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Abstract

This paper proposes a hybrid convolutional network
(ConvNet)-Restricted Boltzmann Machine (RBM) model for
face verification in wild conditions. A key contribution
of this work is to directly learn relational visual features,
which indicate identity similarities, from raw pixels of face
pairs with a hybrid deep network. The deep ConvNets
in our model mimic the primary visual cortex to jointly
extract local relational visual features from two face images
compared with the learned filter pairs. These relational
features are further processed through multiple layers to
extract high-level and global features. Multiple groups of
ConvNets are constructed in order to achieve robustness
and characterize face similarities from different aspects.
The top-layer RBM performs inference from complementary
high-level features extracted from different ConvNet groups
with a two-level average pooling hierarchy. The entire
hybrid deep network is jointly fine-tuned to optimize for the
task of face verification. Our model achieves competitive
face verification performance on the LFW dataset.

1. Introduction
Face recognition has been extensively studied in recent

decades [29, 28, 30, 1, 16, 5, 33, 12, 6, 3, 7, 25, 34].
This paper addresses the key challenge of computing the
similarity of two face images given their large intra-
personal variations in poses, illuminations, expressions,
ages, makeups, and occlusions. It becomes more difficult
when faces to be compared are acquired in the wild.
We focus on the task of face verification, which aims to
determine whether two face images belong to the same
identity.

Existing methods generally address the problem in two
steps: feature extraction and recognition. In the feature
extraction stage, a variety of hand-crafted features are used
[10, 22, 20, 6]. Although some learning-based feature ex-
traction approaches are proposed, their optimization targets

Figure 1: The hybrid ConvNet-RBM model. Solid and hol-
low arrows show forward and back propagation directions.

are not directly related to face identity [5, 13]. There-
fore, the features extracted encode intra-personal variations.
More importantly, existing approaches extract features from
each image separately and compare them at later stages
[8, 16, 3, 4]. Some important correlations between the two
compared images have been lost at the feature extraction
stage.

At the recognition stage, classifiers such as SVM are
used to classify two face images as having the same identity
or not [5, 24, 13], or other models are employed to compute
the similarities of two face images [10, 22, 12, 6, 7, 25].
The purpose of these models is to separate inter-personal
variations and intra-personal variations. However, all of
these models have been shown to have shallow structures
[2]. To handle large-scale data with complex distributions,
large amount of over-completed features may need to be ex-
tracted from the face [12, 7, 25]. Moreover, since the feature
extraction stage and the recognition stage are separate, they
cannot be jointly optimized. Once useful information is lost
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in feature extraction, it cannot be recovered in recognition.
On the other hand, without the guidance of recognition, the
best way to design feature descriptors to capture identity
information is not clear.

All of the issues discussed above motivate us to learn a
hybrid deep network to compute face similarities. A high-
level illustration of our model is shown in Figure 1. Our
model has several unique features, as outlined below.

(1) It directly learns visual features from raw pixel-
s under the supervision of face identities. Instead of
extracting features from each face image separately, the
model jointly extracts relational visual features from two
face images in comparison. In our model, such relational
features are first locally extracted with the automatically
learned filter pairs (pairs of filters convolving with the
two face images respectively as shown in Figure 1), and
then further processed through multiple layers of the deep
convolutional networks (ConvNets) to extract high-level
and global features. The extracted features are effective for
computing the identity similarities of face images.

(2) Considering the regular structures of faces, the deep
ConvNets in our model locally share weights in higher
convolutional layers, such that different mid- or high-level
features are extracted from different face regions, which is
contrary to conventional ConvNet structures [18], and can
greatly improve their fitting and generalization capabilities.

(3) The deep and wide architecture of our hybrid network
can handle large-scale face data with complex distributions.
The deep ConvNets in our network have four convolutional
layers (followed by max-pooling) and two fully-connected
layers. In addition, multiple groups of ConvNets are
constructed to achieve good robustness and characterize
face similarities from different aspects. Predictions from
multiple ConvNet groups are pooled hierarchically and then
associated by the top-layer RBM for the final inference.

(4) The feature extraction and recognition stages are
unified under a single network architecture. The parameters
of the entire pipeline (weights and biases in all the layers)
are jointly optimized for the target of face verification.

2. Related work
All existing methods for face verification start by extract-

ing features from two faces in comparison separately. A
variety of low-level features are commonly used [27, 10,
22, 33, 20, 6], including the hand-crafted features like LBP
[23] and its variants [32], SIFT [21], Gabor [31] and the
learned LE features [5]. Some methods generated mid-
level features [24, 13] with variants of convolutional deep
belief networks (CDBN) [19] or ConvNets [18]. They
are not learned with the supervision of identity matching.
Thus variations other than identity are encoded in the
features, such as poses, illumination, and expressions,
which constitute the main impediment to face recognition.

Many face recognition models are shallow structures,
and need high-dimensional over-completed feature repre-
sentations to learn the complex mappings from pairs of
noisy features to face similarities [12, 7, 25]; otherwise,
the models may suffer from inferior performance. Many
methods [5, 24, 13] used linear SVM to make the same-or-
different verification decisions. Li et al. [20] and Chen et
al. [6, 7] factorized the face images as identity variations
plus variations within the same identity, and assumed each
factor as a Gaussian distribution for closed form solutions.
Huang et al. [12] and Simonyan et al. [25] learns linear
transformations via metric learning.

Some methods further learn high-level features based on
low-level hand-crafted features [16, 3, 4]. They are outputs
of classifiers that are trained to distinguish faces of different
people. All these methods extract features from a single
face separately, and the comparison of two face images
are deferred in the later recognition stage. Some identity
information may have been lost in the feature extraction
stage, and it cannot be retrieved in the recognition stage,
since the two stages are separated in the existing methods.
To avoid the potential information loss and make a reliable
decision, a large amount of high-level feature extractors
may need to be trained [3, 4].

There are a few methods that also used deep models
for face verification [8, 24, 13], but extracted features
independently from each face. Thus relations between the
two faces are not modeled at their feature extraction stages.
In [34], face images under various poses and lighting
conditions were transformed to a canonical view with a
convolutional neural network. Then features are extracted
from the transformed images. In contrast, we deal with face
pairs directly by extracting relational visual features from
the two compared faces. The top layer RBM in our model
is similar to that of the deep belief net (DBN) proposed
by Hinton and Osindero [11]. However, we use ConvNets
instead of stack of RBMs in the lower layers to take the
local correlation in images into consideration. Averaging
the results of multiple ConvNets has been shown to be an
effective way of improving performance [9, 15], while we
will show that our hybrid structure is significantly better
than the simple averaging scheme. Moreover, unlike most
existing face recognition pipelines, in which each stage is
optimized independently, our hybrid ConvNet-RBM model
is jointly optimized after pre-training each part separately,
which further enhances its performance.

3. The hybrid ConvNet-RBM model

3.1. Architecture overview

We detect the two eye centers and mouth center with the
facial point detection method proposed by Sun et al. [26].
Faces are aligned by similarity transformation according to



Figure 2: Architecture of the hybrid ConvNet-RBM model.
Neuron (or feature) number is marked beside each layer.

Figure 3: The structure of one ConvNet. The map numbers
and dimensions of the input layer and all the convolutional
and max-pooling layers are illustrated as the length, width,
and height of cuboids. The 3D convolution kernel sizes
of the convolutional layers and the pooling region sizes
of the max-pooling layers are shown as the small cuboids
and squares inside the large cuboids of maps respectively.
Neuron numbers of other layers are marked beside each
layer.

the three points. Figure 2 is an overview of our hybrid
ConvNet-RBM model, which is a cascade of deep ConvNet
groups, two levels of average pooling, and Classification
RBM.

The lower part of our hybrid model contains 12 groups,
each of which contains five ConvNets. Figure 3 shows the
structure of one ConvNet. Each ConvNet takes a pair of
aligned face regions as input. Its four convolutional layers
(followed by max-pooling) extract the relational features
hierarchically. Finally, the extracted features pass a fully
connected layer and are fully connected to a single neuron
in layer L0 (shown in Figure 2), which indicates whether
the two regions belong to the same person. The input
region pairs for ConvNets in different groups differ in terms
of region ranges and color channels (shown in Figure 4)
to make their predictions complementary. When the size
of the input regions changes in different groups, the map
sizes in the following layers of the ConvNets will change
accordingly. Although ConvNets in the same group take
the same kind of region pair as input, they are different
in that they are trained with different bootstraps of the
training data (Section 4.1). Each input region pair generates
eight modes by exchanging the two regions and horizontally
flipping each region (shown in Figure 5). When the eight
modes (shown as M1-M8 in Figure 2) are input to the same

Figure 4: Twelve face regions used in our network. P1 -
P4 are global regions covering the whole face, of size 39×
31. P1 and P2 (P3 and P4) differ slightly in the ranges of
regions. P5 - P12 are local regions covering different face
parts, of size 31× 47. P1, P2, and P5 - P8 are in color. P3,
P4, and P9 - P12 are in gray values.

Figure 5: 8 possible modes for a pair of face regions.

ConvNet, eight outputs are generated. Layer L0 contains
the outputs of all the 5 × 12 ConvNets and therefore has
8× 5× 12 neurons. The purpose of bootstrapping and data
augmentation is to achieve robustness of predictions.

The group prediction is given by two levels of average
pooling of ConvNet predictions. Layer L1 (with 5 × 12
neurons) is formed by averaging the eight predictions of the
same ConvNet from eight different input modes. Layer L2
(with 12 neurons) is formed by averaging the five neurons in
L1 associated with the same group. The prediction variance
is greatly reduced after average pooling.

The top layer of our model in Figure 2 is a Classification
RBM [17]. It merges the 12 group outputs in L2 to
give the final prediction. The RBM has two outputs that
indicate the probability distribution over the two classes;
that is, whether they are the same person. The large
number of deep ConvNets means that our model has a high
capacity. Directly optimizing the whole network would
lead to severe over-fitting. Therefore, we first train each
ConvNet separately. Then, by fixing all the ConvNets, the
RBM is trained. All the ConvNets and the RBM are trained
under supervision with the aim of predicting whether two
faces in comparison belong to the same person. These
two steps initialize the model to be near a good local
minimum. Finally, the whole network is fine-tuned by back-
propagating errors from the top-layer RBM to all the lower-
layer ConvNets.

3.2. Deep ConvNets

A pair of gray regions forms two input maps of a
ConvNet (Figure 5), while a pair of color regions forms six



input maps, replacing each gray map with three maps from
RGB channels. The input regions are stacked into multiple
maps instead of being concatenated to form one map, which
enables the ConvNet to model the relations between the two
regions from the first convolutional stage.

Our deep ConvNets contain four convolutional layers
(followed by max-pooling). The operation in each convo-
lutional layer can be expressed as

yrj = max

(
0, brj +

∑
i

krij ∗ xri

)
, (1)

where ∗ denotes convolution, xi and yj are the i-th input
map and the j-th output map respectively, kij is the
convolution kernel (filter) connecting the i-th input map
and the j-th output map, and bj is the bias for the j-th
output map. max (0, ·) is the non-linear activation function,
and is operated element-wise. Neurons with such non-
linearities are called rectified linear units [15]. Moreover,
weights of neurons (including convolution kernels and
biases) in the same map in higher convolutional layers are
locally shared. r indicates a local region where weights
are shared. Since faces are structured objects, locally
sharing weights in higher layers allows the network to learn
different high-level features at different locations. We find
that sharing in this way can significantly improve the fitting
and generalization abilities of the network. The idea of
locally sharing weights was proposed by Huang et al. [13].
However, their model is much shallower than ours and the
gained improvement is small.

Since each stage extracts features from all the maps in
the previous stage, relations between the two face regions
are modeled; see Figure 6 for examples. As the network
goes deeper, more global and higher-level relations between
the two regions are modeled. These high-level relational
features make it possible for the top layer neurons in
ConvNets to predict the high-level concept of whether the
two input regions come from the same person. The network
output is a two-way softmax, yi = exp(xi)∑2

j=1 exp(xj)
for i =

1, 2, where xi is the total input to an output neuron i, and yi
is its output. It represents a probability distribution over
the two classes (being the same person or not). Such a
probability distribution makes it valid to directly average
multiple ConvNet outputs without scaling. The ConvNets
are trained by minimizing − log yt, where t ∈ {1, 2}
denotes the target class. The loss is minimized by stochastic
gradient descent, where the gradient is calculated by back-
propagation.

3.3. Classification RBM

Classification RBM models the joint distribution be-
tween its output neurons y (one out of C classes), input
neurons x (binary), and hidden neurons h (binary), as

Figure 6: Examples of the learned 4 × 4 filter pairs
of the first convolutional layer of ConvNets taking color
(line 1) and gray (line 2) input region pairs, respectively.
The upper and lower filters in each pair convolve with
the two face regions in comparison, respectively, and the
results are added. For filter pairs in which one filter
varies greatly while the other remains near uniform (column
1, 2), features are extracted from the two input regions
separately. For those pairs in which both filters vary greatly,
some kind of relations between the two input regions are
extracted. Among the latter, some pairs extract simple
relations such as addition (column 5) or subtraction (column
6), while others extract more complex relations (column 6,
7). Interestingly, we find that filters in some filter pairs are
nearly the same as those in some others, except that the
order of the two filters are inversed (columns 1-4). This
makes sense since face similarities should be invariant with
the order of the two face regions in comparison.

p(y, x, h) ∝ e−E(y,x,h), where E(y, x, h) = −h>Wx −
h>Uy − b>x− c>h− d>y. Given input x, the conditional
probability of its output y can be explicitly expressed as

p(yc | x) =
edc
∏
j

(
1 + ecj+Ujc+

∑
kWjkxk

)∑
i e
di
∏
j

(
1 + ecj+Uji+

∑
kWjkxk

) , (2)

where c indicates the c-th class. We discriminatively train
the Classification RBM by minimizing the negative log
probability of the target class t given input x; that is,
minimizing − log p(yt | x). The target can be optimized
by computing the exact gradient −∂ log p(yt|x)

∂θ , where θ ∈
{W,U, b, c, d} are RBM parameters to be learned.

3.4. Fine-tuning the entire network

Let N and M be the number of groups and the number
of ConvNets in each group, respectively, and Cnm(·) be the
input-output mapping for the m-th ConvNet in the n-th
group. Since the two outputs of the ConvNet represent a
probability distribution (summed to 1), when one output is
known, the other output contains no additional information.
So the hybrid model (and the mapping) only keeps the first
output from the ConvNet. Let {Ink }Kk=1 be the K possible
input modes formed by a pair of face regions of group n.



Then the n-th ConvNet group prediction can be expressed
as

xn =
1

M

M∑
m=1

1

K

K∑
k=1

Cnm(Ink ) , (3)

where the inner and outer sums are over different in-
put modes (level 1 pooling) and different ConvNets
(level 2 pooling), respectively. Given the N group
predictions {xn}Nn=1, the final prediction by RBM is
maxc∈{1,2} {p(yc | x)}, where p(yc | x) is defined in Eq.
(2). After separately training each ConvNet and the RBM to
derive a good initialization, error is back-propagated from
the RBM to all groups of ConvNets and the whole model is
fine-tuned. Let L(x) = − log p(yt | x) be the RBM loss
function, and αnm be the parameters for the m-th ConvNet
in the n-th group. The gradient of the loss w.r.t. αnm is

∂L

∂αnm
=

∂L

∂xn

∂xn
∂αnm

=
1

MK

∂L

∂xn

K∑
k=1

∂Cnm(Ink )

∂αnm
. (4)

∂L
∂xn

can be calculated by the closed form expression of

p(yt | x) (Eq. (2)), and ∂Cn
m(Ink )
∂αn

m
can be calculated using

the back-propagation algorithm in the ConvNet.

4. Experiments
We evaluate our algorithm on LFW [14], which has been

used extensively to evaluate algorithms of face verification
in the wild. We conduct evaluation under two different
settings: (1) 10-fold cross validation under the unrestricted
protocol of LFW without using extra data to train the
model, and (2) cross-dataset validation in which external
data exclusive to LFW is used for training. The former
shows the performance with a limited amount of training
data, while the latter shows the generalization ability across
different datasets. Section 4.1 explains the experimental
settings in detail, section 4.2 validates various aspects of
model design, and section 4.3 compares our results with
state-of-art results in literature.

4.1. Experiment settings

LFW is divided into 10 folds of mutually exclusive
people sets. For the unrestricted setting, performance is
evaluated using the 10-fold cross-validation. Each time
one fold is used for testing and the other nine for training.
Results averaged over the 10 folds are reported. The 600
testing pairs in each fold are predefined by LFW and fixed,
whereas training pairs can be generated using the identity
information in the other nine folds and the number is not
limited. This is referred as the LFW training settings.

For the cross-dataset setting, we use outside data ex-
clusive to LFW for training. PubFig [16] and WDRef [6]
are two large datasets other than LFW with faces in the

wild. However, PubFig only contains 200 people, thus
the identity variation is quite limited, while the images
in WDRef are not publicly available. Accordingly, we
created a new dataset, called the Celebrity Faces dataset
(CelebFaces). It contains 87, 628 face images of 5, 436
celebrities from the web, and was assembled by first
collecting the celebrity names that do not exist in LFW to
avoid any overlap, then searching for the face images for
each name on the web. To conduct cross-dataset testing, the
model is trained on CelebFaces and tested on the predefined
6, 000 test pairs in LFW. We will refer to this setting as the
CelebFaces training settings.

For both settings, we randomly choose 80% people from
the training data to train the deep ConvNets, and use the
remaining 20% people to train the top-layer RBM and
fine-tune the entire model. The positive training pairs are
randomly formed such that on average each face image
appears in k = 6 (3) positive pairs for LFW (CelebFaces)
dataset, unless a person does not have enough training im-
ages. Given a fixed number of training images, generating
more training pairs provides minimal assistance. Negative
training pairs are also randomly generated and their number
is the same as the number of positive training pairs. In this
way, we generate approximately 40, 000 (240, 000) training
pairs for the ConvNets and 8, 000 (50, 000) training pairs
for the RBM and fine-tuning for LFW (CelebFaces) training
dataset. This random process for generating training data
is repeated for each ConvNet so that multiple different
ConvNets are trained in each group.

A separate validation dataset is needed during training to
avoid overfitting. After each training epoch1, we observe
the errors on the validation dataset and select the model
that provides the lowest validation error. We randomly
select 100 people from the training people to generate
the validation data. The free parameters in training (the
learning rate and its decreasing rate) are selected using view
1 of LFW2 and are fixed in all the experiments. We report
both the average accuracy and the ROC curve. The average
accuracy is defined as the percentage of correctly classified
face pairs. We assign each face pair to the class with higher
probabilities without further learning a threshold for the
final classification.

4.2. Investigation on model design

Local weight sharing. Our ConvNets locally share
weights in the last two convolutional layers. In the second
last convolutional layer, maps are evenly divided into
2 × 2 regions, and weights are shared among neurons in
each region. In the last convolutional layer, weights are
independent for each neuron. We compare our ConvNets

1One training epoch is a single pass of all the training samples.
2View 1 is provided by LFW for algorithm development and parameter

selecting without over-fitting the test data. [14].



Figure 7: Average training set failure rates with respect to
the number of training epochs for ConvNets in group P1
with the local (S1) or global (S2) weight-sharing schemes
for the LFW and CelebFaces training settings.

L0 (%) L1 (%) L2 (%)
S1 for LFW 84.78 86.54 88.78
S2 for LFW 83.54 85.28 86.78
S1 for CelebFaces 87.71 88.71 89.60
S2 for CelebFaces 85.65 86.61 87.72

Table 1: Average testing accuracies for ConvNets in group
P1 with the local (S1) or global (S2) weight sharing
schemes for the LFW and CelebFaces training settings. L0
- L2 refer to the three layers shown in Figure 2. L2 is the
final group predictions.

(refer to as S1) with the conventional ConvNets (refer to
as S2), where weights in all the convolutional layers are
globally shared, on both training errors and test accuracies.
Figure 7 and Table 1 show the better fitting and generaliza-
tion abilities of our ConvNets (S1), where locally sharing
weights improved the group P1 (we will refer to each group
as the type of regions used (Figure 4)) prediction accuracies
by approximately 2% for both the LFW and CelebFaces
training settings. The same conclusion holds for ConvNets
in other groups.

Two-level average pooling in ConvNet groups. The
ConvNet group predictions are derived from two levels
of average pooling as described in Section 3.1. Figure 8
shows that the performance is consistently improved after
each level of average pooling (from L0 to L2) under the
LFW training settings. The accuracy increases over 3%
on average after the two levels of pooling (L2 compared to
L0). The same conclusion holds for the CelebFaces training
settings.

Complementarity of group predictions. We validate
that the pooled group predictions are complementary. Given
the 12 group predictions (referred as features), we employ
a greedy feature selection algorithm. Each time, a feature
is added to the feature set, in such a way that the RBM
trained on these features provides the highest accuracy on
the validation set. The increase of the RBM prediction
accuracies would indicate that complementary information

Figure 8: ConvNet prediction accuracies for each group
averaged over the 10-fold LFW training settings. L0-L2
refer to the three layers shown in Figure 2.

Figure 9: Average RBM prediction accuracies with respect
to the number of features selected for the LFW and
CelebFaces training settings. The accuracy is consistently
improved with the increase of feature numbers.

is contained in the added features. In this experiment, the
ConvNets are pre-trained and their weights are fixed with-
out jointly fine-tuning the whole network. The experiment
is repeated five times, with the training samples for the
RBM randomly generated each time. The averaged test
results are reported. Figure 9 shows that performance is
consistently improved when more features are added. So
all the group predictions contain additional information.

Top-layer RBM and fine-tuning. Since different
groups observe different kinds of regions, each group may
be good at judging particular kinds of face pairs differently.
Continuing to average group predictions may smooth out
the patterns in different group predictions. Instead, we
let the top-layer RBM in our model learn such patterns.
Then the whole model is fine-tuned to jointly optimize
all the parts. Moreover, we find that the performance
can be further enhanced by averaging five different hybrid
ConvNet-RBM models. This is achieved by first training
five RBMs (each with a different set of randomly generated
training data) with the weights of ConvNets pre-trained and
fixed, and then fine-tuning each of the whole ConvNet-
RBM network separately. The results are summarized
in Table 2. Interestingly, though directly averaging the
12 group predictions (group averaging) is suboptimal, it



LFW (%) CelebFaces (%)
Best single group 88.78 89.70
Group averaging 89.97 90.18
RBM fix 90.93 91.26
Fine-tuning 91.38 92.23
Model averaging 91.75 92.52

Table 2: Accuracies of the best prediction results with
a single group (best single group), directly averaging the
group predictions (group averaging), training a top layer
RBM while fixing the weights of ConvNets (RBM fix),
fine-tuning the whole hybrid ConvNet-RBM model (fine-
tuning), and averaging the predictions of the five hybrid
ConvNet-RBM models (model averaging), for LFW and
CelebFaces training settings respectively.

still improves the best prediction results of a single group
(best single group). We achieved our best results with the
averaging of five hybrid ConvNet-RBM model predictions
(model averaging).

4.3. Method comparison

We compare our best results on LFW with the state-of-
the-art methods in accuracies (Table 3 and 4) and ROC
curves (Figure 10 and 11) respectively. Table 3 and
Figure 10 are comparisons of methods that follow the LFW
unrestricted protocol without using outside data to train the
model. Table 4 and Figure 11 report the results when the
training data outside LFW is allowed to use. Methods
marked with * are published after the submission of this
paper. Our ConvNet-RBM model achieves the third best
performance in both settings. Although Tom-vs-Pete [3],
high-dim LBP [7], and Fisher vector faces [25] have better
accuracy than our method, there are two important factors
to be considered. First, all the three methods used stronger
alignment than ours: 95 points in [3], 27 points in [7], and 9
points in [25], while we only use three points for alignment.
Berg and Belhumeur [3] reported 90.47% accuracy with
three point (the eyes and mouth) alignment. Chen et al.
[7] reported 6% ∼ 7% accuracy drop if use five point
alignment and single scale patches. Second, all the three
methods used hand-crafted features (SIFT or LBP) as their
base features, while we learn features from raw pixels. The
base features used in [7] and [25] are densely sampled
on landmarks or grids with many different scales and the
dimension is particularly high (100K LBP features in [7]
and 1.7M SIFT features in [25]).

5. Conclusion
This paper has proposed a new hybrid ConvNet-RBM

model for face verification. The model learns directly and
jointly extracts relational visual features from face pairs
under the supervision of face identities. Both feature extrac-

Method Accuracy (%)
PLDA [20] 90.07
Joint Bayesian [6] 90.90
Fisher vector faces [25]* 93.03
High-dim LBP [7]* 93.18
ConvNet-RBM 91.75

Table 3: Accuracy comparison of our hybrid ConvNet-
RBM model and the state-of-the-art methods under the
LFW unrestricted protocol.

Method Accuracy (%)
Associate-predict [33] 90.57
Joint Bayesian [6] 92.4
Tom-vs-Pete classifiers [3] 93.30
High-dim LBP [7]* 95.17
ConvNet-RBM 92.52

Table 4: Accuracy comparison of our hybrid ConvNet-
RBM model and the state-of-the-art methods that rely on
outside training data.

Figure 10: ROC comparison of our hybrid ConvNet-RBM
model and the state-of-the-art methods under the LFW
unrestricted protocol.

tion and recognition stages are unified under a single deep
network architecture and all the components are jointly
optimized for the target of face verification. It achieved
competitive face verification performance on LFW.
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