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Abstract

Learning generic and robust feature representations with
data from multiple domains for the same problem is of
great value, especially for the problems that have multi-
ple datasets but none of them are large enough to pro-
vide abundant data variations. In this work, we present a
pipeline for learning deep feature representations from mul-
tiple domains with Convolutional Neural Networks (CNNs).
When training a CNN with data from all the domains, some
neurons learn representations shared across several do-
mains, while some others are effective only for a specific
one. Based on this important observation, we propose a
Domain Guided Dropout algorithm to improve the feature
learning procedure. Experiments show the effectiveness of
our pipeline and the proposed algorithm. Our methods
on the person re-identification problem outperform state-
of-the-art methods on multiple datasets by large margins.

1. Introduction

In computer vision, a domain often refers to a dataset
where samples follow the same underlying data distribu-
tion. It is common that multiple datasets with different
data distributions are proposed to target the same or similar
problems. Multi-domain learning aims to solve the prob-
lem with datasets across different domains simultaneously
by using all the data they provide. As deep learning arises
in the recent years, learning good feature representations
achieves great success in many research fields and real-
world applications. The success of deep learning is driven
by the emergence of large-scale training data, which makes
multi-domain learning an interesting problem. Many stud-
ies [3,10,31] have shown that fine-tuning a deep model pre-
trained on a large-scale dataset (e.g. ImageNet [8]) is effec-
tive for other related domains and tasks. However, in many
specific areas, there is no such large-scale dataset for learn-
ing robust and generic feature representations. Nonethe-
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Figure 1. Examples of multiple person re-identification datasets.
Each dataset has its own bias. Our goal is to learn generic feature
representations that are effective on all of them simultaneously.

less, different research groups have proposed many smaller
datasets. It is necessary to develop an effective algorithm
that jointly utilizes all of them to learn generic feature rep-
resentations.

Another interesting aspect of multi-domain learning is
that it enriches the data variety because of the domain dis-
crepancies. Limited by various conditions, data collected by
a research group might only include certain types of varia-
tions. Take the person re-identification [2, 23] problem as
an example, pedestrian images are usually captured in dif-
ferent scenes (e.g., campus, markets, and streets), as shown
in Figure 1. Images in CUHK01 [21] and CUHK03 [23]
are captured on campus, where many students wear back-
packs. PRID [15] contains pedestrians in street views,
where crosswalks appear frequently in the dataset. Images
in VIPeR [13] suffer from significant resolution changes
across different camera views. Each of such datasets is bi-
ased and contains only a subset of possible data variations,
which is not sufficient for learning generic feature represen-
tations. Combining them together can diversify the training
data, thus makes the learned features more robust.

In this paper, we present a pipeline for learning generic
feature representations from multiple domains that are ef-



fective on all of them simultaneously. For concrete demon-
stration, we target the person re-identification problem, but
the method itself would be generalized to other problems
with datasets of multiple domains. As learning features
from a large-scale classification dataset is proved to be ef-
fective [36], we first mix all the domains together and train
a Convolutional Neural Network (CNN) to recognize per-
son identities (IDs). The CNN model we designed consists
of several BN-Inception [16, 37] modules, and its capacity
well fits to the scale of the mixed dataset. This carefully
designed CNN model provides us a fairly strong baseline,
but the simple joint learning scheme does not take full ad-
vantages of the variations of multiple domains.

Intuitively, neurons that are effective for one domain
could be useless for another domain because of the presence
of domain biases. For example, only the i-LIDS dataset
contains pedestrians with luggages, thus the neurons that
capture luggage features are of no use when recognizing
people from other domains.

Based on this observation, we propose Domain Guided
Dropout — a simple yet effective method of muting non-
related neurons for each domain. Different from the stan-
dard Dropout [14], which treats all the neurons equally, our
method assigns each neuron a specific dropout rate for each
domain according to its effectiveness on that domain. The
proposed Domain Guided Dropout has two schemes, a de-
terministic scheme, and a stochastic scheme. After the base-
line model is trained jointly with datasets of all the domains,
we replace the standard Dropout with the deterministic Do-
main Guided Dropout and resume the training for several
epochs. We observe that the proposed dropout scheme con-
sistently improves the performance on all the domains after
several epochs, especially on the smaller-scale ones. This
step produces better generic feature representations that are
effective on all the domains simultaneously. We further
fine-tune the net with stochastic Domain Guided Dropout
on each domain separately to obtain the best possible re-
sults.

The contribution of our work is three-fold. First, we
present a pipeline for learning generic feature representa-
tions from multiple domains that perform well on all of
them. This enables us to learn better features from multiple
datasets for the same problem. Second, we propose Domain
Guided Dropout to discard useless neurons for each domain,
which improves the performance of the CNN. At last, our
method outperforms state-of-the-arts on multiple person re-
identification datasets by large margins. We observe that
learning feature representations by utilizing data from mul-
tiple datasets improve the performance significantly, and the
largest gain is 46% on the PRID dataset. Extensive experi-
ments validate our proposed method and the internal mech-
anism of the method is studied in details.

2. Related Work
In recent years, training deep neural networks with mul-

tiple domains has been explored. Feature representations
learned by Convolutional Neural Networks have shown
their effectiveness in a wide range of visual recognition
tasks [6, 12, 17, 20, 27, 44]. Long et al. [28] incorporated
the multiple kernel variant of Maximum Mean Discrepancy
(MMD) objective for regularizing the training of neural net-
works. Ganin et al. [11] proposed to reduce the distribution
mismatch between the source and target domains by revers-
ing the gradients of the domain classification loss, which is
also utilized by [38] with a softlabel matching loss to trans-
fer task information. Most of these methods aim at find-
ing a common feature space that is domain invariant. How-
ever, our approach allows the representation to have disjoint
components that are domain specific, while also learning a
shared representation.

As deep neural networks usually contain millions of pa-
rameters, it is of great importance to reduce the parame-
ter space by adding regularizations to the weights. The
quality of the regularization method would significantly af-
fect both the discriminative power and generalization ability
of the trained networks. Dropout [14] is one of the most
widely used regularization method in training deep neu-
ral networks, which significantly improves the performance
of the deep model [20]. During the network training pro-
cess, Dropout randomly sets neuron responses to zero with
a probability of 0.5. Thus a training batch updates only
a subset of all the neurons at each time, which avoids co-
adaptation of the learned feature representations.

While the standard Dropout algorithm treats all the neu-
rons equally with a fixed probability, Ba et al. [4] proposed
an adaptive dropout scheme by learning a binary belief net-
work to predict the dropout probability for each neuron.
In practice, they use the response of each neuron to com-
pute the dropout probability for itself. Our approach signif-
icantly differs from this method, as we propose to train a
CNN from multiple domains, and utilize the domain infor-
mation to guide the dropout procedure.

We target the person re-identification (Re-ID) problem
in this work, which is very challenging and draws much
attention in recent years [22, 24, 26, 39, 42, 45]. Existing
Re-ID methods mainly address the problem from two as-
pects: finding more powerful feature representations and
learning better metrics. Zhao et al. [46, 47, 48] proposed to
combine SIFT features with color histogram as features. In
deep learning literature, Li et al. [23] and Ahmed et al. [1]
designed CNN models specifically to the Re-ID task and
achieved good performance on large-scale datasets. They
trained the network with pairs of pedestrian images and
adopted the verification loss function. Ding et al. [9] uti-
lized triplet samples for training features that maximize rel-
ative distance between the pair of same person and the pair



of different people in the triplets. Apart from the feature
learning methods, a large number of metric learning al-
gorithms [7, 19, 29, 32, 40, 41] have also been proposed to
solve the Re-ID problem from a complementary perspec-
tive. Some recent works addressed the problem of mis-
match between traditional Re-ID and real application sce-
narios. Liao et al. [25] proposed a database for open-set
Re-ID. Zheng et al. [49] treated Re-ID as an image search
problem and introduced a large-scale dataset. Xu et al. [43]
raised the problem of searching a person inside whole im-
ages rather than cropped bounding boxes.

3. Method

Our proposed pipeline for learning CNN features from
multiple domains consists of several stages. As shown in
Figure 2, we first mix the data and labels from all the do-
mains together, and train a carefully designed CNN from
scratch on the joint dataset with a single softmax loss.
This pretraining step produces a strong baseline model that
works on all the domains simultaneously. Next, for each
domain, we perform the forward pass on all its samples and
compute for each neuron its average impact on the objec-
tive function. Then we replace the standard Dropout layer
with the proposed Domain Guided Dropout layer, and con-
tinue to train the CNN model for several more epochs. With
the guidance of which neurons being effective for each do-
main, the CNN learns more discriminative features for all of
them. At last, if we want to obtain feature representations
for a specific domain, the CNN could be further fine-tuned
on it, again with the Domain Guided Dropout to improve
the performance. In this section, we detail these stages, and
compare our design choices with other alternatives.

3.1. Problem formulation

Although the pipeline itself is not limited to any spe-
cific scope, we target the person re-identification prob-
lem for concrete demonstration. The problem can be for-
mulated as follows. Suppose we have D domains, each
of which consists of Ni images of Mi different people.
Let {(x(j)

i , y
(j)
i )Ni

j=1}Di=1 denote all training samples, where

x
(j)
i is the j-th image of the i-th domain, and y

(j)
i ∈

{1, 2, . . . ,Mi} is the identity of the corresponding person.
Our goal is to learn a generic feature extractor g(·) that has
similar outputs for images of the same person and dissimilar
outputs for different people. During the test phase, given a
probe pedestrian image and a set of gallery images, we use
g(·) to extract features from all of them, and rank the gallery
images according to their Euclidean distances to the probe
image in the feature space. For the training phase, there are
several frameworks that use pairwise [1, 23] or triplet [33]
inputs for learning feature embeddings. In our approach, we
train a CNN to recognize the identity of each person, which

is also adopted in the face verification work [36].

3.2. Joint learning objective and the CNN structure

When mixing all the D domains together, a straight-
forward solution is to employ a multi-task objective func-
tion, i.e., learning D softmax classifiers f1, f2, . . . , fD and
a shared features extractor g that minimize

argmin
f1,f2,...,fD,g

D∑
i=1

Ni∑
j=1

L
(
fi(g(x

(j)
i )), y

(j)
i

)
, (1)

where L is the softmax loss function that equals to the cross-
entropy between the predicted probability vector and the
ground truth.

However, since different person re-identification datasets
usually have totally different identities, it is also safe to
merge all M =

∑D
i=1 Mi people together and relabel them

with new IDs y′ ∈ {1, 2, . . . ,M}. For the merged dataset,
we can define a single-task objective function, i.e., learn-
ing one softmax classifier f and the features extractor g that
minimize

argmin
f,g

D∑
i=1

Ni∑
j=1

L
(
(f ◦ g)(x(j)

i ), y′
(j)
i

)
. (2)

Compared with the multi-task formulation, this single-
task learning scheme forces the network to simultaneously
distinguish people from all domains. The feature represen-
tations capture two types of information: domain biases
(e.g., background clutter, lighting, etc.) as well as person
appearance and attributes. If the data distributions of two
domains differ a lot, it would be easy to separate the persons
of the two domains by observing only the domain biases.
However, when these biases are not significant enough, the
network is required to learn discriminative person-related
features to make the decisions. Thus the single-task objec-
tive fits better to our setting and is chosen for this work.

Since pedestrian images are usually quite small and are
not of square-shapes, it is not appropriate to directly use
the ImageNet pretrained CNN models, which are trained
with object images of high resolution and abundant details.
Thus we propose to design a network structure that well fits
our problem scale. Inspired by [16, 35], we build a CNN
with three preceding 3×3 convolutional layers followed by
six Inception modules and two fully connected layers. De-
tailed structures are listed in Table 1. The Batch Normal-
ization (BN) layers are employed before each ReLU layer,
which accelerate the convergence process and avoid manu-
ally tweaking the initialization of weights and biases. For
training the CNN from scratch, we randomly dropout 50%
neurons of the fc7 layer. The initial learning rate is set to 0.1
and is decreased by 4% for every 4 epochs until it reaches
0.0005. The learning rate is then fixed at this value for a few
more epochs until convergence.
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Figure 2. Overview of our pipeline. For the person re-identification problem, we first train a CNN jointly on all six domains. Then we
analyze the effectiveness of each neuron on each domain. For example, some may capture the luggages that only appear in domain A,
while some others may capture the red clothes shared across different domains. We propose a Domain Guided Dropout algorithm to
discard useless neurons for each domain during the training process, which drives the CNN to learn better feature representations on all the
domains simultaneously.

name
patch size/

stride
output

size #1×1
#3×3
reduce #3×3

double #3×3
reduce

double
#3×3 pool+proj

input 3× 144× 56
conv1 – conv3 3× 3/2 32× 144× 56
pool3 2× 2/2 32× 72× 28
inception (4a) 256× 72× 28 32 32 32 32 32 avg + 32
inception (4b) stride 2 384× 72× 28 32 32 32 32 32 max + pass through
inception (5a) 512× 36× 14 64 64 64 64 64 avg + 64
inception (5b) stride 2 768× 36× 14 64 64 64 64 64 max + pass through
inception (6a) 1024× 36× 14 128 128 128 128 128 avg + 128
inception (6b) stride 2 1536× 36× 14 128 128 128 128 128 max + pass through
fc7 256
fc8 M

Table 1. The structure of our proposed CNN for person re-identification

3.3. Domain Guided Dropout

Given the CNN model pretrained by using the mixed
dataset, we identify for each domain which neurons are
effective. For each domain sample, we define the impact
of a particular neuron on this sample as the gain of the
loss function when we remove the neuron. Specifically, let
g(x) ∈ Rd denote the d-dimensional CNN feature vector of
an image x. The impact score of the i-th (i ∈ {1, 2, . . . , d})
neuron on this image sample is defined as

si = L(g(x)\i)− L(g(x)), (3)

where g(x)\i is the feature vector after we setting the i-th
neuron response to zero. For each domain D, we then take
the expectation of si over all its samples to obtain the aver-
aged impact score s̄i = Ex∈D[si]. We visualize the neuron
impact scores between several pairs of domains in Figure 3.
It clearly shows that the two sets of impact scores have little
correlation, indicating that the effective neurons for differ-
ent domains are not the same.

A naive computation of all the impact values requires
O(d|D|) network forward passes, which is quite expensive
if d is large. Therefore, we follow [34] to accelerate the pro-
cess by using approximate Taylor’s expansion of L(g(x)) to
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Figure 3. The neuron impact scores between several pairs of do-
mains. For each pair of domains (A,B), the neurons are sorted
w.r.t. their impact scores on domain A (red curves). Their impact
scores on domain B are shown in blue. The two curves have little
correlation, which indicates that different domains have different
effective neurons.
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Figure 4. Comparison of the true (Eq. (3)) and the approximated
(Eq. (4)) neuron impact scores

the second order

si ≈ − ∂L
∂g(x)i

g(x)i +
1

2

∂2L
∂g(x)2i

g(x)2i . (4)

We study the quality of this approximation empirically, and
observe that it is more accurate for higher-level layers close
to the loss function. Here we show in Figure 4 the differ-
ence between the approximation and its true values for the
neurons of the fc7 layer.

After obtaining all the s̄i, we continue to train the CNN
model, but with these impact scores as guidance to dropout
different neurons for different domains during the training
process. For all the samples belonging to a particular do-
main, we generate a binary mask m for the neurons ac-
cording to their impact scores s, and then elementwisely
multiply m with the neuron responses. Two schemes are
proposed on how to generate the mask m. The first one is
deterministic, which discards all the neurons having non-
positive impact scores

mi =

{
1 if si > 0

0 if si ≤ 0
(5)

The other one is stochastic, where mi is drawn from a
Bernoulli distribution with probability

p(mi = 1) =
1

1 + e−si/T
. (6)

Here we use the sigmoid function to map a impact score
to (0, 1), and T is the temperature that controls how signif-
icantly the scores s would affect the probabilities. When
T → 0, it is equivalent to the deterministic scheme; when
T → ∞, it falls back to the standard Dropout with a ratio
of 0.5. We study the effect of T empirically in Section 4.3.

We apply the Domain Guided Dropout to the fc7 neu-
rons and resume the training process. The network’s learn-
ing rate policy is changed to decay polynomially from 0.01
with the power parameter set to 0.5. The whole network is
trained for 10 more epochs.

During the test stage, for the deterministic scheme, the
neurons are also discarded if their impacts are no greater
than zero. While for the stochastic scheme, we keep all the
neuron responses but scale the i-th one with 1/(1+e−si/T ).

4. Experiments
We conducted experiments on several popular person re-

identification datasets. In this section, we first detail the
characteristics of each dataset and the test protocols we fol-
lowed in Section 4.1. Then we compare the results of our
approach with state-of-the-arts, showing the effectiveness
of our multi-domain deep learning pipeline in Section 4.2.
Section 4.3 analyzes the Domain Guided Dropout module
through a series of experiments, and discusses its properties
based on the results. At last, we present some figures that
help us understand the underlying mechanisms. The code is
publicly available on GitHub1.

4.1. Datasets and protocols

There exist many challenging person re-identification
datasets. In our experiments, we chose seven of them to
cover a wide range of domain varieties. CUHK03 [23] is
one of the most largest published person re-identification
datasets, it consists of five different pairs of camera views,
and has more than 14,000 images of 1467 pedestrians.
CUHK01 [21] is also captured on the same campus with
CUHK03, but only has two camera views and 1552 im-
ages in total. PRID [15] extracts pedestrian images from
recorded trajectory video frames. It has two camera views,
each contains 385 and 749 identities, respectively. But only
200 of them appear in both views. Shinpuhkan [18] is an-
other large-scale dataset with more than 22,000 images. The
highlight of this dataset is that it contains only 24 individ-
uals, but all of them are captured with 16 cameras, which
provides rich information on intra-personal variations.

1https://github.com/Cysu/person_reid

https://github.com/Cysu/person_reid


Dataset #ID
#Trn.

images
#Val.

images
#Prb.

ID
#Gal.

ID

CUHK03 [23] 1467 21012 5252 100 100
CUHK01 [21] 971 1552 388 485 485
PRID [15] 385 2997 749 100 649
VIPeR [13] 632 506 126 316 316
3DPeS [5] 193 420 104 96 96
i-LIDS [50] 119 194 48 60 60
Shinpuhkan [18] 24 18004 4500

Table 2. Statistics of the datasets and evaluation protocols

The remaining three datasets are relatively quite small.
VIPeR [13] is one of the most challenging dataset, since
it has 632 people but with various poses, viewpoints, im-
age resolutions, and lighting conditions. 3DPeS [5] has 193
identities but the number of images for each person is not
fixed. iLIDS [50] captures 119 individuals by surveillance
cameras in an airport, and thus consists of large occlusions
due to luggages and other passengers.

Since Shinpuhkan dataset has only 24 people, it cannot
be used for testing the performance of re-identification sys-
tems. Thus we only use it in the training phase. For the
other datasets, we mainly follow the settings in [32] to gen-
erate the test probe and gallery sets. But our training set
has two differences with theirs. First, both the manually
cropped and automatically detected images in CUHK03
were used. Second, we sampled 10 images from the video
frames of the training identities in PRID. We also randomly
drew roughly 20% of all these images for validation. No-
tice that both the training and validation identities have no
overlap with the test ones. The statistics of all the datasets
and evaluation protocols are summarized in Table 2. In our
experiments, we employed the commonly used CMC [30]
top-1 accuracy to evaluate all the methods.

4.2. Comparison with stateoftheart methods

We compare the results of our approach with those
by state-of-the-art ones on all the six test datasets. For
the 3DPeS and iLIDS datasets, the best previous method
are [41] and [9], respectively. While for the other four
datasets, the best results are reported by [32]. Both meth-
ods are built upon hand-crafted features, and exploit a rank-
ing ensemble of kernel-based metrics to boost the perfor-
mance. However, our method relies on the learned CNN
features and uses the Euclidean distance directly as the met-
ric, which stresses the quality of the learned features repre-
sentation rather than the metrics.

In order to validate our approach, we first obtain a
baseline by training the CNN individually on each do-
main. Then we merge all the domains jointly with a
single-task learning objective (JSTL) and train the CNN

Method CUHK03 CUHK01 PRID

Best 62.1 [32] 53.4 [32] 17.9 [32]
Individually 72.6 34.4 37.0
JSTL 72.0 62.1 59.0
JSTL+DGD 72.5 63.0 60.0
FT-JSTL 74.8 66.2 57.0
FT-JSTL+DGD 75.3 66.6 64.0

Method VIPeR 3DPeS iLIDS

Best 45.9 [32] 54.2 [41] 52.1 [9]
Individually 12.3 31.1 27.5
JSTL 35.4 44.5 56.9
JSTL+DGD 37.7 45.6 59.6
FT-JSTL 37.7 54.0 61.1
FT-JSTL+DGD 38.6 56.0 64.6

Table 3. CMC top-1 accuracies of different methods

from scratch using all these domains. Next, we improve
the learned CNN with the proposed deterministic Domain
Guided Dropout (JSTL+DGD). Notice that this step pro-
vides a single model working on all the domains simulta-
neously. To show our best possible results, we further fine-
tune the CNN separately on each domain with the stochastic
Domain Guided Dropout (FT-JSTL+DGD). We also adopt
a baseline method by fine-tuning from the JSTL model on
each domain with standard dropout (FT-JSTL) for compar-
ison. The results are summarized in Table 3.

CNN structure. We first evaluate the effectiveness of
the proposed CNN structure. When the network is trained
only with the CUHK03 dataset, which is large enough for
training CNN from scratch, we improve the state-of-the-
art result by more than 10% to 72.6% (row 2 of Table 3).
Compared with the previous best deep learning method [1],
whose result is 54.7%, our method achieves a gain of 18%
in the performance. A two-stream network is used in [1] to
compute the verification loss given a pair of images, while
we opt for learning a single CNN through an ID classifica-
tion task and directly computing Euclidean distance based
on the features. When the training set is large enough, this
classification objective makes the CNN much easier to train.
The CMC curves of different methods on the CUHK03
dataset are shown in Figure 5. However, when the dataset
is quite small, it would be insufficient to learn such a large
capacity network from scratch, which is demonstrated in
Table 3 by the results of training the CNN only on each of
the VIPeR, 3DPeS, and iLIDS datasets.

Joint learning. To overcome the scale issue of small
datasets, we propose to merge all the datasets jointly as a
single-task learning (JSTL) problem. In row three of Ta-
ble 3, we can see the performance increase on most of the
datasets. This indicates learning from multiple domains
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Figure 5. CMC curves of different methods on CUHK03 dataset

jointly is very effective to produce generic feature repre-
sentations for all the domains. An interesting phenomenon
is that the performance on CUHK03 decreases slightly.
We hypothesize that when combining different datasets to-
gether without special treatment, the larger domains would
leverage their information to help the learning on the others,
which makes the features more robust on different datasets
but less discriminative on the larger ones themselves. Note
that we do not balance the data from multiple sources in
a mini-batch, as it would give more weights on smaller
datasets, which leads to severe overfitting.

Domain Guided Dropout. The fourth row of Table 3
shows the effectiveness of applying the proposed Domain
Guided Dropout (DGD) to the JSTL scheme. Based on
the JSTL pretrained model, we compute the neuron im-
pact scores of the fc7 layer on different domains, replace
the standard Dropout layer with the proposed determinis-
tic Domain Guided Dropout layer, and continue to train the
network for several epochs. Although the original JSTL
model has already converged to a local minimum, utilizing
Domain Guided Dropout consistently improves the perfor-
mance on all the domains by 0.5%-2.7%. This indicates that
it is effective to regularize the network specifically for dif-
ferent domains, which maximizes the discriminative power
of the CNN on all the domains simultaneously.

At last, to achieve the best possible performance of
our model on each domain, we fine-tune the previous
JSTL+DGD model on each of them individually with
stochastic Domain Guided Dropout. This step adapts the
CNN to the specific domain biases and sacrifices the gen-
eralization ability to other domains. As a result, the final
CMC top-1 accuracies are increased by several percents, as
listed in the last row of Table 3. On the other hand, com-
paring with FT+JSTL, the results are improved by 3% on
average, which indicates that JSTL+DGD provides better
generic features. Note that FT+JSTL on PRID results in
even worse performance than JSTL. Such overfitting prob-
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Figure 6. The cumulative number of neurons to be reserved under
certain probabilities. Different temperature T settings and corre-
sponding CMC top-1 accuracies are shown in the legend.

lem is resolved by applying DGD.

4.3. Effectiveness of Domain Guided Dropout

After evaluating the overall performance of our pipeline,
we also investigate in details the effects of the proposed Do-
main Guided Dropout module in this subsection.

Temperature T . As the temperature T significantly af-
fects the behavior and performance of the stochastic Do-
main Guided Dropout scheme, we first study the effects of
this hyperparameter. From the theoretical analysis we know
that the stochastic Domain Guided Dropout falls back to the
standard Dropout (ratio equals to 0.5) when T → ∞, and to
the deterministic scheme when T → 0. However, it is still
unclear how to set it properly in real applications. There-
fore, we provide some empirical results of tuning the tem-
perature T . We use the 3DPeS dataset as an example, and
fine-tune the JSTL+DGD model on it with different values
of T . For each temperature, all the fc7 neurons have certain
probabilities to be reserved according to Eq (6). We count
the histogram of the neurons with respect to their proba-
bilities to be reserved, and plot the cumulative distribution
function in Figure 6. We can see that the best performance
can be achieved when T is in a certain range that makes
maxi p(mi = 1) ≈ 0.9. This phenomenon indicates that
a good T should assign the most effective neuron a high
enough probability (0.9) to be reserved. We set T accord-
ing to this empirical observation when using the stochastic
Domain Guided Dropout scheme in our experiments.

Deterministic vs. stochastic. The next question is
whether the deterministic and stochastic Domain Guided
Dropout have similar behaviors, or one outperforms the
other in certain pipeline stages. We compare these
two strategies within the JSTL+DGD and FT-JSTL+DGD
stages in our pipeline. Their gains on the CMC performance
for each domain under different settings are shown in Fig-
ure 7 as the blue and green bars, respectively.



3

2

1

0

1

2

3
(a) Resume the JSTL pretrained model

Standard Dropout
Deterministic DGD
Stochastic DGD

2

0

2

4

6

8

10

CUHK03 CUHK01 PRID VIPeR 3DPeS iLIDS

(b) Fine-tuning from the JSTL+DGD model

Standard Dropout
Deterministic DGD
Stochastic DGD

G
ai

n 
in

 th
e 

C
M

C
 to

p-
1 

ac
cu

ra
cy

 (%
)

Figure 7. Comparison of different Dropout schemes

From Figure 7(a) we can see that when feeding the net-
work with the data from all the domains, deterministic Do-
main Guided Dropout is better in general. This is because
the objective here is to learn generic representations that
are robust for different domains. The deterministic scheme
strictly constrains that data from each domain are used to
update only a specific subset of neurons. Thus it eliminates
the potential confusion due to the discrepancies between
different domains. On the contrary, when fine-tuning the
CNN with the data only from one specific domain, the do-
main discrepancy no longer exists. All the inputs follow the
same underlying distribution, so we can use stochastic Do-
main Guided Dropout to update all the neurons with proper
guidance to determine the dropout rate for each of them,
as shown in Figure 7(b). As a conclusion, the determinis-
tic DGD is more effective when it is used to train the CNN
jointly with all the domains, while the stochastic DGD is su-
perior when fine-tuning the net separately on each domain.

Standard Dropout vs. Domain Guided Dropout. At
last, we compare the proposed Domain Guided Dropout
with the standard Dropout under different scenarios. The
results are summarized in Figure 7. First, when resuming
the training of the JSTL pretrained model, we applied the
deterministic Domain Guided Dropout. From Figure 7(a)
we can see that since the model is already converged, con-
tinue to use standard Dropout scheme cannot further im-
prove the performance. The performance would rather jit-
ter insignificantly or decrease on particular domains due to
overfitting. However, by using the deterministic Domain
Guided Dropout scheme, the performance improves con-
sistently on all the domains, especially for the small-scale
ones. On the other hand, by comparing the orange and the
green bars in Figure 7(b), we can validate the effectiveness
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Figure 8. Relative performance gain with respect to the number of
neurons having negative impact scores on specific domain in the
deterministic Guided Dropout scheme

of the stochastic Domain Guided Dropout when fine-tuning
the CNN model. This is because we utilize the domain in-
formation to regularize the network better, which keeps the
CNN in the right track when training data is not enough.

We further investigate how does the deterministic Do-
main Guided Dropout change the network behavior by eval-
uating the relative performance gain on each domain with
respect to the number of neurons having negative impact
scores on that domain. As shown in Figure 8, smaller
datasets tend to have more useless neurons to be dropped
out, meanwhile the performance would be increased more
significantly. This again indicates that we should not treat
all the domains equally when using all their data, but rather
regularize the CNN properly for each of them.

5. Conclusion
In this paper, we raise the question of learning generic

and robust CNN feature representations from multiple do-
mains. An effective pipeline is presented, and a Domain
Guided Dropout algorithm is proposed to improve the fea-
ture learning process. We conduct extensive experiments
on multiple person re-identification datasets to validate our
method and investigate the internal mechanisms in details.
Moreover, our results outperform state-of-the-art ones by
large margin on most of the datasets, which demonstrates
the effectiveness of the proposed method.
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