-
sual features extracted from video sequences.

4.2. Stationary Crowd Descriptors

We design twelve descriptors ({D1, . . . ,D12}) to recognize
stationary crowd attributes. They are based on the results of
stationary crowd detection and key-point tracking with the
KLT tracker. Tracking is not reliable in crowded environ-
ments. To avoid wrong data association, we adopt a conser-
vative tracking strategy. Trajectories with dramatic change
of moving directions and speed will be fragmented. Rele-
vant trajectories will be selected according to the spatial and
temporal overlap with stationary groups. Given a stationary
group, let Ts and Te be the time points when it emerges and
disperses. Trajectories relevant to the group are classified into
three categories: incoming trajectories (I), outcoming trajec-
tories (O), and trajectories inside a group (P).
D1-D4 are proposed to characterize Attribute 1. As shown

in Fig.6, ET (t) and EA(φ) are computed as the histograms of
incoming trajectories (I) over time and directions. t refers to
time and φ refers to direction angle. Both ET (t) and EA(φ)
are clustered with mean-shift and their dominant modes are
denoted asMT andMA. D1 to D4 are computed as:

D1 =

∑
φ∈MA

EA(φ)∑
0≤φ<2π EA(φ)

D2 =
∑

φ/∈MA

d(φ− φ̂)EA(φ)
2πEA(φ̂)

D3 =

∑
t ∈MT

ET (t)∑
Ts≤t≤Te

ET (t)
D4 =

∑
t/∈MT

|t− T̂ |ET (t)
(Te − Ts)ET (t̂)

,

where φ̂ = arg max
φ
EA(φ), t̂ = arg max

t
ET (t) represent

most probable incoming direction and arrival time. d(φ− φ̂)
is the angular distance. D1 and D3 characterize the aggrega-
tion degrees of the dominant modes over direction and time
distributions. D2 and D4 characterize the scatter degrees of
other modes. In the same way, D5-D8 characterize Attribute
2 from outcoming trajectories (O).
D9-D12 are proposed to characterize Attribute 3. D9 mea-

sures the motion energy and is computed as the average ve-
locity of feature points in P. In order to be robust to projec-
tive distortion and cross-scene variation, D10-D12 are based
on topological distance instead of geometric distance. Only
feature points on inside trajectories (P) are considered. If a
point p0 stays inside a stable group, itsK-nearest neighbor set
Nt(p0) and topology of neighbors tends to remain unchanged
over time. ξt(p0) = 1 − |Nt(p0) ∩Nt−∆(p0)| /K measures
the portion of variant neighbors during t − ∆ to t. The K′
invariant neighbors are ranked according to their distances
to p0. Rt(p0) = [σ1

t (p0), . . . , σK
′

t (p0)] and Rt−∆(p0) =
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Fig. 6. Examples of calculating D1-D4. The left two figures show
two histograms of incoming trajectories over directions (EA(φ))
which result in different values of D1-D2 (people joining the group
from the same direction or different directions). The right two fig-
ures show two histograms of incoming trajectories over time (ET (t))
which result in different values of D3-D4 (people joining the group
around the same time or different time).
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Fig. 7. Example of D10-D12 which characterize the stability of
internal group structure. Variations of feature values are shown. The
topological structure of the group has a big change during frame B
and C, when its members start to line up to take photos. The structure
is stable when group members have discussion at A and when the
members are already lined up at D.

[σ1
t−∆(p0), . . . , σK

′

t−∆(p0)] are the rankings of neighbors at
time t and t − ∆. ςt(p0) is the distance between Rt(p0)
and Rt−∆(p0). Similarly, τt(p0) is computed from rankings
based on angles. D10, D11, and D12 are computed as the av-
erage over all the feature points during the whole stationary
period based on ξt(p0), ςt(p0), and τt(p0), respectively.

D10 =
1

Te − Ts

Te∑
t=Ts+1

 1

|S(t)|
∑

p0∈S(t)
ξt(p0)


D11 =

1

Te − Ts

Te∑
t=Ts+1

 1

|S(t)|
∑

p0∈S(t)
ςt(p0)


D12 =

1

Te − Ts

Te∑
t=Ts+1

 1

|S(t)|
∑

p0∈S(t)
τt(p0)

.
S(t) is feature points set inside the group at time t and |S(t)|
is element number of S(t). Illustration is shown in Fig.7.

Table 1. Stationary crowd detection results: false alarm rate (FA),
missed detection rate (MD), classification error rate (CE), and aver-
age error on stationary time estimation (ET) in seconds. We com-
pare with the performance of excluding spatial-temporal filtering
(ST-filter), and motion filtering (M-filter). Three background sub-
traction based methods (GMM, Codebook, Bayesian) and tracking
based method are also compared.

FA (%) MD (%) CE (%) ET (s)
our detector 0.26 14.4 0.64 12.9
w/o ST-filter 0.15 22.6 0.77 28.9
w/o M-filter 0.14 21.1 0.71 22.2

GMM[8] 0.27 24.5 1.11 29.5
Codebook[9] 0.26 21.0 0.93 29.5
Bayesian[20] 0.33 20.2 1.01 26.7
Tracking[21] 0.30 24.3 1.09 40.8

5. EXPERIMENTAL RESULTS

5.1. Stationary Crowd Detection

In order to evaluate the performance of stationary crowd de-
tection, 8 frames uniformly sampled from a 40 minutes long
video are manually annotated from the Grand Central Train
Station dataset [3]. Stationary time (i.e. how long it has been
stationary) of each foreground pixel is manually labeled. If
the stationary time of a foreground pixel is longer than 10 sec-
onds up to the annotated frame, it is considered as a stationary
foreground pixel. The frames are in size of 960× 540. There
are totally 147, 930 stationary foreground pixels labeled.

Table 1 reports the false alarm rate, missed detection rate,
and the total classification error rate on detecting stationary
foreground pixels with our approach. A stationary time map
is estimated at every frame. It is compared with the manually
labeled stationary time map. The average estimation error (in
seconds) on each stationary foreground pixel is also reported.

To evaluate the effectiveness of the key components in our
approach, we compare with the results of excluding spatial-
temporal filter (ST-filter), and motion filter (M-filter). Both
filters are effective on reducing the total classification error
rate and can significantly improve stationary time estimation
results. Background subtraction based methods, including
the improved adaptive Gaussian Mixture Model (GMM) [8],
codebook-based method [9], and the Bayesian approach [20]
are compared. They directly accumulate the time when a
pixel has become foreground. Tracking based methods [21]
is also used for comparison. Foreground pixels are densely
tracked and their trajectories are used to estimate stationary
time. These methods cannot give good result because of oc-
clusions and scene clutters.

5.2. Stationary Crowd Classification Results
In order to evaluate the proposed stationary crowd descrip-
tors, we manually labeled the three attributes of 112 station-
ary groups from the Grand Central Train Station dataset. 35
groups are selected for training and the remaining 77 groups
are for test. Three linear SVM classifiers are adopted for the
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Fig. 8. Classification accuracies of recognizing stationary crowd
attributes using different descriptor combinations.

three binary attribute classification problems. Fig.8 shows the
accuracies. In order to evaluate the effectiveness of descrip-
tors, different subsets of descriptors are selected for compar-
ison. Intuitively, motion energy D9 should be a reasonable
baseline to recognize the stability of group structures. How-
ever, using it alone can only reach the accuracy of 77.9% on
Attribute 3. By adding D10-D12 based on topological dis-
tance, the accuracy is improved to 84.4%. It is shown that all
the descriptors are helpful to recognize these attributes.

5.3. Discussions
Our approach works well in normal traffic such as the grand
central dataset. However, if the traffic is extremely heavy and
the stationary crowd is occluded very frequently by differ-
ent moving objects, the likelihood curves change frequently.
In that case, the problem is quite challenging and edge-
preserving filtering may fail. Although our approach has good
robustness to tracking errors, tracking errors do influence the
classification result to some extent.

Generating stationary time estimation results every ten
frames is enough for stationary group detection and attributes
classification. Neighborhood searching for motion filtering
happens only when a new foreground pixel with long station-
ary time is generated, and the computation cost is low. Over-
all, the proposed pipeline can work in real time.

6. CONCLUSION
We study stationary crowd detection and analysis, which is
an important research topic but has been rarely explored yet.
An algorithm of stationary time estimation is proposed and
it is robust to crowd clutters. Three attributes to characterize
the properties of stationary crowds are proposed and recog-
nized by twelve descriptors. It has many more interesting ap-
plications to be explored in the future, such as crowd scene
modeling and crowd event detection.
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