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Abstract

Recently, Deep Convolutional Neural Networks (DC-
NNs) have been applied to the task of human pose estima-
tion, and have shown its potential of learning better fea-
ture representations and capturing contextual relationships.
However, it is difficult to incorporate domain prior knowl-
edge such as geometric relationships among body parts into
DCNNs. In addition, training DCNN-based body part de-
tectors without consideration of global body joint consis-
tency introduces ambiguities, which increases the complex-
ity of training. In this paper, we propose a novel end-to-end
framework for human pose estimation that combines DC-
NNs with the expressive deformable mixture of parts. We ex-
plicitly incorporate domain prior knowledge into the frame-
work, which greatly regularizes the learning process and
enables the flexibility of our framework for loopy models or
tree-structured models. The effectiveness of jointly learn-
ing a DCNN with a deformable mixture of parts model is
evaluated through intensive experiments on several widely
used benchmarks. The proposed approach significantly im-
proves the performance compared with state-of-the-art ap-
proaches, especially on benchmarks with challenging artic-
ulations.

1. Introduction
Articulated human pose estimation is one of the fun-

damental tasks in computer vision. It solves the problem
of localizing human parts in images, and has many im-
portant applications such as action recognition [45], cloth-
ing parsing [49, 50], and human tracking [6]. The main
challenges of this task are articulation, occlusion, cluttered
background, and variations in clothing and lighting. Re-
cently, state-of-the-art performance of human pose estima-
tion has been achieved with Deep Convolutional Neural
Networks (DCNNs) [42, 41, 40, 4, 3, 16, 15, 10, 7]. These
approaches primarily fall into two categories: 1) regressing
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Figure 1. Motivation. Left: Ground-truth locations of head (a) and ankle
(d). Middle: The noisy heat-maps predicted by conventional DCNN during
the training stage. Right: With body joint consistency considered by the
proposed framework, the heat-maps are better predicted.

heat-maps of each body part location with DCNNs [16, 40];
2) learning deep structured output to further model the rela-
tionships among body joints [15, 41].

DCNN-based heat-map regression models have shown
the potential of learning better feature representations.
However, geometric constraints among body parts, which
are essential to ensure the joint consistency, are usually
missed in training the DCNNs. As a consequence, during
the training stage, these approaches may produce many im-
perfect results, as shown in Figure 1 (b, e). For example,
regions with high response to head in Figure 1 (b) are heads
of unannotated persons, which are reasonable but will be
treated as false positives in learning the DCNN. Errors on
these regions will be back propagated to penalize the fea-
tures correspond to head detection, which is inappropriate.
We observe that this problem could be addressed by consid-
ering global joint consistency during the training stage: the
unannotated persons do not have their full bodies appearing
in the image, hence can be suppressed when considering the



full pose configuration, as shown in Figure 1 (c). Another
example is shown in Figure 1 (e), where the false positive
region for ankle at the background (top-left corner) will be
treated as the hard negative for learning the DCNN. It is
no longer a hard negative when the structure of full body is
considered, as shown in Figure 1 (f).

Deep structured output learning has attracted consider-
able attention recently, and has shown promising results in
tasks such as semantic segmentation [2], scene parsing [23],
object detection [44], and depth estimation [24]. For hu-
man pose estimation, recent studies combine DCNNs with
fully-connected Markov Random Field [41] or weakly spa-
tial histogram over body part locations [15] to exploit struc-
tural constraints between body joint locations. However, the
parameter space of learning spatial constraints with convo-
lutional kernels [41] is too large, which makes the learning
difficult. Additionally, for persons with a large range of pos-
sible poses, e.g., the head is not always above the shoulder,
these approaches will be less effective.

In vision community, domain knowledge has been
proved effective in many tasks such as object recogni-
tion [11], detection [27, 14, 20, 47, 28], and person re-
identification [48]. For pose estimation, the deformable
mixture of parts model [51, 30] uses domain knowledge and
designs a deformable model to constrain the spatial configu-
ration between a pair of parts with multiple appearance mix-
tures. By using a DCNN for feature extraction together with
deformable model for spatial constraints, Chen and Yuille
[4] achieve a significant improvement. However, features
and spatial constraints are still learned separately. There-
fore, the problem in learning DCNNs as shown in Figure 1
still exists.

In this paper, we propose to incorporate the DCNN and
the expressive mixture of parts model into an end-to-end
framework. This enables us to predict the body part loca-
tions with the consideration of global pose configurations
during the training stage, hence our framework is able to
predict heat-maps with less false positives, as shown in Fig-
ure 1 (c), (f). Therefore, jointly learning the DCNN with
the deformable model makes the feature learning more ef-
fective in handling the negative samples that are difficult
when taking the full body pose into account. In addition,
we explicitly incorporate human pose priors including body
part mixture types and standard quadratic deformation con-
straints into our model. This greatly reduces the parameters
to be learned compared with the use of convolution or his-
togram, and still keeps the flexibility of our framework in
building loopy models or tree-structured models.

We show the efficiency of the proposed framework
on three widely used pose estimation benchmarks: the
LSP [18] dataset, the FLIC [35] dataset and the Image
Parse [33] dataset. Our approach improves the state-of-the-
art on all these datasets. The generalization ability of our

framework is also validated by cross-dataset experiments on
the Image Parse dataset.

The main contributions of this work are three folds:
• We design a novel message passing layer, which is flexi-

ble to build tree-structured models or loopy models with
appearance mixtures.

• An end-to-end deep CNN framework for human pose es-
timation is proposed. By jointly learning DCNNs with
deformable mixture of parts models, global pose consis-
tency is considered. Hence our framework is able to re-
duce the ambiguity and mine hard negatives effectively
when learning features and part deformation.

• Domain knowledge is incorporated into our framework.
Through quadratic deformation constraints, we reduce
the parameter space in modeling the spatial and the ap-
pearance mixture relationships among parts.

2. Related Work
In literature, part-based models have been widely used

to model the articulated relationships between rigid hu-
man body parts. Specifically, tree-structured pictorial struc-
tures [13] have been made tractable together with the devel-
opment of general distance transform [11], and is popular
in human pose estimation [39, 46, 9, 18, 29, 30, 18, 19, 35].
For example, Yang and Ramanan [51] proposed a flexi-
ble mixture model to capture contextual co-occurrence re-
lations between parts. Johnson and Everingham [19] used
a cascade of body parts detectors to obtain mixture mod-
els on the full model scale. Pishchulin et al. [30] extended
part-based model based on rigid body parts with Pose-
let [1] priors. Despite efficient inference and impressive
successes, tree-structured models suffer from the double-
counting problem, which often happens to limbs.

To overcome the limited expressiveness of tree-
structured models, there have been a lot of efforts that
focused on constructing more expressive models [17, 34,
12, 46, 38]. For example, symmetry of appearance be-
tween limbs has been considered in [34, 38]. Ferrari et
al. [12] proposed repulsive edges between opposite-sided
arms to overcome double counting in upper-body pose esti-
mation. These strong pose priors, however, may overfit to
the statistics of some particular datasets [43]. To consider
higher-order part relationships beyond primitive rigid parts,
Wang et al. [46] incorporated hierarchical poselets for hu-
man parsing. In video pose estimation, Cherian et al. [5]
designed temporal links between body parts to address in-
consistency between parts that across the sequences. These
methods achieved better expressiveness by loopy models.
Inference on such models, however, requires approximate
methods such as integer programs [17], integer quadratic
programs [34], or loopy belief propagation [36]. Moreover,
the above mentioned approaches are based on hand-crafted
features (e.g., HOG [8] and Shape Context [25]), and may
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Figure 2. Illustration of the proposed framework. (a) visualizes a loopy model, where nodes (red circles) specify the positions and mixture types of body
parts, and edges (white lines) indicate the relationships between parts. During inference, a node sends a message to each of its neighbors and receives
messages from each neighbor (indicated by arrows). The proposed framework can be viewed as two components: (b) a front-end DCNN for learning feature
representations of body parts and (c) message passing layers for conducting inference and learning on mixture of parts with deformation constraints between
parts. Specifically, each message passing layer performs one iteration of message passing in a forward pass. (d) are predicted heat-maps for parts. Please
refer to the text for the notations.

be limited by the representation ability.
Deep Models for Human Pose Estimation: Recently,
deep models have been successfully applied in human pose
estimation. Ouyang et al. [26] proposed a multi-source
deep model for constructing the non-linear representation
from multiple information sources. DeepPose [42] esti-
mated body part locations by learning a regressor based on
DCNNs in a holistic manner. However, this method suf-
fered from inaccuracy in the high-precision regions. Jain et
al. [15] used a multi-resolution DCNN and adopted motion
features to improve the accuracy of body parts localization.
Tompson et al. [40] proposed spatial pooling to overcome
the reduced localization accuracy caused by pooling opera-
tions. Chen and Yuille [4] used a DCNN to learn the condi-
tional probabilities for the presence of parts and their spatial
relationships. They further proposed flexible compositions
of object parts [3] to handle significant occlusions in im-
ages, and showed state-of-the-art results. However, part de-
tection scores and detectors are fixed in [4, 3] but are not
fixed in our model. The approaches in [4, 3] learned part
detectors and spatial relationships independently, while we
jointly learned them. Besides, our model learns global pose
configuration and is not constrained to tree models while
tree models were used in [4, 3].

To capture contextual relationships directly within DC-
NNs, some recent studies explored to combine DCNNs
with Conditional Random Fields (CRFs), Markov Random
Fields (MRFs), or Deformable Part Models, and showed
promising results on several applications, such as depth esti-

mation [24], semantic segmentation [22], and object detec-
tion [14, 44, 27]. For pose estimation, Tompson et al. [41]
jointly trained a multi-scale DCNN with an approximate
MRF, which is to model the spatial relationships between
body parts. Our approach is different from this approach
in the following aspects. First, their model has difficulty
in learning effective spatial relationships on datasets with
large pose variations. Our method addresses this problem
by using appearance mixtures. Second, to cover the largest
body joint displacement, very large 128 × 128 convolution
kernels were used in [41]. Hence its parameter space is very
large, and it is hard to learn when body parts are with large
variations in relative locations. We take the body part ar-
ticulation property into account and model spatial relations
by mixture of deformation constraints, which are only 4 pa-
rameters for each pair of mixture-of-parts. Therefore, our
model is better in handling large range of possible poses.

Parameterized deformation constraints are also jointly
learned with DCNN for pedestrian detection in [27] and
object detection in [14]. However, these approaches do
not consider the appearance mixtures, hence are limited to
body part variances, while we learn deformation constraints
taking the appearance mixture into account to handle the
variation. In addition, only the star model is considered in
[27, 14] while our approach is flexible for star models, tree-
structured models or loopy models.



3. The Model
We formulate the human pose estimation problem by us-

ing a graph. Let G = (V,E) denote a graph with ver-
tices V specifying the positions as well as the mixture
types of body parts, and edges E ⊆ V × V indicating
the spatial relationships between parts. Let K = |V | be
the number of parts, and i ∈ {1, · · · ,K} be the ith part.
Given an image I, we denote the pixel locations of parts by
l = {li}Ki=1 = {(xi, yi)}Ki=1, and denote the mixture type
of different spatial relationships by t = {ti}Ki=1 , where
ti ∈ {1, · · · , Ti}. The full score of a pose configuration
given an input image I is as follows:

F (l, t|I;θ,w)

=
∑
i∈V

φ(li, ti|I;θ) +
∑

(i,j)∈E

ψ(li, lj , ti, tj |I;w
ti,tj
i,j ), (1)

where θ and w = {wti,tj
i,j } are parameters of the model.

Part Appearance Terms: Given an image patch located
at li, the unary terms φ(li, ti|I;θ) provide local confidence
of the appearance of part i with mixture type ti, which are
defined as the log probability,

φ(li, ti|I;θ) = log p(li, ti|I;θ) = log σ(f(li, ti|I;θ)). (2)

The probability p(li, ti|I;θ) is given by the softmax func-
tion σ(·), which is to predict the probability of the ith part at
location li with type ti in image I. f(li, ti|I;θ) is modeled
by the front-end DCNN to predict a score for part i located
at li with type ti, where θ are its parameters. Appearance
terms φ(li, ti|I;θ) are obtained from the DCNN through a
classification layer as shown in Figure 2 (b).
Spatial Relationship Terms: The pairwise terms model
the spatial compatibility of two neighboring parts i and j.
We define the pairwise terms as follows:

ψ(li, lj , ti, tj |I;w
ti,tj
i,j ) =< w

ti,tj
i,j , d(li − lj) > . (3)

Here we incorporate standard quadratic deformation con-
straints into our model, where d(li− lj) is deformation fea-
ture defined as d(li− lj) = [∆x ∆x2 ∆y ∆y2]T , and
∆x = xi − xj and ∆y = yi − yj are the relative loca-
tions of part i with respect to part j, and wti,tj

i,j are the 4-
dimensional deformation weights to encode pairwise terms
for mixture types (ti, tj).

4. Inference
Inference is to find the optimal part locations l∗

and mixture types t∗ that maximize the score function
F (l, t|I;θ,w) as follows:

(l∗, t∗) = argmax
l,t

F (l, t|I;θ,w). (4)

An overview of the inference procedure is demonstrated in
Figure 2 (b-d). Given an image, the heat-maps f(li, ti|I;θ)
of each part are computed by a forward pass through the

DCNN. Then the log probability φ(li, ti) of each part with
each type is obtained from f(li, ti|I;θ) through a softmax
layer and a logarithm layer. Taking φ(li, ti) as input, we
propose to pass messages in neural networks by designing a
novel message passing layer, which is flexible to build tree-
structured models or loopy models.

4.1. Message Passing

We first give a brief review of message passing on the
proposed model. Max-sum algorithm has been widely used
for inferring the best configuration in graphical models. Al-
though the max-sum algorithm is only an approximation
and the convergence cannot be guaranteed on loopy struc-
tures, it still provided excellent experimental results [36].

At each iteration, a vertex sends a message to its neigh-
bors and receives messages from its neighbors. We denote
mij(lj , tj) as the message sent from part i to part j, and
ui(li, ti) as the belief of part i, then the max-sum algorithm
updates the messages and beliefs as follows:
mij(lj , tj)← αm max

li,ti
(ui(li, ti) + ψ(li, lj , ti, tj)) , (5)

ui(li, ti)← αu(φ(li, ti) +
∑

k∈N(i)
mki(li, ti)), (6)

where αm and αu are normalization terms, and N(i) denotes
the set of neighbors of part i. To simplify the notation, we
omit model parameters here. Figure 2 (a) gives a visualiza-
tion of this message passing procedure.

The algorithm starts with all message vectors initialized
to constant functions. The normalization terms in Eq.(5-6)
are not necessary. However, we find that they help to make
the inference more stable in practice.
Maximum Score Assignment: Suppose the algorithm
converges at the N th iteration, then the belief for each loca-
tion and each type (li, ti) is the approximation of the max-
imum score function. Hence we can obtain the max-sum
assignment (l∗i , t

∗
i ) by

(l∗i , t
∗
i ) = argmax

li,ti
u∗i (li, ti), ∀i ∈ {1, · · · ,K}, (7)

where u∗i (li, ti) is the belief computed in the last iteration,
and (l∗i , t

∗
i ) is the solution for the maximum score in Eq.(4).

Special Case: Tree-Structured Model: For tree struc-
tures, exact inference can be performed efficiently by one
pass of dynamic programming, which is a special case
of max-sum algorithm by passing messages from leaves
to a chosen root node. By keeping track of indexes of
arg maxl∗k,t

∗
k

for each pass, the maximum score assignment
can be obtained by backtracking from the root node to the
leaves. This procedure is also known as Verberti decoding,
and has been widely used in previous pose estimation works
with tree-structured models [51, 52, 4, 3].

4.2. The Message Passing Layer in Neural Networks

In literature, there are mainly two possible ways to orga-
nize the message passing schedule. The flooding schedule



Figure 3. From left to right, we show the estimated poses generated by
the first, the second, and the third message passing layer, respectively. In-
tuitively, a part could receive messages from further parts as the number of
message passing layers increases, which may result in better results.

simultaneously passes messages across every link in both
directions at each time step, while the serial schedule passes
one message at each time. By following the flooding sched-
ule, we integrate the procedure introduced in Eq.(5-6) into
the network by designing a novel message passing layer.

As shown in Figure 2 (c), each node sends a message
to each of its neighbors simultaneously (solid lines in Fig-
ure 2 (c)), and the belief of each part is updated by summing
its unary potential φ(li, ti) (dashed lines) and the incoming
messages. The belief ui(∗, ti) corresponds to a feature map
with mixture type ti for the ith part in the message passing
layer. After convergence, the optimum pose estimation is
obtained by selecting the location and type with maximum
belief for each part, as in Eq. (7).

Although message passing may need several iterations to
converge, we observe that a cascade of three message pass-
ing layers is enough to produce satisfactory results in prac-
tice. Examples of estimated poses from different message
passing layers are visualized in Figure 3. Intuitively, more
message passing layers (i.e., more iterations in the max-sum
algorithm) lead to better results. We take the tree-structured
model shown in Figure 2 (a) as an example: In the first
round, neck only receives messages from its neighbors head
and shoulders. In the second round, however, neck could re-
ceive messages from parts a step further such as elbows and
hips.
Computation: The computational complexity of message
passing is O(L2T 2) for L possible part locations and T
mixture types. Since our pairwise terms are quadratic func-
tions of location li and lj , we can accelerate the maximiza-
tion over li by employing the generalized distance trans-
forms [11], and the computational complexity of updating
one message is reduced to O(LT 2).

5. Learning

Several recent works produced heat-maps of body parts
by using fully convolutional networks [41, 40, 4, 3]. Some
approaches train the fully convolutional networks with full
images [41, 40]. Others first train a DCNN from local image
patches, then the learned DCNNs are fixed [4, 3]. We ini-
tialize the DCNN by pretraining from local image patches

with mixture type labels, and then jointly learn the DCNN
and the deformable model by finetuning from full images.
Pretraining with Part Mixture Types: Pretraining uti-
lizes part mixture types as supervision to train the front-end
DCNN that serves as part detectors. Existing human pose
datasets are annotated with body part locations l, but with-
out part mixture type labels t. We define the part types as
the different relative locations clusters of a part with respect
to its neighboring parts. Let rij be the relative position from
part i to its neighboring part j, we cluster the relative posi-
tion rij over the training set into Ti clusters. Each cluster
corresponds to a set of part instances that share with sim-
ilar relative locations. The type label for each part can be
derived by cluster membership, and serves as an extra su-
pervision for pretraining the front-end DCNN. The mixture
types obtained from locations are strongly correlated to ap-
pearance of parts. For example, horizontal arm is one part
type and vertical arm is another type – they are different in
pose configuration and appearance. We tried to remove pre-
training, but the net failed to converge to satisfactory train-
ing loss.
Finetuning of the Full Model: We finetune the unified
model by the hinge loss function. Suppose there are N
message passing layers, the final heat-map for each part is
obtained as follows:

si(li) = max
ti

(uN
i (li, ti) + bi), (8)

where bi is the bias. Denote the ground-truth location of
part i by l̃i. The ground-truth heat-map for part i is

s̃i(li) =

{
+1, if ||li − l̃i||∞ ≤ δ;
−1, otherwise.

(9)

where δ is a constant threshold. This produces the ground-
truth heat-map with a box centered at location l̃i: the
ground-truth heat-map has value 1 inside the box, and value
−1 outside the box.

Ideally, we not only hope the predicted part locations to
be close to ground-truth locations, but also hope the max-
imum response of each part in Eq.(8) to be higher than a
threshold. This motivates us to train our model in a max-
margin manner.

Given the ground-truth heat-map s̃i(li) and the predicted
heat-map si(li) of part i, the loss function is

J(l, t) =
1

KL

K∑
i=1

L∑
li=1

max(0, 1− s̃i(li) · si(li)), (10)

where max(0, 1− s̃i(li) · si(li)) is the hinge loss at location
li and J is the overall loss for all parts.

We apply stochastic gradient descent to learn the param-
eters. First, we compute the subgradients w.r.t. the final
heat-map for each part as,

∂J

∂si(li)
=

{
−s̃i(li), if s̃i(li) · si(li) < 1;

0, otherwise.
(11)



Then the partial derivatives w.r.t. each layer can be com-
puted by using the standard backpropagation algorithm. For
example, the partial derivative of the deformation weights
w are computed as,

∂J

∂w
tk,ti
k,i

∝
N∑

n=1

∑
li,ti

∂J

∂un
i (li, ti)

d(lk − li), (12)

where k ∈ N(i). Recall that d(lk − li) is the standard
quadratic deformation features defined in Eq.(3).

6. Experiments
In this section, we present experimental settings, experi-

mental results, and diagnostic analysis.

6.1. Experimental Settings

Datasets: We evaluate the proposed methods on three
well known public pose estimation benchmarks: The Leeds
Sports Poses (LSP) [18] dataset, the Frames Labeled in Cin-
ema (FLIC) [35] dataset, and the Image Parse (PARSE) [33]
dataset. (i) LSP contains 1000 training and 1000 testing im-
ages from sports activities with challenging articulations.
Each person is roughly 150 pixels in height with 14 joints
full-body annotations. (ii) FLIC consists of 3987 training
and 1016 testing images collected from popular Hollywood
movies with diverse appearances and poses. Each person
has 10 upper-body joints annotated. (iii) PARSE contains
305 images of highly articulated human poses with full
body annotations. The PARSE dataset is only used for the
evaluation of cross-dataset generalization: we directly ap-
ply the model trained on the LSP dataset to the 205 test
images of the PARSE dataset. To compare with previous
methods, we use Observer-Centric annotations on both the
LSP dataset and the FLIC dataset, and Person-Centric an-
notations on the PARSE dataset.
Data Augmentation: To reduce overfitting, we augment
the training data by rotating through 360 degrees for every
9 degrees. Then we mirror the images horizontally. Note
that this also increases the training patches of body parts
with different mixture types. The negative samples are ran-
domly cropped from the negative images of the INRIA Per-
son dataset [8]. We randomly select 5% of the training data
as validation set when we pretrain the front-end DCNN, and
these data are further used to finetune the full model.

Previous works [52, 4] observed that adding midway
parts between neighboring annotated parts helps to reduce
foreshortening and improves overall performance. Hence
we interpolate midway parts on both the LSP and the FLIC
datasets, which results in K = 26 and 18 parts respectively.
Evaluation Measure: Two widely used evaluation metrics,
i.e., Percentage of Correct Parts (PCP) and Percentage of
Detected Joints (PDJ), are used for comparison. PCP mea-
sures the rate of correctly detected limbs: a limb is consid-
ered as correctly detected if the distances between detected

Figure 4. The double-counting problem in tree-structured models (the 1st
row), could be reduced by introducing additional pairwise constraints (in-
dicated by white dashed lines in the 2nd row).

limb endpoints and groundtruth limb endpoints are within
half of the limb length. However, different interpretations
of PCP lead to different results. Hence we adopt the strict
PCP as discussed in [52, 4] for fair comparison1.

PDJ is introduced in [35] as a complementary evaluation
metric of PCP, as PCP penalizes short limbs. PDJ measures
the detection rate of joints, where a joint is considered as
detected if the distance between the predicted joint and the
ground-truth joint is less than a fraction of torso diameter.
The torso diameter is defined as the distance between the
left shoulder and the right hip of each ground-truth pose.
Front-End DCNN Architecture: We investigate two
DCNN architectures in this paper. The first one (ChenNet)
is based on [4], which consists of five convolution layers,
two max-pooling layers and three fully-connected layers,
and is trained from random initialization. The second one is
the 16-layer VGG architecture pretrained on the ImageNet
dataset [37]. To reduce computation, we resize the original
input of VGG from 224×224 to 112×112, and remove the
last pooling layer. This also improves the spatial localiza-
tion accuracy with fewer pooling operations. The number of
mixture types is set as Ti = 13 for all parts i ∈ {1, · · · ,K}.
Both architectures produce

∑K
i=1 Ti+1 heat-maps as the in-

put of the message passing layers, which include one back-
ground heat-map. If the mixture number Ti is reduced to
11, PCP drops by 1%. The stride size is 4 for ChenNet and
is 16 for VGG, hence the heat-maps size is 1/4 of the input
image size for ChenNet and 1/16 for VGG.
Connections Among parts: The tree-structured models are
visualized in Figure 7. Based on the tree structure, the
loopy structured models add edges between knees on the
LSP dataset, the structure of which is visualized in the sec-
ond row of Figure 4. On the FLIC dataset, we only conduct
experiments with tree-structured model. We perform exact
inference with tree-structured models. If not specified, three
message passing layers are used for loopy models.

1We use a widely used implementation of strict PCP available at
http://human-pose.mpi-inf.mpg.de/ to evaluate our results.

http://human-pose.mpi-inf.mpg.de/


Parameter Settings: During the pretraining stage, each im-
age is normalized to 150 pixels in body height. Patch size
is set to 36 × 36, which is able to cover sufficient context.
By changing the patch size to 0.8 and 1.2 times of the orig-
inal scale, PCP is reduced by 6.2% and 0.5% on the LSP
dataset with VGG architecture. We keep the batch size as
512, and the learning rates are initialized as 0.005 and 0.001
for ChenNet and VGG, respectively. The dropout rate is set
as 0.5. We drop the learning rate by a factor of 10 for every
5 epochs, and the front-end DCNN is trained for 15 epochs.
δ in Eq. (9) is set as 1/5 of the patch size. The change of δ
from 1/5 to 1/3 results in less than 1% strict PCP variation.

During the joint finetuning stage, the batch size is 5, and
the learning rate is relatively low at 0.0001 for both Chen-
Net and VGG. The dropout rate is increased to 0.6 to avoid
overfitting. Since the parameters of the DCNN are well ini-
tialized during pretrianing, and the deformation weights are
shared across different message passing layers and are rel-
atively few, finetuning the model for 1 epoch already pro-
vides satisfactory results.

6.2. Experimental Results

Method Torso Head U. L. U. L. Mean
arms arms legs legs

Yang&Ramanan [51] 84.1 77.1 52.5 35.9 69.5 65.6 60.8
Pishchulin et al. [29] 87.4 77.4 54.4 33.7 75.7 68.0 62.8
Eichner&Ferrari [9] 86.2 80.1 56.5 37.4 74.3 69.3 64.3
Kiefel&Gehler [21] 84.3 78.3 54.1 28.3 74.5 67.6 61.2
Pose Machines [32] 88.1 80.4 62.8 39.5 79.0 73.6 67.8
Ouyang et al. [26] 88.6 84.3 61.9 45.4 77.8 71.9 68.7
Pishchulin et al. [30] 88.7 85.1 61.8 45.0 78.9 73.2 69.2
DeepPose [42] - - 56 38 77 71 -
Chen&Yuille [4] 92.7 87.8 69.2 55.4 82.9 77.0 75.0
Ours-ChenNet-Unary 62.1 62.3 35.8 18.2 48.5 38.2 40.6
Ours-ChenNet-T 94.8 82.4 75.0 62.4 85.3 79.2 78.1
Ours-ChenNet-LG-Ind 93.0 82.1 70.6 55.4 82.1 75.3 74.2
Ours-ChenNet-LG 95.0 83.5 75.0 61.9 86.9 79.8 78.6
Ours-VGG-Unary 83.4 69.0 53.5 34.9 72.2 63.5 60.1
Ours-VGG-T 96.2 83.4 78.7 65.8 87.9 81.1 80.7
Ours-VGG-LG-MP1 96.3 84.3 78.4 66.3 87.9 80.7 80.7
Ours-VGG-LG-MP2 96.7 83.6 78.2 66.3 88.3 81.2 80.9
Ours-VGG-LG 96.5 83.1 78.8 66.7 88.7 81.7 81.1

Table 1. Comparison of strict PCP on the LSP dataset. We investigate our
method with different network architectures (ChenNet and VGG), as well
as different graph structures (tree-structured model (T) and loopy graph
(LG)). We also investigate the performance of invividual part detectors
(Unary), joint training vs. independent training (Ind), and different number
of message passing layers (MP1, MP2). Note that DeepPose [42] uses
Person-Centric annotations.

Method U.arms L.arms Mean
MODEC [35] 84.4 52.1 68.3
Tompson et al. [41] 93.7 80.9 87.3
Chen&Yuille [4] 97.0 86.8 91.9
Ours-ChenNet-T 97.9 88.3 93.1
Ours-VGG-T 98.1 89.5 93.8

Table 2. Strict PCP results on the FLIC dataset. We investigate our
method with different network architectures (ChenNet and VGG) with
tree-structured model (T).

Method Torso Head U. L. U. L. Mean
arms arms legs legs

Yang&Ramanan [51] 82.9 77.6 55.1 35.4 69.0 63.9 60.7
Johnson&Everingham [19] 87.6 76.8 67.3 45.8 74.7 67.1 67.4
Pishchulin et al. [31] 88.8 73.7 53.7 36.1 77.3 67.1 63.1
Pishchulin et al. [29] 92.2 70.7 54.9 39.8 74.6 63.7 62.9
Pishchulin et al. [30] 93.2 86.3 63.4 48.8 77.1 68.0 69.4
Yang&Ramanan [52] 85.9 86.8 63.4 42.7 74.9 68.3 67.1
Ouyang et al. [26] 89.3 89.3 67.8 47.8 78.0 72.0 71.0
Ours-ChenNet-LG 96.6 87.3 80.0 65.9 83.7 74.1 79.1
Ours-VGG-LG 97.1 86.8 80.2 69.3 84.9 78.5 81.0
Table 3. Strict PCP results on PARSE dataset. Note that our model is
trained on the LSP dataset to demonstrate its generalization ability.
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Figure 5. PDJ results for elbows, wrists, knees and ankles on the LSP
dataset. We compare our method (VGG using loopy model) with Chen
and Yuille [4], Ouyang et al. [26], Ramakrishna et al. [32], Pishchulin et
al. [30], and Kiefel and Gehler [21]. We report the PDJ rate at the threshold
of 0.2 in the legend.

Table 1 and Table 2 report strict PCP results on the LSP
dataset and the FLIC dataset respectively. Our best perfor-
mance on the LSP is achieved by using VGG together with
loopy model (Ours-VGG-LG), which improves the mean
strict PCP by 6.1% when compared with [4]. The best per-
formance on FLIC is achieved by using VGG with tree-
structured model (Ours-VGG-T), and improves the mean
strict PCP by 1.9% when compared with [4]. On the LSP
dataset with many challenging articulations, our method
has significant improvements on limbs, i.e. arms and legs,
which are the most difficult body parts to locate.

Figure 5 shows PDJ results on the LSP dataset. By com-
paring the PDJ value at the threshold 0.2, our method out-
performs state-of-the-art methods by a significant margin
on all body parts except ankles.

PDJ results on the FLIC dataset is reported in Figure 6.
Our method achieves the best performance on both elbows
and wrists compared with state-of-the-art methods.
Generalization Evaluation: To investigate the generaliza-
tion ability of our method, we apply the model trained on
the LSP dataset directly to the official test set of the PARSE
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Figure 6. PDJ comparison of elbows and wrists on the FLIC dataset.
We compare our method (VGG with tree-structured models) with Chen
and Yuille [4], Fan et al. [10], Tompson et al. [40], DeepPose [42], and
MODEC [35]. We report the PDJ rate at the threhold of 0.2 in the legend.

Figure 7. Qualitative results on the LSP dataset (the 1st row), the FLIC
dataset (the 2nd row), and the PARSE dataset (the 3rd row). We visual-
ize the joint locations together with the connections among parts used in
this paper (for simplicity, we only show tree-structure), and the same limb
across different images has the same color. Some failure cases are showed
in the last row. Our method may lead to wrong estimations due to signifi-
cant occlusions, ambiguous background, or heavily overlapping persons.

dataset. As shown in Table 3, our method outperforms the
state-of-the-art methods with a large margin, which implies
that our method has good generalization ability.
Joint Training vs. Independent Training: To investi-
gate the efficiency of joint training of part detectors and
deformable mixture of parts, we train a model whose ar-
chitecture is the same as Ours-ChenNet-LG on the LSP
dataset. However, we first train the part detectors, then we
fix the part detectors to train the message passing layers.
In this scenario, the mean PCP is 74.2%, as reported in
Table 1 (Ours-ChenNet-LG-Ind). In comparison, our pro-
posed joint learning (Ours-ChenNet-LG) has 4.4% gain.
Number of the Message Passing Layers: The mean
PCPs obtained by the first, the second and the third message
passing layer of Ours-VGG-LT are 80.7% (Ours-VGG-
LT-MP1), 80.9% (Ours-VGG-LT-MP2), and 81.1% (Ours-
VGG-LT), respectively. As discussed in Section 4.2, we
observe that a cascade of three message passing layers is
enough to produce satisfactory results in practice, as shown
in Figure 3.
Components Investigation: We first evaluate the perfor-

mance of individual part detectors. Without spatial con-
straints, our method obtains 40.6% and 60.1% strict PCPs
on the LSP dataset with ChenNet (Ours-ChenNet-Unary)
and VGG (Ours-VGG-Unary) respectively, as reported in
Table 1.

We conduct four experiments to analyze the influence of
different components on the LSP dataset, and report the re-
sults in Table 1. First, we use ChenNet with tree-structured
model (Ours-ChenNet-T), which outperforms the best pre-
viously published result [4] by 3.1% on average. This
proves the effectiveness of jointly training DCNNs and de-
formable mixture of parts. Part detector and message pass-
ing are jointly learned in Ours-ChenNet-T but separately
learned in [4]. Second, we build a loopy model based on
tree-structured model by adding an edge between knees
(Ours-ChenNet-LG), and get 0.5% improvement. We ob-
serve that this improvement is mainly due to the reduction
of double-counting problem, as shown in Figure 4. Next, we
evaluate the ImageNet pretrained VGG with tree-structured
model (Ours-VGG-T). This gives an improvement over the
ChenNet (Ours-ChenNet-T in Table 1 ) by 2.6%, which
shows the expressive power of deeper DCNN and the ro-
bustness of the ImageNet pretrained feature representation.
Finally, by combining VGG with loopy model, the Ours-
ChenNet-LG in Table 1 achieve the best result on the LSP
dataset.
Qualitative Evaluation: Figure 7 shows some pose es-
timation results on all the three datasets. Our method is
robust to highly articulated poses with variant orientation,
foreshortening, cluttered background, occlusion, and over-
lapping people. Some failure cases are also showed in the
last row of Figure 7. Our method may lead to wrong estima-
tions due to significant occlusions, ambiguous background,
or heavily overlapping persons. Please refer to the captions
for detailed discussion.

7. Conclusion
This paper has proposed to incorporate the DCNN and

the deformable mixture of parts model into an end-to-end
framework. Our framework is able to mine hard nega-
tives by considering the spatial and appearance consistency
among body parts. Therefore, the DCNN can be trained
more effectively. The joint learning of DCNN and de-
formable mixture of parts improves the performance on sev-
eral widely used benchmarks, which demonstrates the ef-
fectiveness of our method. In the future work, we plan to
investigate learning graph structures with deep models.
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