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Abstract

In [1], three popular subspace face recognition 
methods, PCA, Bayes, and LDA were analyzed under the 
same framework and an unified subspace analysis was 
proposed. However, since they are all based on a single 
Gaussian model, a global linear subspace often fails to 
deliver good performance on the data set with complex 
intrapersonal variation. They also have to face the 
problem caused by high dimensional face feature vector 
and the difficulty in finding optimal parameters for 
subspace analysis. In this paper, we develop a random 
mixture model to improve Bayes and LDA subspace 
analysis. By clustering the intrapersonal difference, the 
complex intrapersonal variation manifold is learned by a 
set of local linear intrapersonal subspaces. To boost the 
system performance, we construct multiple low 
dimensional subspaces by randomly sampling on the high 
dimensional feature vector and randomly selecting the 
parameters for subspace analysis. The effectiveness of 
our method is demonstrated by experiments on the AR 
face database containing 2340 face images. 

1. Introduction 

Subspace analysis has been widely used in face 
recognition in recent years. PCA [2], Bayes [3], and LDA 
[4] are three popular subspace methods and they were 
unified under the same framework in [1]. As shown in 
[1], the key task of a successful subspace analysis method 
is to effectively reduce the intrapersonal difference 
caused by lighting, pose, and expression changes. The 
intrapersonal subspace of Bayes and LDA focuses on the 
intrapersonal variation, thus can effectively reduce it.

Both Bayes and LDA use a single Gaussian 
distribution to model the intrapersonal variation and work 
well on a relatively simple data set. However, when a data 
set contains significant transformation difference caused 
by large lighting, pose, and expression variations, the 
intrapersonal variation manifold will become highly non-
convex and complex. A global linear subspace based on a 
single Gaussian model often fails to deliver good 
performance. In this paper, we improve Bayes and LDA 
subspace analysis using Gaussian mixture models. The 

complex intrapersonal variation manifold is decomposed 
into several clusters with simple distributions, and learnt 
by multiple local intrapersonal subspaces. 

Although several mixture models linear subspace 
methods [5][6][7] have been proposed in previous work, 
their clustering procedures are all based on face images or 
face class centers instead of intrapersonal difference, 
which is the most significant factor affecting recognition 
performance. The intrapersonal variation cannot be 
effectively reduced in their methods. These approaches 
usually require that the face class has at least one 
reference image in each cluster and this condition is 
difficult to meet in real applications. Our method needs 
only one reference sample for each face class in 
recognition.

Another problem for previous methods is that face 
feature vector dimensionality is usually very high 
compared with the small training set. This often leads to 
biased and unstable results. In order to overcome this 
problem, in this paper, we apply the random sampling 
LDA we developed earlier [8] in the new mixture model 
to develop a random mixture model. In addition, we 
further extend the random sampling process to randomly 
selecting the parameters to boost the system performance. 
     In summary, our subspace analysis algorithm based on 
random mixture models can be understood as a 
framework integrating multiple subspaces, which are 
constructed in three steps: 1. clustering the intrapersonal 
differences from the training samples; 2. randomly 
sampling the high dimensional feature vector; and 3. 
randomly selecting parameters. It is more stable and more 
effective on the difficult data set with complex 
distribution.

2. Subspace Analysis Based on a Single 
Gaussian Model 

We first briefly review several conventional subspace 
analysis methods, including Bayes, LDA, and null space 
LDA. They are all based on a single Gaussian Model. 

2.1. Bayesian Analysis 

     In the Bayesian algorithm, the similarity between two 
images can be measured as the intrapersonal likelihood 
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)|( IP . Here   is the difference between face 

images and I  is the intrapersonal variation. Principal 

component analysis (PCA) is applied on the intrapersonal 
difference set I|  to compute the intrapersonal 

principal subspace F and its complementary subspace F .
It assumes that I  has a Gaussian distribution. 

)|( IP  is estimated as the product of two independent 

marginal Gaussian densities in F  and F ,
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In Eq. (1), )(Fd  is a Mahalanobis distance in F ,

referred as “distance-in-feature-space” (DIFS), 
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where iy  is the principal component of projected into 

F and
i

 is the eigenvalue. )(2  is defined as 

“distance-from-feature-space” (DFFS), equivalent to PCA 
residual error in F .

In the recognition procedure, Eq.(1) is equivalent to 
evaluating the distance 

/2
Fdd .          (3) 

Both DIFS and DFFS are two distinctive components 
and thus can be independently used for recognition. If the 
intrapersonal variation I  has a Gaussian distribution, 

PCA on I|  computes a set of principal axes 

dominated by the energy of I . When a face difference 

 is projected into the intrapersonal subspace, its 
intrapersonal variation is therefore compacted onto a 
small number of large eigenvectors in F . Since 

i

explicitly describes the energy distribution of 
intrapersonal variation, intrapersonal variation can be 
effectively reduced by the inverse weighting of 
eigenvalues in DIFS. DFFS is also a distinctive 
component for recognition. It throws away most 
intrapersonal variation on large eigenvectors. 

2.2. LDA 

LDA tries to find a set of projecting vectors W
maximizing the ratio of determinant of the between-class 
scatter matrix bS  and the determinant of the within-class 

scatter matrix wS ,

WSW

WSW
W

w
T

b
T

maxarg .                          (4) 

W  can be computed from the eigenvectors of bw SS 1  [9]. 

In face recognition, the training set is usually small 
compared to the high dimensional feature vector. To 
avoid the singularity of wS , most of the LDA methods 

first reduce the face data dimension by PCA and then 
apply discriminant analysis in the reduced PCA subspace. 

     Computing the eigenvectors of bw SS 1  is equivalent to 

simultaneous diagonalization of wS  and bS [1]. First, 

Compute the eigenvector matrix  and eigenvalue 
matrix of wS .  It has been proved that the subspace 

spanned by  and  is essentially the intrapersonal 
subspace computed in the Bayesian subspace analysis. 
Next project the class centers onto  and normalize it by 

2/1 . Thus bS  is transformed 

to 2/12/1
b

T
b SK . This whitening process 

reduces the intrapersonal variation just like the DIFS in 
Bayes. After computing the eigenvector matrix  and 
eigenvalue matrix  of bK , the projection vectors of 

LDA can be defined as 2/1W . This step further 
makes the class centers distant.  

2.3. Null Space LDA

Chen et. al. [10] suggested that the null space of wS ,

in which 0WSW w
T , also contains much 

discriminative information. It is possible to find some 

projection vectors W satisfying 0WSW w
T  and 

0WSW b
T , thus the Fisher criteria in Eq. (4) definitely 

reaches its maximum value. A LDA approach in the null 
space of wS  was proposed.  First, the null space V of wS

is computed as, 

0VSV w
T .           (5) 

bS  is projected to the null space of wS ,

VSVS b
T

b
~

.             (6) 

The LDA projection vectors are defined as VW ,

where  contains the eigenvectors of bS
~

 with the 

largest eigenvalues. 
     The null space of wS  is equivalent to the 

complementary intrapersonal subspace F  in Bayes. Most 
of the intrapersonal variation has been removed in this 
space. Null space LDA further makes the class centers in 
this space distant. 

3. Subspace Analysis Using Random Mixture 
Models

A common theme for Bayes, LDA, and Null space 
subspace analysis is to use the intrapersonal subspace to 
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reduce the intrapersonal variation. However, they are all 
based on a uniform Gaussian model. When the 
intrapersonal difference in the face data set is very large, 
the intrapersonal variation manifold will be too complex 
to be modeled as a single Gaussian distribution. The 
derived intrapersonal subspace cannot effectively reduce 
the intrapersonal variation. We project the intrapersonal 
differences of samples from AR database onto the first 
two eigenvectors of the intrapersonal subspace and plot 
them in Figure 1. Apparently it is not a Gaussian 
distribution. A better choice is to decompose the complex 
manifold into K simpler clusters and use multiple 
intrapersonal subspaces to model local regions. Based on 
this consideration, we propose random Gaussian mixture 
models to model intrapersonal differences. 

3.1. Bayesian Subspace Analysis Based on 
Random Mixture Models 

In Section 2.1, it is shown that both DIFS and DFFS in 
Bayes are distinctive components and can be 
independently used for recognition. Here, we first 
improve them using the random mixture models 
respectively, and then integrate them using a fusion rule. 

3.1.1. DIFS Random Mixture Models 

The proposed algorithm of DIFS mixture models 
classifier is shown in Figure 2. In the training stage, the 
intrapersonal difference training sample set is first 
constructed by computing the difference between the 
training sample and its class center. They are clustered 
based on the Mahalanobis distance. For each 
intrapersonal difference cluster, a local intrapersonal 
subspace is computed and the DIFS is computed as, 

N

i

k
i

k
i

k
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1
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where k
iy  is the principal component of the face 

difference  projecting to the kth local intrapersonal 

subspace and k
i  is the intrapersonal eigenvalue.

When a probe face image is input, we compute its 
difference  with the reference face class center. 
Compute DIFS of  in each local intrapersonal subspace 
and choose the minimum one as its distance measure. The 
corresponding local intrapersonal subspace is chosen as 
the best one to model . As we can see from Figure 1, 
this local intrapersonal subspace should estimate a more 
accurate DIFS than using the global intrapersonal 
subspace.

Since the face feature vector dimension is very high 
while the training set size is relatively small, some 
intrapersonal eigenvalues are close to zero and overfitting 
will happen using Eq. (7) for clustering and recognition. 
This problem becomes even more serious in the DIFS 
mixture model, since each cluster only contains part of 
the training samples. We adopt the random subspaces to 
solve this problem [8]. Some low dimensional random 
subspaces are generated by random sampling on the 
original high dimensional face feature vector. A DIFS 
mixture model classifier is constructed from each random 
subspace. Since it is based on a low dimensional feature 
vector, it is more stable. The multiple classifiers can cover 
all the discriminative information in the face space. 

Another key problem for the mixture model classifier 
is how to choose the proper cluster number. In order to 
avoid seriously deteriorating the recognition performance 
by incorrectly choosing a cluster number, we randomly 
choose the cluster number k from a proper range 
( maxmin kkk ) in each random subspace and combine 

the multiple classifiers to boost the system performance. 
The final algorithm of the DIFS random mixture models 
is shown in Figure 3. 

3.1.2. DFFS Random Mixture Models

Similar to the procedure described in Figure 2, DFFS 
can also be extended to the mixture models. The only 
difference is that DFFS instead of DIFS is used for 
clustering and recognition in the training step 5 and 
recognition step 2. The face difference  is projected 
into the local intrapersonal subspace spanned by the r

largest eigenvectors k
r

kk uuE ,,1  and the 

reconstruction error (DFFS) is computed as 

22 )()()()( k
Tkk

kk EE .          (8) 

Different from DIFS, DFFS does not suffer from the 
high dimensionality of feature vector. In fact, it extracts 
the discriminative information encoded on the 
intrapersonal eigenvectors with zero eigenvalues. So we 
do not need to use random subspaces to reduce the feature 
dimension. However, DFFS mixture models classifier 

Figure 1. Project the samples of intrapersonal difference from
AR database to the first two eigenvectors of the intrapersonal
subspace. The complex distribution can be better modeled as
several local Gaussian models. 
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also needs several parameters to be set. Besides the local 
intrapersonal subspace number K, the intrapersonal 
eigenvector numbers ( 1r and 2r ) to compute the 

reconstruction error (DFFS) in clustering and recognition 
are also required as input. Different parameters and 
cluster initialization will lead to different classifier. We 
also construct multiple classifiers by randomly selecting 
parameters from proper range and randomly setting the 
cluster initialization, and combine them using a fusion 
rule.

3.1.3. Integrating DIFS and DFFS

     DIFS and DFFS extract discriminative information 
from two complementary subspaces. So they are 
complementary to each other. Using a fusion rule, we 
further combine the classifiers constructed by DIFS 
random mixture models and DFFS random mixture 
models to cover more discriminative information in the 
face space.

3.2. LDA and Null Space LDA Random Mixture 
Models

Section 2 has shown that DIFS and DFFS can be 
viewed as intermediate steps of LDA and null space 
LDA. So LDA and null space LDA can also be extended 
to the random mixture models. The algorithms of LDA 
and null space LDA mixture models classifiers are shown 
in Figure 4 and Figure 5. Based on the Bayes mixture 
model, they further project the class centers into the local 
intrapersonal subspace and its null space, and seek the 
principal directions to make the class centers further 
separated in each local subspace. They are extended to 
random mixture models using random subspaces and 
randomly selecting parameters in the same way as shown 
in Figure 3. 

3.3. Discussion 

     Our subspace analysis using random mixture models 
can be understood as a multiple classifier integration 
framework. Since the face data has a very complex 

DIFS Mixture Models Classifier 

Input: A set of training samples M
iix 1 ; the number (K) of local intrapersonal subspaces. 

Training:

Step 1: Compute the face class centers L
llm 1  of the training samples. 

Step 2: Compute the intrapersonal difference between the training sample and its class center, lj mx .

Construct the intrapersonal difference training sample set M
ii 1 .

Step 3: Randomly choose the initial cluster assignment K,,1  for each intrapersonal difference sample 

in the training set. 

Step 4: Compute the eigenvectors k
N

kk uuU ,,1  , eigenvalues k
N

kk ,,1 , and cluster center k  for each 

cluster kEk | .

Step 5: Project the training intrapersonal difference sample  into each local intrapersonal subspace 

k
Tk

ii uy )( , and compute the DIFS Mahalanobis distance 
N

i

k
i

k
i

k
F yd

1

2 /)()( .

Step 6: Assign  to the cluster with the minimum DIFS distance. 
Step 7: Stop if no training example has changed cluster, otherwise, return to step 4. 

Recognition:
Step 1: When a probe face image x  is input, compute its difference with each face class center, ll mx .

Step 2: Project l into each local intrapersonal subspace and compute the DIFS as )( l
k
Fd .

Step 3: Choose the minimum DIFS in the local intrapersonal subspace as the distance of probe image x  to class 

center lm , }{min k
l

k
l dd .

Step 4: Recognize the face class with the minimum distance to the probe face image x , ))((minarg l
l

dx .

Figure 2. Algorithm of DIFS mixture models classifier. 
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distribution in a very high dimensional space, it is 
difficult to be modeled using the conventional single 
classifier framework. Instead of constructing a very 
complicated single classifier, we propose to use multiple 
simple classifiers to model face difference subspaces and 
local regions of the face space. Multiple classifiers are 
constructed by clustering the training samples, randomly 
sampling the feature vector and randomly setting the 
classifier parameters. Some proper classifiers are selected 
from training sample clusters. The multiple classifiers 
constructed from random subspaces and random 
parameters are combined. Here we use majority voting as 
a fusion rule. More advanced multiple classifiers 
combination methods can be found in [11]. They can be 
incorporated into our framework to further improve the 
system performance. 

4. Experiments 

We conduct experiments on a data set from AR 
database. It contains 90 subjects (subjects with a full set 
of photos) and each subject has 26 face images taken in 
two sessions. For each session, there are 13 face images. 
Face images in this data set have very significant 
intrapersonal variations. Some examples are shown in 
Figure 6. The 1170 face images taken in the first sessions 

are used for training set to compute the intrapersonal 
subspace. When testing the 90 class centers of 1170 face 
images in the first session are used as reference, and the 
1170 face images taken in the second session are used as 
probe. In preprocessing, all the images are normalized for 
scaling, translation, and rotation, such that the eye centers 
are in fixed positions. A rectangle mask is used to remove 
the background and most of the hair region. 

Recognition accuracies of linear subspace methods 
based on the uniform model are shown in Table 1. 
Because of the significant intrapersonal variation, the 
manifold as shown in Figure 1 cannot be modeled using a 
single Gaussian model. Recognition accuracies of these 
linear subspace methods are extremely low, with around 
50% accuracy. 

 As shown in Table 2 and Table 3, our random 
mixture models framework significantly improves the 
performance of these subspace analysis methods on the 
data set with complex intrapersonal variations. In Figure 
7, 8, 9, 10, we plot the accuracy of each random mixture 
models classifier and the result of multiple classifiers 
combination. For DIFS and LDA, the recognition rate of 
the mixture models classifier in each random subspace is 
low. This is because much information has been 
discarded in each random subspace. But the recognition 
performance is significantly improved after combining 
the multiple classifiers, since the multiple random 
subspaces can cover almost all the discriminative 
information in the face space after combination. For 
DFFS and null space LDA, each single mixture models 
classifier has already significantly outperformed the 
classifier based on uniform Gaussian model. However, 
when using different parameters and cluster initialization, 
the accuracy has some variation. Using the random 
generation and integration framework, the system 
performance is stabilized and is further improved in 
accuracy.  We test the mixture LDA method proposed in 
[7] by grouping the face classes into four clusters. It fails 
to improve the performance with only 45% accuracy, 
because the complex distribution of this data set is caused 
by large intrapersonal variations, which still exist in each 
cluster of that method. Several other methods require the 
face class has at least one reference image in each cluster. 
They cannot be used in this case since we only use one 
reference image for each face class. 

5. Conclusion 

In this paper, we proposed a random mixture models 
framework for subspace analysis. It focuses on the 
intrapersonal variation and uses multiple local subspaces 
to model the complex face data manifold. Different local 
subspaces are generated by clustering the intrapersonal 
difference training samples, randomly sampling the 
feature vector and randomly setting the parameters. 
Experiments show that our framework significantly 

DIFS Random Mixture Models Classifier 

Input: A set of training sample M
iix 1 ; the number 

of random subspaces H; the dimension of random 
subspaces N; the range of the local intrapersonal 
subspace number in each random subspace ( mink ,

maxk ).

Step 1: Generate the feature indexes H
jjS 1)(  to 

construct random subspaces with dimension N by 
random sampling on the high dimensional face 

feature vector. M
iji Sx

1
)(  is the new feature vector 

set of training samples projected to the random 
subspace jS .

Step 2: Randomly select the local intrapersonal 
subspace number )( maxmin kkkk jj  in the 

random subspace jS .

Step 3: Construct DIFS mixture models classifier 

),)}(({ 1 j
M
ijij kSxC  in random subspace jS .

Step 4: Combine the H DIFS mixture models 

classifiers H
jjC 1}{  using a fusion rule. 

Figure 3. Algorithm of DIFS random mixture models. 
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Null Space LDA Mixture Models Classifier 

Input: A set of training samples M
iix 1 ; the number 

of local intrapersonal subspace K; the eigenvector 
number r to compute the reconstruction error. 

Training:
Step 1: Cluster the intrapersonal difference training 
samples and compute the local intrapersonal 

subspaces ),( kkU  using DFFS. 

Step 2: Project the class centers lm to the null spaces 

of the local intrapersonal subspaces 

)()()( kl
Tkk

kl
k
l mUUm .

Apply PCA on }{ k
l  and compute the eigenvectors 

k .
Step 3: The null space LDA projection vectors for 
the kth local intrapersonal subspace is 

kTkkk UUIW )(*

Recognition:
Step 1: Compute the difference  between the probe 
face and reference class center. 
Step 2: Choose the local intrapersonal subspace k
with the minimum DFFS to .

Step 3: Project  to kW  and compute the distance 
for recognition. 

Figure 5. Algorithm of null space LDA mixture models. 

boosts the face recognition system and outperforms 
conventional uniform model subspace methods on the 
face data set with complex distribution. 
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LDA Mixture Models Classifier 

Input: A set of training samples M
iix 1 ; the number of 

local intrapersonal subspaces K.

Training:
Step 1: Cluster the intrapersonal difference training 
samples and compute the local intrapersonal subspaces, 

),( kkU  using DIFS. 

Step 2: Project the class centers lm  into each 

intrapersonal subspace )()()( 2/1
kl

Tkkk
l mU .

Apply PCA on }{ k
l  and compute the eigenvectors k .

Step 3: The LDA projection vectors in the kth local 

intrapersonal subspace is kkkk UW 2/1)( .

Recognition:
Step 1: Compute the difference  between the probe face 
and reference face class center. 
Step 2: Choose the local intrapersonal subspace k with the 
minimum DIFS to .

Step 3: Project  to kW  and compute the distance for 
recognition.

Figure 4. Algorithm of LDA mixture models.
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Table 3. Recognition accuracies of LDA and Null space LDA 
(N-LDA) random mixture models classifiers (%) 

LDA N-LDA Integrate LDA and N-
LDA

73.16 77.09 77.56 

Figure 8. Recognition accuracies of DFFS mixture models
classifiers and result of combining multiple classifiers under 
a random model. 

Figure 10. Recognition accuracies of null space LDA 
mixture models classifiers and result of combining multiple 
classifiers under a random model. 

Figure 9. Recognition accuracies of LDA mixture models
classifiers and result of combining multiple classifiers under 
a random model 

Figure 6. Face image examples taken in the same session for
one subject in AR database. 

Table 1. Recognition accuracies of subspace methods based on uniform model (%) 

PCA DIFS DFFS DIFS + DFFS LDA Null space LDA 
22.14 52.91 51.88 52.14 50.09 55.64 

Table2. Recognition accuracies of Bayes random mixture models 
classifiers (%) 

DIFS DFFS Integrate DIFS and DFFS  
74.87 77.18 78.12 

Figure 7. Recognition accuracies of DIFS mixture models
classifiers and result of combining multiple classifiers under 
a random model. 
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