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Abstract

Due to the limited amount of training samples, fine-
tuning pre-trained deep models online is prone to over-
fitting. In this paper, we propose a sequential training
method for convolutional neural networks (CNNs) to effec-
tively transfer pre-trained deep features for online applica-
tions. We regard a CNN as an ensemble with each chan-
nel of the output feature map as an individual base learner.
Each base learner is trained using different loss criterions
to reduce correlation and avoid over-training. To achieve
the best ensemble online, all the base learners are sequen-
tially sampled into the ensemble via important sampling. To
further improve the robustness of each base learner, we pro-
pose to train the convolutional layers with random binary
masks, which serves as a regularization to enforce each
base learner to focus on different input features.

The proposed online training method is applied to vi-
sual tracking problem by transferring deep features trained
on massive annotated visual data and is shown to signif-
icantly improve tracking performance. Extensive experi-
ments are conducted on two challenging benchmark data
set and demonstrate that our tracking algorithm can outper-
form state-of-the-art methods with a considerable margin.

1. Introduction
Visual tracking is a fundamental problem in computer

vision that has been receiving a rapidly growing atten-
tion. It has a variety of subfields ranging from single-target
to multi-target tracking. The focus here is single-target,
model-free online tracking [20, 12, 38], where a category
agnostic target is indicated by a bounding box in the first
frame, and the tracker aims at locating the target in the fol-
lowing each frame. Due to significant target appearance
changes caused by abrupt motion, deformation, occlusion
and illumination variation, visual tracking is still a very
challenging problem.

Prior approaches [11, 15, 40, 41] rely on hand-crafted
features to describe the target and have addressed the above
challenging factors to a certain extend. However, these
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Figure 1. Due to limited number of training samples, online train-
ing CNNs for tracking (denoted as OTCT) can easily lead to over-
fitting and cause tracking failure. We propose a sequential learning
method (denoted as STCT) for CNNs to address this issue.

hand-crafted features are designed for certain scenarios.
Thus, they can not generalize well and are incapable to cap-
ture the semantic information of the target, which can easily
lead to tracking failure in challenging conditions.

Recently, deep Convolutional Neural Networks (CNNs)
trained on large scale image classification data sets (e.g. [5])
have demonstrated great success in many vision tasks [29,
9, 3, 25]. These semantic representations discovered by the
learning process are shown to be very effective at distin-
guishing objects of various categories. However, supervised
training of deep CNNs with millions of parameters entails
a large number of annotated training samples. To apply
deep CNNs for tasks with a limited amount of training sam-
ples, previous approaches [24, 30] adopt a transfer learning
method by first pre-training a deep CNN on a source task
with a large scale training data set and then fine-tuning the
learned feature on the target task. Due to the good general-
ization capability of CNN features across different data sets,
this transfer learning approach is effective and has shown
state-of-the-art performance.

However, for online visual tracking, the lack of training



samples becomes even more severe, since the only training
sample with ground truth label is provided in the first frame,
and the tracking results used for updating the tracker are
also obtained in a sequential manner. Thus, directly online
fine-tuning a pre-trained deep CNN is prone to over-fitting,
which will degrade the tracker and gradually leads to track-
ing drift (See Figure 1 as an example).

In order to address the above issue, we propose a se-
quential training method for CNNs to effectively transfer
pre-trained deep features for online visual tracking. Specif-
ically, a CNN is regarded as an ensemble, while each chan-
nel of the convolutional feature map is treated as a base
learner and is updated using a different loss criterion, such
that they are not highly correlated with each other. Online
fine-tuning of the CNN is then formulated as a sequential
ensemble learning problem. To build the best ensemble,
we sequentially select the base learners via important sam-
pling and add them into the ensemble. Online tracking is
conducted as foreground/background separation by the se-
quentially learned ensemble. To further reduce over-fitting,
we propose to train the convolutional layers with random
binary masks, which can effectively enforce different con-
volutional kernels to focus on different target parts.

The contribution of this paper can be summarized into
three-folds: i) we propose a sequential training method for
CNNs, which can effectively transfer pre-trained deep fea-
tures for online application and reduce over-fitting; ii) we
develop an effective visual tracking algorithm based on the
proposed sequential learning method, where deep features
trained on the Imagenet image classification task [5] are uti-
lized to predict the position and scale of the target simulta-
neously; iii) extensive experiments are conducted on two
popular benchmark data sets and demonstrate that the pro-
posed tracking algorithm performs favorably against state-
of-the-art methods.

2. Related Work
A typical tracking method mainly contains two impor-

tant components: an appearance model to estimate the like-
lihood of target candidates, and a search strategy to find the
most likely target location. In this paper, we mainly focus
on the design of a robust appearance model. In some prior
methods [2, 23, 32, 31], the target appearance is represented
by generative models and the candidate with the maximum
likelihood is predicted as the target. The ”EigenTracking”
algorithm [2] utilizes pre-trained eigen basis to describe the
target appearance. Later on, Ross et al. [27] propose to in-
crementally update both the eigenbasis and mean to adapt to
target appearance changes. Sparse representation has also
been applied to tracking [23, 33], where the target is recon-
structed by a sparse combination of target templates.

Meanwhile, some methods cast visual tracking as a fore-
ground and background separation problem using discrimi-

native models. Online learning algorithms based on boost-
ing [10], structured SVM [11], multiple instance learn-
ing [1], and correlation filters [4, 12] are applied in tracking
and achieve good performance. Among others, Danelljan
et al. [4] propose to estimate the scale changes of the target
using correlation filters learned from HOG features. Our
method bears a similar spirit with [4] in predicting target
scale changes. However, ours differs from [4] in that we
exploit a scale prediction network trained on deep features
which are more robust to significant appearance changes.

Deep convolutional neural networks have improved
state-of-the-art performance in many computer vision ap-
plications [19, 30, 34, 28, 39, 26] in recent years. Exist-
ing methods have also explored the usage of CNNs in on-
line tracking. In [21], a three-layer CNN is trained on-line.
Without pre-training and with limited training samples ob-
tained online, CNN fails to capture object semantics and is
not robust to deformation. In [36], a deep autoencoder is
first pre-trained offline and then finetuned for binary clas-
sification in online tracking. Since the pre-training is per-
formed in an unsupervised way by reconstructing gray im-
ages with very low resolutions, the learned deep feature has
limited discriminative power for tracking. Both [21] and
[36] train deep networks online with limited training sam-
ples, and inevitably suffer from over-fitting. Consequently,
they only achieve comparable or even inferior performance
against state-of-the-arts. More recent methods [14, 35, 22]
adopt deep convolution networks trained on a large scale
image classification task [5] to improve tracking perfor-
mance. [14] predicts saliency maps using deep features.
[35] and [22] propose to estimate foreground heat maps
by training either CNNs or correlation filters using feature
maps of multiple convolution layers. In contrast, we pro-
vide a new paradigm to transfer rich features of pre-trained
deep CNNs for online tacking. Instead of directly finetun-
ing deep features like [36, 35], we cast online training CNN
as learning ensembles to effectively remove feature correla-
tion and avoid over-fitting.

3. CNN Training as Ensemble Learning
Before elaborating the proposed sequential training

method for CNNs, we first introduce some background of
ensemble learning to put our method in a proper context.

3.1. Sequential Sampling for Ensemble Learning

Given a data point x, the goal of supervised learning is
to predict the likely value ŷ of the ground truth value y as-
sociated with x. The prediction rule is often defined as a
function ŷ = F (x) that can be learned by minimizing the
expected loss over all the training data {zi = (xi, yi)}N1

F ∗(x) = arg min
F (x)

1

N

N∑
i=1

L(yi, F (xi)), (1)



where L(y, ŷ) indicates the loss of predicting a value ŷ
when the true value is y. The prediction function can have
various forms depending on the particular problem to be
handled. In [7], Friedman and Popescu formulate the pre-
diction function as an integral

F (x) = π0 +

∫
Γ

π(γ)f(x;γ)dγ, (2)

where f(x;γ) denotes a base learner parameterized by
γ ∈ Γ, and π(γ) is the coefficient function. Numerical
quadrature is utilized to approximate (2) by a linear combi-
nation of base learners at M evaluation points γm ∈ Γ as
F (x) ' a0 +

∑M
m=1 amf(x;γm). The learning problem

in (1) then amounts to choosing a good ensemble of eval-
uation points {γm}M1 and their corresponding coefficients
{am}M0 .

For a base learner f(x;γ), its irrelevance to the current
problem is defined as

Q(γ) = min
α0,α

1

N

N∑
i=1

L(yi, α0 + αf(x;γ)). (3)

The optimal single point can then be obtained by minimiz-
ing the irrelevance as γ∗ = arg minQ(γ). For an ensemble
of base learners {f(x;γm)}M1 , the characteristic scale can
be employed to measure its quality

σ =
1

M

M∑
m=1

[Q(γm)−Q(γ∗)] . (4)

A small value of σ implies that many base learners in
the ensemble are very similar to the optimal base learner
f(x;γ∗). Since they are highly correlated with each other,
the ensemble of base learners fail to provide additional in-
formation beyond the single optimal base learner f(x;γ∗).
On the contrary, if σ is too large, most of the base learners
are irrelevant to the problem which will ultimately degrade
the performance of the ensemble.

Based on the above observation, Friedman and
Popescu [7] propose a sequential sampling method to gen-
erate an ensemble of evaluation points, in which the irrele-
vance measure of each successive point γm depends on the
previously sampled points {γl}m−1

1

Qm(γ|{γl}m−1
1 ) = min

α0,αm

1

N

N∑
i=1

L
(
yi, α0 + αmf(xi;γ)

+ η

m−1∑
l=1

αlf(xi;γl)
)
, (5)

where the parameter η controls the impact of previously
sampled points on the current relevance measure. Then each
sequentially selected parameter point γm is determined by

γm = arg min
γ∈Γ

Qm(γ|{γl}m−1
1 ). (6)

As the sampling proceeds, the irrelevance defined by (5)
will increasingly differ from that for the single parameter
point (3). Consequently, the sampled parameter points will
not be highly correlated with each other. We refer the read-
ers to [7] for more information.

3.2. Online Training CNNs as Sequential Ensemble
Learning

For online applications, one simple approach to transfer
offline pre-trained CNN features is to add one or more ran-
domly initialized CNN layers, named as adaptation layers,
on top of the pre-trained CNN model. Then keep the param-
eters, i.e. convolutional kernels and bias, of the pre-trained
CNN fixed and only learn the parameters of the adaptation
layers online to fit the current task. However, we empiri-
cally observe that this transfer learning method suffers from
severe over-fitting. The online learned parameters mainly
focus on recent training samples and are less likely to well
generalize to both historical and future samples. This phe-
nomenon can be fatal to online visual tracking where the
target often undergoes significant appearance changes or
heavy occlusion.

To tackle the above issue, we propose to train a CNN
model online as sequentially learning ensembles to better
transfer pre-trained deep features. Denote the pre-trained
CNN as CNN-E, which takes the RGB image as input and
outputs a convolutional feature map X . An online adapted
CNN, named as CNN-A is randomly initialized and consists
of two convolutional layers interleaved with an ReLU layer
as the nonlinear activation unit. It takes the feature map X
as input and generates the final feature map {F c2 (X)|c =
1, 2, . . . , C2}, where F c2 (X) ∈ Rm×n indicates the c-th
channel of the feature map generated by the second layer
with spatial size of m× n.

The feature map in the second layer is obtained by con-
volving the kernel with the feature map in the first layer as

F c2 (X) =

C1∑
k=1

wc
k ∗ F k1 (X) + bc, (7)

where C1 denotes the number of channels of the feature
map output by the first layer; wc

k represents the convolu-
tion kernel connecting the k-th channel of the first layer fea-
ture map with the c-th channel of the second layer feature
map; bc is the bias and ∗ denotes convolution operation; the
summation is conducted element-wisely. In order to intro-
duce randomness into the parameter learning process, we
regard the output feature map as an ensemble of base learn-
ers F c2 (X) =

∑C1

k=1 f(X;γck), where each base leaner is
defined as f(X;γck) = wc

k∗F k1 (X)+bkc , and the parameter
γck indicates the corresponding kernel weights and bias in
both the first layer (i.e., weights and bias of F k1 (X))and the
second layer (i.e.,wc

k and bkc ) of CNN-A. The online training
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Figure 2. Illustration of the proposed sequential training method for CNNs. (a) Conventional method for training a two-layer CNN online
to transfer pre-trained deep features. (b) The proposed method trains the CNN model via sequentially sampling optimal base learners into
an ensemble.

of the CNN-A network is then equivalent to online updating
each base learner and sequentially sample an optimal set of
base learners into the ensemble. Since our proposed online
training method is conducted independently in each chan-
nel of the output feature map, in the following discussion,
we will take one output channel as an example to describe
the training method. For notational simplicity, we omit the
superscript channel number and use {γk|k = 1, 2, . . . , C1}
to denote the parameters of the base learners for any one
output feature map channel.

At the beginning of the online training process, the pa-
rameter γk of each base learner is randomly initialized
and independently trained using the first training sample by
stochastic gradient descent (SGD). The parameter γ∗ with
the smallest training error is selected as the single optimal
parameter and added to the ensemble set E , while the rest
C1 − 1 parameters constitute the candidate set C.

In the following training process, the parameters in the
candidate set is sequentially added to the ensemble set. All
the parameters in the ensemble set are used to form an en-
semble with output F (X; E) = 1

|E|
∑
γi∈E f(X;γi) for

online testing.
At the t-th time step, a new training sampleXt with tar-

get output Yt is obtained. The parameters in the ensem-
ble set E is jointly updated by SGD using the loss func-
tion LE = L(Yt,F (Xt; E)). Meanwhile, each parameter
γj ∈ C is updated independently by SGD using the follow-
ing loss function

LC(Yt,f(Xt;γj)) = L(Yt,f(Xt;γj)+ηF (Xt; E)) (8)

where F (Xt; E) is fixed and the parameter η is used to
balance the impact of the ensemble on the candidate base
learners, such that the update of the base learner parameter
γj ∈ C considers both the target output Yt and the output of
the ensemble F (Xt; E). If the training error LE is higher
than a predefined threshold and the candidate set C is not
empty, a new base learner parameter is sampled from the

candidate set C according to the following sampling proba-
bility density

p(γ) = q(LC(Yt,f(Xt;γ))), γ ∈ C (9)

where q(·) is a monotonically decreasing function of its ar-
gument. And the sampled parameter is removed from the
candidate set C and added into the ensemble set E .

The above online training approach is conducted sequen-
tially in each time step as illustrated in Figure 2 (b). When
all the base learner parameters are sampled from the candi-
date set to the ensemble set, the ensemble F (X; E) evolves
into a complete CNN model (Figure 2 (b), t = T ). The
parameters of this CNN model are trained using different
loss criterions and thus demonstrate a moderate diversity,
which is empirically shown in our experiments to improve
performance and reduce over-fitting.

3.3. Convolutional with Mask Layer

Dropout [13] is commonly used to regularize the deep
neural networks by randomly setting a subset of activations
in a fully connected layer into zero. However, this regu-
larization is not suitable for convolutional layers. As an
alternative, SpatialDropout is proposed in [30] to improve
generalization performance for convolutional layers, which
sets all the values across the randomly selected channels of
the feature map into zeros. This regularization is effective
for offline training. However, we find in our initial exper-
iments that randomly ”dropping-out” all the activations in
a subset of feature map channels sometimes leads to diver-
gence when training the CNN online with limited amount
of training samples.

Instead, we propose a convolutional with mask layer,
which aims at further reducing the correlation between the
learned features and preventing over-training. Specifically,
each channel of the output feature map is associated with
an individual binary mask which has the same spatial size
with the input feature map. All the masks are initialized in a



Algorithm 1 Online tracking algorithm
Input: Initial target location p1, pre-trained CNN-E and

random initialized CNN-A.
Output: Predicted target location pt.

1: Initialize each base learner via (11).
2: E ← {γ∗}, C ← {γj |γj 6= γ∗, j = 1, 2, . . . , 100}.
3: Initialize SPN via (12).
4: repeat
5: Crop region It at last location and extract feature

mapXt.
6: Predict heat map M̂t = 1

|E|
∑
γi∈E f(Xt;γi) with

confidence conf t .
7: Crop region Ît at predicted location and extract fea-

ture map X̂t.
8: Predict target scale as ŝ = arg max

sl∈S
FS(T (X̂t, sl)).

9: if conf t > θ then
10: Update base learner and SPN via (13) and (12).
11: if LE > ε and C 6= ∅ then
12: Sample γ̂∗ from C via (14).
13: E ← E

⋃
{γ̂∗}, C ← C/{γ̂∗}.

14: end if
15: end if
16: until end of video sequence.

random manner and then fixed throughout the online train-
ing process. The forward propagation of the convolutional
layer at the training stage is then conducted as

F c =

K∑
k=1

wc
k ∗ (M c �Xk) + bc, (10)

where Xk indicates the k-th channel of the input feature
map; M c denotes the binary mask associated with the c-
th channel of the output feature map F c; and � is the
Hadamard product. Accordingly, the backward propagation
is also conducted by considering the binary masks. Trained
in this way, the learned convolution kernels are enforced to
focus on different part of the input feature maps through the
binary masks. For inference, the convolution is conducted
in a conventional way without mask, such that the learned
kernels can search for certain input pattern throughout the
whole input feature map.

The initialization manner of the binary masks can be cus-
tomized for the particular problem at hand. In our method,
we divide each mask into a grid of 2 × 2 blocks. All the
values within each block are initialized by one random vari-
able which is drawn from a Bernoulli distribution. The case
where all the four blocks of the mask are set to zeros are
deliberately avoided by re-initialization.

4. Tracking Algorithm
Overview. The overall tracking procedure is presented

in Algorithm 1. The feature extraction network CNN-
E consists of the first ten convolutional layers of the 16-
layer VGG network [29] trained on Imagenet Classification
task [5], which takes an RGB image as input and outputs
a feature map X of 512 channels. The first layer of the
adaptation network CNN-A employs the proposed convo-
lution with mask layer with convolution kernels of 5 × 5
spatial size and generates a feature map of 100 channels
(corresponding to 100 base learners). The second layer of
CNN-A is a convolution layer with kernel size 3 × 3 and
produces a feature map of one channel for target localiza-
tion. To handle scale variation, a scale prediction network
SPN is further built on top of the pre-trained CNN-E. The
SPN network takes the output feature map X of CNN-E as
input and first applies a set of predefined scale transforma-
tions S = {sl|l = 1, 2, . . . , ns} to obtain the correspond-
ing scale-transformed feature maps {T (X, sl)|}ns

1 , where
sl denotes the parameter (scale factor) for the l-th scale
transformation. Then all the transformed feature maps are
passed through a fully connected layer which predicts an
optimal scale s∗ for the current target.

Initialization. Given the ground truth target location in the
first frame, we crop a rectangle image region I1 centered at
the target location with twice the size of the target bound-
ing box. The corresponding feature map X1 is extracted
by CNN-E. As described in Section 3.2, the base learners
{f(X1;γk)}100

1 are initialized independently to predict the
target score mapM1 using the Euclidean loss

L(M1,f(X1;γk)) = ‖M1 − f(X1;γk)‖22, (11)

whereM1 is a Gaussian distribution centered at the ground
truth target location with a small scale. The optimal pa-
rameter γ∗ ∈ {γk}100

1 for the base learner with the small-
est training error is used to initialize the ensemble set E ,
whereas the rest constitute the candidate set C. Meanwhile,
the SPN network is trained to predict the current scale of
the target using a hinge loss

LS = max

(
0, 1 + max

sl 6=s∗,sl∈S
FS(T (X, sl))− FS(T (X, s∗))

)
+RS

(12)
where s∗ indicates the ground truth scale of the target; FS

is the score predicted by SPN andRS denotes weight decay.

Online Tracking. In the t-th frame, a rectangle image re-
gion It centered at the last location is cropped from the in-
put image and passed through the CNN-E network to ob-
tain Xt. The ensemble of base learners take the corre-
sponding feature map Xt as input and predict a heat map
as M̂t = 1

|E|
∑
γi∈E f(Xt;γi). The center location of the

target is then determined by the location on the heat map
with the maximum value. The maximum heat map value
then serves as the confidence conf t of this prediction. To
predict the current scale, we crop another image region Ît
which is centered at the predicted target location and has
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Figure 3. Average success plots and precision plots of nine leading methods in OBT data set for OPE, TRE and SRE evaluations. Trackers
are ranked according to the Area Under Curve (AUC) scores.

twice the size of the target bounding box in the last frame.
The current scale of the target is predicted by the SPN net-
work as ŝ = arg max

sl∈S
FS(T (X̂t, sl)), where X̂t denotes

the feature map extracted by CNN-E from region Ît.

Online Update. To avoid updating using contaminated
training samples, online update is conducted only if the con-
fidence of the location prediction is higher than a predefined
threshold θ. The base learners in the ensemble set E and
candidate set C are updated respectively with the following
loss function using SGD

LE(Mt, E) = ‖Mt −
1

|E|
∑
γi∈E

f(X̂t;γi)‖22,

LC(Mt,γj ∈ C) = ‖Mt − f(X̂t;γj)− η
1

|E|
∑
γi∈E

f(X̂t;γi)‖22,

(13)

where γi ∈ E is fixed when updating γj ∈ C; Mt de-
notes the heat map of Gaussian distribution centered at the
estimated location. If the current training error LE of the
ensemble is higher than a threshold ε and the candidate set
C is not empty, we sample without replacement one base
learner parameter from the candidate set C and add it to the
ensemble set E . In our experiment, we adopt the following
sampling probability density

p(γj) = δ(γ̂∗ − γj), γj ∈ C, (14)

where δ(·) is the Dirac delta function; γ̂∗ ∈ C denotes
the optimal parameter with the smallest training error LC .
Meanwhile, the SPN network is also updated via (12) using
sample X̂t and the predicted scale ŝ as ground truth, where
the training sample X̂t is resized into a fixed spatial size
(256× 256 in our experiments) to fit the input size of SPN.

5. Experiments

Implementation Details The proposed tracker is imple-
mented in MATLAB with Caffe framework [16], and runs at
2.5 fps on a PC with a 3.4GHz CPU and a TITAN GPU. The
source code is publicly available1. Both the CNN-A and the
SPN networks are trained online using SGD with learning
rates of 5e−7 and 1e−10, respectively. It takes 50 iterations
to initialize in the first frame and 2 iterations for the follow-
ing each updating step. We use ns = 11 scale parameters
for scale transformation with a coverage of [0.82, 1.21] of
the original scale. The threshold θ and ε for online update
are set to 0.2 and 0.4, respectively. The parameter η in (13)
is set to 0.2. A Bernoulli distribution B(0.5) is employed
to randomly generate binary masks (Section 3.3). We fix all
the parameters throughout the experiments.

5.1. Evaluation on OTB Data Set

Data Set and Evaluation Settings. The OTB data set [37]
includes 50 sequences tagged with 11 attributes which cov-
ers various challenging factors. We evaluate the proposed
STCT tracker against 29 state-of-the-art trackers2 and three
recently proposed trackers: MEEM [40], TGPR [8] and
KCF [12]. Three different experiments are conducted as
in [37], including one pass evaluation (OPE), temporal ro-
bustness evaluation (TRE) and spatial robustness evaluation
(SRE). Among others, TRE randomizes the starting frame
of the evaluation, and SRE randomizes the initial bounding
boxes by perturbation. As additional evaluations to OPE,
TRE and SRE can better demonstrate the robustness of the

1http://ice.dlut.edu.cn/lu/index.html.
2We use the results of the 29 trackers reported in [37] for fair compari-

son.

http://ice.dlut.edu.cn/lu/index.html
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Figure 4. Qualitative results of the proposed STCT tracker on a subset of challenging sequences: Singer1, Skating1, Car4, CarScale,
Couple, Dog1, Doll, Freeman3, Freeman1, Soccer, Jogging-2, ,Matrix, MotorRolling, Walking2, Suv and Liquor.
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Figure 5. Average AUC scores of the success plots of the four lead-
ing trackers under different attributes of test sequences in OPE, in-
cluding: illumination variation (IV), out-of-plane rotation (OPR),
scale variation (SV), occlusion (OCC), deformation (DEF), mo-
tion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-
view (OV), background cluttered (BC) and low resolution (LR).

evaluated trackers.
We use the precision plot and the success plot to eval-

uate all the trackers. The precision plot demonstrates the
percentage of frames where the distance between the pre-
dicted target location and the ground truth location is within
a given threshold. Whereas the success plot illustrates the
percentage of frames where the overlap ratio between the
predicted bounding box and the ground truth bounding box
is higher than a threshold τ ∈ [0, 1]. The area under curve
(AUC) is used to rank the tracking algorithms in each plot.

Evaluation Results. Figure 3 demonstrates the average
precision plots and success plots on all the 50 sequences
of the top nine trackers, including MEEM [40], TGPR [8],
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Figure 6. Average success plot and precision plot of the proposed
tracker STCT against baseline methods.

KCF [12], SCM [42], Struck [11], TLD [17], ASLA [15],
CXT [6], and the proposed STCT tracker. Our method
achieves the highest performance in terms of both eval-
uation metrics and outperforms the second best tracker
(MEEM) with a considerable margin. Note that, among all
three experiments, SRE is most challenging since the track-
ers are initialized with inaccurate target locations. Though
all the evaluated trackers achieve lower performance in
SRE, our method can still compare favorably against the
other trackers, which demonstrates the robustness of our
method. Qualitative tracking results on some challenging
sequences are shown in Figure 4.

To facilitate more detailed analysis, we further report the
performance (success scores) of the top 3 trackers on dif-
ferent attributes in Figure 5. Our method can well handle
various challenging factors and consistently outperform the
other two trackers in almost all the attributes.

To gain more insights on the effectiveness of the pro-
posed sequential CNN training method, we also compare
the proposed STCT tracker with two baseline methods:
STCT-um and OTCT, where STCT-um denotes a variant of
the proposed method that does not exploit the proposed con-



Table 1. The average ranks of accuracy and robustness under baseline and region noise experiments in VOT2014. The first, second and
third best methods are highlighted in red, blue and green colors, respectively

Trackers baseline region noise Overall RankAcc. Rank Rob. Rank Average Acc. Rank Rob. Rank Average
STCT 6.26 6.34 6.30 6.22 5.87 6.05 6.17

PLT 14 7.50 5.38 6.44 7.64 4.81 6.23 6.33
DGT 7.02 6.42 6.72 6.42 6.90 6.66 6.69
DSST 6.86 8.28 7.57 6.72 8.29 7.51 7.54
SAMF 6.58 7.67 8.76 6.82 8.43 7.63 7.65
KCF 6.46 8.98 7.72 7.22 8.88 8.05 7.89

eASMS 8.34 7.98 8.16 7.86 7.83 7.85 8.00
MCT 8.64 8.36 8.50 9.00 8.42 8.71 8.61

MatFlow 10.20 7.12 8.66 9.98 9.15 9.57 9.11
VTDMG 9.42 9.52 8.47 9.22 8.70 8.96 9.21

volution with mask layer, and OTCT represents the track-
ing method that trains the CNN-A (Section 4) network using
conventional training method (Training the whole network
jointly by SGD). The success plot and precision plot in Fig-
ure 6 demonstrate that the proposed sequential CNN train-
ing method can significantly improve the tracking perfor-
mance and that the proposed convolution with mask layer
can further reduce over-training.

5.2. Evaluation on VOT2014 Data Set

Data Set and Evaluation Settings. The VOT2014 data
set [18] contains 25 video sequences with various real-life
visual phenomena. According to the evaluation protocol,
the evaluated tracker is re-initialized whenever a tracking
failure (overlap between estimated and ground truth tar-
get bounding box equals zero) is detected. Following [18],
we conduct two experiments: a baseline evaluation, where
trackers are initialized with ground truth target location; a
noise evaluation, where the initial target location is per-
turbed with random noises. Two metrics are used to rank
all the trackers: accuracy and robustness, which measure
the overlap ratio with ground truth bounding box and the
probability of tracking failure, respectively. We evaluate the
proposed STCT tracker against all the trackers submitted to
VOT2014 challenge [18]. Readers are referred to [18] for
more details about the compared trackers.

Evaluation Results. Due to limited space, we only present
the average accuracy and robustness rank of top ten com-
pared trackers in Table 1. In both the baseline and region
noise experiments, the proposed STCT tracker achieves the
highest accuracy score with a relatively small number of
tracking failure. Note that the DSST tracker [4] also explic-
itly estimates the scale of the target using correlation filters
learned from HOG features. In contrast, our method pro-
poses to transfer pre-trained deep features for online track-
ing, which enables more accurate and robust tracking. Fig-
ure 7 shows the accuracy-robustness plots of the top 16
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Figure 7. The robustness-accuracy ranking plots of 16 leading
tracking methods under baseline and region noise experiments in
VOT2014 data set. The better trackers are located at the upper-
right corner.

trackers in the VOT2014 data set. Our method located at the
upper-right corner achieves more favorable performance in
terms of both accuracy and robustness.

6. Conclusion
In this paper, we present a sequential training method

for CNNs to effectively transfer pre-trained deep features
for online applications. Different from prior approaches,
our method regard the online training process for CNNs as
sequentially learning an optimal ensemble of base learners,
such that the learned features are not highly correlated with
each other. A convolution with mask layer is proposed to
further reduce over-fitting. Applied to visual tracking, the
proposed training method significantly improves tracking
performance and compares favorably against stat-of-the-art
methods in two challenging tracking benchmark data sets.
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