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Abstract. In recent years, a wide variety of different texture descriptors
has been proposed, including many LBP variants. New types of descriptors
based on multistage convolutional networks and deep learning have also
emerged. In different papers the performance comparison of the proposed
methods to earlier approaches is mainly done with some well-known tex-
ture datasets, with differing classifiers and testing protocols, and often not
using the best sets of parameter values and multiple scales for the compar-
ative methods. Very important aspects such as computational complexity
and effects of poor image quality are often neglected.

In this paper, we propose a new extensive benchmark (RoTeB) for
measuring the robustness of texture operators against different classi-
fication challenges, including changes in rotation, scale, illumination,
viewpoint, number of classes, different types of image degradation, and
computational complexity. Fourteen datasets from the eight most com-
monly used texture sources are used in the benchmark. An extensive eval-
uation of the recent most promising LBP variants and some non-LBP
descriptors based on deep convolutional networks is carried out. The best
overall performance is obtained for the Median Robust Extended Local
Binary Pattern (MRELBP) feature. For textures with very large appear-
ance variations, Fisher vector pooling of deep Convolutional Neural Net-
works is clearly the best, but at the cost of very high computational com-
plexity.The sensitivity to imagedegradations and computational complex-
ity are among the key problems for most of the methods considered.
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1 Introduction

Texture is a ubiquitous and fundamental characteristic of the appearance of vir-
tually all natural surfaces. Texture classification plays an important role in the
fields of computer vision and pattern recognition, including biomedical image
analysis, industrial inspection, analysis of satellite or aerial imagery, document
image analysis, face analysis and biometrics, object recognition, material recog-
nition and content based image retrieval.

The texture classification problem is conventionally divided into two sub-
problems of feature extraction and classification. It is generally agreed that the
extraction of powerful texture features is of greater importance to the over-
all success of a texture classification strategy and, consequently, most research
focuses on the feature extraction part, with extensive surveys [1,2]. Neverthe-
less it remains a challenge to design texture features which are computationally
efficient, highly discriminative and effective, and robust to the imaging environ-
ment, including changes in illumination, rotation, view point, scaling, occlusion,
and noise level.

A texture image or region obeys some statistical properties and exhibits
repeated structures. Therefore, dense orderless statistical distribution of local
texture features have been dominating the texture recognition literature since
1990s. The study of texture recognition has inspired many of the early represen-
tations of images. The idea of representing texture using the statistics of local
features have led to the development of “textons” [3,4], the popular “Bag-of-
Words (BoW)” models [5–9] and their variants such as the Fisher Vector [10].
Within the BoW framework, texture images are represented as histograms by
pooling over a discrete vocabulary of discriminative and robust local features
[4,6]. Important local texture descriptors include filter banks such as Gabor
wavelets [11], LM filters [4], MR8 filters [6], raw pixel intensity-based features
such as Local Binary Pattern (LBP) [5], Patch descriptors [8], random features
[9], sparse descriptors such as SPIN [7], SIFT [1] and RIFT [7], and others [1,2].
Alternatives to simple histogram pooling have been proposed, such as Fisher
Vectors (FVs) [12].

LBP [2,5] has emerged as one of the most prominent texture features and
a great many new variants continue to be proposed. LBP’s strengths include
avoiding the time consuming discrete vocabulary pretraining stage in the BoW
framework, its overall computational simplicity, its monotonic gray-scale invari-
ance, its flexibility, and ease of implementation.

Recently, methods based on deep convolutional networks have emerged as
a promising alternative to conventional “manually designed” features such as
LBP. Important examples includes FV-CNN [13,14], obtained by Fisher Vec-
tor pooling of a Convolutional Neural Network (CNN) filter bank pretrained
on large-scale datasets such as ImageNet, ScatNet (Scattering Convolution Net-
works) [15,16], PCANet [17] and RandNet [17]. When comparing these to LBP,
only basic single resolution LBP methods have been normally considered [18]
and no systematic performance evaluation has been carried out.
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However, there has been a proliferation of LBP-related methods, so any com-
parison against a relatively small set cannot be considered an exhaustive inves-
tigation against the LBP strategy. Furthermore recent LBP studies show that
the use of multi-scale information, for example, can significantly improve the
performance of LBP variants, therefore it is highly pertinent to perform a more
comprehensive performance evaluation and fair comparison of LBP approaches
against novel challengers from the deep learning domain. The tests performed
in this paper seek to explore and assess four criteria:

Computational complexity is an important factor in designing computer
vision systems systems for real-world applications, particularly for portable com-
puting systems (e.g., smart phones, smart glasses) with strict low power con-
straints. Many papers emphasize primarily recognition accuracy, where we feel
the need to balance this perspective with computational complexity as well.

Multiscale variations have been proposed for most LBP variations in their
respective original works, but usually limited to three scales. Since the spatial
support of a texture descriptor influences its classification performance, for fair
comparison we propose to implement multiscale and rotational-invariant formu-
lations of each LBP method up to nine scales, following the multiscale analysis
approach proposed by Ojala et al. [5].

A large number of texture classes is one aspect complicating many tex-
ture analysis problems, together with the associated dynamics within a class
(intra-class variations), such as variations in periodicity, directionality and ran-
domness, and the external dynamics due to changes in the imaging conditions
including variations in illumination, rotation, view point, scaling, occlusion and
noise. Despite this complexity, most existing LBP variants have been evaluated
only on small texture datasets with a relatively small number of texture classes,
such as certain popular benchmark Outex test suites [5]. Experimental results
based on datasets with small intraclass variations can be misleading; there are
more challenging texture datasets with many texture classes or large intraclass
variations, such as UIUC [7], UMD [19], CUReT [8] and KTHTIPS2b [20], DTD
[21], ALOT [22] and Outex TC40 [23], however, the performance of many LBP
variants in these more challenging datasets is unknown. There is therefore sig-
nificant value in performing a large scale empirical study on such challenging
texture datasets.

Robustness to poor image quality, due to noise, image blurring and ran-
dom image corruption, is usually neglected in the performance evaluation of
texture operators. However any feature which performs only under idealized
circumstances is almost guaranteed to disappoint in practice, therefore we are
proposing an ensemble of robustness tests to better assess the generalizability
of a given strategy away from its training setting. Noise can be severe in many
medical (ultrasound, radiography), astronomical, and infrared images. The two
main limitations in image accuracy are blur and noise, both of which we will test.

The main contributions of this paper are to propose a new challenging
benchmark for a fair evaluation of different descriptors in texture classification,
presenting a performance evaluation of the most promising LBP variants, and
comparing to recent well-known texture features based on deep convolutional
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networks. In order to establish a common software platform and a collection of
datasets for easy evaluation, we plan to make both the source code and datasets
available on the Web.

2 Local Binary Pattern Methods Under Comparison

Local Binary Pattern (LBP). The original LBP [24] characterizes the spa-
tial structure of a local image texture pattern by thresholding a 3 × 3 square
neighborhood with the value of the center pixel and considering only the sign
information to form a local binary pattern. A circular symmetric neighborhood
is suggested, where locations that do not fall exactly at the center of a pixel
are interpolated [5]. The LBP operator was extended to multiscale analysis to
allow any radius and number of pixels in the neighborhood. A rotation invariant
version LBPri

r,p of LBPr,p was obtained by grouping together those LBPs that
are actually rotated versions of the same pattern. Observing that some LBP pat-
terns occur more frequently than others, the uniform LBP LBPu2

r,p preserves only
these frequent patterns, grouping all remaining ones. LBPriu2

r,p is the combination
of LBPri

r,p and LBPu2
r,p [5].

Median Binary Pattern (MBP). Instead of using only the gray value of the
center pixel for thresholding, MBP uses the local median. MBP also codes the
value of the center pixel, resulting in a doubling in the number of LBP bins.

Local Ternary Pattern (LTP). LTP was proposed by Tan and Triggs in
[25] to tackle the image noise in uniform regions. Instead of binary code, the
pixel difference is encoded by three values according to a threshold T . LTP is
capable of encoding pixel similarity modulo noise using the simple rule that any
two pixels within some range of intensity are considered similar, but no longer
strictly invariant to gray scale transformations.

Noise Resistant Local Binary Pattern (NRLBP). In a similar strategy to
LTP, Ren et al. [26] proposed to encode small pixel difference as an uncertain
bit, and then to determine its value based on the other bits of the LBP code.
The main idea of NRLBP is to allow multiple LBP patterns to be generated
at one pixel position, however NRLBP requires a lookup table of size 3p for p
neighboring pixels, which limits the neighborhood size.

Novel Extended Local Binary Pattern (NELBP). NELBP [27] is designed
to make better use of the nonuniform patterns instead of discarding them.
NELBP classifies and combines the “nonuniform” local patterns based on ana-
lyzing their structure and occurrence probability.

Local Binary Pattern Variance (LBPV). Guo et al. [28] proposed LBPV
to incorporate local contrast information by utilizing the variance as a locally
adaptive weight to adjust the contribution of each LBP code. LBPV avoids the
quantization pretraining used in [5].

Noise Tolerant Local Binary Pattern (NTLBP). With similar motivations
as NELBP [27], Fathi and Naghsh-Nilchi [29] proposed NTLBP that not only
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Table 1. Summary of texture datasets used in our experimental evaluation. Θ1 =
{5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}, Θ2 = {0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}

Texture
Dataset

Texture
Classes

Sample

Size (pixels)

# Images

/Class

# Train

/Class

# Test

/Class
# Images
in Total

Train/Test

Predefined?
Instances

Categories? Description

Outex TC10 24 128 × 128 180 20 160 4320 Yes Instances rotation changes (0◦ angle for training and angles in Θ1 for testing)

Outex TC12 000 24 128 × 128 200 20 180 4800 Yes Instances illumination variations, rotation changes
Outex TC12 001 24 128 × 128 200 20 180 4800 Yes Instances (0◦ angle for training and angles in Θ2 for testing)

CUReT 61 200 × 200 46 46 92 5612 No Instances illumination changes, small rotations, shadowing, pose changes

Brodatz 111 215 × 215 9 3 6 999 No Instances lack of intraclass variations

BrodatzRot 111 128 × 128 9 3 6 999 No Instances rotation changes, lack of intraclass variations

UIUC 25 320 × 240 40 20 20 1000 No Instances strong scale, rotation and viewpoint changes, nonrigid deformations

UMD 25 320 × 240 40 20 20 1000 No Instances strong scale, rotation and viewpoint changes

KTH-TIPS2b 11 200 × 200 432 324 108 4752 Yes Categories illumination changes, small rotation changes, large scale changes

DTD 47 Not Fixed 120 80 40 5640 No Categories Attribute-based class, many texture categories per class

ALOT 250 384 × 256 100 50 50 25000 No Instances strong illumination changes, large number of classes, rotation changes

Outex TC40 A 294 128 × 128 180 80 100 52920 Yes Instances rotation changes, large number of classes

Outex TC40 B 294 128 × 128 180 80 100 52920 Yes Instances illumination changes, rotation changes, large number of classes

Outex TC40 C 294 128 × 128 180 80 100 52920 Yes Instances illumination changes, rotation changes, large number of classes

Datasets for Noise Robustness Evaluation

Texture
Dataset

Texture
Classes

Sample

Size (pixels)

# Images

/Class
# Train Images

in Total
# Test Images

in Total Description

Outex TC11n 24 128 × 128 20 480 (20 ∗ 24) 480 (20 ∗ 24) Training: illuminants (inca), Rotations (0◦)
Outex TC23n 68 128 × 128 20 1360 (20 ∗ 68) 1360 (20 ∗ 68) Testing: Training images injected with Gaussian Noise

Outex TC11b 24 128 × 128 20 480 (20 ∗ 24) 480 (20 ∗ 24) Training: illuminants (inca), Rotations (0◦)
Outex TC23b 68 128 × 128 20 1360 (20 ∗ 68) 1360 (20 ∗ 68) Testing: Training images blurred by Gaussian PSF

Outex TC11s 24 128 × 128 20 480 (20 ∗ 24) 480 (20 ∗ 24) Training: illuminants (inca), Rotations (0◦)
Outex TC23s 68 128 × 128 20 1360 (20 ∗ 68) 1360 (20 ∗ 68) Testing: Training images injected with Salt-and-Pepper

Outex TC11c 24 128 × 128 20 480 (20 ∗ 24) 480 (20 ∗ 24) Training: illuminants (inca), Rotations (0◦)
Outex TC23c 68 128 × 128 20 1360 (20 ∗ 68) 1360 (20 ∗ 68) Testing: Training images with Random Pixel Corruption

uses nonuniform patterns but also tolerates noise by using a circular majority
voting filter and a scheme to regroup the nonuniform LBP patterns into several
different classes.

Pairwise Rotation Invariant Cooccurrence Local Binary Pattern
(PRICoLBP). Borrowing from Gray Level Cooccurrence Matrices (GLCM)
[30], Qi et al. [31] proposed PRICoLBP to encapsulating the joint probability of
pairs of LBPs at relative displacements. PRICoLBP incorporates two types of
context: spatial cooccurrence and orientation cooccurrence. The method aims to
preserve the relative angle between the orientations of individual features. The
length of the feature vector may limit the applicability of PRICoLBP.

Multiscale Joint encoding of Local Binary Pattern (MSJLBP). Instead
of considering cooccurrences of LBPs at different locations as in PRICoLBP [31],
MSJLBP [32] was proposed to jointly encode the pairwise information of LBPs
at the same centered location but from two different scales.

Completed Local Binary Pattern (CLBP). CLBP was proposed by Guo
et al. [33] to combine multiple LBP type features (CLBP S, CLBP M and
CLBP C) via joint histogramming for texture classification. The image local dif-
ferences between a center pixel and its neighbors are decomposed into two comple-
mentary components: the signs and the magnitudes (CLBP S and CLBP M). The
center pixels, representing image gray level, were also regarded to have discrimi-
native information and are converted into a binary code by global thresholding.

discriminative Completed Local Binary Pattern (disCLBP). Guo et al.
[34] proposed a three-layered learning model, estimating the optimal pattern
subset of interest by simultaneously considering the robustness, discriminative
power and representation capability of features. This model is generalized and
can be integrated with existing LBP variants such as conventional LBP, rotation
invariant patterns, CLBP and LTP to derive new image features.
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Table 2. Classification results (%) for various LBP variants on the Outex TC10 and
Outex TC12 (Outex TC12 000 and Outex TC12 001) test suites as a function of neigh-
borhood size (the number scales used for multiscale analysis). For each method, the
highest classification accuracies are highlighted in bold for each dataset. LEP filtering
support is 65 × 65. Some results (◦) are not provided for efficiency reasons.

Test Suite Outex TC10 (Rotation Invariance) Outex TC12 (Illumination and Rotation Invariance)
No. Method 3×3 5×5 7×7 9×9 11×11 13×13 15×15 17×17 19×19 3×3 5×5 7×7 9×9 11×11 13×13 15×15 17×17 19×19

1 LBPriu2 84.71 93.44 97.21 98.91 99.01 99.38 99.56 99.66 99.69 64.97 82.07 86.79 89.64 89.12 89.72 90.81 91.39 92.14
2 MBPriu2 80.21 87.40 89.92 92.47 94.24 94.90 95.16 95.21 95.29 63.18 73.01 79.71 83.66 84.57 85.09 85.69 86.22 86.69
3 LTPriu2 92.94 97.14 98.54 99.32 99.53 99.74 99.84 99.84 99.92 73.59 86.46 90.88 92.08 92.35 92.78 93.25 93.77 94.28
4 NRLBPriu2 89.79 93.78 96.67 97.01 98.07 97.81 95.60 95.05 93.44 71.35 83.00 87.05 88.92 89.57 90.20 88.78 87.48 86.76
5 NELBP 83.52 93.88 97.08 98.70 98.88 98.93 99.48 99.53 99.64 69.02 85.34 88.72 89.91 89.59 90.10 91.30 92.15 93.55
6 NTLBP 84.24 91.88 96.15 98.10 98.88 99.19 99.35 99.32 99.24 67.06 82.21 88.28 91.61 92.71 93.63 94.88 95.27 95.23
7 PRICoLBPg — — — — — 94.48 — — — — — — — — 92.53 — — —
8 MSJLBP — — 96.67 — — — — — — — — 95.47 — — — — — —
9 disCLBP 89.30 97.47 98.93 99.79 99.95 ◦ ◦ ◦ ◦ 75.22 89.80 94.40 96.00 96.10 ◦ ◦ ◦ ◦
10 LEP — — — — — — — — 81.90 — — — — — — — — 81.46
11 CLBP 96.72 98.67 99.35 99.45 99.51 99.51 99.51 99.53 99.58 91.54 94.48 95.67 95.78 95.49 95.39 95.43 95.43 95.42
12 ELBP 96.41 99.38 99.66 99.71 99.71 99.66 99.64 99.56 99.53 92.08 97.37 97.57 97.08 96.52 96.10 96.06 96.05 96.03
13 BRINT 91.88 96.95 98.52 99.04 99.32 99.32 99.30 99.40 99.35 87.48 94.29 96.28 97.16 97.29 97.53 97.71 97.96 98.13
14 MRELBP — 98.44 — 99.69 — 99.79 — 99.82 — — 96.24 — 99.03 — 99.56 — 99.57 —
15 LBPVriu2 91.30 94.35 97.24 98.49 98.93 99.22 99.27 99.14 99.11 76.88 86.76 92.72 93.34 93.92 93.81 93.92 94.03 94.00
16 CLBPHF 87.42 94.61 98.20 99.01 99.56 99.69 99.71 99.71 99.69 78.39 90.29 93.34 94.10 94.07 94.07 94.39 94.61 94.80
17 LBPD — — 98.78 — — — — — — — — 96.67 — — — — — —
18 RILPQ — — — — — 99.58 — — — — — — — — 97.43 — — —

Extended Local Binary Pattern (ELBP). ELBP is proposed by Liu et al.
[35] to combine several LBP–related features: pixel intensities and differences
from local patches. The intensity-based features consider the intensity of the
central pixel (CI) and those of its neighbors (NI); differences are computed by
radius and by angle. ELBP reflects the combination of radial differences (RD)
and two intensities.

Binary Rotation Invariant and Noise Tolerant Texture descriptor
(BRINT). Similar to CLBP [33] and ELBP [35], BRINT [36] combines three
individual descriptors BRINT S, BRINT M and BRINT C. Unlike CLBP and
ELBP, where only rotation invariant uniform patterns are considered, BRINT
uses all of the rotation invariant patterns. In BRINT, pixels are sampled in a
circular neighborhood, but keeping the number of bins in a single-scale LBP
histogram constant and small, such that arbitrarily large circular neighborhoods
can be sampled and compactly encoded. BRINT has low feature dimensionality
and noise robustness.

Median Robust Extended Local Binary Pattern (MRELBP). In order
to jointly capture microtexture and macrotexture information, Liu et al. [37]
built on the NI, RD and CI of ELBP [35] but with nonlocal–median pixel sam-
pling, significantly outperforming ELBP, especially in situations of noise, image
blurring and random image corruption. Moreover, MRELBP is fast to compute
and has much lower feature dimensionality.

Completed Local Binary Pattern Histogram Fourier Features
(CLBPHF). Ahonen et al. [38] proposed the LBP Histogram Fourier features
(LBPHF) to achieve rotation invariance globally by first computing a uniform
LBP histogram over the whole image, and then constructing rotationally invari-
ant features from the DFT transform of the histogram. Later in [39], LBPHF is
combined CLBP [33] to further improve its distinctiveness and results CLBPHF.
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Local Energy Pattern (LEP). Zhang et al. [40] proposed LEP for texture
classification, where multiscale and multiorientation Gaussian-like second order
derivative filters are used to filter the original image. LEP encodes the relation-
ship among different feature channels using an N-nary coding scheme, rather
than binary. One downside of the LEP is that pretraining is required.

Local Binary Pattern Difference (LBPD). Covariance Matrices capture
correlation among elementary features of pixels over an image region. Ordinary
LBP features cannot be used as elementary features, since they are not numerical
variables in Euclidean spaces. To address this problem, Hong et al. [41] developed
COV-LBP. First the LBPD, a Euclidean space variant, was proposed, reflecting
how far one LBP lies from the LBP mean of a given image region. Secondly, the
covariance was found of a bank of discriminative features, including LBPD.

Rotation Invariant Local Phase Quantization (RILPQ). LPQ [42] is gen-
erated by quantizing the Fourier transform phase in local neighborhoods, such
that histograms of LPQ labels computed within local regions are used as a tex-
ture descriptor similar to LBP, leading to a tolerance to image blur. LPQ was
generalized with a rotation invariant extension to RILPQ [43].

Fig. 1. Datasets such as CUReT, UIUC and Outex addressed the problem of instance-
level identification. KTH-TIPS2b addressed the problem of category-level material
recognition. The DTD dataset addresses a very different problem of category-level
attribute recognition, i.e. describing a pattern using intuitive attributes. In DTD,
many visually very different texture categories appear in the same attribute class,
which makes the classification problem very challenging.

2.1 Recent Non-LBP Deep Learning Approaches

FV-CNN. Deep convolutional neural networks (CNN) have demonstrated their
power as a universal representation for recognition. However, global CNN acti-
vations lack geometric invariance, which limits their robustness for recognizing
highly variable images. Cimpoi et al. [13,14] propose an effective texture descrip-
tor FV-CNN, obtained by first extracting CNN features from convolutional lay-
ers for an texture image at multiple scale levels, and then performing orderless
Fisher Vector pooling of these features.
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ScatNet. Despite significant progress, there is still little insight into the internal
operation and behavior of deep CNN models. Arguably one instance that has led
to a clear mathematical justification is the multistage architectures of ConvNet
[13,44], and specifically in the wavelet convolutional scattering network (Scat-
Net) [15,16] where the convolutional filters are predefined as wavelets, hence no
learning process is needed. ScatNet has been extended to achieve rotation and
scale invariance [45].

PCANet and RandNet. Motivated by ScatNet, Chan et al. [17] proposed a
simple deep learning network, PCANet, based on cascaded / multistage principal
component analysis (PCA), binary hashing, and histogram pooling. The authors
also introduced RandNet, a simple variation of PCANet, which shares the same
topology as PCANet, but in which the cascaded filters are randomly selected,
not learned.

Table 3. Performance comparison for LBP variants tested on a number of texture
datasets in terms of classification scores (%) and computational complexity (including
feature extraction time and feature dimensionality). All results in Part I are obtained
with a NNC classifier, with the exception of SVM for the DTD results. Results for
PCANet and RandNet on DTD are also obtained with SVM. For each dataset, the
highest score is shadowed, and those scores which are within 1 % of the highest are
boldfaced. For each method, the total number of highlighted scores are given in the
“# Bold” column. In the “Time” column, the reported time does not include the
extra training time for those methods labeled with (�). The (�) label in the LBPD
method means that although LBPD has low feature dimensionality, it is pretty time
consuming in the classification stage since it requires an affine invariant metric in the
NNC classification.

Results on Fourteen Texture Datasets Computation Cost Noise Robustness
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No. # Classes (24) (24) (61) (111) (111) (25) (25) (11) (47) (250) (294) (294) (ms) (68) (68) (68) (68)
Part I: Evaluation the performance of representative LBP methods.

1 MRELBP [37] 99.82 99.58 97.10 90.86 81.92 98.66 94.73 68.98 44.89 97.28 96.20 78.97 6 416.6 800 79.2 85.8 99.9 96.9
2 CLBP [33] 99.45 95.78 97.33 92.34 84.35 98.62 95.75 64.18 42.63 96.74 96.98 65.49 7 127.9 3552 5.6 36.1 2.9 2.9
3 ELBP [35] 99.66 97.57 96.60 93.24 85.92 98.93 94.61 64.84 39.89 97.21 96.18 67.70 6 114.6 2200 3.3 19.7 1.5 4.4
4 CLBPHF [39] 99.69 94.80 97.05 91.95 82.07 97.24 92.55 68.10 50.21 96.30 96.42 69.63 5 256.2 4580 17.5 39.1 2.9 1.5
5 disCLBP [34] 99.95 96.10 96.98 93.18 83.77 97.53 94.24 63.83 44.47 95.01 97.54 74.00 4 ( )585.8 7796 12.3 27.1 4.4 2.6
6 LTPriu2 [25] 99.92 94.28 96.33 92.41 83.51 96.66 93.27 63.45 41.45 94.60 96.85 69.14 4 231.8 420 7.7 24.3 3.5 2.9
7 BRINT [36] 99.35 98.13 97.02 90.83 78.77 97.44 93.30 66.67 45.35 96.13 96.24 81.85 3 248.8 1296 27.4 59.1 1.5 1.6
8 LBPriu2 [5] 99.69 92.14 97.03 90.70 79.22 96.15 88.36 62.69 37.09 94.15 94.83 71.72 2 87.2 210 8.4 16.6 1.5 1.5
9 NELBP [27] 99.64 93.55 96.85 90.19 80.08 95.55 88.29 62.39 39.93 95.20 95.39 74.87 2 91.3 273 10.3 17.8 1.5 1.5
10 MSJLBP [32] 96.67 95.47 97.20 92.94 79.11 96.53 83.00 65.51 43.14 95.65 88.59 60.09 2 854.6 3540 4.9 14.8 3.5 2.7
11 NTLBP [29] 99.32 95.27 96.11 89.31 80.25 95.72 88.13 61.30 38.24 94.47 91.70 69.49 1 332.3 388 9.0 21.7 4.7 3.7
12 PRICoLBPg [31] 94.48 92.53 96.25 92.94 77.00 95.69 80.38 61.17 44.53 94.38 89.56 64.16 1 380.4 3540 5.6 19.6 2.1 1.5
13 LBPVriu2 [28] 99.27 93.92 95.85 87.63 75.89 93.79 81.98 59.03 36.21 91.87 92.88 73.20 1 350.7 158 15.4 15.6 1.5 1.5
14 RILPQ [43] 99.58 97.43 92.15 91.37 79.59 97.49 91.17 58.75 42.70 94.85 90.76 69.33 1 44.8 256 56.5 53.9 1.5 2.6
15 LBPD [41] 98.78 96.67 94.23 89.74 74.79 92.99 90.98 63.47 35.86 92.82 89.96 60.60 0 ( )54.2 289 14.8 40.2 2.9 2.6
16 NRLBPriu2 [26] 98.07 89.57 94.00 87.42 75.77 93.32 81.10 58.61 37.77 87.86 89.93 61.34 0 356.9 50 9.1 20.3 2.9 5.3
17 LEP [40] 81.90 81.46 88.31 82.64 61.41 91.75 81.80 63.13 38.67 89.67 74.97 56.07 0 ( )1088.9 520 76.8 100.0 1.8 5.6
18 MBPriu2 [46] 95.29 86.69 92.09 87.25 74.57 92.41 80.89 61.49 27.73 88.23 84.90 45.46 0 215.6 420 5.2 13.5 2.5 2.6

Part II: comparing MRELBP with deep convolutional network based approaches.
1 MRELBP (SVM) [37] 99.97 99.77 99.02 93.12 85.06 99.36 96.88 77.91 44.89 99.08 97.15 77.79 5 416.6 800 70.5 69.8 99.1 95.5
2 FV-VGGVD (SVM) [13] 80.0 82.3 99.0 98.7 92.1 99.9 99.8 88.2 72.3 99.5 93.7 71.6 8 ( )2655.4 65536 71.5 83.6 5.2 9.5
3 FV-VGGM (SVM) [13] 72.8 77.5 98.7 98.6 88.2 99.9 99.7 79.9 66.8 99.4 92.6 56.8 7 ( )358.8 65536 43.9 65.7 1.5 4.9
4 ScatNet (PCA) [16] 99.69 99.06 99.66 84.46 75.08 98.40 96.15 68.92 35.72 98.03 94.07 77.93 5 10883.7 596 31.3 53.0 1.5 1.5
5 FV-AlexNet (SVM) [13] 67.3 72.3 98.4 98.2 83.1 99.7 99.1 77.9 62.9 99.1 90.4 51.8 1 ( )238.6 32768 46.0 63.6 5.0 8.6
6 ScatNet (NNC) [16] 98.59 98.10 95.51 83.03 73.72 93.36 88.64 63.66 26.53 85.27 87.55 72.45 0 10883.7 596 45.3 41.9 1.5 2.9
7 PCANet [17] (NNC) 39.87 45.53 92.03 90.89 37.21 90.50 57.70 59.43 41.44 88.35 59.49 44.39 0 ( )711.8 2048 50.7 51.9 1.5 1.5
8 PCANetriu2 [17] (NNC) 35.36 40.88 81.48 85.76 29.96 85.67 49.80 52.15 30.11 79.77 33.25 21.80 0 ( )725.6 80 43.9 36.8 1.5 2.6
9 RandNet [17] (NNC) 47.43 52.45 90.87 91.14 40.84 90.87 56.57 60.67 36.66 86.94 65.28 42.55 0 711.8 2048 6.2 27.7 1.5 1.5
10 RandNetriu2 [17] (NNC) 43.54 45.70 80.46 85.59 30.78 87.40 48.20 56.90 26.51 73.51 45.14 25.96 0 725.6 80 5.9 20.6 1.5 1.5
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Table 4. Classification scores (%) in the context of additive Gaussian noise and
Gaussian blurring.

Robust to Gaussian noise Gaussian blur

Dataset (Outex ) TC11n TC23n TC11b TC23b

No Method σ = 5 σ = 5 σ = 0.5 σ = 0.75 σ = 1 σ = 1.25 σ = 0.5 σ = 0.75 σ = 1 σ = 1.25

1 MRELBP [37] 91.5 79.2 100.0 100.0 93.8 75.4 99.9 97.9 85.8 61.8

2 CLBP [33] 11.9 5.6 98.8 74.8 49.6 23.1 86.6 55.4 36.1 21.2

3 ELBP [35] 9.4 3.3 98.3 71.5 38.5 21.5 86.2 39.9 19.7 11.0

4 CLBPHF [39] 20.6 17.5 99.6 81.3 47.9 29.4 85.4 59.2 39.1 25.1

5 disCLBP [34] 25.2 12.3 100.0 70.2 39.4 20.8 95.6 51.0 27.1 14.1

6 LTPriu2 [25] 13.7 7.7 96.9 58.3 27.3 13.7 77.3 43.1 24.3 13.3

7 BRINT [36] 61.9 27.4 100.0 97.1 80.4 44.6 100.0 79.5 59.1 39.1

8 LBPriu2 [5] 17.7 8.4 94.2 46.5 24.6 12.7 72.4 30.3 16.6 9.7

9 NELBP [27] 19.2 10.3 94.0 47.7 28.3 17.1 73.3 32.0 17.8 10.5

10 MSJLBP [32] 17.7 4.9 96.0 46.0 26.0 11.9 74.9 28.9 14.8 8.9

11 NTLBP [29] 24.0 9.0 96.3 49.0 33.1 19.4 80.1 35.7 21.7 14.1

12 PRICoLBPg [31] 15.4 5.6 98.1 50.0 26.5 14.4 81.1 32.5 19.6 11.3

13 LBPVriu2 [28] 27.1 15.4 96.9 52.1 22.3 17.1 73.9 34.3 15.6 8.3

14 RILPQ [43] 82.9 56.5 100.0 99.2 76.7 45.8 100.0 76.0 53.9 37.2

15 LBPD [41] 24.6 14.8 99.4 85.8 65.2 45.4 87.7 56.0 40.2 30.6

16 NRLBPriu2[26] 21.7 9.1 93.3 46.0 20.0 9.2 63.2 36.3 20.3 8.8

17 LEP [40] 91.9 76.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8

18 MBPriu2 [46] 12.1 5.2 85.4 29.0 18.5 11.9 58.7 22.5 13.5 10.6

19 FV-VGGVD

(SVM) [13]

93.1 71.5 100.0 100.0 96.5 89.8 99.6 94.1 83.1 71.8

20 FV-VGGM

(SVM) [13]

81.5 43.9 100.0 99.0 87.3 60.8 96.5 87.7 65.7 42.4

21 ScatNet (PCA)

[16]

60.2 31.3 100.0 94.8 80.0 64.6 97.7 72.4 53.0 41.1

22 FV-AlexNet

(SVM) [13]

81.5 46.0 100.0 98.8 87.7 60.4 97.1 82.8 63.6 43.4

23 ScatNet (NNC)

[16]

77.1 45.3 100.0 91.7 68.5 40.2 92.7 60.4 41.9 24.0

24 PCANet [17] 74.0 50.7 100.0 100.0 86.0 56.9 100.0 99.2 51.9 31.0

25 PCANetriu2[17] 62.7 43.9 100.0 88.8 52.5 32.5 100.0 64.6 36.8 25.7

26 RandNet [17] 15.3 6.2 100.0 78.1 56.5 37.4 96.2 40.4 27.7 19.4

27 RandNetriu2 [17] 14.8 5.9 97.8 64.2 42.1 33.3 81.1 37.2 20.6 18.9

3 Experimental Setup

We conducted experiments on the fourteen texture datasets shown in Table 1.
These datasets are derived from the eight most commonly used texture sources:
Outex [23], CUReT [8], Brodatz [47], UIUC [7], UMD [19], KTHTIPS2b [20],
ALOT [22] and DTD [21]. The experimental setup on the three test suites
Outex TC10, Outex TC12 000 and Outex TC12 001, which were desig-
nated by Ojala et al. [5] for rotation and illumination invariant texture classifi-
cation, was kept exactly as in [5].

Following Ojala et al. we created Outex TC40 A, Outex TC40 B and
Outex TC40 C [5] for large-scale texture classification. Each dataset contains
294 texture classes, with training data acquired under illuminant “inca” and
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rotations 0◦, 30◦, 45◦ and 60◦, and tested with rotations 5◦, 10◦, 15◦, 75◦ and
90◦. The test images in A are from illumination “inca”, the same as the train-
ing images, and thus simpler than datasets B and C, with testing data from
illumination types “Horizon” and “TL84”, respectively.

For CUReT, we use the same subset of images as in [8,9]. For Brodatz [47]
we use the same dataset as [1,7,48]. The BrodatzRot dataset is generated
from Brodatz by rotating each sample at a random angle, helping to test rotation
invariance. The challenging UIUC dataset [7] contains images with strong scale,
rotation and viewpoint changes in uncontrolled illumination environment. The
UMD dataset [19] is similar to UIUC with higher resolution images but exhibits
less nonrigid deformations and stronger illumination changes. We resize images
in ALOT to obtain lower resolution (384 × 256). ALOT is challenging as it
represents a significantly larger number of classes (250) compared to UIUC and
UMD (25) and has very strong illumination changes (8 levels of illumination),
albeit with less dramatic viewpoint changes.

Generalizing the texture recognition problem to a recognition of surface mate-
rial, KTH-TIPS2b [20] has four physical samples for each class, imaged under
3 viewing angles, 4 illuminants, and 9 different scales. A quite different data-
base, DTD contains textures in the wild, collected from the web and organized
according to a list of 47 attribute categories inspired from human perception,
with a single category containing rather different textures, as shown in Fig. 1.
This dataset aims at supporting real-world applications where the recognition
of texture properties is a key component.

To evaluate the robustness with respect to random noise, we considered
Gaussian noise, image blurring, salt-and-pepper noise, and random pixel cor-
ruption, the same noise types tested in [49]. We use only the noise-free texture
images for training and test on the noisy data, as summarized in Table 1. The
test suites are based on Outex TC11n and Outex TC23n, which have 24 and 68
texture classes, respectively. The noise parameters include Gaussian noise stan-
dard deviation σ, Gaussian blur standard deviation σ, Salt-and-Pepper noise
density ρ, and pixel corruption density υ.

Implementation Details. For the evaluated methods, we use the original source
code if it is publicly available, and for the remainder we have developed our own
implementation. To ensure fair comparisons, the parameters of each method are
fixed across all the datasets, since it is difficult and undesirable to tune the para-
meters of each method for each evaluation. In most cases we use the default para-
meters suggested in the original papers. For ScatNet, we used the same feature
presented in [15]. For PCANet and RandNet, we used the parameter settings sug-
gested for texture classification in [17].

For most of the tested LBP methods, multiscale variations had been pro-
posed in the original work, but usually limited to three scales. Since the spatial
support of a texture descriptor influences its classification performance, for fair
comparison we implemented multiscale and rotational invariant formulations of
each LBP method up to nine scales, following the multiscale analysis approach
proposed by Ojala et al. [5], representing a texture image by concatenating his-
tograms from multiple scales.
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Each texture sample is preprocessed, normalized to zero mean and unit stan-
dard deviation. For CUReT Brodatz, BrodatzRot, UIUC, UMD and ALOT, half
of the class samples were selected at random for training and the remaining half
for testing, and all results are reported over 100 random partitionings of train-
ing and testing sets. For KTHTIPS2b, we follow the training and testing scheme
of [50]: training on three samples and testing on the remainder. For DTD, we
follow Cimpoi et al. [13,21], where 80 images per class were randomly selected
as training and the rest 40 as testing. All results for DTD are reported over
10 random partitionings of training and testing sets, following [13]. There have
been some proposals to use more sophisticated classifiers, such as support vector
machines (SVM), SVM ensembles, decision trees, or random forests. However,
in this work our focus was on the distinctiveness and robustness of various LBP
variants, rather than on the impact of the classifier. Therefore, unless otherwise
stated, we limit our study to using the nearest neighbor classifier (NNC) and
keep the other components as similar as possible.

4 Experimental Results

4.1 Overall Results

Table 2 evaluates the multiscale and rotational-invariant formulations of each
LBP method up to nine scales. We can observe a general trend of performance
increase with neighborhood size, with most LBP methods achieving a best per-
formance beyond three scales, clearly indicating the necessity of using larger
areas of spatial support for LBP feature extraction. Based on the results in
Table 2, in our following experiments we use that neighborhood size which gives
the highest score for each LBP method.

The main results for RoTeB are summarized in Table 3, including a compre-
hensive evaluation of all methods on fourteen benchmark datasets with varying
difficulty, computation complexity comparison (including feature extraction time
and feature dimensionality), with detailed noise robustness evaluation presented
in Tables 4 and 5.

The most robust method is MRELBP [37] which gives the best overall perfor-
mance, considering the trade off between classification accuracy, computational
complexity and robustness to several types of noise. Generally MRELBP even
performs better than the recent well-known deep convolutional networks based
approach — ScatNet [45]. Keep in mind that the expensive computational cost of
ScatNet is a severe drawback. The MRELBP benefits from its sampling scheme
the spatial domain spanned by which is much larger than by many other LBP
variants. This is likely to result in better discrimination capability. More impor-
tantly, instead of applying the standard thresholding to the raw pixel values,
MRELBP applies it to the local medians, which works surprisingly robustly.

For the noise-free results of Table 3, we can clearly observe the best perform-
ing methods as CLBP [33], ELBP [35], MRELBP [37], CLBPHF [39], ScatNet
(PCA) [15,16] and FV-CNN [13]. Among these six methods, clearly the feature
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extraction time of ScatNet is much more longer than others and represents a sig-
nificant drawback. The feature dimensionality of CLBP, ELBP, and CLBPHF
are relatively high, with the FV-CNN at an extremely high feature dimension. A
serious shortcoming of PCANet and RandNet is their lack of rotation invariance.

If the textures have very large within-class appearance variations, due to view
and scale variations and combined texture categories as in DTD, then the FV-
CNN methods cleraly perform the best. Nevertheless, from the Outex results it can
be observed that FV-CNN is relatively weak on rotation invariance, despite FV-
CNN methods using data augmentation to explore multiscale information. More-
over, FV-CNN is computationally expensive, making it unfeasible to run in real-
time embedded systems with low-power constraints. Interestingly, CLBPHF [39]
works rather well for DTD, perhaps because it is more insensitive to large texture
appearance variations than the other LBP descriptors. The 50.21 % of CLBPHF
on DTD is much higher than the scores given by MR8, LM filters and Patch fea-
tures, close to 52.3 % of BoW encoding of SIFT features reported in [14].

Finally, from Table 3, the best scores on datasets Outex TC10, Outex TC12
and CUReT are 99.95 %, 99.58 % and 99.66, nearly perfect scores even with
simple NNC classification. Especially for Outex TC10, thirteen methods give
scores higher than 99 %, leaving essentially no room for improvement. Because
of that saturation, and because most LBP variants have not been evaluated in
recognizing a large number of texture classes, we prepared the new Outex TC40
benchmark test suite with 294 texture classes, where the results are significantly
more spread out.

4.2 Noise Robustness

Noise robustness results are shown in Tables 4 and 5. The training images were
all noise free which makes the problem very hard. From Table 3 the overall
best results (without noise) were given by CLBP, CLBPHF, ELBP, MRELBP,
ScatNet (PCA) and FV-CNN, however with the exception of MRELBP, all of
them perform poorly in noisy situations, especially when the noise level is high.
The results in both tables are consistently strong: MRELBP has exceptional
noise tolerance that could not be matched by any of the other tested methods,
clearly driven by the nonlinear, regional medians captured by MRELBP.

From the random noise and blur tests of Table 4 the best performing methods
are LEP, MRELBP and FV-CNN, due to the filtering built into each of these
methods. Although RILPQ is specifically designed to address image blur, it is
outperformed by LEP, MRELBP and FV-CNN in that context.

Table 5 presents the results for salt-and-pepper noise and random pixel cor-
ruption respectively. As the noise level increases, with few exceptions the perfor-
mance of most of the LBP methods reduces to random classification. MRELBP
stands out exceptionally clearly, performing very well (above 90%) up to 30 %
random pixel corruption, difficult noise levels where MRELBP offers strong per-
formance, but where not a single other method delivers acceptable results.
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4.3 Computational Complexity

Feature extraction time and dimensionality (Table 3) are two key factors deter-
mining the computational cost of LBP methods. The stated computation times
are the average time spent by each method to generate its multiscale features.
All of the methods were implemented in MATLAB 2010b on 2.9 GHz Intel quad
core CPU with 16 GB RAM. The feature extraction time was measured as the
average over 480 images of size 128 × 128. Note that the reported time does
not include the training time for those methods labeled with (�) in Table 3. The
reported feature dimensionality is the final dimensionality of each method given
to the NNC classifier.

ScatNet is the most computationally expensive method for feature extrac-
tion, followed by FV-VGGVD. Its time cost for feature extraction is 125 times
that of LBPriu2 and 26 times of MRELBP. Compared with LBPriu2, most of
the remaining methods do not introduce much computation overhead at the fea-
ture extraction stage. In terms of feature dimensionality, FV-CNN is extreme,

Table 6. Summary of various LBP methods used in our experimental study. Different
schemes for parameters (r, p) are defined. Scheme 1: (1, 8), (2, 16), (r, 24) for 3 ≤ r ≤ 9;
Scheme 2: (r, 8), r = 1, · · · , 9; Scheme 3: (1, 8), (r, 24) for 2 ≤ r ≤ 9; Scheme 4:
(2, 8); Scheme 5: (1, 8), (3, 8) and (5, 8); Scheme 6: (r, 8), r = 2, 4, 6, 8. “Partial” in the
“Noise Robust?” column means “robust to random Gaussian white noise and blur but
highly sensitive to salt and pepper and random pixel corruption”. Those with (�) in
the “Optimal Operator Size” column represent the size of the receptive field, meaning
much larger input image size is required. In the “Relative Performance” column, we
consider the classification performance of LBP as baseline and use � and X to represent
better and worse than baseline respectively.

No. Method

(r, p)

Scheme

Encoding

Scheme
Needs

Training?

Optimal

Operator

Size
Feature

Extraction
Feature

Dimension
Noise

Robust?
Rotation
Invariant?

Monotonic
Illumination
Invariant?

Relative
Performance

1 LBPriu2 Scheme 1 riu2 19 × 19 Very fast 210 No Yes Yes Baseline

2 MRELBP Scheme 6 riu2 17 × 17 Fast 800 Yes Yes Yes

3 CLBP Scheme 1 riu2 9 × 9 Fast 3552 No Yes Yes

4 ELBP Scheme 1 riu2 7 × 7 Fast 2200 No Yes Yes

5 CLBPHF Scheme 1 u2 19 × 19 Fast 4580 Partial Yes Yes

6 disCLBP Scheme 1 Reported
√

11 × 11 Moderate 7796 No Yes Yes

7 LTPriu2 Scheme 1 riu2 19 × 19 Fast 420 No Yes No

8 BRINT Scheme 3 ri 19 × 19 Fast 1296 Partial Yes Yes

9 NELBP Scheme 1 Reported 19 × 19 Very fast 273 No Yes Yes Similar

10 MSJLBP Scheme 5 Reported 7 × 7 Moderate 3540 No Somewhat Yes X

11 NTLBP Scheme 1 Reported 17 × 17 Fast 388 No Yes Yes X

12 PRICoLBPg Scheme 4 Reported 13 × 13 Fast 3540 No Somewhat Yes X

13 LBPVriu2
r,p Scheme 1 riu2 15 × 15 Moderate 158 No Yes Yes X

14 RILPQ PreFiltering Original 13 × 13 Fast 256 Partial Yes Yes

15 LBPD PreFiltering Original 7 × 7 Fast 289 Partial Yes Yes X

16 NRLBPriu2 Scheme 2 riu2 11 × 11 Fast 50 No Yes No XX

17 LEP PreFiltering ri
√

32 × 32 Fast 520 Partial No No XX

18 MBPriu2 Scheme 1 riu2 19 × 19 Fast 420 No Yes No XX

19 PCANet
Multistage

filtering,

binarizing

Original
√

5 × 5 Moderate 2048 Partial No No XXX

20 PCANetriu2 riu2
√

5 × 5 Moderate 80 Partial No No XXX

21 RandNet Original 5 × 5 Moderate 2048 No No No XXX

22 RandNetriu2 riu2 5 × 5 Moderate 80 No No No XXX

23 ScatNet
Repeating

filtering,

nonlinear,

pooling

N/A 32 × 32 Very slow 596 Partial Yes Yes

24 AlexNet+FV N/A
√

163 × 163( ) Moderate 32768 Partial No No

25 VGG-M+FV N/A
√

139 × 139( ) Moderate 65536 Partial No No

26 VGG-VD+FV N/A
√

252 × 252( ) Slow 65536 Partial No No
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with the dimensionality of disCLBP, CLBPHF, CLBP, PRICoLBP, MSJLBP,
PCANet and RandNet also relatively high.

We provide Table 6 to summarize the properties of all evaluated meth-
ods including recommended operator size, feature dimensionality, robustness to
image variations, tolerance of image noise and computational complexity. In
order to establish a common software platform and a collection of datasets for
easy evaluation, we plan to make both the source code and datasets available
online.

5 Conclusions

A total of 27 methods were applied to 14 datasets, designed to test and stress
an exceptional range of class types, image sizes, and disturbance invariance.
The best overall performance is obtained for the MRELBP when distinctive-
ness, robustness and computational complexity are all taken into consideration.
If the textures have very large within-class appearance variations, the FV-CNN
methods clearly perform the best, however at a cost of high computational com-
plexity. The problem of very high computational complexity should be solved
to make them useful, especially in real-time embedded systems with low-power
constraints. Furthermore, excellent results are obtained with FV-CNN for most
test sets, but lack some robustness to noise and rotations. The role of FV is
important and should be considered also with LBP methods in future studies.

In general, both micro- and macro-structures are important for texture
description, since most LBP variants achieve their best performance beyond
three scales, and a combination of multiple complementary texture descriptors
turns out to be more powerful than a single descriptor. In general, LBP noise
robustness improves when a prefiltering step is involved; however it does not
necessarily guarantee good discriminability (e.g. LEP) and robustness to other
noise types (e.g. salt and pepper).

It is possible that a classic CNN network could learn how to explore the
properties of textured images more efficiently when trained on a very large tex-
ture dataset (similar to ImageNet). Unfortunately, to the best of our knowledge,
such a database does not exist. We believe that a truly important question is to
determine what makes a good large scale texture dataset. We have started to
build such a dataset.

Based on our study, the work on CNNs for texture recognition mainly focuses
on the domain transferability of CNNs. For texture, it is possible that simple
networks might be enough to achieve similar or better results on texture datasets.
Instead of devoting to design more and more complex networks, we feel that
designing simple and efficient networks is important for problems such as mobile
computing. Therefore, in the future, it would also be of great interest to study
how to utilize effective LBP type computations with deep learning architectures.

Acknowledgments. This work has been supported by the National Natural Science
Foundation of China under contract number 61202336 and by the Open Project Pro-
gram of the National Laboratory of Pattern Recognition.
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18. Fernández, A., Álvarez, M., Bianconi, F.: Texture description through histograms
of equivalent patterns. J. Math. Imaging Vis. 45(1), 76–102 (2013)

19. Xu, Y., Yang, X., Ling, H., Ji, H.: A new texture descriptor using multifractal
analysis in multiorientation wavelet pyramid. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 161–168 (2010)

20. Mallikarjuna, P., Fritz, M., Targhi, A., Hayman, E., Caputo, B., Eklundh, J.O.:
The kth-tips and kth-tips2 databases. http://www.nada.kth.se/cvap/databases/
kth-tips/

http://dx.doi.org/10.1007/978-3-642-15561-1_11
http://dx.doi.org/10.1007/978-3-642-15561-1_11
http://www.nada.kth.se/cvap/databases/kth-tips/
http://www.nada.kth.se/cvap/databases/kth-tips/


Evaluation of LBP and Deep Texture Descriptors with a New Robustness 85

21. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures
in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2014

22. Burghouts, G., Geusebroek, J.: Material specific adaptation of color invariant fea-
tures. Pattern Recogn. Lett. 30(3), 306–313 (2009)
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