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Abstract

In this paper, we propose multi-stage and deformable
deep convolutional neural networks for object detection.
This new deep learning object detection diagram has in-
novations in multiple aspects. In the proposed new deep
architecture, a new deformation constrained pooling (def-
pooling) layer models the deformation of object parts with
geometric constraint and penalty. With the proposed multi-
stage training strategy, multiple classi�ers are jointly opti-
mized to process samples at different dif�culty levels. A new
pre-training strategy is proposed to learn feature represen-
tations more suitable for the object detection task and with
good generalization capability. By changing the net struc-
tures, training strategies, adding and removing some key
components in the detection pipeline, a set of models with
large diversity are obtained, which signi�cantly improves
the effectiveness of modeling averaging. The proposed ap-
proach ranked #2 in ILSVRC 2014. It improves the mean
averaged precision obtained by RCNN, which is the state-
of-the-art of object detection, from31% to 45%. Detailed
component-wise analysis is also provided through extensive
experimental evaluation.

1. Introduction

Object detection is a one of the fundamental challenges
in computer vision. It has attracted a great deal of research
interest [9, 48, 20]. The main challenges of this task are
caused by the intra-class variation in appearance, lighting,
backgrounds, and deformation. In order to handle these
challenges, a group of interdependent components in the
pipeline of object detection are important. First, features
should capture the most discriminative information of ob-
ject classes. Well-known features include hand-crafted fea-
tures such as Haar-like features [55], SIFT [32], HOG [9],
and learned deep CNN features [46, 29, 23]. Second, de-

formation models should handle the deformation of object
parts, e.g. torso, head, and legs of human. The state-of-the-
art deformable part-based model (DPM) in [20] allows ob-
ject parts to deform with geometric constraint and penalty.
Finally, a classi�er decides whether a candidate window
shall be detected as enclosing an object. SVM [9], Latent
SVM [20], multi-kernel classi�ers [52], generative model
[35], random forests [14], and their variations are widely
used.

In this paper, we propose multi-stage deformable DEEP
generIc object Detection convolutional neural NETwork
(DeepID-Net). In DeepID-Net, we learn the following key
components: 1) feature representations for a large number
of object categories, 2) deformation models of object parts,
3) contextual information for objects in an image. We also
investigate many aspects in effectively and ef�ciently train-
ing and aggregating the deep models, including bounding
box rejection, training schemes, objective function of the
deep model, and model averaging. The proposed new di-
agram signi�cantly advances the state-of-the-art for deep
learning based generic object detection, such as the well
known RCNN [23] framework. With this new pipeline, our
method ranks #2 in object detection on the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) 2014. This
paper also provides detailed component-wise experimental
results on how our approach can improve the mean Aver-
aged Precision (AP) obtained by RCNN [23] from 31.0%
to mean AP 45% step-by-step on the ImageNet object de-
tection challenge validation 2 dataset.

The contributions of this paper are as follows:

1. A new deep learning diagram for object detection. It ef-
fectively integrates feature representation learning, part
deformation learning, sub-box feature extraction, con-
text modeling, model averaging, and bounding box lo-
cation re�nement into the detection system.

2. A new scheme for pretraining the deep CNN model.
We propose to pretrain the deep model on the ImageNet
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image classi�cation dataset with 1000-class object-level
annotations instead of with image-level annotations,
which are commonly used in existing deep learning ob-
ject detection [23]. Then the deep model is �ne-tuned on
the ImageNet object detection dataset with 200 classes,
which are the targeting object classes of the ImageNet
object detection challenge.

3. A new deformation constrained pooling (def-pooling)
layer, which enriches the deep model by learning the de-
formation of visual patterns of parts. The def-pooling
layer can be used for replacing the max-pooling layer
and learning the deformation properties of parts at any
information abstraction level.

4. We show the effectiveness of the multi-stage training
scheme in generic object detection. With the proposed
deep architecture, the classi�er at each stage handles
samples at a different dif�cult level. All the classi�ers
at multiple stages are jointly optimized. The proposed
new stage-by-stage training procedure adds regulariza-
tion constraints to parameters and better solves the over-
�tting problem compared with the standard BP.

5. A new model averaging strategy. Different from exist-
ing works of combining deep models learned with the
same structure and training strategy, we obtain multiple
models by using different network structures and train-
ing strategies, adding or removing different types of lay-
ers and some key components in the detection pipeline.
Deep models learned in this way have large diversity on
the 200 object classes in the detection challenge, which
makes model averaging more effective. It is observed
that different deep models varies a lot across different
object categories. It motivates us to select and com-
bine models differently for each individual class, which
is also different from existing works [62, 46, 25] of using
the same model combination for all the object classes.

2. Related Work

It has been proved that deep models are potentially more
capable than shallow models in handling complex tasks [4].
Deep models have achieved spectacular progress in com-
puter vision [26, 27, 43, 28, 30, 37, 29, 63, 33, 50, 18, 42].
Because of its power in learning feature representation,
deep models have been widely used for object recognition
and object detection in the recent years [46, 62, 25, 47, 67,
24, 31, 23]. In existing deep CNN models, max pooling
and average pooling are useful in handling deformation but
cannot learn the deformation penalty and geometric model
of object parts. The deformation layer was �rst proposed in
our earlier work [38] for pedestrian detection. In this pa-
per, we extend it to general object detection on ImageNet.
In [38], the deformation layer was constrained to be placed
after the last convolutional layer, while in this work the def-
pooling layer can be placed after all the convolutional lay-

ers to capture geometric deformation at all the information
abstraction levels. All different from [38], the def-pooling
layer in this paper can be used for replacing all the pooling
layers. In [38], it was assumed that a pedestrian only has
one instance of a body part, so each part �lter only has one
optimal response in a detection window. In this work, it is
assumed that an object has multiple instances of a body part
(e.g. a car has many wheels), so each part �lter is allowed to
have multiple response peaks in a detection window. This
new model is more suitable for general object detection.

Since some objects have non-rigid deformation, the abil-
ity to handle deformation improves detection performance.
Deformable part-based models were used in [20, 65, 41, 39]
for handling translational movement of parts. To handle
more complex articulations, size change and rotation of
parts were modeled in [21], and mixture of part appearance
and articulation types were modeled in [6, 60, 10]. In these
approaches, features are manually designed, Deformation
and features are not jointly learned.

The widely used classi�cation approaches include vari-
ous boosting classi�ers [14, 15, 56], linear SVM [9], his-
togram intersection kernel SVM [34], latent SVM [20],
multiple kernel SVM [53], structural SVM [65], and prob-
abilistic models [3, 36]. In these approaches, classi�ers are
adapted to training data, but features are designed manually.
If useful information has been lost at feature extraction, it
cannot be recovered during classi�cation. Ideally, classi-
�ers should guide feature learning.

Researches on visual cognition, computer vision and
cognitive neuroscience have shown that the ability of hu-
man and computer vision systems in recognizing objects is
affected by the contextual information like non-target ob-
jects and contextual scenes. The context information inves-
tigated in previous works includes regions surrounding ob-
jects [9, 12, 22], object-scene interaction [13], and the pres-
ence, location, orientation and size relationship among ob-
jects [3, 57, 58, 11, 41, 22, 49, 13, 61, 12, 59, 40, 10, 45, 51].
In this paper, we utilize the image classi�cation result from
the deep model as the contextual information.

In summary, previous works treat the components in-
dividually or sequentially. This paper takes a global view
of these components and is an important step towards joint
learning of them for object detection.

3. Dataset overview

The ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) 2014 [44] contains two different datasets:
1) the classi�cation and localization dataset and 2) the de-
tection dataset.

The classi�cation and localization (Cls-Loc) dataset is
split into three subsets, train, validation (val), and testdata.
The train data contains 1.2 million images with labels of
1; 000categories. The val and test data consist of150; 000



photographs, collected from �ickr and other search engines,
hand labeled with the presence or absence of1; 000object
categories. The1; 000object categories contain both inter-
nal nodes and leaf nodes of ImageNet, but do not overlap
with each other. A random subset of50; 000of the images
with labels are used as val data and released with labels of
the 1; 000 categories. The remaining100; 000 images are
used as the test data and are released without labels at test
time. The val and test data does not have overlap with the
train data.

The detection (Det) dataset contains 200 object cate-
gories and is split into three subsets, train, validation (val),
and test data, which separately contain395; 918, 20; 121
and40; 152images. The manually annotated object bound-
ing boxes on the train and val data are released, while those
on the test data are not. The train data is drawn from the
Cls-Loc data. In the Det val and test subsets, images from
the CLS-LOC dataset where the target object is too large
(greater than 50% of the image area) are excluded. There-
fore, the Det val and test data have similar distribution.
However, the distribution of Det train is different from the
distributions of Det val and test. For a given object class,
the train data has extra negative images that does not con-
tain any object of this class. These extra negative images are
not used in this paper. We follow the RCNN [23] in split-
ting the val data into val1 and val2. Val1 is used for training
models while val2 is used for validating the performance of
models. The val1/val2 split is the same as that in [23].

4. Method

4.1. The RCNN approach

A brief description of the RCNN approach is provided
for giving the context of our approach. RCNN uses the
selective search in [48] for obtaining candidate bounding
boxes from both training and testing images. An overview
of this approach is shown in Fig.1.

At the testing stage, the AlexNet in [29] is used for
extracting features from bounding boxes, then 200 one-
versus-all linear classi�ers are used for deciding the exis-
tence of object in these bounding boxes. Each classi�er
provides the classi�cation score on whether a bounding box
contains a speci�c object class or not, e.g. person or non-
person. The bounding box locations are re�ned using the
AlexNet in order to reduce localization errors.

At the training stage, the ImageNet Cls-Loc dataset with
1; 000 object classes is used to pretrain the AlexNet, then
the ImageNet Det dataset with200 object classes is used
to �ne-tune the AlexNet. The features extracted by the
AlexNet are then used for learning 200 one-versus-all SVM
classi�ers for 200 classes. Based on the features extracted
by the AlexNet, a linear regressor is learned to re�ne bound-
ing box location.

Image
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bounding boxes
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AlexNet
+SVM

Bounding box 
regression
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Detection 
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Figure 1. Overview of RCNN in [23]. Selective search [48] is used
for proposing candidate bounding boxes that may contain objects.
AlexNet is used to extract features from the cropped bounding box
regions. Based on the extracted features, SVM is used to decide
the existence of objects. Bounding box regression is used tore�ne
bounding box location and reduce localization errors.

4.2. Overview of the proposed approach

An overview of our proposed approach is shown in Fig.
2. In this model:
1. The selective search in [48] is used for obtaining candi-

date bounding boxes. Details are given in Section4.3.
2. An existing detector is used for rejecting bounding boxes

that are most likely to be background. Details are given
in Section4.4.

3. The remaining bounding boxes are cropped and warped
into 227� 227 images. The227� 227 cropped image
goes through the DeepID-Net in order to obtain 200 de-
tection scores. Each detection score measures the con�-
dence on the cropped image containing one speci�c ob-
ject class, e.g. person. Details are given in Section5.

4. The 1000-class image classi�cation scores of a deep
model on the whole image are used as the contextual in-
formation for re�ning the 200 detection scores of each
candidate bounding box. Details are given in Section
5.7.

5. Average of multiple deep model outputs is used to im-
prove the detection accuracy. Details are given in Sec-
tion 6.

6. The bounding box regression in RCNN is used to reduce
localization errors.

4.3. Bounding box proposal by selective search

Many approaches have been proposed to generate class-
independent bounding box proposals. The recent ap-
proaches include objectness [1], selective search [48], cat-
egory independent object proposals [16], constrained para-
metric min-cuts [7], combinatorial grouping [2], binarized
normed gradients [8], deep learning [17], and edge boxes
[66]. The selective search approach in [48] is adopted in
order to have fair comparison with the RCNN in [23]. We
strictly followed the RCNN in using the selective search,
where selective search was run in fast mode on each im-
age in val1, val2 and test, and each image was resized to
a �xed width (500 pixels) before running selective search.
In this way, selective search resulted in an average of 2403
bounding box proposals per image with a 91.6% recall of all
ground-truth bounding boxes by choosing Intersection over
Union (IoU) threshold as 0.5.
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Figure 2. Overview of DeepID-Net. Selective search is used for
proposing candidate bounding boxes that may contain objects.
Then RCNN is used for rejecting94% candidate bounding boxes.
Each remaining bounding box goes through the DeepID-Net in or-
der to obtain 200 detection scores. Each score measures the con-
�dence on whether the bounding box contains a speci�c object
class, e.g. person, or not. After that, context is used for re�ning
the 200 scores of each bounding box. Model averaging and bound-
ing box regression are then used to improve the accuracy. Texts in
red highlights the steps that are not present in RCNN [23].

4.4. Bounding box rejection

On the val data, selective search generates 2403 bound-
ing boxes per image. On average, 10.24 seconds per image
are required using the Titan GPU (about 12 seconds per im-
age using GTX670) for extracting features from bounding
boxes. Features in val and test should be extracted for train-
ing SVM or validating performance. This feature extraction
takes around 2.4 days on the val dataset and around 4.7 days
on the test dataset. The feature extraction procedure is time
consuming and slows down the training and testing of new
models. In order to speed up the feature extraction for new
models, we use an existing approach, RCNN [23] in our
implementation, for rejecting bounding boxes that are most
likely to be background. Denote bysi the detection scores
for 200 classes of thei th bounding box. Thei th bounding
box is rejected if the following rejection condition is satis-
�ed:

jjsi jj1 < T; (1)
wherejjsi jj1 = max j f si;j g, si;j is thej th element insi .
Since the elements insi are SVM scores, negative sam-
ples with scores smaller than� 1 are not support vectors
for SVM. When jjsi jj1 < � 1, the scores are below the
negative-sample margins for all the classes. We choose
T = � 1:1 as the threshold to be a bit more conservative
than the margin� 1. With the rejection condition in (1),
94%bounding boxes are rejected and only the6% remain-
ing windows are used for further process of DeepID-Net at
the training and testing stages. The remaining6%bounding
boxes result in 84.4% recall of all ground-truth bounding
boxes (at 0.5 IoU threshold), 7.2% drop in recall compared
with the 100% bounding boxes. Since the easy examples
are rejected, the DeepID-Net can focus on hard examples.

For the remaining 6% bounding boxes, the execution
time required by feature extraction is 1.18 seconds per im-

age on Titan GPU, about1=9 of the 10.24 seconds per im-
age required for the 100% bounding boxes. In terms of de-
tection accuracy, bound boxing rejection can improve the
mean AP by around1%.

5. Bounding box classi�cation by DeepID-Net

5.1. Overview of DeepIDNet

An overview of the DeepID-Net is given in Fig.3. This
deep model contains four parts:

(a) The baseline deep model. The input is the image region
cropped by a candidate bounding box. The input image
region is warped to227� 227. The Clarifai-fast in [62] is
used as the baseline deep model in our best-performing
single model. The Clarifai-fast model contains 5 con-
volutional layers (conv1-conv5) and two fully connected
layers (fc6 and fc7). conv1 is the result of convolving
its previous layer, the input image, with learned �lters.
Similarly for conv2-conv5, fc6, and fc7. Max pooling
layers, which are not shown in Fig.3, are used after
conv1, conv2 and conv5.

(b) Fully connected layers learned by the multi-stage train-
ing scheme, which is detailed in Section5.3. The in-
put of these layers is the pooling layer after conv5 of the
baseline model.

(c) Layers with def-pooling layer. The input of these layers
is the conv5 of the baseline model. The conv5 layer is
convolved by �lters with variable sizes and then the pro-
posed def-pooling layer in Section5.4.2is used for learn-
ing the deformation constraint of these part �lters. Parts
(a)-(c) outputs the 200-class object detection scores. For
the example in Fig.3, ideal output will have a high score
for the object class horse but low scores for other classes
for the cropped image region that contains a horse.

(d) The deep model (Clarifai-fast) for obtaining the image
classi�cation scores of 1000 classes. The input is the
whole image. The image classi�cation scores are used
as contextual information for re�ning the scores of the
bounding boxes. Detail are given in Section5.7.

Parts (a)-(d) are learned by back-propagation (BP).

5.2. New pretraining strategy

The training scheme of the RCNN in [23] is as follows:
1. Pretrain the deep model by using the image classi�cation

task, i.e. using image-level annotations of 1000 classes
from the ImageNet Cls-Loc train data.

2. Fine-tune the deep model for the object detection task,
i.e. using object-level annotations of 200 classes from
the ImageNet Det train and val1 data.

The deep model structures at the pretraining and �ne-tuning
stages are only different in the last fully connected layer for
predicting labels (1; 000 classes vs.200 classes). Except
for the last fully connected layers for classi�cation, the pa-
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Figure 3. Overview of the DeepID-Net. It consists of four parts,
(a) the baseline deep model, which is the Clarifai-fast [62] in
our best-performing single model; (b) the layers with multi-stage
training; (c) the layers with variable �lter sizes and def-pooling
layer; (d) the deep model for obtaining 1000-class image classi�-
cation scores. The 1000-class image classi�cation scores and the
200-class bounding box classi�cation scores are combined into the
re�ned 200-class bounding box classi�cation scores.

rameters learned at the pretraining stage are directly usedas
initial values for the �ne-tuning stage.

The problem of the training scheme of RCNN is that im-
age classi�cation and object detection are different tasks,
which have different requirements on the learned feature
representation. For image classi�cation, the whole image
is used as the input and the class label of objects within
the image is estimated. An object may appear in different
places with different sizes in the image. Therefore, the deep
model learned for image classi�cation is required to be ro-
bust to scale change and translation of objects. For object
detection, the image region cropped with a tight bounding
box is used as the input and the class label of objects within
the bounding box is estimated. Since tight bounding box
is used, robustness to scale change and translation of ob-
ject is not needed. This is the reason why bag of visual
words is popular for image classi�cation but not for detec-
tion. The mismatch in image classi�cation and object de-
tection results in the mismatch in learning features for the
deep model.

Another potential mismatch comes from the fact that the
Cls-Loc data has1; 000classes, while the ImageNet detec-
tion challenge only targets on200 classes. However, our
experimental study shows that feature representations pre-
trained with1; 000classes have better generalization capa-
bility, which leads to better detection accuracy than only
selecting the200classes from the Cls-Loc data for pretrain-
ing.

Since the ImageNet Cls-Loc data provides object-level
bounding boxes for 1000 classes, which is more diverse in
content than the ImageNet Det data with 200 classes, we
use the images regions cropped by these bounding boxes
as the training samples to pretain the baseline deep model.
We propose two new pretraining strategies that bridge the

image- vs. object-level annotation gap in RCNN.
Scheme 1 is as follows:

1. Pretrain the deep model by using image-level annota-
tions of1; 000classes from the ImageNet Cls-Loc train
data.

2. Fine-tune the deep model with object-level annotations
of 1; 000classes from the ImageNet Cls-Loc train data.
The parameters trained from Step (1) is used as initial-
ization.

3. Fine-tune the deep model for the second time by using
object-level annotations of200 classes from the Ima-
geNet Det train and val1 data. The parameters trained
from Step (2) are used as initialization.

Scheme 1 uses pretraining on 1000-class object-level anno-
tations as the intermediate step to bridge the gap between
1000-class image classi�cation task and 200-class object
detection task.

Scheme 2 is as follows:
1. Pretrain the deep model with object-level annotations of

1; 000classes from the ImageNet Cls-Loc train data.
2. Fine-tune the deep model for the 200-class object de-

tection task, i.e. using object-level annotations of 200
classes from the ImageNet Det train and val1 data. Use
the parameters in Step (1) as initialization.

Scheme 2 removes pretraining on the image classi�cation
task and directly uses object-level annotations to pretrain
the deep model. Compared with the training scheme of
RCNN, experimental results on ImageNet Det val2 found
that scheme 1 improves mean AP by 1.6% and scheme 2
improves mean AP by 4.4%.

The baseline deep model is pretrained using the ap-
proach discussed above. The layers with mulit-stage train-
ing and def-pooling layers in Fig.3 are randomly initialized
and trained at the �ne-tuning stage.

5.3. Fully connected layers with multistage training

Motivation. Multi-stage classi�ers have been widely
used in object detection and achieved great success. With
a cascaded structure, each classi�er processes a different
subset of data [54, 15, 5, 19, 53]. However, these classi-
�ers are usually trained sequentially without joint optimiza-
tion. In this paper, we propose a new deep architecture that
can jointly train multiple classi�ers through several stages
of back-propagation. Each stage handles samples at a dif-
ferent dif�culty level. Speci�cally the �rst stage of deep
CNN handles easy samples, the second stage of deep model
processes more dif�cult samples which cannot be handled
in the �rst stage, and so on. Through a speci�c design of
the training strategy, this deep architecture is able to simu-
late the cascaded classi�ers by mining hard samples to train
the network stage-by-stage. Our recent work [64] has ex-
plored the idea of multi-stage deep learning, but it was only
applied to pedestrian detection. In this paper, we apply it to



Algorithm 1: Stage-by-Stage Training
Input : Training set: Warped images and their labels

from the �ne-tuning training data
Parameters� for the baseline deep model
obtained by pretraining.

Output : Parameters� for the baseline deep model,
ParametersW l;t , l = 6 ; 7; 8; t = 1 ; � � � ; T for
the extra layers.

1 Set elements inW l;t to be 0;
2 BP to �ne-tune� , while keepingW l;t as 0;
3 for t=1 to T do
4 Randomly initializeW l;t , l = 6 ; 7;
5 Use BP to update parametersW l;t , l = 6 ; 7; 8

while �xing � andW l; 1; � � � ; W l;t � 1;
6 Use BP to update parameters� and

W l; 1; � � � ; W l;t , l = 6 ; 7; 8;
7 end
8 Output� andW l;t , l = 6 ; 7; 8; t = 1 ; � � � ; T .

general object detection on ImageNet.
Denotations.The pooling layer after conv5 is denoted

by pool5. As shown in Fig.4, besides fc6, pool5 is con-
nected toT extra fully connected layers of sizes 4096.
Denote theT extra layers connected the pool5 layer as
fc61, fc62, � � � , fc6T . Denote fc71, fc72, � � � , fc7T as
the T layers separately connected to the layers fc61, fc62,
� � � , fc6T . Denote the weight connected to fclT by W l;t ,
l = 6 ; 7; t = 1 ; � � � ; T . Denote the weights from fc7t to
classi�cation scores asW 8;t , t = 1 ; � � � ; T . The path from
pool5, fc6t , fc7t to classi�cation scores can be considered
as the extra classi�er at staget.

The multi-stage training procedure is summarized in Al-
gorithm1. It consists of two steps.

� Step 1 (2 in Algorithm1): BP is used for �ne-tuning
all the parameters in the baseline deep model.

� Step 2.1 (4 in Algorithm1): parametersW l;t ; t = 6 ; 7
are randomly initialized at staget in order to search for
extra discriminative information in the next step.

� Step 2.2 (5-6 in Algorithm1): multi-stage classi�ers
W l;t for l = 6 ; 7; t = 1 ; � � � ; T are trained using BP
stage-by-stage. In staget, classi�ersW l;t up to t are
jointly updated.

The baseline deep model is �rst trained by excluding extra
classi�ers to reach a good initialization point. Training this
simpli�ed model avoids over�tting. Then the extra classi-
�ers are added stage-by-stage. At staget, all the existing
classi�ers up to layert are jointly optimized. Each round of
optimization �nds a better local minimum around the good
initialization point reached in the previous training stages.

200
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Figure 4. The baseline deep model and fully connected layerswith
multi-stage training. The layer pool5 is result of max pooling over
the conv5 layer in Fig.3. Different stages of classi�ers deal with
samples of different dif�culty levels.

In the stage-by-stage training procedure, classi�ers at the
previous stages jointly work with the classi�er at the current
stage in dealing with misclassi�ed samples. Existing cas-
caded classi�ers only pass a single score to the next stage,
while our deep model uses multiple hidden nodes to transfer
information.

Detailed analysis on the multi-stage training scheme is
provided in [64]. A brief summary is given as follows:
First, it simulates the soft-cascade structure. A new clas-
si�er is introduced at each stage to help deal with misclas-
si�ed samples while the correctly classi�ed samples have
no in�uence on the new classi�er. Second, the cascaded
classi�ers are jointly optimized at staget in step 2.2, such
that these classi�ers can better cooperate with each other.
Third, the whole training procedure helps to avoid over�t-
ting. The supervised stage-by-stage training can be consid-
ered as adding regularization constraints to parameters, i.e.
some parameters are constrained to be zeros in the early
training strategies. At each stage, the whole network is
initialized with a good point reached by previous training
strategies and the additional classi�ers deal with misclassi-
�ed samples. It is important to setW l;t = 0 in the previous
training strategies; otherwise, it become standard BP. With
standard BP, even an easy training sample can in�uence any
classi�er. Training samples will not be assigned to different
classi�ers according to their dif�culty levels. The parameter
space of the whole model is huge and it is easy to over�t.

5.4. The defpooling layer

5.4.1 Generating the part detection map

Since object parts have different sizes, we design �lters with
variable sizes and convolve them with the conv5 layer in the
baseline model. Fig.5 shows the layers with def-pooling
layers. It contains the following four parts:

(a) The conv5 layer is convolved by �lters of sizes3 � 3,
5 � 5, and9 � 9 separately in order to obtain thepart
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Figure 5. The baseline deep model and def-pooling layers.

detection mapsof 128 channels, which are denoted by
conv61, conv62, and conv63 as shown in Fig.5. In com-
parison, the path from conv5, fc6, fc7 to classi�cation
score can be considered as a holistic model.

(b) Part detection maps are separately fed into thedef-
pooling layersdenoted by def61, def62, and def63 in or-
der to learn their deformation constraints.

(c) The output of def-pooling layers, i.e. def61, def62, and
def63, are separately convolved with �lters of sizes1� 1
with 128 channels to produce outputs conv71, conv72,
and conv73, which can be considered as fully connected
layers over the 128 channels for each location.

(d) The fc7 in the Clarifai-fast and the output of layers
conv71, conv72, and conv73 are used for estimating the
class label of the candidate bounding box.

5.4.2 Learning the deformation

Motivation.The effectiveness of learning deformation con-
straints of object parts has been proved in object detection
by many existing non-deep-learning detectors, e.g. [20].
However, it is missed in current deep learning models. In
deep CNN models, max pooling and average pooling are
useful in handling deformation but cannot learn the defor-
mation constraint and geometric model of object parts. We
design the def-pooling layer for deep models so that the de-
formation constraint of object parts can be learned by deep
models.

DenoteM of sizeV � H as the result of the convolu-
tional layer, e.g. conv61. The def-pooling layer takes small
blocks of size(2R + 1) � (2R + 1) from theM and sub-
samplesM to B of size V

kx
� H

ky
to produce single output

from each block as follows:

b( x;y ) = max
i;j 2f� R; ��� ;R g

f m ( k x � x + i;k y � y + j ) �
NX

n =1

cn di;j
n g; (2)

where(kx � x; ky � y) is the center of the block,kx andky

are subsmpling steps,b(x;y ) is the(x; y)th element ofB . cn

anddi;j
n are deformation parameters to be learned.

Example 1. Supposecn = 0 , then there is no penalty for
placing a part with center(kx � x; ky � y) to any location in

filter

input Convolution 
resultM

Deformation 
penalty

Outputb

Global
max

 

!

Figure 6. The deformation layer when deformation map is de-
�ned in (3). Part detection mapM and deformation constraint are
summed up to obtain the summed map~M . Global max pooling is
then performed on~M to obtain the scoreb.

f (kx �x+ i; k y �y+ j )ji; j = � R; : : : Rg. In this case, the def-
pooling layer degenerates to max-pooling layer with sub-
sampling step(kx ; ky ) and kernel size(2R +1) � (2R +1) .
Therefore, the difference between def-pooling and max-
pooling is the term�

P N
n =1 cn di;j

n in (2), which is the de-
formation constraint learned by def-pooling. In short, def-
pooling is max-pooling with deformation constraint.

Example 2. SupposeV = ky , H = kx , i = 1 ; � � � ; V ,
andj = 1 ; � � � ; H , then the def-pooling layer degenerates
to the deformation layer in [38]. There is only one output
for M in this case. The deformation layer can represent
the widely used quadratic deformation constraint in the de-
formable part-based model [20]. Details are given in Ap-
pendix A. Fig.6 illustrates this example.

Example 3. SupposeN = 1 andcn = 1 , then the defor-
mation constraintdi;j

1 is learned for each displacement bin
(i; j ) from the center location(kx �x; ky �y). In this case,di;j

1
is the deformation cost of moving an object part from the
center location(kx �x; ky �y) to location(kx �x+ i; k y �y+ j ).
As an example, ifd0;0

1 = 0 anddi;j
1 = 1 for (i; j ) 6= (0 ; 0),

then the part is not allowed to move from the center loca-
tion (kx � x; ky � y) to anywhere. As the second example,
if di;j

1 = 0 for j < = 0 anddi;j
1 = 1 for j > 0, then the

part can move freely upward but should not move down-
ward. As the third example, ifd0;0

1 = 0 anddi;j
1 = 1 for

(i; j ) 6= (0 ; 0), then the part has no penalty at the center lo-
cation(kx � x; ky � y) but has penalty 1 elsewhere. TheR in
controls the movement range. Objects are only allowed to
move within the horizontal and vertical range[� R R] from
the center location.

The deformation layer was proposed in our recently pub-



lished work [38], which showed signi�cant improvement in
pedestrian detection. The def-pooling layer in this paper is
different from the deformation layer in [38] in the following
aspects.

1. The work in [38] only allows for one output, while this
paper is block-wise pooling and allows for multiple out-
put at different spatial locations. Because of this differ-
ence, the deformation layer can only be put after the �-
nal convolutional layer, while the def-pooling layer can
be put after any convolutional layer like the max-pooling
layer. Therefore, the def-pooling layer can capture geo-
metric deformation at all the levels of abstraction, while
the deformation layer was only applied to a single layer
corresponding to pedestrian body parts.

2. It was assumed in [38] that a pedestrian only has one
instance of a body part, so each part �lter only has one
optimal response in a detection window. In this work,
it is assumed that an object has multiple instances of its
part (e.g. a building has many windows, a traf�c light
has many light bulbs), so each part �lter is allowed to
have multiple response peaks. This new model is more
suitable for general object detection. For example, the
traf�c light can have three response peaks to the light
bulb in Fig.7 for the def-pooling layer but only one peak
in Fig. 6 for the deformation layer in [38].

3. The approach in [38] only considers one object class,
e.g. pedestrians. In this work, we consider 200 object
classes. The patterns can be shared across different ob-
ject classes. As shown in Fig.8, circular patterns are
shared in wheels for cars, light bulb for traf�c lights,
wheels for carts and keys for ipods. Similarly, the pat-
tern of instrument keys is shared in accordion and pi-
ano. In this work, our design of the deep model in Fig.
7 considers this property and learns the shared patterns
through the layers conv61, conv62 and conv63 and use
these shared patterns for 200 object classes.

5.5. Finetuning the deep model with hingeloss

RCNN �ne-tunes the deep model with softmax loss, then
�xes the deep model and uses the hidden layers fc7 as fea-
tures to learn 200 one-versus-all SVM classi�ers. This
scheme results in extra time required for extracting fea-
tures from training data. With the bounding box rejection,
it still takes around 60 hours to prepare features from the
ILSVRC2013 Det train and val1 for SVM training. In our
approach, we replace the softmax loss of the deep model by
hinge loss when �ne-tuning deep models. The deep model
�ne-tuning and SVM learning steps in RCNN are merged
into one step in our approach. In this way, the extra train-
ing time required for extracting features is saved in our ap-
proach.

a r
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Figure 7. The def-pooling layer. Part detection map and deforma-
tion constraint are summed up. Block-wise max pooling is then
performed on the summed map to obtain the outputB of size
H
k y

� V
k x

.

(a)

(b)
Figure 8. The circular patterns (a) and musical instrument key pat-
terns (b) shared across different object classes.

5.6. Subbox features

A bounding box denoted byr0 can be divided intoN
sub-boxesr1; � � � ; rN , N = 4 in our implementation.r0 is
called the root box in this paper. For example, the bound-
ing box for cattle in Fig.9 can be divided into 4 sub-boxes
corresponding to head, torso, forelegs and hind legs. The
features of these sub-boxes can be used to improve the ob-
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r4
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Figure 9. A boxr 0 with its four sub-boxesr 1 ; � � � ; r 4(a) and ex-
amples for the bounding boxes on cattle (b).

ject detection accuracy. In our implementation, sub-boxes
have half the width and height of the root boxr0. The four
sub-boxes locate at the four corners of the root boxr0. De-
noteB s as the set of bounding boxes generated by selective
search. The features for these bounding boxes have been
generated by deep model. The following steps are used for
obtaining the sub-box features:
1. For a sub-boxrn , n = 1 ; � � � ; 4, its overlap with the the

boxes inB s is calculated. The box inB s having the
largest IoU withrn is used as the selected boxbs;n for
the sub-boxrn .

2. The features of the selected boxbs;n are used as the fea-
turesfn for sub-boxrn .

3. Element-wise max-pooling over the four feature vectors
fn for n = 1 ; 2; 3; 4 is used for obtaining max-pooling
feature vectorfmax , i.e. f i;max = max 4

n =1 f i;n , where
f i;max is thei th element infmax andf i;n is thei th ele-
ment infn .

4. Element-wise average-pooling over the four feature vec-
tors fn for n = 1 ; 2; 3; 4 is used for obtaining average-
pooling feature vectorfavg , i.e. f i;avg = 1

4

P 4
n =1 f i;n ,

wheref i;avg is thei th element infavg .
5. Denote the feature for the root box asf0. f0, fmax ,

andfavg are concatenated as the combined featuref =
f f0; fmax ; favg g.

6. f is used as the feature for boxr0. Linear SVM is used
as the object detection classi�er for these features.

The hierarchical structure of selective search has provided
us with the opportunity of reusing the features computed for
small root box as the sub-box for large root box. The sub-
box features need not be computed and is directly copied
from the features computed for bounding boxes of selective
search. In this way, the execution time for computing fea-
tures is saved for sub-boxs. Another good property is that
the selected bounding boxes for sub-boxes are allowed to
move, which improves the robustness to the translation of
object parts. With sub-box features, the mAP improves by
0.5%.

5.7. Contextual modeling

The model learned for the image classi�cation task takes
the scene information into consideration while the model
for object detection focuses on local boxes. Therefore, the
image classi�cation scores provides contextual information
for object detection. We use 1000-class image classi�ca-

Volleyball

Bathing cap

Golf ball

(a) (b)

Figure 10. The weights of image classi�cation scores (a) forthe
object detection class volleyball (b).

tion scores as the contextual features. The steps of using
contextual modeling is as follows:
1. The 1000-class scores of image classi�cation and 200

scores of object detection are concatenated as the 1200
dimensional feature vector.

2. Based on the 1200 features, 200 one-versus-all linear
SVM classi�ers are learned for 200 object detection
classes. At the testing stage, the classi�cation scores
obtained by linear weighting of the 1200 dimensional
features are used as the re�ned score for each candidate
bounding box.

For the object detection class volleyball, Fig.11 shows the
weights for the 1000 image classes. It can be seen that
image classes bathing cap and golf ball suppress the exis-
tence of volleyball with negative weight while the image
class volleyball enhances the existence of detection class
volleyball. The bathing cap often appears near the beach or
swimming pool, where it is unlikely to have volleyball.

6. Combining models with high diversity

In existing model combination approaches [62, 29, 25],
the same deep architecture is used. Models are different
in spatial locations or learned parameters. In our model
averaging scheme, we learn models under several settings.
The settings of the 10 models we used for model averag-
ing when submitted to ILSVRC2014 challenge are shown
in Table 1. The 10 models are different in net structure,
pretraining scheme, loss functions for the deep model train-
ing, adding def-pooling layer/multi-stage training/sub-box
features or not, and whether to do bounding box rejection
or not. In our current implementation, the def-pooling lay-
ers, multi-stage training and sub-box features are added to
different deep models separately without being integrated
together, although such integration can be done in the fu-
ture work. Models generated in this way have high diver-
sity and are complementary to each other in improving the
detection results. The 10 models were selected with greedy
search based on performance on val2. The mean AP (mAP)
of averaging these 10 models is40:9% on val2, and its
mAP on the test data of ILSVRC2014 is 40.7%, ranking #2
in the challenge. After the deadline of ILSVRC2014, our
deep models were further improved. Running model av-
eraging again, the selected models and their con�gurations



Table 1. Models used for model averaging submitted to
ILSVRC2014. The result of mAP is on val2 . For net design, A de-
notes AlexNet, C denotes Clarifai-fast, D-D denotes DeepID-Net
with def-pooling layers, D-MS denotes DeepID-Net with multi-
stage training. In A and C, only the baseline deep model (Clarifai-
fast or AlexNet) is used without def-pooling layers or multi-stage
training. In D-D and S-MS, the baseline deep model is chosen
as Clarifai-fast, and extra layers from def-pooling or multi-stage
training are included. For pretrain, [23] denotes the pretraining
scheme of RCNN, 1 denotes the Scheme 1 in Section5.2, 2 de-
notes the Scheme 2 in Section5.2.
model number 1 2 3 4 5 6 7 8 9 10
bbox rejection y n y y y y y y y y

net design A A C C D-D D-D D-MS D-D D-D D-D
Pretrain [23] 1 [23] 1 1 1 2 2 2 2

loss of net s s s h h h h h h h
mAP (%) 31.0 31.2 32.1 33.6 35.3 36.0 37.0 37.0 37.1 37.4

Table 3. Experimental results for model averaging on ILSVRC
2014. Fore averaging scheme, all-cls denotes the greedy search
in which all classes share the same set of models for averaging,
per-cls denotes the greedy search in which different classes have
different model combinations. Since our results got improved after
the competition deadline, both results submitted before and after
the deadline are reported on both val2 and test data.

Averaging scheme all-cls all-cls all-cls per-cls
After deadline n n y y
evaluation data val2 test val2 val2

mAP (%) 40.9 40.7 42.4 45

are shown in Table3. The mAP on val2 is 42.4%.
In existing works and the model averaging approach de-

scribed above, the same model combination is applied to all
the200classes in detection. However, we observe that the
effectiveness of different models varies a lot across different
object categories. Therefore, it is better to do model selec-
tion for each class separately. With this strategy, we achieve
mAP45%on val2.

7. Experimental Results

The ImageNet Det val2 data is used for evaluating sepa-
rate components and the ImageNet Det test data is used for
evaluating the overall performance. The RCNN approach in
[23] is used as the baseline for comparison. The source code
provided by the authors are used for repeating their results.
Without bounding box regression, we obtain mean AP 29.9
on val2, which is close to the 29.7 reported in [23]. Table2
summarizes the results from ILSVRC2014 object detection
challenge. It includes the best results on test data submitted
to ILSVRC2014 from our team, GoogleNet, DeepInsignt,
UvA-Euvision, and Berkeley Vision, which ranked top �ve
among all the teams participating in the challenge. It also
includes our most recent results on test data obtained after
the competition deadline. All these best results were ob-
tained with model averaging.

Table 4. Ablation study of bounding box (bbox) rejection andbase-
line deep model on ILSVRC2014 val2 .

bbox rejection? n y y
deep model A-net A-net C-net
mAP (%) 29.9 30.9 31.8

meadian AP (%) 28.9 29.4 30.5

7.1. Ablation study

7.1.1 Investigation on bounding box rejection and
baseline deep model

As shown in Fig.3, a baseline deep model is used in our
DeepID-Net. The baseline deep model using the AlexNet
in [29] is denoted as A-net and the baseline deep model
using the clarifai-fast in [62] is denoted as C-net. Table
4 shows the results for different baseline deep model and
bounding box rejection choice. Except for the two com-
ponents investigated in Table4, other components are the
same as RCNN, while the new training schemes and new
components introduced in Section5 are not included. The
baseline is RCNN, the �rst column in Table4. Based on
the RCNN approach, applying bounding box rejection im-
proves mAP by 1%. Therefore, bounding box rejection not
only saves the time for training and testing new models but
also improves detection accuracy. Based on the bounding
box rejection step, Clarifai-fast [62] performs better than
AlexNet in [29], with 0.9% mAP improvement.

7.1.2 Investigation on different pretraining schemes

There are two different sets of data used for pretraining the
baseline deep model. The ImageNet Cls train data with
1000 classes and the ImageNet Det train and val1 data with
200 classes. There are two different annotation levels, im-
age and object. Investigation on the combination of im-
age class number and annotation levels is shown in Table
5. When producing these results, other new components in-
troduced in Section 5.3-5.7 are not included. Using image-
level annotation, pretraining on 1000 classes performs bet-
ter than pretraining on 200 classes by 9.2% mAP. Using the
same 1000 classes, pretraining on object-level-annotation
peforms better than pretraining on image-level annotation
by 4.4% mAP for A-net and 4.2% for C-net. This ex-
periment shows that object-level annotation is better than
image-level annotation in pretraining deep model. Pretrain-
ing with more classes improves the generalization capabil-
ity of the learned feature representations.

There are two schemes in using the ImageNet object-
level annotations of 1000 classes in Section5.2. Scheme
1 pretrains on the image-level 1000-class annotation, �rst
�ne-tunes on object-level 1000-class annotation, and then
�ne-tunes again on object-level 200-class annotations.
Scheme 2 does not pretrain on the image-level 1000-class
annotation and directly pretrains on object-level 1000-class



Table 2. Experimental results on ILSVRC2014 for top ranked approaches.
approach RCNN[23] Berkeley Vision UvA-Euvision DeepInsight GoogLeNetours ours new

mAP (%) on val2 31.0 33.4 n/a n/a 44.5 40.9 45
mAP (%) on test 31.4 34.5 35.4 40.5 43.9 40.7 n/a

Table 5. Ablation study of pretraining datasets and net structures
on ILSVRC2014 val2 .

net structure A-net A-net A-net C-net C-net
bbox rejection n n n y y
class number 200 1000 1000 1000 1000

annotation level image image object image object
mAP (%) 20.7 29.9 34.3 31.8 36.0

meadian AP (%) 17.8 28.9 34.9 30.5 34.9
Table 6. Ablation study of the two pretraining schemes in Section
5.2on ILSVRC2014 val2 . Scheme 1 uses the image-level annota-
tion while scheme 2 does not.

net structure A-net A-net C-net C-net
bbox rejection n n y y

pretraining scheme 1 2 1 2
mAP (%) 31.2 34.3 33.4 36.0

meadian AP (%) 29.7 33.4 33.1 34.9
Table 7. Ablation study of the different net structures on
ILSVRC2014 val2 .

net structure A-net C-net D-MS D-Def
bbox rejection n y y y

pretraining scheme 2 2 2 2
mAP (%) 34.3 36.0 37.5 38.5

meadian AP (%) 33.4 34.9 36.4 37.4

annotation. As shown in Table6, Scheme 2 performs better
than Scheme 1 by 2.6% mAP. This experiment shows that
image-level annotation is not needed in pretraining deep
model when object-level annotation is available.

7.1.3 Investigation on deep model designs

Based on the pretraining scheme 2 in Section5.2, different
deep model structures are investigated and results are shown
in Table7. Our DeepID-Net that uses multi-stage training
for multiple fully connected layers in Fig.4 is denoted as D-
MS. Our DeepID-Net that uses def-pooling layers as shown
in Fig. 5 is denoted as D-Def. Using the C-net as baseline
deep moel, the DeepID-Net that uses multi-stage training in
Fig. 4 improves mAP by 1.5%. Using the C-net as baseline
deep moel, the DeepID-Net that uses def-pooling layer in
Fig. 5 improves mAP by 2.5%. This experiment shows
the effectiveness of the multi-stage training and def-pooling
layer for generic object detection.

7.1.4 Investigation on the overall pipeline

Table8 and Table9 summarize how performance gets im-
proved by adding each component step-by-step into our
pipeline. RCNN has mAP29:9%. With bounding box re-
jection, mAP is improved by about1%, denoted by� 1%.
Based on that, changing A-net to C-net improves mAP by

Our approachRCNN

Figure 11. Object detection result for RCNN and our approach.

� 1%. Replacing image-level annotation by object-level
annotation for pretraining, mAP increases by� 4%. The
def-pooling layer further improves mAP by2:5%. After
adding the contextual information from image classi�cation
scores, mAP increases by� 1%. Bounding box regression
improves mAP by� 1%. With model averaging, the best
result is45%. Table9 summarizes the contributions of dif-
ference components. More results on the test data will be
available in the next version soon.

8. Appedix A: Relationship between the defor-
mation layer and the DPM in [20]

The quadratic deformation constraint in [20] can be rep-
resented as follows:

~m ( i;j ) = m ( i;j ) � c1(i � ai +
c3

2c1
)2 � c2(j � aj +

c4

2c2
)2 ; (3)

wherem( i;j ) is the (i; j )th element of the part detection
map M , (ai ; aj ) is the prede�ned anchor location of the
pth part. They are adjusted byc3=2c1 andc4=2c2, which
are automatically learned.c1 andc2 (3) decide the defor-
mation cost. There is no deformation cost ifc1 = c2 = 0 .
Parts are not allowed to move ifc1 = c2 = 1 . (ai ; aj )
and ( c3

2c1
; c4

2c2
) jointly decide the center of the part. The

quadratic constraint in Eq. (3) can be represented using Eq.
(2) as follows:

~m ( i;j ) = m ( i;j ) � c1d( i;j )
1 � c2d( i;j )

2 � c3d( i;j )
3 � c4d( i;j )

4 � c5 ;

d( i;j )
1 =( i � ai )

2 ; d( i;j )
2 =( j � aj )2 ; d( i;j )

3 = i � ai ;

d( i;j )
4 = j � aj ; c5 = c3

2=(4c1) + c4
2=(4c2): (4)

In this case,c1 ; c2 ; c3 and c4 are parameters to be learned and
d( i;j )

n for n = 1 ; 2; 3; 4 are prede�ned.c5 is the same in all loca-
tions and need not be learned. The �nal output is:

b = max
( i;j )

~m ( i;j ) ; (5)

where ~m ( i;j ) is the(i; j )th element of the matrix~M in (3).

9. Conclusion

This paper proposes a deep learning diagram that learns four
components – feature extraction, deformation handling, con-
text modeling and classi�cation – for generic object detection.



Table 8. Ablation study of the overall pipeline for single model tested on ILSVRC2014 val2. It shows the mean AP after adding each key
component step-by-step.

detection pipeline RCNN +bbox A-net image to bbox +Def +context +bbox
rejection to C-net pretrain pooling regression

mAP (%) 29.9 30.9 31.8 36.0 38.5 39.2 40.1
meadian AP (%) 28.9 29.4 30.5 34.9 37.4 38.7 40.3

Table 9. Ablation study of the overall pipeline for single model tested on ILSVRC2014 val2. It summarizes the contributions from each
key components.

detection pipeline RCNN +bbox A-net image to bbox +Def +context +bbox model
rejection to C-net pretrain pooling regressionaveraging

mAP (%) 29.9 +� 1% +� 1% +� 4% +2.5% +� 1% +� 1% 45%

Through interaction among these interdependent components,
the uni�ed deep model improves detection performance on the
largest object detection dataset. Detailed experimental compar-
isons clearly show the effectiveness of each component in our ap-
proach. We enrich the deep model by introducing the def-pooling
layer, which has great �exibility to incorporate various deforma-
tion handling approaches and deep architectures. The multi-stage
training scheme simulate the cascaded classi�ers by mininghard
samples to train the network stage-by-stage and avoids over�tting.
The pretraining and model averaging strategies are effective for
the detection task. Since our approaches are based on baseline
deep model, they are complementary to new deep models, e.g.
GoogLeNet, VGG, Network In Network [31]. These recently de-
veloped can be used as our baseline deep model to replace AlexNet
or Clarifai-fast to further improve the performance of object detec-
tion.
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