
Multi-class object tracking algorithm that handles fragmentation and grouping

Biswajit Bose Xiaogang Wang Eric Grimson
MIT Computer Science and Artificial Intelligence Laboratory

{cielbleu|xgwang|welg}@csail.mit.edu

Abstract

We propose a framework for detecting and tracking mul-
tiple interacting objects, while explicitly handling the dual
problems of fragmentation (an object may be broken into
several blobs) and grouping (multiple objects may appear
as a single blob). We use foreground blobs obtained by
background subtraction from a stationary camera as mea-
surements. The main challenge is to associate blob mea-
surements with objects, given the fragment-object-group
ambiguity when the number of objects is variable and un-
known, and object-class-specific models are not available.
We first track foreground blobs till they merge or split. We
then build an inference graph representing merge-split re-
lations between the tracked blobs. Using this graph and a
generic object model based on spatial connectedness and
coherent motion, we label the tracked blobs as whole ob-
jects, fragments of objects or groups of interacting objects.
The outputs of our algorithm are entire tracks of objects,
which may include corresponding tracks from groups dur-
ing interactions. Experimental results on multiple video se-
quences are shown.

1. Introduction
In an ideal setting, a visual monitoring system would

track each physically distinct moving object in its field of
view – each track would be temporally complete (no gaps
over the time period during which the object is in view) and
spatially complete (each object would always have a corre-
sponding single, connected silhouette in image space that
completely covers only those pixels reflecting the object’s
position). In practice, this is not always possible, especially
in unconstrained, arbitrarily illuminated, far-field settings
involving many objects from many different classes. Sev-
eral issues make this problem difficult: partial occlusion
(e.g., trees, fences) and accidental alignment (e.g., portions
of a moving object are accidentally very similar to objects in
the background resulting in undetected moving pixels) can
fragment a silhouette into temporally or spatially separated
elements; spatial proximity of objects can cause detected

silhouettes to merge temporarily into a single silhouette. As
a result, ideal tracks are often fragmented into components1,
or are merged with other tracks into common components.
Our goal is to create a framework in which these fragmented
and merged track segments are unified to create distinct,
complete tracks for each object.

There are several methods for attacking this problem.
Most are only appropriate to settings with a single class of
object, with limited interactions between objects, or where
objects are sufficiently large to support strong appearance
models. For example, model-based multi-object tracking
methods detect objects from a single class of interest (e.g.,
tracking humans using person-models [14]). Unfortunately
many natural far-field settings do not fit these restrictions.
In environments with many object-classes of interest, such
as urban scenes with pedestrians, cars, motorbikes, trucks,
bicycles and pets, it may not be feasible to use class-specific
appearance and dynamics models. Building class-specific
models requires sufficient labeled examples from each class
or designing all these models by hand. It is especially dif-
ficult to make viewpoint/scale-invariant models. Further,
for applications such as surveillance, the interesting objects
may be ones that have not been seen before.

An alternative is to perform motion-based detection [12]
of objects from a stationary camera. These can then be
tracked with a generic (as opposed to class-specific) object
model. However, the results deteriorate when a single ob-
ject is observed as multiple foreground blobs (fragmenta-
tion), or when objects pass near each other so that their ob-
servations are merged into a single blob (grouping). While
some approaches handle grouping, the problem of fragmen-
tation is either ignored, or avoided by clustering nearby
foreground blobs, which leads to loss of spatial resolution.

If the number of objects is varying and unknown, an am-
biguity arises when using generic models to track objects
that may fragment or group. This fragment-object-group
ambiguity is illustrated by the foreground blobs in Fig-
ure 1(c,d,e). Here, two interacting objects initially merge
into a single foreground blob. A frame later, the objects

1In experiments on a variety of unconstrained videos, we found frag-
mentation to occur once every 6 frames, on average.

1

1-4244-1180-7/07/$25.00 ©2007 IEEE

separate, but one of the objects further splits into two blobs.
Finally, whole object appear. This scenario is hard to distin-
guish from cases where each blob is a whole object, since
we simultaneously need to estimate the number of objects
and the association of foreground blobs with objects.

This ambiguity makes solving the fragmentation and
grouping problems together much harder than solving either
independently. Existing generic-object tracking systems of-
ten avoid dealing with fragmentation [13], incorrectly as-
sociate a single object with measurements from a group of
objects, or track fragments of an object as independent ob-
jects [12]. Further, many trackers do not maintain identities
of object tracks before and after interactions [4, 10].

In this paper, we consider the use of generic object mod-
els for tracking multiple interacting objects, while explicitly
modeling the process of fragmentation and grouping. Our
goal is to process motion sequences to obtain single, con-
nected tracks for each distinct object, even if objects inter-
act or overlap, or if objects pass behind partially occluding
barriers, or if accidental alignment of a moving object with
the background yields visually indistinct regions. We detect
and track objects and groups of objects under the following
constraints: (a) a varying and unknown number of multi-
ple classes of objects, (b) object measurements (i.e. back-
ground subtraction blobs) may be fragmented or grouped,
(c) a single, stationary, uncalibrated camera, and (d) arbi-
trary 3D poses of objects. The motivation for our work is
to track a diverse collection of objects in an unrestricted,
open-world environment, without scene-specific training.

Our approach is to track foreground pixel clusters
(blobs), until they merge or split. Each tracked blob (called
a target-set) needs to be labeled as a fragment of an object, a
whole object, or a group of objects, since in any given frame
it could be any of these cases. To infer the correct label, we
need to integrate information from nearby frames. To do
this, we define a generic object model based on spatial lo-
cality and coherent motion of constituent parts. Using this
definition, and a graph-based representation of tracks and
their merges and splits, we infer the labels of target-sets,
and therefore the tracks of objects and groups2. Finally, we
associate object tracks before and after group interactions.
Thus, we maintain tracks of all moving objects with correct
identities through multiple interaction events.

This paper makes two key contributions. The first is
our generic object definition, which can be used to disam-
biguate objects from fragments and groups, by using only
detected foreground blobs from multiple frames. The sec-
ond is an algorithm that tracks the blobs, and uses our object
definition to associate and label them.

2By tracking groups as distinct entities whenever they occur, we avoid
performing occlusion reasoning.

(a) (b) (c) (d) (e)
Figure 1. (a,b) Car silhouette has big fragments (comparable in
size to people), with large gap in between. (c,d,e) (Zoomed-in)
foreground frames, showing the fragment-object-group ambiguity.

1.1. Related work

In the radar tracking community, where class-specific
models are often not available [1], objects are often treated
as point targets, generating point measurements. Khan et
al. [6] extend this method to the case of multiple measure-
ments per target (fragments) and multiple targets per mea-
surement (groups). Their method is computationally expen-
sive, even though it assumes a fixed number of targets. Gen-
ovesio and Olivo-Marin [5] propose an alternate algorithm,
that also assumes a fixed number of targets.

Most generic-object tracking methods based on
background-subtraction use ad-hoc solutions for as-
sociating foreground blobs with objects. The most
common solution to the fragmentation problem is to
use a distance-based criterion (such as dilation-erosion
operations) to cluster blobs or tracks that are near one
other [10, 11, 12, 13]. This leads to loss in resolution (see
Figure 1a,b), and is not effective in scenes where objects
have grossly different sizes (e.g. trucks and pedestrians).
In a densely populated scene, distance-based clustering of
blobs may lead to all the objects being merged into a single
group, rendering tracking meaningless. Another possibility
is to allow merges/splits while tracking clusters of pixels.
These methods either do not distinguish objects from
fragments/groups, or do not associate object IDs before and
after group interactions. Cohen and Medioni [2] address the
fragmentation problem by requiring temporal coherence of
blobs. They do not handle groups of objects. Gabriel et
al. [3] review other multi-object tracking methods.

There has been some work on tracking groups of ob-
jects [1]. Gennari and Hager [4] propose a group-tracking
algorithm where objects and fragments are not distin-
guished from groups. We use an algorithm similar in
spirit for our first-level blob-tracking (Sec. 3.1). However,
our focus is on our labeling algorithm (Sec. 3.3), which
allows us to label blob-tracks as objects, fragments and
groups. The problem of associating objects before and af-
ter group interactions has also been tackled using Bayesian
networks [7, 9, 13]. These methods do not handle the case
of fragmented objects.

The paper is organized as follows. Section 2 defines
the concept of target-sets, and uses it to define our generic
object model. It also includes a summary of our track-
ing/labeling algorithm, whose details are provided in Sec-
tion 3. The next section contains experimental results.

2. Framework Description
The input to our system is a set of measurements, Z1:T =

{zi,t|1 ≤ i ≤ mt, 1 ≤ t ≤ T}, where there are mt mea-
surements at time t. The measurements are foreground pix-
els obtained by background subtraction [8] (an improved
version of [12]) for each video-frame. The output is a set of
tracks of objects Y = {Y i

ti1:ti2
|1 ≤ i ≤ N}, where Y i

ti1:ti2

is the track of the ith object existing from time ti1 to ti2.
The number of objects, N , is not known a priori. An object
track may consist of multiple fragment tracks. Two objects
share a track when they interact to form a group.

2.1. The Target-Set Concept

In most tracking methods, each physical object is rep-
resented by a corresponding target. This approach is not
suitable for handling fragmentation. Instead, we model an
object as a set of elementary targets. An elementary target
corresponds to an indivisible part of a physical object. Of
course, we can only track sets of elementary targets large
enough to be observed. So we define the target-set Ai,t as
the ith set of elementary targets at time t that are all indis-
tinguishable from each other given the observed measure-
ments. For i 6= j, Ai,t ∩ Aj,t = ∅. A target-set could be an
object, a part of an object (fragment), or the union of several
objects (group). The intuition is that the observable events
(image blobs) may be composed of elements from one or
more actual physical objects, which over time could shift
from one observed blob to another. We want to track the set
of elementary targets that belong to a single object as they
move from one observable set to another, to create a unique
track for each physical object. Hence we need to label each
observable blob in a manner that supports that analysis.

We spatially partition the measurements zi,t at time t into
Kt clusters, Ck,t. Two foreground pixels belong to the same
cluster (or blob) if they fall into a common s × s window.
These blobs generalize 8-connected components (s = 3) to
windowed connected components. We consider measure-
ments within a blob to be indistinguishable. Note that in-
distinguishable does not imply the pixels have identical in-
tensities, rather that pixels in a blob are currently part of the
same connected moving component. In principle, appear-
ance information such as color could be used to distinguish
elements of a blob, however, our experience with far-field
settings indicates that color information is often not suffi-
cient to uniquely distinguish subparts of blobs.

To track target-sets, we need data association of blobs
with target-sets. In our observation model, each target-
set Ai,t can produce at most one blob Ck,t. Using this
model, we track target-sets3, till these sets merge or split.
From frame t− 1 to t, target-sets may propagate (Aj,t−1 =

3By tracking target-sets, we avoid having to explicitly represent indi-
vidual elementary targets.

Ai,t), appear, disappear, merge (Ai,t =
⋃

j Aj,t−1) or split
(Ai,t−1 =

⋃
j Aj,t). Merging and splitting of target-sets al-

lows us to represent the processes of object fragmentation
and group interaction.

2.2. Our Generic Object Model

We define 3 target-set labels: object, fragment, and
group. An object is a maximal set of elementary targets that
exhibit spatial connectedness and coherent motion. Spa-
tial connectedness means that for each pair of elementary
targets belonging to the object, there exists some time t

such that these targets belong to the same target-set Ai,t,
i.e., they are part of the same observed image blob. Coher-
ent motion means that all the elementary targets move with
similar average velocity over extended periods of time. In
particular, we model the (average) difference in speeds (in
both horizontal and vertical directions) between any pair of
elementary targets from the same object as independently
Gaussian-distributed with zero mean and small variance σ2

0
.

In contrast, the difference in speeds between 2 targets from
different objects is modeled as independent Gaussians with
zero mean and large variance σ2

1
. Essentially, this definition

provides a model for (the 2D projection of) a physically-
connected 3D object, while allowing that, at every time t,
some of its parts may not be detected. The relative configu-
ration of the parts should be stable over time.

The other two types of target-sets are defined with ref-
erence to objects. A fragment is a subset of an object. A
group is a target-set consisting of elementary targets from
two or more different objects. Every target-set Ai,t can be
assigned one of these three labels. We do not know a pri-
ori whether the tracked target-sets are fragments, objects,
or groups. In Section 3, we use the generic object definition
given above to design an algorithm that distinguishes be-
tween fragments, objects and groups, and obtains complete
object tracks by stitching together relevant parts of fragment
and group tracks with existing object tracks.

2.3. Summary of our Approach

Our algorithm has many details, so we first present a
high-level summary using an example (Fig. 2). We first
track target-sets (Sec. 3.1) using the foreground blobs till
merges and splits are detected (Fig. 2a). At this stage, we
do not know whether the tracked target-sets are fragments,
objects or groups. The second step (Sec. 3.2) organizes the
tracked target-sets into vertices of a directed, acyclic graph
called the inference graph. The graph is built so that spatial
connectedness (i.e., the first part of our object definition)
is guaranteed between any node and all of its descendants.
The merge/split events detected in the first step are used
to add edges in this graph from each merged target-set to
target-sets before the merge and after the split (see Fig. 2b).
Thus, target-sets that are groups will be parents (ancestors)

(a) (b) (c) (d)Figure 2. An example illustrating our tracking framework. Image (a) shows measurement clusters detected in 10 frames. To show 10 frames
in 1 image, dashed vertical lines indicate regions of the scene where measurements occur in each frame. There are 2 objects, moving from
left to right while crossing each other and occasionally fragmenting. Image (b) shows the inference graph constructed from merge/split
events detected in (a). Colors in (a) and (b) represent target-set tracking results. Stitching of tracks and use of the object model allows
labeling tracks as fragments (F), objects (O) or groups (G) (image (c)). Colors in (c) show stitched tracks. After associating objects across
groups, image (d) shows our final result, indicated by the corresponding colors from image (c).

of those that are objects; fragments will be children (descen-
dants) of objects. Note that these labels are still unknown.

In the third step (Fig. 2c), we use the inference graph to
stitch together target-set tracks that belong to the same ob-
ject, and also label the target-sets, using our inference-graph
labeling algorithm (Sec. 3.3). The labeling of target-sets is
done using the second part of our object definition: we pro-
cess the graph bottom-up, stitching tracks together, till the
set of stitched tracks violate the coherent motion constraint.
We thus detect object target-sets, and hence fragment and
group target-sets (which are stored at descendants and an-
cestors of the object vertices, respectively). Finally, we as-
sociate object identities across group interactions (Sec. 3.4)
to obtain the entire track for each object (Fig. 2d).

3. Algorithm

3.1. Target-Set Tracking

We use a target-set tracking algorithm similar to the
group-tracking algorithm in Gennari and Hager [4]. We also
detect merge and split events during target-set tracking.

A target-set Ai,t has a state vector xi,t =
(ui,t, vi,t, Λi,t), where ui,t and vi,t are the centroid
position and velocity. Spatial locations of elementary
targets in Ai,t are modeled as a Gaussian N (ui,t, Λi,t). To
do data association, for each target-set Ai,t−1, we define a
search region SRi,t at time t. If multiple blobs lie within
SRi,t, a separate target-set Ak,t is initialized and associated
with each blob. We define Ai,t−1 =

⋃
k Ak,t, stop tracking

Ai,t−1, and record a split event. If search regions of several
target-sets Aj,t−1 share a single blob at t, a new target-set
Ak,t is initialized and associated with that blob. We define
Ak,t =

⋃
j Aj,t−1, stop tracking the sets Aj,t−1, and record

a merge event. See (Fig. 2a) for example merges and splits.
If a target-set merges and splits simultaneously, a virtual
frame is inserted in between so that the merge happens
first and then the split. For a one-to-one correspondence,
Ai,t−1 = Ak,t. After data association, states of target-sets
are updated by Kalman filtering.

3.2. Target-Set Inference Graph

Given the tracks, and the merge and split events detected
above, we build a directed Target-Set Inference Graph G
representing the spatial relations among target-sets. Each
vertex Vj in G corresponds to a target-set Aj

4. The set Rj =
{xi,t|Ai,t = Aj} of all state vectors associated with the
same target-set Aj over time is stored in Vj .

G is structured so that application of our object definition
is easy. It will guarantee spatial connectedness between tar-
gets stored at any vertex and targets stored at all descendants
of that vertex. For this, we require G to satisfy property P0:
a directed edge from Vi to Vj exists if the merge/split events
indicate that Aj is a subset of Ai.

The coherent motion constraint of our object definition
involves calculation of target-set track velocities. This re-
quires stitching multiple short target-set tracks that are spa-
tially connected to get complete tracks, from which the rel-
evant velocities can be obtained and the constraint tested.
To stitch tracks, we use a bottom-up algorithm (Secs. 3.3
and 3.4), which requires G to satisfy 2 properties: (P1) if
two target sets are equivalent, their tracks should be associ-
ated with the same vertex; (P2) vertex Vj is the descendant
of vertex Vi iff Aj is a subset of Ai.

Graph G is developed in 3 steps. First, we build a sim-
pler graph, G1, to satisfy property P0. For each target-set
track (Sec. 3.1), we add a vertex Vj to G1. Rj is set equal to
that track. When several target-set tracks ωi merge into or
split from a target-set track ε, we add directed edges from
the vertex for ε to the vertices for each ωi. Since we have
already modified simultaneous merge-splits, there are no
loops, and G1 is a polytree. See (Fig. 2b) for an example.

To satisfy property (P1), we modify G1, obtaining G2,
by checking whether the target-sets at different vertices are
equivalent. The target-sets Ui at the leaves of G1 cannot be
further decomposed into subsets, so we call them Target-
Set Units (TSUs). We use these small sets Ui to infer the
equivalence of larger target-sets. The target-set Ai at each

4We do not use a time-index t here, since we have defined equality of
target-sets over time during target-set tracking

Vi will be represented in terms of TSUs. For each Vi, we
store a temporary set of TSUs, Qi = {Ui1 , ..., UiK

}, where
Ai =

⋃K

k=1
Uik

. If Vi has several children, {Vi1 , ..., ViL
},

from a single merge or split event, we set Qi =
⋃L

j=1
Qij

.
When a set of tracks A merges into one track C, and C

splits into another set of tracks B, we know that the union of
target-sets does not change before and after the merge-split,
i.e.,

⋃
i∈QA

Ui =
⋃

j∈QB
Uj = U ′. We create a Target-Set

Equivalence Chain (TSEC) to represent such equivalences.
If target-sets at two vertices Vi and Vj are equivalent, i.e.,
the unions of their TSUs are equivalent (as found from the
TSEC), we replace them with a single new vertex Vk, with
Rk = Ri ∪ Rj , and Ak = Ai = Aj .

Finally, we build graph G from G2, to satisfy property
(P2). If Vi is not a descendant of Vj , but Ai is a subset of
Aj , we add an edge from Vj to Vi. If two root vertices have
a common descendant, we add a virtual vertex, which is not
associated with any track, as their common parent. G be-
comes a directed acyclic graph (DAG) instead of a polytree.
Fig. 3 shows an example of how to build an inference graph.

3.3. Inference Graph Labeling Algorithm

Each vertex in graph G represents a target-set that can
be labeled as fragment, object or group. In this section,
we stitch together target-set tracks that belong to the same
object, and assign labels to target-sets. To do so, we en-
force the coherent motion constraint: we design a bottom-
up graph algorithm that stitches child tracks with parent
tracks till this constraint is violated by the stitched tracks.

The coherent motion constraint implies that any 2 target-
set tracks from the same object have a true average veloc-
ity difference vector5, ∆t, that is zero-mean Gaussian dis-
tributed with diagonal covariance (and small variance σ2

0

along both directions). Further, the velocity difference be-
tween 2 target-set tracks from different objects is zero-mean
Gaussian with large variance σ2

1
. An additional source of

uncertainty is observation noise: we model the set of ob-
served velocity difference vectors ∆o over N frames as
Gaussian distributed about the true velocity difference ∆t

with variance τ2. Let c(Wi, Wj) be an indicator function
that equals 1 if target-sets at vertices Wi and Wj move co-
herently, and 0 otherwise. We can now determine the proba-
bility p(c(Wi, Wj) = 1|∆o) of target-sets at child vertices
Wi and Wj (of a parent V) satisfing the coherent motion
constraint, given the observed velocity differences ∆o:

p(c(Wi, Wj) = 1|∆o) (1)
∝ p(∆o|c(Wi, Wj) = 1)p(c(Wi, Wj) = 1) (2)

= 0.5

∫ N∏
k=1

p(∆k
o |∆t)p(∆t|c(Wi, Wj) = 1)d(∆t) (3)

5Here average implies the mean over all frames in a (stitched) track.

Equation 3 has a non-informative prior (0.5) over coherent
motion of siblings. We similarly calculate p(c(Wi, Wj) =
0|∆o), and normalize the probabilities.

These probabilities will be used in our algorithm to per-
form a hypothesis test to tell whether the parent vertex V

is a group, and whether pairs of children are objects. Frag-
ments can then be labeled, based on parent-child relation-
ships in the graph, since descendants of an object must be
fragments. See Fig. 2c for an example labeling.

The input to the algorithm is the inference graph G. The
output is: (a) a stitched ID (or sID) ρ for each stitched
target-set track in G, (b) a track label β(ρ) for each sID,
indicating the track is from a single object (β = O) or a
group of objects (β = G), and (c) for each group sID, a list
of sIDs of all object tracks in that group.

In addition to labeling vertices as object (O), fragment
(F) or group (G), we use two temporary vertex labels in in-
termediate stages of our algorithm: fragment-of-group and
possible-object. The fragment-of-group label is used for
children Wi of a group vertex V that move coherently with
all other children of V . Such child vertices may consist of
fragments from multiple physical objects, or may be objects
that move together and thus cannot be distinguished. The
possible-object label is given to children Wi, Wj of a ver-
tex V when we find that the tracks of Wi, Wj do not exhibit
coherent motion with each other (and thus cannot belong
to one object). These labels are not immediately updated
to object, since some of these might actually be fragment-
of-group. Tracks at vertices with both these labels are later
labeled as fragment, object or group.

We now discuss the 4 stages of our labeling algorithm.
Initialization. At each vertex V , vertex-label LV is ini-

tialized to fragment. The parent-decision variable d(W, V)
of child W relative to parent V is initialized to 0, indicating
coherent motion6. This variable is used later to assign final
labels to possible-objects. For each vertex V , we create and
store a copy R′ of the track list R. This copy will be updated
when tracks broken by merges/splits are stitched together.

Bottom-Up Processing. The main step checks each ver-
tex, to test whether its children move coherently. A vertex
V is only checked once its children have all been checked.

If V is a leaf, we mark it as checked, and move on. If
not, then we test whether V is a group. This happens if a
child of V is a group, or some pair Wi, Wj of its m children
W1 . . . Wm violates the coherent motion constraint:

p(LV = G|∆o) (4)

= 1 − p(c(W1, . . . , Wm) = 1|∆o)

m∏
k=1

p(LWk
6= G)

where, p(c(W1, . . . , Wm) = 1|∆o) is the probability that

6This binary variable indicates whether the target-set at W moves co-
herently with the target-sets at other children of V .

1

2

3

4
5

6

7
8

(a)

8

1 6 7 3 4

5 2

(b)
1 6 7 3 4

8

2, 5

(c)
Figure 3. An example of building an inference graph. (a) Target-set tracks (shown in same format as Fig. 2a). Using merge-split events
detected during target-set tracking, an initial graph G1 is built in (b). The target-sets represented by vertices 5 and 2 are actually equivalent.
Both of them are subsets of the target-set at vertex 8. However, there are no edges from vertex 8 to vertices 5 and 2 in G1. (c) To build
graph G, vertices 2 and 5 are merged into a single new vertex (marked in gray), and an edge is added from vertex 8 to the new vertex.

target-sets at all child vertices move coherently, which we
define as min(p(c(Wi, Wj) = 1|∆o)) over all pairs of
children Wi, Wj . If p(LV = G|∆o) > 0.5, V is la-
beled group. For all pairs of children Wa, Wb such that
p(c(Wa, Wb) = 1) < 0.5, Wa and Wb are labeled
as possible-objects (unless they are already groups them-
selves). We set d(Wa, V) = 1 and d(Wb, V) = 1.

After checking a vertex V , its track list R′ is updated by
appending the updated track lists of all its children.

Updating Vertex-labels. Any root vertex labeled frag-
ment is upgraded to object. If any group vertex V has
a possible-object child W such that d(W, V) = 0, W

is upgraded to fragment-of-group. Any vertex W labeled
possible-object and having d(W, Vk) = 1 for all parent ver-
tices Vk is upgraded to object (since its tracks are not coher-
ent with any other tracks).

Assignment of sIDs and Track-labels. sIDs and track
labels are assigned to all tracks stored in the updated lists at
vertices whose vertex-labels are object, group or fragment-
of-group. At this stage, all tracks will be listed at at least
one such vertex. Tracks stored at fragment-of-group ver-
tices are assigned the same sID as their group parent. Ver-
tices labeled group are treated slightly differently from the
other two: only the initial tracks R listed at group vertices
are marked as group tracks (i.e., β = G). This is because
the updated track-list R′ at a group vertex includes object
tracks. Finally, for each group-track sID, we create a list of
sIDs of all objects belonging to that group.

3.4. Obtaining Object Tracks

So far, we have labeled all tracked blobs (i.e., target-
sets) as fragment, object or group. We have also stitched
fragment tracks to object tracks, and associated group sIDs
to object sIDs. For objects that interact, the whole track is
now obtained by matching stitched object tracks before and
after the group interaction.

We consider the merge/split events and find all sets of
events where n objects merge into one group and then split
into n objects. To do crossover matching between tracks εi

before the merge and tracks ωj after the split, we predict

the position of εi after the split (using Kalman filtering) and
compare it with the position of ωj . We find the best one-to-
one matching between the two sets of n objects. If εi and
ωj are matched, both of their sIDs are re-mapped to a new
object ID. Note that, in complicated cases, some objects
merge into a group, which further merges with other ob-
jects/groups into a bigger group. Then the big group splits
into smaller groups and finally into objects. In such cases,
our inference graph helps us identify the two sets of objects
between which to do crossover association. One example is
shown in Fig. 4c,d. Note that other features, such as shape
and color, could also be used for matching; we have not
investigated these since this is not our primary focus.

4. Experimental Results
We tested our algorithm on more than 60,000 frames of

video (720x480 pixels, 30 fps). Background-subtraction pa-
rameters were as in [8]. A window size s = 11 was used for
blob detection, and velocity difference variances (Sec. 3.3)
were σ0 = 3, σ1 = 15 and τ = 8 pixels/frame. Small blobs
were removed as noise. After target-set tracking, tracks that
were stationary (for more than 30s) were also removed. The
average running time of our algorithm in MATLAB on a 3.2
GHz PC for 30s video-clips is around 40s. See supplemen-
tary material for tracking videos.

We evaluated the performance of our algorithm on a 15-
minute video from the scene in Figure 4c. There were 94
moving objects, including cars, pedestrians, balloons tied
to a lamp-post, and a dog; 89 objects were correctly tracked
from beginning to end. 762 merges and splits were detected.
On 23 occasions, 2 or more objects crossed; these groups
were correctly detected. In 1 case, crossover matching was
incorrect. Cases of non-crossover interaction included a car
picking up 2 persons, and 2 persons approaching each other,
stopping and then retracing their steps.

Figures 4, 5, 6 and 7 show results for challenging cases.
In these figures, black ellipses indicate estimated states of
tracked target-sets. Colors (and numbers) indicate final IDs
assigned to object/group tracks after crossover association.
Groups are colored black, with IDs of objects in the group in

(a)

(b)

(c)

(d)

Figure 4. Tracking results for 2 scenes. Sampled video frames are shown in alternate rows, with corresponding foreground pixels (after
noise filtering) shown below them. Black ellipses indicate estimated states of tracked target-sets. Colors (and numbers) indicate final IDs
assigned to object/group tracks after crossover matching. Groups are black, with IDs of objects in the group in braces. See text for details.

Figure 5. A traffic-intersection scene (in the same format as Figure 4). See text for details.

braces. In Fig. 4a,b, despite almost complete occlusion, our
tracker correctly detected 2 persons and maintained identi-
ties through the crossover. Note that object 50 is often split
into 2 fragments with a large gap between them. Fig. 4c,d
shows a case where 3 objects interact. Note that object 170
is actually a pair of persons who walk together, and are thus
indistinguishable. Objects 170 and 171 merge to form a
group, which merges with object 172. Eventually, the group
splits into the three separate objects. Our crossover match-
ing algorithm maintains object identities throughout.

Figure 5 shows a case of severe fragmentation (which is
not uncommon in challenging outdoor scenes where objects
may have a wide range of sizes, and backgrounds are uncon-
strained). The bus is much larger than the other objects in
this scene (car and pedestrian). Correspondingly, the gap
between its fragments is comparable to the typical gap be-
tween distinct smaller objects. These fragments cannot be
grouped using distance-based criteria alone. Our method
correctly associates the fragments, while still tracking other

objects separately.
Figure 6, from the PETS dataset, is even more chal-

lenging, and illustrates some limitations of our algorithm.
Objects 464 and 465 are correctly detected, even though
they enter as a group. An error occurs in the 4th frame,
where two persons (the referee and a red-shirted player)
are labeled as fragments of object 352. This is because
these 2 persons have similar motion for a few frames till
one of them merges into another group. As a consequence,
crossover matching for group 97 is also incorrect.

Figure 7 shows examples of how fragmentation might
occur. The first 3 columns are examples in standard data
sets from the CAVIAR project. In particular, the first two
frames are sampled from a scene where the same person
(#20) appears in a group and in fragments. The third col-
umn is from another scene where the person fragments be-
cause his shirt’s color matches the background. The last 2
columns are from a street-side view. In one frame, we see
a large gap between fragments of a person near the camera.

Figure 6. A more challenging data set (shown in same format as Fig. 4). See text for details.

Figure 7. Some examples of fragmentation (shown in same format as Fig. 4). See text for details.

In the other frame, we see fragmentation of a different per-
son due to partial occlusion behind a vehicle. Both of these
are successfully labeled.

5. Conclusion
We have presented a framework for tracking a varying

number of objects that might fragment or group, without
employing class-specific models. The framework involves
a generic object model that helps solve the fragment-object-
group ambiguity. We maintain identity of objects across
multiple interactions, which is essential for higher-level
tasks. Our tracking algorithm currently works in batch, but
can be made online, since, for each new frame, only some
target-set tracks and inference graph vertices need to be up-
dated. To do this, of course, one would store a sliding win-
dow of past frames.

Acknowledgements
The authors would like to thank Gerald Dalley, Kinh

Tieu, Jason Williams, Chris Stauffer and Josh Migdal for
thought-provoking discussions. Funding support was pro-
vided by DARPA.

References
[1] S. Blackman and R. Popoli. Design and Analysis of Modern

Tracking Systems. Artech House, 1999.
[2] I. Cohen and G. Medioni. Detecting and tracking objects in

visual surveillance. In CVPR, 1999.

[3] P. F. Gabriel, J. G. Verly, J. H. Piater, and A. Genon. The
state of the art in multiple object tracking under occlusion in
video sequences. In Proc. ACIVS, 2003.

[4] G. Gennari and G. D. Hager. Probabilistic data association
methods in visual tracking of groups. In CVPR, 2004.

[5] A. Genovesio and J.-C. Olivo-Marin. Split and merge data
association filter for dense multi-target tracking. In Proc.
ICPR, 2004.

[6] Z. Khan, T. Balch, and F. Dellaert. Multitarget tracking with
split and merged measurements. In CVPR, 2005.

[7] J. Marques, P. Jorge, A. Abrantes, and J. Lemos. Tracking
groups of pedestrians in video sequences. In IEEE Workshop
on Multi-Object Tracking, 2003.

[8] J. Migdal and W. E. L. Grimson. Background subtraction
using markov thresholds. In IEEE WMVC, 2005.

[9] P. Nillius, J. Sullivan, and S. Carlsson. Multi-target
tracking—linking identities using bayesian network infer-
ence. In CVPR, 2006.

[10] A. Pece. From cluster tracking to people counting. In PETS,
2002.

[11] A. Senior. Tracking people with probabilistic appearance
models. In PETS, 2002.

[12] C. Stauffer and E. Grimson. Learning patterns of activity us-
ing real-time tracking. IEEE Trans. Patt. Anal. Mach. Intell.,
22(8):747–757, 2000.

[13] J. Sullivan and S. Carlsson. Tracking and labelling of inter-
acting multiple targets. In Proc. ECCV, 2006.

[14] T. Zhao and R. Nevatia. Tracking multiple humans in
crowded environment. In CVPR, 2004.

