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Abstract

This paper investigates how to parse (segment) facial
components from face images which may be partially oc-
cluded. We propose a novel face parser, which recasts
segmentation of face components as a cross-modality data
transformation problem, i.e., transforming an image patch
to a label map. Specifically, a face is represented hierarchi-
cally by parts, components, and pixel-wise labels. With this
representation, our approach first detects faces at both the
part- and component-levels, and then computes the pixel-
wise label maps (Fig.1). Our part-based and component-
based detectors are generatively trained with the deep belief
network (DBN), and are discriminatively tuned by logistic
regression. The segmentators transform the detected face
components to label maps, which are obtained by learning
a highly nonlinear mapping with the deep autoencoder. The
proposed hierarchical face parsing is not only robust to par-
tial occlusions but also provide richer information for face
analysis and face synthesis compared with face keypoint de-
tection and face alignment. The effectiveness of our algo-
rithm is shown through several tasks on 2, 239 images se-
lected from three datasets (e.g., LFW [12], BioID [13] and
CUFSF [29]).

1. Introduction

Explicitly parsing face images into different facial com-

ponents implies analyzing the semantic constituents (e.g.,

mouth, nose, and eyes) of human faces, and is useful for a

variety of tasks, including recognition, animation, and syn-

thesis. All these applications bring new requirements on

face analysis—robustness to pose, background, and occlu-

sions. Existing works, including both face keypoint detec-

tion and face alignment, focus on localizing a number of

landmarks, which implicitly cover the regions of interest.

The main idea of these methods is to first initialize the lo-

cations of the landmarks (i.e., mean shape) by classification

or regression, and then to refine them by template match-

Figure 1. Hierarchical representation of face parsing (a). A face image

is parsed by combining part-based face detection (b), component-based

face detection (c), and component segmentation (d). There are four part-

based detectors (left/right/upper/lower-half face) and six component-based

detectors (left/right eye, left/right eyebrow, nose and mouth). Each compo-

nent detector links to a novel component segmentator. (d) shows that the

segmentators can transform the detected patches to label maps (1st, 2nd

columns) and we obtain the fine-label maps after hysteresis thresholding

(3rd). (e) is the image segmentation result (i.e., groups into 2 and 10 clus-

ters) obtained by normalized cut.

ing [2, 3, 17, 16, 5, 30, 14] or graphical models (e.g., M-

RF) [23, 15]. In this work, we study the problem from a

new point of view and focus on computing the pixel-wise

label map of a face image as shown in Fig.1 (d). It provides

richer information for further face analysis and synthesis

such as 3D modeling [1] and face sketching [20, 19, 26],

comparing to the results obtained by face keypoint detec-

tion and face alignment. This task is challenging and ex-

isting image segmentation approaches cannot achieve satis-

factory results without human interaction. An example is

shown in Fig.1(e). Inspired by the success of deep autoen-

coder [11], which can transform high-dimensional data into

low-dimensional code and then recover the data from the

code within single modality, we recast face component seg-

mentation as a cross-modality data transformation problem,

and propose an alternative deep learning strategy to direct-

ly learn a highly non-linear mapping from images to label

maps.
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Figure 2. (a) and (b) define parts and components, which correspond to

the nodes in Fig.1 (a). Red points are the positions of parts (a) or compo-

nents (b). Red boxes are extracted image patches for training. (c) shows

the spatial relationship (i.e., orientation and position) between parts and

components.

In this paper, we propose a hierarchical face parser. A

face is represented hierarchically by parts, components, and

pixel-wise labels (Fig.1 (a)). With this representation, our

approach first detects faces at both the part- and component-

levels, and then computes the pixel-wise label maps. The

deformable part- and component-based detectors are incor-

porated by extending the conventional Pictorial model [9] in

a hierarchical fashion. As shown in Fig.1 (a), each node at

the upper three layers is a detector generatively pre-trained

by Deep Belief Network (DBN) [10] and discriminative-

ly tuned with logistic regression (sec.3.2). At the bottom

layer, each node is associated with a component segmenta-
tor, which is fully trained on a dataset with patch-label map

pairs by a modified deep autoencoder [11] (sec.3.3). Then,

we demonstrate that with this model, a greedy search algo-

rithm with a data-driven strategy is sufficient to efficiently

yield good parsing results (sec.3.1). The effectiveness of

hierarchical face parsing is demonstrated through the appli-

cations of face alignment and detection of facial keypoints,

and it outperforms the state-of-the-art approaches.

1.1. Related Work
Recent approaches of scene parsing [22] provide an al-

ternative view for face analysis, which is to compute the

pixel-wise label maps [27]. This representation offers rich-

er information and robustness compared with the existing

face alignment and key point detection methods.

Active Shape Model (ASM) [3] is a well established and

representative face alignment algorithm, and has many vari-

ants [2, 17, 30]. They heavily rely on good initialization

and do not work well on images taken in unconstrained en-

vironments, where shape and appearance may vary great-

ly. Starting with multiple initial shapes is a natural way to

overcome this problem [21, 15]. For instance, in order to be

robust to noise, the Markov Shape Model [15, 14] samples

many shapes by combining the local line segments and ap-

pearances as constraints. Although such methods reduce the

dependence on initialization, they are computationally ex-

pensive since a large number of examples have to be drawn;

otherwise, the matching may get stuck at local minimum.

To improve computational efficiency and to be robust

to pose variations and background clutters, it has become

Figure 3. Compare the alignment results of [16] ((a)-(d)) and ours ((e)-

(h)) when face images are partially occluded. Landmarks can be easily

obtained from the label maps obtained by our approach. The white boxes

indicate the initial face detection results employed in [16]. It is not accurate

in (a) due to occlusion. The blues boxes indicate the results of component

detection. The red boxes indicate the results of part-based detectors em-

ployed in our approach.

popular to adopt discriminative approaches in facial analy-

sis [23, 16, 5, 28]. For example, the BoRMaN method [23]

and the Regression ASM [5] were proposed to detect facial

features or components using boosting classifiers on small

image patches. A component-based discriminative search

algorithm [16] extended the Active Appearance Model

(AAM) [2] by combining the facial-component detectors

and the direction classifiers, which predict the shifting di-

rections of the detected components.

However, the aforementioned approaches have two

drawbacks. First, it is difficult for a single detector [25] to

accurately locate an occluded face for initialization. Thus,

the matching process fails to converge since the initial shape

is far away from the optimal solution as shown in Fig.3

(a). Our method adopts multiple hierarchical deformable

part- and component-based detectors and is more robust to

partial occlusions. Second, since face detection and shape

matching are optimized alternately, we empirically observe

that even though the face components can be well detected,

shape matching may still converge to a local minima be-

cause the correlation between shape and image appearance

is not well captured as shown in Fig.3 (a)(c). Our method

employs DBN to establish strong correlations between im-

ages and shapes by estimating the label maps directly from

the detected image patches. See Fig.1 (d) and Fig.3 (f)(h)

for details.

2. A Bayesian Formulation
Our hierarchical face parsing can be formulated under

a Bayesian framework, under which the detectors and seg-

mentators can be explained as likelihoods, and spatial con-

sistency can be explained as priors.

Let I be an input image and L be a set of class labels of

all the detectors. Here, L = {�r, �pi , �cj}j=1..6
i=1..4 (see the upper
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three layers of Fig.1 (a))1. Under the Bayesian Framework,

our objective is to compute a solution θ that maximizes a

posterior probability, p(θ|I, L). Therefore,

θ∗ = argmax p(I, L|θ)p(θ) (1)

= argmax log p(I, L|θ) + log p(θ).

After taking “log”, the objective value is equivalent to a

summation of a set of scores. In other words, our problem

is, given a facial image I, to hierarchically find the most

possible parsing representation θ = (V r, V p, V c, V s, E),
which contains a set of nodes and edges. More specif-

ically, V r/p/c = {vr/p/ci = (b
r/p/c
i , ρ

r/p/c
i , λ

r/p/c
i )}Ki=1

are the root detector (K = 1), part detectors (K = 4),

and component detectors (K = 6) respectively. E =
(Erp, Epc) indicates the spatial relations among the upper

three layers. Here, we denote the component segmentators

as V s = {vsi = (bsi , λ
s
i , φi,Λi)}6i=1. In particular, a node is

described by a bounding box b, a binary variable λ ∈ {0, 1}
that indicates whether this node is occluded (“off ”) or not

(“on”), and a set of deep learning parameters ρ and φ2. Λ
denotes the label map of the corresponding component.

2.1. The Scores of Spatial Consistency

Here, log p(θ) in Eq.1 is the score of spatial consistency,

which is modeled as a hierarchical pictorial structure.

p(θ) is the prior probability, measuring the spatial com-

patibility between a face and its parts, and also between

each part and the components. Hence, we have p(θ) =
p(Erp|vr)p(Epc|V p), in which Erp = {< vr, vpi > |∀vpi ∈
V p}4i=1 and Epc = {< vpi , v

c
j > |∀vpi ∈ V p, ∀vcj ∈

V c}j=1..6
i=1..4 indicate two edge set (Fig.1 (a)). In this paper,

we consider orientations and locations as two kinds of s-

patial constraints. Therefore, the prior p(Erp|vr) can be

factorized as,

p(Erp|vr) =
∏

<vr,vp
i >∈Erp

p(o(br, bpi )|λr)p(d(br, bpi )|λr).

(2)

Here, the functions o(·, ·) and d(·, ·) respectively calcu-

late the relative angle and the normalized Euclidean dis-

tance between the centers of two bounding boxes br and

bp. For example, in Fig.2 (c), we illustrate the spatial

constraints of the right eye related to the left-half face.

We model the probabilities of these two spatial relations

as Gaussian distributions. For instance, p(o(br, bp)|λr =

1In our experiment (sec.3.4), �r ∈ R
2, ∀�pi ∈ R

5, ∀�cj ∈ R
7, each

vector indicates class label of the node and has a 1-of-K representation.

Consider “mouth (�c5)” as an example, the 5-th element is set to be 1 and

all the other are 0, and the 7-th element denotes the class of background.
2ρ = (ρdbn , ρreg ) includes the parameters for DBN and logistic re-

gression. φ will be written as φae in later derivation which denotes the

parameters for the deep autoencoder.

1) = N (o(br, bp);μbrbp ,Σbrbp)
3. Similarly, the prior of

p(Epc|V p) can be factorized in the same way.

2.2. The Scores of Detectors and Segmentators

log p(I, L|θ) in Eq.1 can be explained as the sum of the

scores of detectors and segmentators, and they are modeled

through DBNs and deep autoencoders respectively.

Let Ib be the image patch occupied by the bounding box

b. The likelihood probability, p(I, L|θ), can be factorized

into the likelihood of each node as,

p(I, L|θ) =
∏

i∈{r,p1,...,p4,c1,...,c6}
p(Ibi , �

i|vi)︸ ︷︷ ︸
detector

(3)

×
6∏

j=1

p(Ibsj |vsj )︸ ︷︷ ︸
segmentator

.

By applying the Bayes rule, we formulate the likeli-

hood of each detector as p(Ib, �|v) = p(Ib; ρdbn) ×
p(�|Ib, ρdbn ; ρreg)4, and the likelihood of each component

segmentator as p(Ibs |vs) = p(Ibs |Λs;φs
ae)

5.

We model the first term of the detector’s likelihood by

DBN and discuss details in sec.3.2, and the second term

evaluates how likely a node should be located on a certain

image patch, is derived as below,

p(�|Ib, b, λ, ρdbn ; ρreg) ∝ exp{− ‖ �−f(Ib, ρdbn ; ρreg) ‖1},
(4)

where, given an image patch, f(·, ·) is a softmax function

that predicts its class label based on the learned parameters

ρdbn and ρreg . Furthermore, the likelihood of the segmen-

tator has the following form6 and its parameters are learned

by deep autoencoders (sec.3.3),

p(Ibs |Λs, bs, λs;φs
ae) ∝ (5)

exp{−min{g1(Ibs |Λs;φs
ae), ..., gk(Ibs |Λs

k;φ
s
ae)}}.

Here, we learn k deep autoencoders to estimate the label

maps of a facial component and return the one with the min-

imal cross-entropy error gk(·, ·)7.

3. Hierarchical Face Parsing
Before we discuss the details, we first give an overview

of our algorithm in sec.3.1. After that, we describe our

methods for learning the detectors in sec.3.2 and the seg-

mentators in sec.3.3.

3When a node is “off ”, log p(o(br, bp)|λr = 0) = ε, where ε is a

sufficiently small negative number.
4We drop the superscripts r/p/c here.
5Note that the random variables b and λ are omitted for simplicity in

the derivation of the likelihoods.
6Eq.4 and Eq.5 are defined when λ = 1. Please refer to footnote 3 for

the situation that λ = 0.
7gk(·, ·) evaluates the cross-entropy error between the input image

patch and the reconstructed one under the k-th deep autoencoder.
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Figure 4. The parsing process. In practice, we adopt the HOG features

from [6] and each testing image (a) is described by a HOG feature pyramid

similar to [8]. (b) shows the scores of the “face” and the “right-half face”

detectors. Note that the former one evaluates all positions while the latter

one evaluates only a small portion. (c) illustrates the scores of component

segmentators and the transformed label maps.

3.1. Data-driven Greedy Search Algorithm

Our data-driven greedy search algorithm can be separat-

ed into two steps: part-based face detection and component

segmentation. For the first step, we assume that the nodes of

root and parts are visible (i.e., λ = 1), then we sequential-

ly evaluate their detectors with the sliding window scheme.

Once a node has been activated, the other nodes, guided by

the data-driven information, will only search within a cer-

tain range. For instance, as shown in Fig.4 (b), the root de-

tector tests all positions while the detector of the right-half

face tests only a small portion. After running all five de-

tectors, we combine the scores together, resulting in a good

hypothesis of the face’s position. Such strategy for object

detection is fully evaluated in [8], where convincing results

are reported. For the second step, we use the component

detectors to search the components on the previously pro-

posed location (Fig.4 (c)). If a component is activated, its

corresponding segmentator is performed to output the label

map. Eventually, the final score of the parsing is achieved

by summing up the scores of spatial constraints (sec.2.1),

detection (Eq.4), and segmentation (Eq.5). Moreover, the

result will be pruned by a threshold learned on a validation

set. We summarize the algorithm in Algorithm.1.

Data-driven strategy 1. To improve the search algorith-

m, we solve a localization problem that is to determine the

angle and distance between a detected and an undetected

node. For example, as illustrated in Fig.2 (c), given the lo-

cation of the detected left-half face, we decide to predict the

coordinates of the undetected right eye. We deal with this

problem by training two regressors: the first one estimates

the angle α, and the second one finds the distance β. The

Support Vector Regression [4] is adopted to learn these two

regressors.

Algorithm 1: Hierarchical Face Parsing

Input: an image I and the class label set L
Output: label maps of facial components

1) Part-based detection:

(1) evaluate face or part detectors on I according to sec.3.2 in a

data-driven fashion

(2) hypothesize the face’s or parts’s position by calculating the

scores of spatial constraints (Eq.2) and detection (Eq.4)

2) Component segmentation:

(1) detect the components around the location proposed by 1)

(2) if a component is detected, then estimate its label map

(3) compute the scores according to sec.2.1 and Eq.5

3) Combine the scores of 1) and 2) together, if the final score is

larger than a threshold, then output the result.

Data-driven strategy 2. It is not necessary for us to enu-

merate all the combinations of the binary variable λ. If a

node is not detectable, its λ is set to zero8.

3.2. Learning Detectors
In this paper, we model our detectors by deep belief

network (DBN), which is unsupervisedly pre-trained using

layer-wise Restricted Boltzmann Machine (RBM) [10] and

supervisedly fine-tuned for classification using logistic re-

gression. Here, given image patches Ib as the training sam-

ples (i.e., inputs in Fig.5 (a)), a DBN with K layers mod-

els the joint distribution between Ib and K hidden layers

h1, ...,hk as follows:

p(Ib,h
1, ...,hk; ρdbn) = (6)

(
K−2∏
k=0

p(hk|hk+1; ρdbn))p(h
K−1,hK ; ρdbn),

where Ib = h0, p(hk|hk+1; ρdbn)) is a visible-given-

hidden conditional distribution of the RBM at level k, and

p(hK−1,hK ; ρdbn) is the joint distribution at the top-level

RBM. Specifically, as illustrated in Fig.5 (a), learning the

paraments ρ = (ρdbn, ρreg) of each detector includes two

stages: first, ρdbn = {Wi,ui, zi}i=1..3 are estimated by

pre-training the DBN using three RBMs layer-wisely. Then,

we randomly initialize ρreg = (Wr,ur), and the initial-

ized parameters ρreg along with the pre-trained parameters

ρdbn are fine-tuned by logistic regression. This logistic re-

gression layer maps the outputs of the last hidden layer to

class labels and is optimized by minimizing the loss func-

tion between label hypothesis (�̃) and ground truth (�). In

the following, we discuss how to estimate ρdbn by RBM in

details.

As the building block of DBN (see Fig.5 (a)), a RBM is

an undirected two-layer graphical model with hidden units

(h) and input units (Ib). There are symmetric connections

(i.e., weights W) between the hidden and visible units, but

8No need to evaluate the scores related to them. This is different

from [8], where all part filters are visible.
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Figure 5. Illustration of learning process. We employ a four-layer DBN to model our detectors (a). The DBN is trained by layer-wise RBMs and tuned by

logistic regression. Then, we propose a deep training strategy containing two steps to train the segmentators: first, we train a deep autoencoder (c), whose

first layer are replaced by a one-layer denoising autoencoder (b). The deep autoencoder is tuned in one modality, while the one-layer autoencoder is tuned

in both modalities. Each trained segmentator can directly output the label map using an image patch as input (d).

no connections within them. It defines a marginal probabil-

ity over Ib using an energy model as below,

p(Ib; ρdbn) =
∑
h

exp{zT Ib + uTh+ hTWIb}
Z

, (7)

where Z is the partition function and z,u are the offset vec-

tor for input units and hidden units respectively. In our case,

the conditional probabilities of p(h|I) and p(I|h) can be

simply modeled by products of Bernoulli distributions:

p(hi = 1|I) = sigm(ui +Wi·I), (8)

p(Ij = 1|h) = sigm(zj +WT
·jh).

sigm(·) is the sigmoid function. The parameters ρdbn can

be estimated by taking gradient steps determined by the

contrastive divergence [10].

3.3. Learning Segmentators

In this section, we introduce a deep learning approach

for training the component segmentators, which transfor-

m image patches to label maps. The data transforma-

tion problem has been well examined by deep architectures

(i.e., multilayer network) in previous methods. Neverthe-

less, they mainly focus on single modality, such as deep

autoencoder [11] and deep denoising autoencoder [24].

The former one encodes high-dimensional data into low-

dimensional code and decodes the original data from it,

while the latter one learns a more robust encoder and de-

coder which can recover the data even though they are heav-

ily corrupted by noise. By combining and extending the ex-

isting works, we propose a deep training strategy containing

two portions: we train 1) a deep autoencoder, whose first

layer is replaced by 2) a one-layer denoising autoencoder.

In the following, we explain how to generate the training

data first, and then discuss the above two steps in detail.

To learn a mapping from images to label maps, we must

explore the correlations between them. Therefore, unlike

sec.3.2 where only image data are used for training, here

we concatenate the images and ground truth label maps to-

gether as a training set. Since our purpose is to output label

map given only image as input, we augment this training set

by adding samples that have zero values of the label map

and original values of the image (see Fig.5 (b)(c)). In other

words, half of the training data has only image (i.e., (Ib, 0)),
while the other half has both image and ground truth la-

bel map (i.e., (Ib,Λ)). Similar strategy is adopted by [18],

which learns features by using data from different modal-

ities in order to improve the performance of classification

performed in single modality.

1) Deep Autoencoder. As shown in Fig.5 (c), we estab-

lish a four-layer deep autoencoder, whose parameters ρae
can be defined as {Wi,ui, zi}i=1..2. The weights and off-

set vector for the first layer are achieved by a one-layer de-

noising autoencoder introduced in step 2). We estimate the

weights of the second layer by RBM, and the weights of the

upper two layers are tied similar to [11] (i.e., W3 = W2T ,

W4 = W1T ). Then, the whole network is tuned in single

modality, that is minimizing the cross-entropy error LH be-

tween the outputs at the top layer (i.e., reconstructed label

maps Λ̃) and the targets (i.e., ground truth label maps Λ).

2) One-layer denoising autoencoder. Modeling the low-

level relations between data from different modalities is cru-

cial but not a trivial task. Therefore, to improve the per-

formance of the deep network, we specially learn its first

layer with a denoising autoencoder [24] as shown in Fig.5

(b). Such shallow network is again pre-trained by RBM, but

tuned in both modalities (i.e., images and label maps). Note

that in the fine-tuning stage, only the images and the ground

truth label maps are used as the targets as shown at the top

layer of Fig.5 (b).

5



Overall, with these two steps, each component segmen-

tator learns a highly non-linear mapping from images to la-

bel maps. The testing procedure is illustrated in Fig.5 (d),

where we delete the unused image data in the output. Thus,

the deep network indeed outputs a label map given an image

patch.

3.4. Implementation Details

In this section, we sketch several details for the sake of

reproduction.

Training Detectors. We randomly select 3, 500 images

from the Labeled Faces in the Wild (LFW) [12] database.

We then randomly perturb each extracted image patch (see

red boxes in Fig.2 (a)(b)) by translation, rotation, and scal-

ing. Therefore, for each category, we totaly have 42, 000
training patches. Multi-label classification strategy is em-

ployed so that training three DBNs are enough (i.e., one

for face detector, one for part detectors, and the other for

component detectors). More specifically, as shown in Fig.5

(a), we construct a 3-layers deep architecture and the unit

numbers are 2 times, 3 times, and 4 times of the input size

respectively. We supervisedly tune three DBNs with 2 out-

puts, 5 outputs, and 7 outputs at the top layer respectively.

To construct the examples of the background category, we

crop 105, 000 patches from the background for each DBN.

All examples of the three DBNs are normalized to 64× 64,

64× 32, and 32× 32 respectively. We use 9 gradient orien-

tations and 6× 6 cell size to extract the HOG feature.

Figure 6. (a) Different translations and orientations are imposed in our

training data. (b) shows how to deal with pose variations. We first separate

the training data by K-means, then learn one deep autoencoder on each

cluster.

Training Segmentators. We choose anther 500 images

from the LFW [12] database, whose label maps are manual-

ly annotated. Nevertheless, in order to cover variant poses,

we import fluctuations on position and orientation for each

example as illustrated in Fig.6 (a). Similarly, all training

patches are fixed at 32 × 32 and described by HOG fea-

ture. In order to account for pose variations, we train a set

of 4-layers deep autoencoders for each component, which is

obtained by first applying K-means on the label maps and

then training one autoencoder on each cluster. Empirically,

we set K = 15 (Fig.6 (b)).

4. Experiments
We conduct four experiments to test our algorithm. First,

we perform face parsing on the LFW [12] database to e-

valuate the performance of our segmentators; Second, we

collect a dataset from internet and compare the face align-

ment results with a state-of-the-art method, the Component-

based Discriminative Search (CBDS) [16]; Third, we com-

pare with two leading approaches (i.e., BoRMaN [23] and

Extended ASM (eASM) [17]) of feature point extractions.

This experiment is conducted on the BioID [13] database;

Finally, to further evaluate the generalization power, we

carry out a segmentation task on the CUHK Face Sketch

FERET Database (CUFSF) [29]. Note that for all these ex-

periments, our model is trained on the LFW as outlined in

sec.3.4.

Experiment I: performance of segmentators. We

test our segmentators with a 7-classes facial image pars-

ing experiment, which is to assign each pixel a class label

(e.g., left/right eye, left/right brow, nose, mouth, and back-

ground). First, we randomly select 300 images from the

LFW database, and all the label maps of these images are

well-labeled by hand. Then, our data-driven greedy search

algorithm is performed on these images to achieve the re-

constructed label maps, from which we obtain the final re-

sults after hysteresis thresholding. Fig.7 (a) shows the con-

fusion matrix, in which accuracy values are computed as the

percentage of image pixels assigned with the correct class

label. The overall pixel-wise labeling accuracy is 90.86%.

It demonstrates the ability of the learned segmentators on

the segmentation of facial components. Several parsing re-

sults are visualized in Fig.10 (a).

Figure 7. (a) shows the confusion matrix of Experiment I. (b) and (c) are

the face models for Experiment II and Experiment III respectively.

Experiment II: face alignment. The purpose of our

second experiment is to test our algorithm on the task of

face alignment compared with the CBDS method, which

was trained on many public databases including LFW over

4, 000 images. In the spirit of performing a database in-

dependent test, we collect a testing dataset containing 118

facial images from Google Image Search and Flickr. This

dataset is challenging due to occlusion, background clutters,

pose and appearance variations. Some examples are given

in Fig.8.

To apply our method to face alignment, we first obtain

the label map with the data-driven greedy search algorithm.

Then a mean shape as illustrated in Fig.7 (b) is fitted to the

label map by minimizing the Procrustes distance [7]. Note,

the mean shape we used is different from the CBDS’s. To

allow a fair comparison, we thus exclude the bridge of the

6



Figure 8. Some samples in the testing dataset of Experiment II.

nose in our shape, and the inner lips and profiles of CBDS

are also excluded. To yield a better alignment, we permit

sightly non-rigid deformation of each landmark during the

matching procedure. We summarize the results in Table 1,

which shows the percentage of images with the root mean

squared error (RMSE) less than the specific thresholds. As

we can see, our algorithm achieves better results than CBD-

S. This is because our part-based detectors are very robust

to occlusions and pose variations, and the segmentators can

directly estimate the label map without a separated template

matching process. The results of our method on several par-

tially occluded faces are shown in Fig.10 (b).

Methods \ RMSE <7 pixels <9.5 pixels <12 pixels

Ours 85.8% 92.5% 99.3%

CBDS [16] 76.9% 88.3% 98.1%

Table 1. Comparisons the alignment results with CBDS [16]. Each col-

umn is the percentage of images with RMSE less than a threshold.

Experiment III: feature point extraction. The goal of

our third experiment is to compare our approach to BoR-

MaN and eASM with a facial feature points detection task.

Fig.7 (c) plots the model of 21 feature points we use, which

is defined similar to the BoRMaN method except the point

at the facial profile. Our algorithm can be easily extended to

consider the profile. Our feature points are extracted on the

reconstructed label map, where two eye center points are e-

quivalent to the centers of the eye detectors and the other

boundary points are achieved by running fast corner detec-

tion. In this experiment, we collect two testing sets and

denote them as A and B. Set A consists of all the original

1, 521 images in the BioID database, while set B consists

of 200 randomly occluded images selected from set A. We

separate this experiment into two parts: 1) we first com-

pare with both BoRMaN and eASM on the set A, and 2) we

compare with BoRMaN on the set B9.

Part 1. Both BoRMaN and eASM evaluated their meth-

ods on the whole BioID database. We therefore can com-

pare the performance with these two methods on the set A.

The cumulated error distributions of the me17 error mea-

sure [23] are illustrated in Fig.9 (left). The me17 measure

computes the mean error over all internal points, which are

9Since the program of eASM is not publicly obtainable, we only com-

pare with BoRMaN on set B. Its executable program is available at:

http://ibug.doc.ic.ac.uk/resources/facial-point-detector-2010/.
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Figure 9. Comparisons of the cumulative error distribution of point-wise

error measured on set A (left) and set B (right) respectively.

all the points except for the facial profile and eyelids. Fig.9

(left) shows that our approach outperforms these two meth-

ods.

Part 2. We then compare our method with BoRMaN on

set B, where the images are partially occluded. The results

are shown in Fig.9 (right). When occlusions are present-

ed, we demonstrate that our approach provides significantly

better results. Some results are plotted in Fig.10 (c).

Experiment IV: facial component segmentation. To

further show that our algorithm can generalize to different

facial modality, we conduct a 7-classes segmentation test on

100 face sketch images selected from the CUFSF database.

The definition of the 7 classes is similar to Experiment I.

We evaluate by computing the accuracy values, which are

the percentage of image pixels assigned to the correct la-

bel. Several results are visualized in Fig.10 (d). Our overall

pixel-wise labeling accuracy is 92.9%, which is better than

84.1% of the CBDS method.

5. Conclusion
In this paper, we propose a hierarchial face parser,

where face parsing is achieved by part-based face detec-

tors, component-based detectors, and component segmen-

tators. For accurate face parsing, we recast segmentation of

face components as the cross-modality data transformation

problem, and solve it by a new deep learning strategy, which

can output the label map given an image patch as input. By

incorporating the deformable part-based detectors and the

segmentators, our parser is very robust to occlusions, pose

variations, and background clutters. We test our method on

several applications and demonstrate great improvement.
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