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Abstract. The performance of automatic lesion detection is often af-
fected by the intra- and inter-subject feature variations of lesions and
normal anatomical structures. In this work, we propose a similarity-
guided sparse representation method for image patch labeling, with three
aspects of similarity information modeling, to reduce the chance that
the best reconstruction of a feature vector does not provide the correct
classification. Based on this classification model, we then design a new
approach for detecting lesions in positron emission tomography – com-
puted tomography (PET-CT) images. The approach works well with
simple image features, and the proposed sparse representation model is
effectively applied for both detection of all lesions and characterization of
lung tumors and abnormal lymph nodes. The experiments show promis-
ing performance improvement over the state-of-the-art.

1 Introduction

Automatic lesion detection is highly desirable for computed aided diagnosis. The
detection system can be used in early screening or to provide second opinions
for decision making. While it is conceptually simple that lesions are just regions
with features distinctive from the normal anatomical structures, the detection
performance is often hindered by large intra- and inter-subject variations of vi-
sual patterns. Such variations are common for both normal anatomical structures
and lesions within the same subject or across different subjects.

Lesion detection is usually based on customized feature extraction and clas-
sification [6, 8]. These classifiers are mainly based on parametric models and
work well if there is good feature separation between lesions and normal struc-
tures. Complex and domain-specific feature design might be necessary, but could
become ineffective for unseen data. Non-parametric classifications, such as multi-
atlas and sparse representation methods, have also been recently proposed [4,
5, 11, 3]. The basic principle of both types of approaches can be considered as
weighted combination of reference images. While the weights for multi-atlas are
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normally computed using predetermined formula, the weights in sparse repre-
sentation are derived by minimizing the reconstruction error.

A potential issue with sparse representation is that, since it is aimed at
minimizing the reconstruction errors, it does not necessarily lead to good clas-
sification. Various improvements have thus been proposed to incorporate extra
constraints into the formulation, such as discriminative labeling [2], group and
locality information [10, 12], and similarity relationships between references [1].
To better address problem of lesion detection, we design a new similarity-guided
sparse representation method for image patch classification. Based on the ba-
sic sparse representation, we model the between-reference similarity, similarities
between the testing patch and references, and similarities between the testing
patch and its neighborhood. The design is motivated by the propositions that 1)
to achieve labeling-consistent reconstruction, similar references should get sim-
ilar weights, and references that are more similar to the testing patch should
have higher weights; and 2) neighboring patches should get similar labels if they
exhibit similar visual features.

The proposed classification model is common to different application do-
mains. As a case study, in this work, we design a new three-stage approach
based on the proposed similarity-guided sparse representation method for lesion
detection on FDG PET-CT images of the thorax. The objectives are: 1) to de-
tect different types of lesions; and 2) to characterize a lesion that is detected
as a lung tumor or an abnormal lymph node. Compared to the lesion detection
method [8], the proposed approach relies on much simpler feature design and
uses a single classification model for detection and characterization.

2 Similarity-Guided Sparse Representation

Suppose an image I contains NI non-overlapping patches, and given that some
patches exhibiting typical anatomical features are already labeled (Section 3.1),
the objective is to label the remaining patches. Denote the feature vector of an
image patch pi as fi, with fi ∈ RH×1. A reference dictionary Dl of class l can be
constructed by concatenating the feature vectors of Ql labeled patches of class l
into a matrix: Dl ∈ RH×Ql . To determine the labeling of a testing patch p with
feature f , a sparse representation approach can be used, by first deriving the
reconstructed feature vectors {f ′l} for all classes:

xl = argmin
xl

‖f −Dlxl‖22 s.t.‖xl‖0 ≤ C; f ′l = Dlxl (1)

where xl ∈ RQl×1 is a weight vector. Then the patch p is labeled as the class with
the lowest reconstruction difference: L(p) = argminl ‖f−f ′l‖2. The classification
performance, however, is often found unsatisfactory, since the linear combination
is actually optimized for reconstruction but not classification. To improve the
classification performance using sparse representation, we propose a similarity-
guided design, which is detailed below.
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2.1 Pairwise Reference Similarity

It is natural to expect that visually similar references in a dictionary would
preferably contribute similarly to the reconstruction. We thus design a modified
sparse reconstruction to obtain similar weights in xl for similar references:

xl = argminxl
‖f −Dlxl‖22 +Θ(xl) s.t. ‖xl‖0 ≤ C

Θ(xl) =
∑

(a,b),a<b s(qa, qb)|xl(a)− xl(b)|
(2)

where qa and qb denote the feature vectors of two reference patches a and b,
s(qa, qb) measures the similarity between a and b, and xl(a) and xl(b) denote the
corresponding weight elements in the vector xl. The addition of the Θ(xl) term
helps to encourage similar weights xl(a) and xl(b) if qa and qb are similar.

To represent the similarity between references, a pairwise distance d(qa, qb)
between a pair of references is computed: d(qa, qb) = ‖qa − qb‖2. Then based
on the normalized distance d(qa, qb) ∈ [0, 1], a degree of similarity is derived:
s(qa, qb) = exp{−d(qa, qb)} Next, to make Eq. (2) easier to solve, we construct
a similarity matrix Ul ∈ R0.5Ql(Ql−1)×Ql , with each element defined as [1]:

Ul((a, b), k) =


s(qa, qb) if k = a

−s(qa, qb) if k = b

0 otherwise

 (3)

where (a, b) and k are the row and column indexes of Ul. Each row of Ul cor-
responds to a pair of references a and b. Then the Θ(xl) term can be rewritten
as: Θ(xl) = ‖Ulxl‖1. We relax it with L2 norm ‖Ulxl‖22 so that Eq. (2) would be
easily solvable using orthogonal matching pursuit (OMP) [9].

2.2 Patch Reference Similarity

It is also expected that references that are more similar to the testing patch
should be assigned with higher weights, so that it becomes more likely to ob-
tain a good reconstruction only for the correct dictionary. To incorporate the
similarity preference between the testing patch and the references, the sparse
reconstruction is further modified as:

xl = argminxl
‖f −Dlxl‖22 + ‖Ulxl‖22 + Φ(xl) s.t. ‖xl‖0 ≤ C

Φ(xl) =
∑

c d(f, qc)xl(c)
(4)

where c indexes the reference patches and qc denotes its feature vector, xl(c)
is the corresponding weight element in the vector xl, and d(f, qc) measures the
normalized distance between patch p and the reference c. Here minimization of
the Φ(xl) term would lead to a smaller weight xl(c) if d(f, qc) is larger.

Similarly, by defining a distance vector Vl ∈ R1×Ql with each element of
d(f, qc), and relaxing with L2 norm, Φ(xl) can be rewritten as: Φ(xl) = ‖Vlxl‖22.
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And the overall sparse reconstruction is thus now defined as:

xl = argminxl
‖f −Dlxl‖22 + ‖Ulxl‖22 + ‖Vlxl‖22

= ‖

f

00.5Ql(Ql−1)×1

0

−
Dl

Ul

Vl

xl‖22 = ‖f −Ωlxl‖22 s.t. ‖xl‖0 ≤ C
(5)

The OMP algorithm is applied to solve xl efficiently, and the reconstructed vector
is thus: f ′l = Ωlxl, and the labeling is L(p) = argminl ‖f − f ′l‖2.

2.3 Neighborhood Similarity

Considering that label of a testing patch would be similar to its neighboring
patches (if they are visually similar), the collective information of the neigh-
borhood is thus also important. To refine the label based on the neighborhood
information surrounding p, a different labeling scheme is designed:

L(p) = argmin
l
‖f − f ′l‖2 +

∑
j

s(f, g)γ(j, l) (6)

where j indexes a neighboring patch of p and g denotes its feature vector, s(f, g)
measures the degree of similarity between p and j, and γ(j, l) is the cost of j
labeled as class l:

γ(j, l) =


0 if L(j) = l

‖f − f ′l‖2 if L(j) 6= l

‖g − g′l‖2 if L(j) unknown

 (7)

If the label L(j) of the neighboring patch j is already known after the initial
labeling (Section 3.1), γ(j, l) is then determined based on the reconstruction
difference of p. Otherwise, γ(j, l) is equal to its own reconstruction difference.
In this way, spatial smoothness is encouraged, and the contribution from j is
higher if it is more similar to p.

3 Lesion Detection

3.1 Initial Tissue Labeling

In PET-CT images, the lung field normally exhibits low CT densities. Lesions
are usually prominent on PET because they display increased FDG uptake. How-
ever, some lesions can exhibit relatively low uptake, and non-lesion high uptake
regions can also occur in the mediastinum. Such cases might cause incorrect clas-
sification between lesions and mediastinal regions. Therefore, in the first step,
we would like to label areas that are obviously representative of the lung field
(LF), mediastinum (MS) or lesion (LS). The MS and LS areas then serve as
references to further classify the unlabeled (UN) areas (Section 3.2).
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To do this, we first divide the image into non-overlapping 5×5 voxel patches.
An image patch pi can be confidently categorized as LF if its average CT density
is less than a domain-knowledge based value (e.g. 800). Then for non-LF patches,
labeling is derived based on its average FDG uptake v: L(pi) =MS if v < α(Z),
or L(pi) =LS if v > 2α(Z), with α(Z) an image set specific threshold [7]. The
remaining patches with v ∈ [α(Z), 2α(Z)] are thus the UN ones (Fig. 1a).

Fig. 1. Method illustration. (a) The initial tissue labeling output, with LF depicted
as dark gray, MS as light gray, LS as red and UN patches as yellow. (b) The lesion
detection output, derived based on reference dictionaries constructed from the test
image set. (c) The labeling output for LF and MS patches, derived based on reference
dictionaries constructed from multiple other image sets. (d) The lesion characterization
output, with tumor shown as purple and abnormal lymph nodes as blue.

3.2 Intra-Image Lesion Detection

In the second step, we further classify the UN patches as LS or MS, so that
all true lesions would be detected (Fig. 1b). To do this, first, for each pi, a 4-
dimensional feature vector is computed: its mean and standard deviation of the
CT densities, and mean and standard deviation of the FDG uptake. Next, two
reference dictionaries DLS(Z) and DMS(Z) are constructed, by concatenating
the feature vectors of the labeled LS or MS patches. Note that instead of using
the entire database, such patches are gathered from the 3D image set containing
pi only, to avoid inter-image variations. Then, for a UN patch pi, its labeling
L(pi) ∈ {LS,MS} is determined using the similarity-guided sparse representation
Eq. (6). The logic here is that, if pi is more similar to the LS patches, it is more
likely that pi is also LS; and similarly for the MS case.

3.3 Inter-Image Lesion Characterization

In the last step, the detected lesion is characterized as a tumor or an abnor-
mal lymph node (Fig. 1d). Similar to [8], we estimate what normal anatomical
structure (LF or MS) could be present at the lesion location if the subject had
been healthy. Then, if this anatomical region is originally LF (or MS), the lesion
would be a tumor (or abnormal lymph node). Different from [8], here we use the
proposed similarity-guide sparse representation method.
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The objective is to relabel each LS patch pi as LF or MS (Fig. 1c). We con-
sider that at similar spatial locations, collective information from multiple image
sets would estimate well the original anatomical structure of pi. Therefore, two
reference dictionaries DLF (pi) and DMS(pi) are constructed for pi, using labeled
LF and MS patches at similar locations as pi but from images excluding the test
subject. A patch is considered spatially similar to pi if the distance between
them is less than 10% of the thorax size. In order to reduce the dictionary size
for computational efficiency, only 1/5 of the database is used for dictionary con-
struction. Then, with the two reference dictionaries, L(pi) is derived as LF or
MS, using Eq. (6). Note that the x and y coordinates of the patch center are
also included in the feature vector for location-based estimation. The patch-wise
labels are finally combined by majority voting to classify a lesion object as tumor
or abnormal lymph node.

Based on this approach, a small number of detected lymph nodes, however,
would actually be tumors (those affecting mostly the mediastinum rather than
lung fields) or myocardium (large bright area in the mediastinum). Therefore,
for the detected abnormal lymph nodes that are very large, those in the upper
left area of the medastinum are filtered as myocardium, and others are marked
as tumors. The size criteria are determined based on two-fold cross validation.

4 Experimental Results

Our dataset comprises 50 sets of 3D thoracic FDG PET-CT images from sub-
jects with non-small cell lung cancer, provided by the Royal Prince Alfred Hos-
pital, Sydney. An expert reader of the images annotated 54 lung tumors and 35
abnormal lymph nodes. During preprocessing, the background and soft tissue
areas outside of the lung and mediastinum are removed automatically with Otsu
thresholding and connected component analysis. The 3D image sets are also
aligned in the z-direction based on the location of the carina in the central part
of the thorax, to obtain the spatially-similar reference patches (Section 3.3).

Table 1. Patch-level labeling performance. (a) Initial tissue labeling. (b) Lesion de-
tection. (c) LF/MS labeling for detected lesions.

Ground Labeling

truth MS LS UN

MS 0.962 0 0.038

LS 0.024 0.405 0.571

(a)

Ground Labeling

truth MS LS

MS 0.991 0.009

LS 0.011 0.989

(b)

Ground Labeling

truth LF MS

LF 0.927 0.073

MS 0.249 0.751

(c)

As shown in Table 1a, after initial tissue labeling, most of the patches that
are labeled as MS or LS are indeed MS or LS types. The UN patches contain
a mixture of actual MS and LS patches. Although the number 0.038 seems
small, the absolute number of patches is about 1/4 of all UN patches, due to
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large number of MS patches. Then, with the intra-image lesion detection, the
UN patches are further categorized, and most of the MS and LS patches are
now correctly labeled (Table 1b). Mislabeled patches are mainly in areas with
relatively high uptake in the mediastinum or where there is lower uptake than
is expected for tumors. Finally, with the inter-image lesion characterization,
the detected lesions are categorized as tumors or abnormal lymph nodes. The
performance of labeling LS patches as LF or MS is listed in Table 1c. In cases
with lymph nodes adjacent to the lung fields, about 1/4 of patches are labeled
as LF rather than the expected MS. However, this is usually not a problem for
characterizing abnormal lymph nodes, since the majority of patches are correctly
labeled. The performance comparison using different constructs of the sparse
representation is shown in Fig. 2.

(a) (b)

Fig. 2. (a) Patch labeling performance for LS (Section 3.2). (b) True positive rates of
labeling LF and MS (Section 3.3). Comparing (iv) proposed similarity-guided sparse
representation with: (i) basic sparse representation, (ii) basic plus pairwise reference
similarity, and (iii) basic plus pairwise reference and patch reference similarities.

The performance of object-level detection is listed in Table 2. A lesion object
is counted as true positive if at least 60% of its volume is labeled correctly. Some
false positive lesions are detected in the mediastinum where there is elevated
uptake, and are thus mostly characterized as lymph nodes. This affects the
precision of detecting abnormal lymph nodes. The lymph nodes, especially those
at the hilum, are sometimes difficult to differentiate from lung tumors and this
then affects the recall of lymph nodes and precision of detecting tumors. Our
results are overall better than the state-of-the-art [8]. On a standard PC with
a Matlab implementation, the detection method takes on average 50s per 3D
PET-CT image. Compared to [8], this method is more efficient without requiring
additional structure delineation.

5 Conclusion

In this work, we present a new similarity-guided sparse representation model for
patch-wise feature classification, incorporating the pairwise reference similarity,
patch reference similarity and neighborhood similarity. Based on this model,
we then design a new three-stage approach to detect lung tumors and abnor-
mal lymph nodes from thoracic FDG PET-CT images. Our method tackles the
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Table 2. The object-level detection performance for tumors and abnormal lymph
nodes, compared with state-of-the-art [8].

Tumor Node Tumor [8] Node [8]

Recall (%) 96.3 91.4 90.7 88.6

Precision (%) 92.9 86.5 89.1 88.6

challenges caused by intra- and inter-subject variations effectively, and achieves
promising performance improvement. In future work, we will investigate if more
comprehensive feature design helps to improve the detection performance.

References

1. Han, Y., Wu, F., Shao, J., Tian, Q., Zhuang, Y.: Graph-guided sparse reconstruc-
tion for region tagging. In: CVPR, pp. 2981–2988 (2012)

2. Jiang, Z., Lin, Z., Davis, L.S.: Learning a discriminative dictionary for sparse cod-
ing via label consistent K-SVD. In: CVPR, pp. 1697–1704 (2011)

3. Liao, S., Gao, Y., Shen, D.: Sparse patch based prostate segmentation in CT im-
ages. In: Ayache, N. et al. (Eds) MICCAI 2012, Part III. LNCS, vol. 7512 7512,
385–392, Springer, Heidelberg (2012)

4. Liu, M., Lu, L., Ye, X., Yu, S., Salganicoff, M.: Sparse classification for computer
aided diagnosis using learned dictionaries. In: Fichtinger, G., Martel, A., Peters,
T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893 pp. 41–48, Springer, Heidelberg
(2011)

5. Parisot, S., Duffau, H., Chemouny, S., Paragios, N.: Graph-based detection, seg-
mentation & characterization of brain tumors. In: CVPR, pp. 988–995 (2012)

6. van Ravesteijin, V.F., van Wijk, C., Vos, F.M., Truyen, R., Peters, J.F., Stoker,
J., van Vliet, L.J.: Computer-aided detection of polyps in CT colonography using
logistic regression. IEEE Trans. Med. Imag. 29(1), 120–131 (2010)

7. Song, Y., Cai, W., Eberl, S., Fulham, M.J., Feng, D.: Automatic detection of lung
tumor and abnormal regional lymph nodes in PET-CT images. J. Nucl. Med.
52(Supplement 1), 211 (2011)

8. Song, Y., Cai, W., Zhou, Y., Feng, D.: Thoracic abnormality detection with data
adaptive structure estimation. In: Ayache, N. et al. (Eds) MICCAI 2012, Part I.
LNCS, vol. 7510 pp. 74–81, Springer, Heidelberg (2012)

9. Tropp, J.: Greed is good: algorithmic results for sparse approximation. IEEE Trans.
Inf. Theory 50, 2231–2242 (2004)

10. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained
linear coding for image classification. In: CVPR, pp. 3360–3367 (2010)

11. Wolz, R., Chu, C., Misawa, K., Mori, K., Rueckert, D.: Multi-organ abdominal CT
segmentation using hierarchically weighted subject-specific atlases. In: Ayache, N.
et al. (Eds) MICCAI 2012, Part I. LNCS, vol. 7510 pp. 10–17, Springer, Heidelberg
(2012)

12. Xu, D., Huang, Y., Zeng, Z., Xu, X.: Human gait recognition using patch distri-
bution feature and locality-constrained group sparse representation. IEEE Trans.
Image Process. 21(1), 316–326 (2012)


