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Abstract

Crowded scene understanding is a fundamental prob-
lem in computer vision. In this study, we develop a multi-
task deep model to jointly learn and combine appearance
and motion features for crowd understanding. We pro-
pose crowd motion channels as the input of the deep model
and the channel design is inspired by generic properties
of crowd systems. To well demonstrate our deep model,
we construct a new large-scale WWW Crowd dataset with
10, 000 videos from 8, 257 crowded scenes, and build an at-
tribute set with 94 attributes on WWW. We further measure
user study performance on WWW and compare this with
the proposed deep models. Extensive experiments show
that our deep models display significant performance im-
provements in cross-scene attribute recognition compared
to strong crowd-related feature-based baselines, and the
deeply learned features behave a superior performance in
multi-task learning.

1. Introduction
During the last decade, the field of crowd analysis had

a remarkable evolution from crowded scene understanding,
including crowd behavior analysis [38, 24, 26, 33, 3, 48,
46, 45, 15, 27, 41, 40, 44, 47], crowd tracking [2, 32, 49],
and crowd segmentation [1, 7, 16, 42]. Much of this
progress was sparked by the creation of crowd datasets as
well as the new and robust features and models for pro-
filing crowd intrinsic properties. Most of the above stud-
ies [7, 38, 3, 48, 24, 27, 15] on crowd understanding are
scene-specific, that is, the crowd model is learned from a
specific scene and thus poor in generalization to describe
other scenes. Attributes are particularly effective on char-
acterizing generic properties across scenes.

In the recent years, studies in attribute-based repre-
sentations of objects [11, 20, 4], faces [19, 25], actions
[13, 23, 39], and scenes [31, 28, 12, 30] have drawn a large
attention as an alternative or complement to categorical rep-
resentations as they characterize the target subject by sev-
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Figure 1. A quick glance of WWW Crowd Dataset with its at-
tributes. Red represents the location (Where), green represents the
subject (Who), and blue refers to event/action (Why). The area of
each word is proportional to the frequency of that attribute in the
WWW dataset.

eral attributes rather than discriminative assignment into a
single specific category, which is too restrictive to describe
the nature of the target subject. Furthermore, scientific stud-
ies [5, 8] have shown that different crowd systems share
similar principles that can be characterized by some com-
mon properties or attributes. Indeed, attributes can express
more information in a crowd video as they can describe a
video by answering “Who is in the crowd?”, “Where is the
crowd?”, and “Why is crowd here?”, but not merely define
a categorical scene label or event label to it. For instance, an
attribute-based representation might describe a crowd video
as the “conductor” and “choir” perform on the “stage” with
“audience” “applauding”, in contrast to a categorical label
like “chorus”. Recently, some works [33, 45] have made
efforts on crowd attribute profiling. But the number of at-

1



tributes in their work is limited (only four in [33, 45] ), as
well as the dataset is also small in terms of scene diversity.

In this paper, we introduce a new large-scale crowd video
dataset designed to understand crowded scenes named as
the Who do What at someWhere (WWW) Crowd Dataset1.
It contains 10, 000 videos from 8, 257 crowded scenes.
To our best knowledge, the WWW Crowd Dataset is the
largest crowd dataset to date. The videos in the WWW
crowd dataset are all from real-world, collected from var-
ious sources, and captured by diverse kinds of cameras. We
further define 94 meaningful attributes as high-level crowd
scene representations, shown in Fig. 1. These attributes are
navigated by tag information of the crowd videos from In-
ternet. They cover the common crowded places, subjects,
actions, and events.

From the modeling perspective, we are interested in ex-
ploring whether deeply learned crowd features can exceed
traditional hand-craft features. Since videos possess motion
information in addition to appearance, we examine deeply
learned crowd features from both the appearance and mo-
tion aspects. Compared with the method that directly in-
puts a single frame and multiple frames to the deep neural
network, we propose the motion feature channels as the in-
put of the deep model. From the experimental results with
the proposed deep model, we show that our attribute-centric
crowd dataset allows us to do a better job in the traditional
crowded scene understanding and provides potential abil-
ities in cross-scene event detection, crowd video retrieval,
crowd video classification. We further design a user study
to measure how accurately humans can recognize crowd at-
tributes, and with which type of data that users can achieve
the highest accuracy. This study is necessary and essential
to provide a reference evaluation to our empirical experi-
ments. Specifically, it is interesting to see how human per-
ception (when given different data types) is correlated with
the results of computational models.

Our contributions are listed as follows:
1) The largest crowd dataset with crowd attributes an-
notations - We establish a large-scale crowd dataset with
10, 000 videos from 8, 257 scenes. 94 crowd-related at-
tributes are designed and annotated to describe each video
in the dataset. It is the first time such a large set of attributes
on crowd understanding is defined.
2) Deeply learned features for crowd scene understanding
- We develop a multi-task learning deep model to jointly
learn appearance and motion features and effectively com-
bine them. Instead of directly inputting multiple frames to a
deep model to learn motion features as most existing works
[17] did for video analysis, we specially design crowd mo-
tion channels as the input of the deep model. The motion
channels are inspired by generic properties of crowd sys-

1http://www.ee.cuhk.edu.hk/˜jshao/
WWWCrowdDataset.html

tems, which have been well studied in biology and physics.
With multi-task learning, the correlations among attributes
are well captured when learning deep features.
3) Extensive experiments evaluation and user study to ex-
plore the WWW dataset - They provide valuable insights on
how static appearance cues and motion cues behave differ-
ently and complementarily on the three types of attributes:
“where”, “who” and “why”. It also shows that the features
specifically learned for human crowds are more effective
than state-of-the-art handcrafted features.

2. WWW Crowd Dataset Construction
Most of the existing public crowd datasets [6, 9, 22,

38, 48] contain only one or two specific scenes, and even
the largest one [33] merely provides 474 videos from 215
crowded scenes. On the contrary, our proposed WWW
dataset provides 10, 000 videos2 with over 8 million frames
from 8, 257 diverse scenes, therefore offering a superiorly
comprehensive dataset for the area of crowd understanding.
The abundant sources of these videos also enrich the diver-
sity and completeness. We compare our WWW dataset with
the other publicly available crowd datasets in Table 1. Over
all the comparison items listed in the table, our dataset sur-
passes the rest both in scale and diversity.

2.1. Crowd Video Construction
Collecting Keywords. In order to obtain a large scaled
and comprehensive crowd dataset, we selected a set of key-
words related to common crowd scenarios (e.g. street, sta-
dium, and rink) and crowd events (e.g. marching, chorus,
and graduation) for the sake of searching efficiency and ef-
fectiveness.

For the purpose of generalization, we did not include
keywords referring to specific places, but used general key-
words that describe the functionalities of places instead. For
instance, we chose “landmark” rather than names of spe-
cific places like “Time Square” and “Grand Central Sta-
tion”. It is common sense that “landmark” attracts crowds
of tourists. Besides keywords about functional places like
“station”, “restaurant”, and “conference center”, we also in-
cluded several specific types of places, such as “escalator”
and “stage”. Although these can be seen as objects, they are
known to have high correlation with crowd.

Collecting Crowd Videos3. The gathered keywords were
used to search for videos from several public video search
engines including Getty Images4, Pond55, and YouTube6.

2The average length of all videos is around 23 seconds, and its std. is
around 26 seconds.

3Our collection covers major existing crowd video datasets such as [33,
45, 14].

4http://www.gettyimages.com/
5http://www.pond5.com/
6http://www.youtube.com/

http://www.ee.cuhk.edu.hk/~jshao/WWWCrowdDataset.html
http://www.ee.cuhk.edu.hk/~jshao/WWWCrowdDataset.html


CUHK [33] Collectiveness [45] Violence [14] Data-driven [32] UCF [1] WWW
# video 474 413 246 212 46 10,000
# scene 215 62 246 212 46 8,257
# frame 60,384 40,796 22,074 121,626 18,196 > 8 million

resolution multiple 670× 1000 320× 240 640× 360 multiple 640× 360

source
Getty Images,

Pond5,
surveillance

web, surveillance YouTube web
BBC Motion
Gallery, Getty

Images

Getty Images, Pond5,
YouTube,

surveillance, movies

Table 1. Comparison of WWW and other existing datasets. WWW offers the largest number of videos, scenes, and frames.

To increase the chance of retrieving crowd videos, we added
“crowd” or “group” in most of the keywords, except key-
words that explicitly describe the crowd (e.g. “chorus” and
“marathon”). Besides these three sources, we further col-
lected 469 videos from 23 movies7. To control the video
quality, we removed videos with blurred motion, synthetic
crowd, and extremely short length. In addition, all the du-
plicated videos were filtered.

2.2. Crowd Attribute Annotation
Given a video collection of many different crowded

scenes, there is a enormous number of possible attributes
describing different scenarios, subjects, and events. The ca-
pacity to infer attributes allows us to describe a crowded
scene by answering “Where is the crowd?”, “Who is in the
crowd?”, and “Why is crowd here?”. Importantly, when
faced with a new crowded scene, we can still describe
it with these three types of cues (e.g. newly-wed couple
[Who] are in the wedding [Why] at beach [Where]).

Furthermore, there is a large number of possible inter-
actions among these attributes. Some attributes are likely
to co-occur with each other, whilst some seem exclusive.
For example, the scenario “street” attribute is likely to co-
occur with subject “pedestrian” when the subject is “walk-
ing”, and also likely to co-occur with subject “mob” when
the subject is “fighting”, but not related to subject “swim-
mer” because the subject cannot “swim” on “street”. In ad-
dition, there exist attributes that are grouped hierarchically,
e.g. “outdoor/indoor” contains almost all the other attributes
of location. Some attributes, like “stadium” and “stage” be-
long to both “outdoor” and “indoor”.

Collecting Crowd Attributes from Web Tags. To build
the attribute taxonomy, we first collected tags from Pond5
and Getty Images8 as shown in Fig. 2 as a form of wor-
dle9. By carefully examining the contents of the retrieved
tags with a total number of 7000+, we found that it is la-
borious and non-trivial to define attributes from these raw
tags since the majority of them are not relevant to the prob-

7The list can be found from our project website.
8Other websites, i.e. YouTube, movies, and existing datasets do not

have tag information.
9http://www.wordle.net/

Figure 2. Raw tag wordle (partial tag set). Bigger font size of a
word suggests higher frequency of a tag appears in dataset.

lem we are interested in, even not related to crowd, such as
video qualities and environment condition. In addition, tags
with the highest frequency (e.g. people, adult, time, and eth-
nicity) are also likely to be discarded. We spent efforts to
clean raw tags and finally constructed an attribute set with
94 crowd-related attributes which is shown in Fig. 1. It in-
cludes 3 types of attributes: (1) Where (e.g. street, temple,
and classroom), (2) Who (e.g. star, protester, and skater),
and (3) Why (e.g. walk, board, and ceremony). A complete
list can be found in our project website.
Crowd Attribute Annotation. We hired 16 annotators to
label attributes in the WWW dataset, and another 3 annota-
tors to refine labeling for all videos. All the attributes in our
dataset are commonly seen and experienced in daily life, so
the annotation does not require special background knowl-
edge. Each annotator was provided with a sample set con-
taining both positive and negative samples of each attribute.
They were asked to select possible attributes for each test
video in a label tool containing three attribute lists of where,
who, and why, respectively. In every round, each annotator
was shown a 10-second video clip and was required to label
at least one attribute from each attribute list without time
constraint.

Fig. 3 shows several examples in the WWW Crowd
dataset. As shown in the first row of Fig. 3, not all the video
clips can tell a complete story in the form of “somebody”
“do something” “at somewhere”. Therefore, before label-
ing, we add “ambiguous” options in each attribute list. To-
tally, the annotators labeled 2855 “ambiguous” among all
the marked 980, 000 labels, taking 0.1%, 0.2%, and 0.4%



indoor, runway 
audience, model

sit, walk, watch(performance), 
performance, fashion show

outdoor, school
audience, speaker, student, teacher

stand, sit, watch(performance), 
ceremony, speech, graduation

?; audience; mob, fightstreet; ?; ?

Where Who Why

Figure 3. Several video examples in the WWW dataset. Both two
videos in the first row have ambiguous attributes. While the other
two videos in the second row have multiple attributes in where,
who, and why.
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(b)(a)

Figure 4. Visualize users’ response time. The blue circles in (a)
plot the response time of all annotators on labeling tasks, and the
red line marks the average response time of each annotator. (b)
shows the histograms of response time of different cues.

Single
Frame Background Background

+ Tracklet Tracklet Average

Accuracy 0.82 0.71 0.74 0.41 0.67

Table 2. User accuracy with four types of cues.

in Where, Who and Why, respectively. Two videos shown
in the second row of Fig. 3 demonstrate that a video might
have quite a number of attributes, i.e., multiple subjects do-
ing different tasks at different locations in a single video.

3. User Study on Crowd Attribute
Appearance and motion cues play different roles in

crowd scene understanding. In this section, we conduct a
user study on the WWW crowd dataset to investigate hu-
man performance if only one type of cues is shown. This
also serves as a reference for comparison with our empiri-
cal experiments in Section 5 and to explore the correlation
between human perception and the computational models.

We distributed 8 users with four types of data, includ-

Figure 5. Deep model. The appearance and motion channels
are input in two separate branches with the same deep archi-
tecture. Both branches consist of multiple layers of convolu-
tion (blue), max pooling (green), normalization (orange), and one
fully-connected (red). The two branches then fuse together to one
fully-connected layers (red).

ing single frame image, background10, tracklets, and back-
ground with tracklets. The compared ground truth is the set
of annotations in Section 3 from whole videos. To avoid
bias, every user is provided with all the four types of data
and randomly selected 10 ∼ 15 attributes. Before start-
ing labeling, we provide each annotator 5 ∼ 10 positive
as well as negative samples to help them get familiar with
the attributes. Users were informed that their response time
would be recorded.

(1) Response time: The average response time of all the
users is 1.1094 seconds, as shown in Fig. 4(a). Fig. 4(b)
shows that labeling with only tracklets is more laborious,
and it is not easy for human to recognize crowd attributes
simply from motions without seeing images.

(2) Accuracy: Table 2 shows that with single frames users
can achieve much higher accuracy than with only tracklets
or background. It means that the appearance of moving
people and their poses are useful, but they are blurred on
the background image. It is found that the background cue
and tracklet cue are complementary. Figure 6(a) shows how
many samples were wrongly labeled only with the back-
ground cue and how many of them were corrected after
users also seeing the tracklet cue. Very few failure cases
in the first 17 attributes are corrected by the tracklet cues,
because these attributes belong to “where”. Tracklets are
more effective on the last 23 attributes belonging to “who”
and “why”. Figure 6(b) shows that the tracklets perform
poorly on recognizing attributes belonging to “where”.

4. Method
We exploit deep models to learn the features for each

attribute from the appearance and motion information of
each video, and apply the learned models for recognizing
attributes in unseen crowd videos.

4.1. Deep Network Structure and Model Setting
Fig. 5 shows the network structure of our deep model.

The network contains two branches with the same archi-
10The average image of all frames of each video.
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Figure 6. (a) The number of wrongly labeled samples with the background cue (indicated by blue bars) and how many of them can be
corrected after adding the track let cue. (b) Accuracy comparison between the tracklet cue and tracklet + background. All the results are
obtained from the user study described in Sec. 3.

tecture. We use simple notations to represent parameters
in the networks: (1) Conv(N,K,S) for convolutional
layers with N outputs, kernel size K and stride size S,
(2) Pool(T,K,S) for pooling layers with type T, kernel
size K and stride size S, (3) Norm(K) for local response
normalization layers with local size K, and (4) FC(N)
for fully-connected layers with N outputs, (5) The acti-
vation functions in each layer are represented by ReLU
for rectified linear unit and Sig for sigmoid function.
Then the two branches have parameters: Conv(96,7,2)-
ReLU-Pool(3,2)-Norm(5)-Conv(256,5,2)-ReLU-Pool(3,2)-
Norm(5)-Conv(384,3,1)-ReLU-Conv(384,3,1)-ReLU-Conv
(256,3,1)-ReLU-Pool(3,2)-FC(4096). The output fully-
connected layers of two branches are concatenated to be
FC(8192). Finally, we have FC(8192)-FC(94)-Sig produc-
ing 94 attribute probability predictions. The loss function
of the network is cross entropy as in Equation (1). The
network parameters of Appearance branch are initialized
using a pre-trained model for ImageNet detection task [29].

E = − 1

N

N∑
n=1

tn log on + (1− tn) log (1− on) (1)

where the N = 94 denotes the number of output neu-
rons, tn (n = 1, . . . , N) are the target labels and on (n =
1, . . . , N) are the output probability predictions.

4.2. Motion Channels

The traditional input of deep model is a map of single
frame (RGB channels) or multiple frames [17]. In this pa-
per, we propose three scene-independent motion channels
as the complement of the appearance channels. Some well-
known motion features like optical flow cannot well charac-
terize motion patterns in crowded scenes, especially across
different scenes. Scientific studies have shown that different
crowd systems share similar principles that can be charac-
terized by some generic properties. Inspired by [33] that in-
troduced several scene-independent properties (e.g. collec-
tiveness, stability, and the conflict) for groups in crowd, we
find that these properties also exist in the whole scene space
and can be quantified from scene-level. After our reformu-

Collectiveness Stability Conflict

Lo
w

H
ig

h

Input video Motion maps Continuous 
motion maps

frame=1

frame=50

frame=1

frame=50

Figure 7. Motion channels. The first row gives an example to
briefly illustrate three motion channels construction procedure.
For each channel, two examples are shown in the second and third
rows. Individuals in crowd moving randomly indicates low collec-
tiveness, while the coherent motion of crowd reveals high collec-
tiveness. Individuals have low stability if their topological struc-
ture changes a lot, whereas high stability if topological structure
changes a little. Conflict occurs when individuals move towards
different directions.

lation, the collectiveness indicates the degree of individuals
in the whole scene acting as a union in collective motion,
and the stability characterizes whether the whole scene can
keep its topological structures, and conflict measures the in-
teraction/friction between each pair of nearest neighbors of
interest points. Examples shown in the Fig. 7 illustrate each
property intuitively.

All the descriptors are defined upon tracklets detected by
the KLT feature point tracker, and each of them is computed
on 75 frames of each video in the WWW dataset. We first
define a K-NN (K = 10) graph for the whole tracklet point
set. Since we do not detect groups in advance, the descriptor
proposed in [45] is more suitable to extract collectiveness
for each tracklet point in the whole scene. Following the
similar idea in [33], we design the descriptor for stability
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Figure 8. AUC of each attribute obtained with DLSF+DLMF. Blue, red, and green indicate attributes of where, who and why respectively.

by counting and averaging the number of invariant neigh-
bors of each point in the K-NN graph. It reveals the fact that
the stable crowd needs to maintain a similar set of nearest
neighbors. The conflict descriptor defined in [33] is based
on the group-based transition prior, thus is not suitable in
our case. Instead, we generalize this descriptor by comput-
ing the velocity correlation between each nearby tracklet
points within the K-NN graph. We average the per-frame
descriptor map for each motion feature across the temporal
domain to output three motion maps, which act as the in-
put of the deep model. Although a single frame owns tens
or hundreds of tracklets, the total tracklet points are still
sparse. We then interpolate these sparse points to output a
complete and continuous feature map. The brief channel
construction procedure is shown in the first row in Fig. 7.

As shown in the Section 5.4 , these motion channels
can facilitate appearance to improve the performance on at-
tribute recognition.

5. Experimental Results
5.1. Settings

We split all the WWW dataset randomly into training,
validation, and test sets with a ratio of 7 : 1 : 2. Note
that all the three sets are guaranteed to have positives and
negatives of the 94 attributes, and they do not have overlap
on scenes to guarantee that the attributes are learned scene-
independently. In all the experiments, we employ the area
under ROC curve (AUC) as the evaluation criteria.

5.2. Evaluation on Deeply Learned Static Features
To evaluate our deeply learned static features (DLSF)

from the appearance channels only11, we select a set of
state-of-the-art static features that have been widely used in
scene classification for comparison. Literature shows that
Dense SIFT [21] and GIST [28] have good performance
good on describing general image content, while HOG [10]
has been widely used in pedestrian detection. They all have

11The first row in Fig. 5 with the last fully-connected layer is substituted
by three fully-connected layers.

the potential of being applied to crowd scene understanding.
To capture global information, we add a color histogram in
the HSV color space and the self-similarity (SSIM) [34] de-
scriptor. In addition, we also employ local binary patterns
(LBP) [43] to quantify texture in crowded scenes.

We extract the six types of features from the first frame of
each video and construct the static feature histogram (SFH)
following a standard bag-of-words pipeline with K-means
clustering and locality-linear coding [37]. Linear SVM is
used to train independent classifiers with SFH on each at-
tribute. As shown in the second row of Table 3, our DLSF
method outperforms the SFH baseline. The mean AUC is
improved by 6%. Out of the total 94 attributes, it has higher
AUC on 64 attributes (shown in the last column).

5.3. Evaluation on Deeply Learned Motion Features
We also report the performance of the deeply learned

motion features in Table 3, compared with two baselines.
One is the histogram of our proposed motion descriptor
(MDH) in Sec. 4.2. And another is dense trajectory [36]
showed state-of-the-art result in action recognition. Both
baseline features are trained with independent classifiers via
linear SVM similar to the SFH baseline.

According to the results shown in the third row of Ta-
ble 3, DLMF outperforms the other two baselines by 10%
and 5% on mean AUC respectively. Over 77% attributes,
DLMF achieves higher AUC than the baselines. On the
other hand, DLMF has a nearly 20% drop compared with
DLSF. This is consistent with our observation from the user
study in Table 2 that the motion cue is less effective on
recognizing attributes compared with the appearance cue in
general.

5.4. Evaluation on Combined Deep Model
The deep model combining DLSF and DLMF is shown

in Fig. 5. It is compared with five baselines. The first two
baselines are the combination of the static feature (SFH)
with two motion features (MDH and dense trajectory). We
add a baseline [18] that extracts spatio-temporal motion pat-
terns (STMP) by modeling the input video as the assembly
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Figure 9. Good and bad attribute prediction examples are shown in (a) and (b). For each image, its top four attributes with the highest
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Our Methods mean
AUC Baselines mean

AUC
#

wins
DLSF 0.87 SFH 0.81 67/94

DLMF 0.68 MDH 0.58 85/94
DenseTrack [36] 0.63 72/94

DLSF + DLMF 0.88

SFH+MDH 0.80 78/94
SFH+DenseTrack 0.82 72/94

STMP [18] 0.72 89/94
Slow Fusion [17] 0.81 74/94
Two-stream [35] 0.76 89/94

Table 3. Compare deeply learned features with baselines. The last
column shows the number of attributes (out of the total number of
94) on which our proposed deep features have higher AUC than
baselines.

of spatio-temporal cuboids. It combine both appearance and
motion cues. The fourth baseline is the slow fusion scheme
with multi-frames as input in deep model proposed in [17]
recently. It is a state-of-the-art deep learning method for
video analysis, and it has achieved the best performance in
[17] for sports classification. It is interesting to investigate
whether this deep learning framework can learn crowd fea-
tures well. And the last baseline is the two-stream convo-
lutional networks for action recognition [35]. We substitute
our motion channels with optical flow maps (i.e. 2 maps for
each frame, and 5 frames for each video) and keep the ap-
pearance channels unchanged. According to the last row in
Table 3, our combined deep features DLSF+DLMF outper-
form all the baselines and STMP is the worst. Slow Fu-
sion [17] does not outperform handcrafted features. This
reason might be its way of inputting multiple frames to the
deep model in order to capture motion information. It leads
to a much larger net structure with many more parameters,
and therefore requires larger scale training data. Similarly,
the two-stream structure [35] also involves more parame-

ters caused by ten motion channels, and optical flow it-
self cannot characterize common features across different
scenes. Instead the input of our deep model is three mo-
tion channels, which well summarize motion information
and reduce the network size. Summarizing all the resulting
in Table 3, we achieve the conclusion that the motion cue
alone cannot get good result on crowd attribute recognition.
By adding deeply learned motion features (DLMF) to deep
learned static features (DLSF), the mean AUC has been im-
proved by 1%. A detailed investigation shows the AUC of
41 attributes gets improved by adding DLMF. Most of these
attributes belong to “Who” and “Why”. The averaged im-
provement of AUC is 5%.
Quantitative Evaluation. The AUC for each attribute with
DLSF+DLMF is shown in Fig. 8. Different colors repre-
sent “Where”, “Who”, and “Why” from left to right, and
the results are sorted in a descending order. The attribute
“war” achieves the highest AUC score whereas “disaster”
is the lowest. The lowest score may result from too few
positive samples in the training set. Some attributes such
as “battlefield”, “mob”, and “war” have strong correlation,
although they belong to ‘where”, “who” and “why” respec-
tively. They all have high AUC.
Qualitative Evaluation. Some good and bad examples
on attribute prediction are shown in Fig. 9(a) and (b).
Noted that the last example in Fig. 9(a) shows an attribute
“stand” with a high prediction probability of 0.87, while
the groundtruth recommends “sit”. It is actually quite chal-
lenging to determine the action as “stand” or “sit” in this
example even from human perception.The third example
shown in Fig. 9(b) has two of the top four attributes mis-
takenly predicted. The fourth is actually “stock market” but
wrongly recognized as “conference center”. This is because
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people in this example move coherently, behaving like “au-
dience” or “watching performance”, and its appearance cue
cannot distinguish it as “conference center” or “stock mar-
ket”. Fig. 9(c) shows some examples whose attributes are
miss detected. The proposed deep model can well recognize
attributes with distinctive motion and appearance patterns,
such as the attributes related to the beach scene. But it may
be poor for attributes owning complex and diverse appear-
ance and motions, such as attributes related to the shopping
mall scene.

Combined Deep Features vs. Separate Deep Features.
To further verify that our combined deep features outper-
form both DLSF and DLMF, we show 6 attributes with
their quantitative (AUC scores) and qualitative results in
Fig. 10. The first row shows negative examples, and the
higher prediction probability indicates higher error. On the
contrary, the higher prediction probability in the second row
indicates higher accuracy. Generally, DLSF extracts static
appearance features and thus works poorly at several at-
tributes specified with motion patterns, e.g. “fashion show”
and “walk”. But only motion features cannot effectively ex-
plore the difference between attributes with similar motion
patterns. Likewise, the negative example in the fourth col-
umn is actually “skate”, but the given frame shows a short
cut image that is similar to “mob” or “fight”. Combinational
model fusing the appearance and motion channels and com-
plement the missing cues in DLSF or DLMF, therefore re-
veals superior performances over all the sample attributes.

5.5. Multi-task learning
Deep models are ideal for multi-task learning. We com-

pare the result of training three different deep models for
the three sets of attributes “where”, “who” and “why” sep-
arately. This is called single-task learning. In comparison,
the deep model discussed above is called multi-task learn-
ing. Since there exist correlations between different types

Multi-task Single-task # wins

Where 0.89 0.84 22/27
Who 0.86 0.79 18/24
Why 0.86 0.79 36/43

Mean 0.87 0.81 76/94

Table 4. Compare average AUC with single-task learning and
multi-task learning. The last column is the number of attributes
where multi-task learning outperforms single-task learning.

of attributes, joint training of the three sets of attributes im-
plicitly emphasizes the common features that shared by the
correlated attributes. For instance, the “swimmer” should
be at “beach” or “pedestrian” walks on “street”. Table 4
reports the average AUC of each set of attributes by single-
task and multi-task learning in the first two columns. The
last column shows the numbers of attributes where multi-
task learning outperforms single-task learning. It is obvi-
ous that the multi-task learning improves the overall AUC
from 0.81 to 0.87. The accuracies on most attributes get
improved.

6. Conclusion
In this paper, we build a large-scale crowd dataset with

10, 000 videos from 8, 257 scenes, and propose 94 crowd-
related attributes. This is a significant contribution to the
field of crowd scene understanding. Both appearance fea-
tures and motion features are learned by our designed deep
models. Instead of inputting multiple frames to deep mod-
els as existing works [17] did for video analysis, we design
motion channels motivated by generic properties of crowd
systems. Crowd features are learned with multi-task learn-
ing, such that the correlations among crowd attributes are
well captured. The learned crowd features and crowd at-
tribute predictors have many potential applications in the
future work, such as crowd video retrieval and crowd event
detection.
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