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Abstract 

 
As having multiple images of an object is practically 

convenient nowadays, to jointly align them is important for 
subsequent studies and a wide range of applications. In 
this paper, we propose a model-based approach to jointly 
align a batch of images of a face undergoing a variety of 
geometric and appearance variations. The principal idea 
is to model the non-rigid deformation of a face by means of 
a learned deformable model. Different from existing 
model-based methods such as Active Appearance Models, 
the proposed one does not rely on an accurate appearance 
model built from a training set. We propose a robust fitting 
method that simultaneously identifies the appearance 
space of the input face and brings the images into align-
ment. The experiments conducted on images in the wild in 
comparison with competing methods demonstrate the 
effectiveness of our method in joint alignment of complex 
objects like human faces. 
 

1. Introduction 
Nowadays, with great reduction in the cost of image 

acquisition devices and great development in the capacity 
of data storage, to have more than one images of an object 
becomes increasingly more practical and convenient. For 
example, internet photo sharing sites such as Facebook and 
Flickr, as well as personal photo library software like 
iPhoto and Picasa, most likely hold multiple images of a 
customer. For video conferencing, sequential output frames 
of a camera are in general capturing the same face. In 
addition, group study in medical image engineering also 
works with multiple instances of a human organ. 

On the other hand, to better understand the object in the 
images, it is important to align them first. In addition to 
direct employing pair-wise registration techniques, in 
recent years, joint alignment [1-7] has raised more and 
more research interest. The objective is to align the images 
jointly in order to avoid a biased template selection. 
However, joint alignment of real world objects like human 

faces remains a difficult problem due to the following 
challenges: a) they often undergo both rigid transforma-
tions and non-rigid deformations. b) Different faces of 
different people have dramatically different appearances 
under a variety of illumination conditions, which poses a 
steep challenge for their alignment. 

In this paper, we propose a joint alignment method based 
on the Active Appearance Models (AAM). The principal 
idea is to jointly align the batch of images by employing a 
generic shape model and a generic appearance model both 
learned from a training set consisting of a variety of faces. 
We demonstrate that, while the accuracy of the appearance 
model is critical for the success of conventional AAMs, the 
proposed method is able to work with a biased and inac-
curate one. Specifically, our method identifies the unbiased 
appearance space of the input face and simultaneously 
brings the input images into alignment. The goal is 
achieved under two important assumptions: First, the ac-
tual appearance of the given face is linear and 
low-dimensional. Second, the person-specific space is close 
to that of generic human facial appearances. 

Our main contributions are: a) we propose an effective 
model-based method to jointly align facial images under 
both non-rigid deformation and appearance variation. This 
is essentially different from existing rigid alignment ap-
proaches. b) We propose a robust fitting algorithm, so that 
a generic appearance model trained from a variety of faces 
can be fit adaptively and consistently to a new unseen face 
whose appearance cannot be accurately modeled.  

The remainder of this paper is organized as follows: We 
review the related work in Section 2, and introduce the 
popular AAM algorithm in Section 3 under the background 
of multi-image alignment. Section 4 formulates the pro-
posed method and provides an efficient solution. We 
perform experimentation and compare the obtained results 
with competing methods in Section 5 and finally draw 
conclusions in Section 6. 

2. Related Work 
Joint alignment was initiated by the authors in [1] who 

registered a batch of images in terms of affine transfor-
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mations by maximizing the entropy of the image group. 
Among the succeeding works [2-5], the method proposed 
in [5] performed much better in handling occlusions and 
outliers by minimizing the rank of the images and the 
number of outliers. The above methods succeeded in cal-
culating the rigid transformations among images of an 
object, however, due to their ignorance of non-rigid de-
formations, they are restricted from being applied to more 
ambitious scenarios, for example those in [8-10]. The 
authors in [11] introduced B-Splines and extended the 
work [2, 3] to the non-rigid alignment of medical images, 
however, their method cannot work on objects with sig-
nificant appearance variations such as human faces. 

Among existing non-rigid alignment techniques, mod-
el-based ones [13, 14] such as the Active Appearance 
Model (AAM) are the most popular and effective due to 
their ability in handling pose, shape and appearance vari-
ations. The main idea of AAM is to match a learned 
deformable model to an input image, so that the natural 
feature points of the input image are registered with the 
model, resulting in an alignment. However, one of the most 
concerned issues for model-based methods is that, their 
performance greatly reduces when fitting a generic model 
to an unseen object whose appearance differs significantly 
from the training samples. This fact restricts AAMs from 
being applied to objects like human faces under wild con-
ditions. The reason is two-fold: First, the objective function 
of high dimensional variables has many local minima, 
which stuck those gradient descents [13, 14] into unwanted 
solutions. Second, the situation gets worse when the ap-
pearance model fails to accurately model the new object. 

To investigate this phenomenon, the authors [15] did 
intensive experimental studies and found that it is much 
harder for a generic AAM model to either model or be fitted 
to a new face than a person-specific one does, and the main 
reason is attributed to the inaccuracy for the generic ap-
pearance model in modeling the new object. Many works 
have been proposed to address this problem, including: the 
authors in [16] studied different factorization techniques – 
PCA, ICA, and NMF, and found that they were of quite 
limited help in performance improvement. The authors in 
[17] proposed a multi-layer AAM which modeled facial 
appearances in more detail; however, they did not address 
fitting it to a new face. In addition, other works were de-
voted to finding the global optimum of the objective 
function either by initializing a better start, by constraining 
the shape between video frames, or by rectifying the gra-
dient during iterations [18]. Furthermore, some works were 
focused on refining the objective function itself. The au-
thors in [19] proposed to learn a rectified metric from, 
which explicitly smoothed out local minima and encour-
aged the global optimum to occur at correct places. The 
authors in [20] imposed a Gaussian prior term in the ob-

jective function of the inverse-compositional algorithm. 
The term can be determined either by learning from 
training data, or by solving the system dynamic equation in 
the context of video tracking. 

Different from the above efforts, either on improving the 
appearance model or on improving the fitting accuracy to 
one image or frame, in this paper we investigate the 
problem of joint alignment of a batch of images of an un-
seen face using a biased generic AAM model. We 
demonstrate that although the generic appearance model 
fails to accurately model the new object, making good use 
of the redundancy among the input images can well com-
pensate for the model error. We propose a method which 
robustly estimates the appearance of the new object and 
simultaneously brings the images into alignment. This is in 
essence different from [15] in which the appearance space 
is explicitly and supervised learnt from a set of manually 
labeled training samples of that specific person. 

3. Multi-Image Alignment by AAM 
To begin with, we first review the algorithm of AAM in 

the context of multiple image alignment. 

3.1. Active Appearance Models 
The Active Appearance Model describes an object from 

its shape and appearance. The shape is denoted as a coor-
dinate vector of a set of landmarks: 

                ( )Tnn yxyxyxs ,,...,,,, 2211=  
where (xi, yi) is the 2D coordinate of the i-th landmark. The 
appearance is denoted as the set of pixels sampled inside 
the object region of a reference shape. 

For AAMs [13, 14], a common assumption made is that 
the shape and appearance variations can both be modeled 
as linear. Therefore, Principal Component Analysis (PCA) 
can be applied to find the components: 
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where s and α are the shape and the appearance vector in a 
column-wise manner; si and αi are the i-th Principal 
Components (PCs) of the shape and appearance model; pi 
and λi are the corresponding loadings; s0 and α0 are the 
reference shape and appearance vectors which are often 
regarded as the mean of the training data. Notice that 
during the training stage, the global transformation and the 
brightness of the images are normalized beforehand, so 
that the two linear models are free from global variations. 

A template with such shape and appearance variability is 
known as an AAM model. To fit such a model to an input 
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image is to minimize the discrepancy between them: 
( )( ) 2

20,,
;;min λα

λ
AqpIWG

qp
−−      (3) 

where I is the vectorized input image; W is the paramete-
rized warping function which maps I to an appearance 
vector defined inside the reference shape; G is the global 
transformation consisting of rotation, translation and 
scaling; p and q are the unknown parameters of W and G to 
be determined in the alignment; A is the matrix of PCs 
describing the principal modes of appearance variations, 
and λ is the corresponding loading. 

Since the objective function is non-linear with respect to 
both p and q, gradient descent and its variants [13, 14] 
become the most popular choice. Specifically, they first 
linearize the problem by first-order approximation, then 
start searching along descent directions from an initialized 
position, and then iteratively solve the increments. The 
difference between them lies in the way of calculating the 
gradient: numerically or analytically, and the way of 
composing the increments: forward-additive or inverse- 
compositional.  

3.2. Multi-Images Joint Alignment 
We apply the AAM algorithm in multi-image alignment 

due to its capability in handling both non-rigid deformation 
and appearance variation. A straightforward idea is to 
build a generic AAM model from a class of training sam-
ples and register it with each input image independently. 
This leads to an objective function: 

( )( )∑ −−
i

iiiiiqp
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iii
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;;min λατ

λ
   (4) 

where τi weights the importance of image Ii in the joint 
alignment. Throughout this paper, we assume equivalent 
importance and set τi = 1 for all i, if no preference is added. 

Since the images are considered independently, we can 
address each sub-problem in (4) separately. We refer to this 
implementation as the “Independent AAM”.  

3.3. Limitation of the Generic Appearance Model 
It is practically realistic that we wish to build a generic 

model and apply it in aligning images of any unseen objects. 
However, it is well-known that a generic model suffers 
from deficiency in this case and thus “Independent AAM” 
cannot produce good results. 

The reason is that although the shapes of a variety of 
persons can be well modeled as linear, the appearances of 
different faces undergoing different illumination are far 
more complex than linear [15], resulting in violation of the 
assumptions made in [13, 14]: a) the linear relationship 
between reconstruction error and model increment, re-
gressed on the training data, does not apply to new data any 
more. b) The appearance of the new face does not lie in the 

space learned from the training data, and therefore cannot 
be “projected out”. When these assumptions are violated, 
gradient descents suffer from biased descending directions, 
and converge to incorrect solutions. This is one of the 
reasons that conventional AAMs [13, 14] perform poorly 
on unseen faces. To illustrate this problem, we show in 
Fig.3 that the inaccuracy in appearance modeling leads to 
dramatically different results: (top) using a generic ap-
pearance model, (bottom) an unbiased person-specific one. 

Furthermore, the inaccuracy of the appearance model 
can also deteriorate the convexity of the objective function 
(3). As shown in Fig. 2, the objective function is bumpy and 
has many local minima around different disturbances of the 
parameters q (translation, rotation and scaling). This 
problem becomes even worse in practice when they interact 
with both shape and appearance parameters.  

4. Regularized Fitting for Joint Alignment 
While an accurate appearance model is critical for in-

dependent AAMs, we demonstrate in this section that an 
inaccurate model can be well compensated for if we make 
good use of the images themselves in a joint alignment 
task. 

 

4.1.  Two Important Assumptions 
Existing studies [21] have showed that although the 

generic facial appearances of different faces are much more 
complex than linear, those of the same person can be well 
approximated by linear. This fact has been well examined 
by the success of person-specific AAMs through an inten-
sive experimental study in [15] and its performance in real 
practice.  

This inspires us that, we are guaranteed a good fitting 
performance if we can build a correct person-specific ap-
pearance space for the input face. Motivated by this fact, we 
make the first important assumption on the person-specific 
space: The images of the same face aligned to the reference 
shape should be linear and low-dimensional. As mentioned 
above, this assumption has well examination, and Fig.4 

A

B

dist(A, B)

A   generic appearance space 
B   unknown true appearance space 
●   principal components spanning A 
●   unknown true appearances of input faces 

Figure 1: Inaccurate generic appearance space 
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(bottom) shows that by using as few as 2 PCs of the specific 
appearance can we reconstruct the input faces much better 
than using 98 PCs of the generic appearance.  

Furthermore, since both the generic space and the per-
son-specific space span human facial appearances, a 
reasonable assumption which constitutes our second as-
sumption can be made on the distance between them: the 
person-specific space and the generic appearance space 
should be proximate rather than distant1.  

Fig.1 gives an illustration to the above two assumptions: 
The blue line A denotes the generic appearance space 
learned from the training data of different persons, and the 
red line B denotes the specific appearance space of the new 
face to be identified. Intuitively, B coincides with A if the 
person is included in the training set, and disjoints from A 
if otherwise. The challenge here, however, is to identify a 
person-specific B from only a few unaligned images which 
should “hit” the red dots if well aligned.  

Based on the two assumptions, we propose in Section 4 
an effective and efficient method which simultaneously 
finds the person-specific appearance space B and brings the 
given images into alignment. 

4.2. Finding the Appearance Space 
The problem of identifying the person-specific space can 

be formulated as: to find a low-dimensional subspace 
embedded in the high-dimensional data space that is close 
to the generic one as much as possible: 
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where the scalar ρ > 0 trades off two quantities: one con-

 
1 We employ the distance from a point set to a space, as the person-specific 

space is itself spanned by a point set (with unknown warping parameters) 

straints the appearances to be close to generic human faces, 
and the other encourages them to be linear correlated and 
group similar. Since the images are jointly considered in 
the alignment, we refer to (5) as “Joint AAM” in this paper. 

It is worth mentioning that, the value of ρ should be 
determined by the two quantities: if the appearance model 
is inaccurate leading to larger dist(A,B), then the reliability 
of the first term should be lower, inducing a smaller ρ; on 
the other hand, if the images are less correlated or group 
dissimilar, then the low-rank term should be deemphasized, 
inducing a larger ρ. We give an empirical way for setting a 
proper value of ρ in Section 4.6. 

4.3. Reformulation 
The difficulty in solving (5) lies in the non-convexity 

and non-continuity of the rank term, which makes mini-
mizing (5) NP-hard. On the other hand, recent theories in 
Compressive Sensing [22,23] demonstrate a fact that mi-
nimizing the rank of a matrix is equivalent, under mild 
conditions, to minimizing its tightest convex relaxation ― 
the nuclear norm. Therefore, we replace the rank term by 
its nuclear norm, obtaining an equivalent problem: 
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where the nuclear norm of a matrix is defined as the 
summation of singular values ||X||*=Σkσk(X). Notice that 
here we re-represent the combination of the global trans-
formation G and warping function W by T, parameterized 
by a new variable xi = (pi, qi). And we discuss about this 
re-representation in Section 4.5. 

The problem (6) remains non-linear with respect to va-
riable xi (stands for pi and qi). A common approach to deal 
with non-linearity is to make first-order approximations, 
and iteratively solve in (7) the increments Δxi. We then 
update the values of xi by xi(k+1) = xi(k) + Δxi 

(a)  Translation  by ± 50 pixels; (b) rotation by ± π/4 and scaling 0.5~1.5 times;  
Figure 2: Change of the objective function with disturbance around a 

ground-truth shape 

(a) Left most: the input image, new to the training data 
Others: fitting in a generic appearance space built from [27] 

(b) Fitting in the person-specific appearance space 

Figure 3: Comparison of fitting an AAM model in 
different appearance spaces 
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where Ji is the Jacobian matrix of the warped image with 
respect to the parameters xi, determined in a similar way as 
[14].  

We further introduce a new variable Y, and reformulate 
(7) into a semi-definite program: 
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i

T
iii

T
iii exJexITY ;  

where A0 is the matrix composed of replicates of the ref-
erence appearance α0; and Λ is the matrix of appearance 
coefficient vectors λi for all i. 

4.4. Efficient Solution 
Among the numerical methods, we apply the Aug-

mented Lagragian Method (ALM) which have three 
appealing advantages: First, it does not require penalty 
factor σk to approach infinity, and is thus free from the 
problem of ill-conditioning during the growth of σk .Second, 
it converges Q-linearly [26] to the global optimal solution 
even when the sequence σk is bounded. Third, it has only 
one parameter η, and is easy-tuning. Here we show how the 
ALM algorithm can be adapted to efficiently solve (8), the 
augmented Lagragian of which is: 
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The ALM basically iterates among three update steps – 
the variable (Y, Λ, ΔX), the Lagragian parameter Z, and the 
penalty factor σ : 
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The iteration is conducted until the convergence of g(ΔXk ) 
－Yk is reached. Among the three steps, the optimum of (9) 
is found by alternatively solving Y, Λ and ΔX respectively: 
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where D is the singular value thresholding operator defined 
in [25], and ΔX is the matrix form of the increments Δxi. 

When the inner loop (the three update steps) converges, 
we update the xi in (7) and obtain the final result of (6) until 
its convergence is reached. 

4.5. Re-representation of G and W 
In this paper, we consider the global transformation G as 

affine (translation, in-plane rotation and scaling), rather 
than perspective because the out-of-plane rotation of a head 
has been addressed by the PCs in the statistic shape model.  

Moreover, we parameterize G in a form which operates 
on a shape rather than on the coordinates of its landmarks. 
Specifically, the shape after global transformation is: 

( ) ∑
=

+=
4

1

*
0;

i
ii sqsqsG  

where s is the shape to be transformed; qi are the parame-
ters of the affine transformation G; and si

* are the extended 
basis vectors defined as: 

( )Tnn yxyxs ,,...,, 11
*
1 = ,  ( )Tnn xyxys ,,...,, 11

*
2 −−=  

( )Ts 0,1,...,0,1*
3 = ,           ( )Ts 1,0,...,1,0*

4 =  
It has been demonstrated in [14] that this representation 

is equivalent to that operating on the 2D coordinates. 
However, its advantage is obvious: it is consistent to the 
shape model, so that the global transformation is parame-
terized together with the shape deformation to form an n+4 

Top row: aligned faces; second row: true appearances sampled 
under the reference shape; third row: reconstruction with all PCs, 
in the biased generic appearance space; bottom row: recon-
struction with only the first 2 PCs, in the appearance space 
identified by our method 

Figure 4.  Reconstruction of appearances in different spaces 
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dimensional vector. We therefore denote the concatenation 
of p and q by x, and denote the composition of G and W by 
T. 

4.6. Discussion 
It is worth noticing that, while ρ approaches infinity, the 

objective function (6) reduces to the problem of “Inde-
pendent AAM”; on the other hand, when ρ approaches 0, it 
can be perceived as an extension of [7] from rigid align-
ment to non-rigid. The extension is in a similar spirit as [6], 
yet the difference is that instead of using B-spline as the 
authors in [6] did, we employ a learned deformable shape 
model for non-rigid deformation. 

As setting a proper ρ is important for the success of our 
method, to determine an optimal value is not straightfor-
ward. As mentioned in Section 4.1, the value of ρ is 
dependent on the accuracy of the generic appearance model 
and the correlation of the images. Here we provide a coarse 
estimation of its value 

F
AAYYC 0

0
0

*

0 / Λ−−⋅=ρ  

in a sense that it grows with the uncorrelation of the images 
and descends with the inaccuracy of the generic appearance 
model. Here Y0 and Λ0 are the initial state of Y and Λ, and C 
is an empirically determined constant which is set to be 1 in 
the following experiments. 

Moreover, although the formulation (5) of our problem 
appears similar to that in [7], it is worth mentioning the 
differences: First, we address the non-rigid alignment 
problem, which is more challenging and finds applications 
in a variety of more ambitious scenarios, for example those 
mentioned in Section 2. Second, directly extending the 
application of rank minimization from rigid to non-rigid 
circumstance by merely increasing the dimension of pa-
rameters does not give plausible results. The reason is that 
the aligned shapes do not converge to human facial con-
tours since the generic human face assumption is ignored. 
Third, while the authors directly minimize the rank of the 
aligned faces, we employ it as a regularization term. Last 
but not least, we employ the ALM method which enjoys the 
advantages listed in Section 4.4.  

5. Experiments 
In this section, we specify our experiments and compare 

the obtained results with other methods. 

5.1. Settings 
In our experiment, we train a generic AAM model from 

the public available IMM database [27] which consists of a 
total of 240 labeled images of 40 persons. The images are 
taken under controlled laboratory conditions with varying 

head poses and facial expressions. During the learning 
stage, we perform PCA on the training shapes and ap-
pearances, and retain 95% of their variations, resulting in 
21 PCs and 98 PCs for each of the two models. 

 
Figure 6. Examples of the training set [27] 

We test the algorithms on the LFW database [28], which 
consists of photos of 20 persons retrieved from the internet. 
It is worth mentioning that, the images are taken under 
wild conditions with challenging poses, expressions and 
illumination. Moreover, the faces in the images are dras-
tically different from the training ones. These two facts 
pose a steep challenge for existing methods: the appearance 
model learned from IMM [27] is substantially inaccurate in 
modeling the faces in LFW [28], as it has been shown in 
Fig.4. However, it is important for a good non-rigid 
alignment algorithm to be applicable in such a practical 
scenario. 

We use publicly available software [29, 30] for the im-
plementation of [13, 14], with all parameters set by default. 
The only modifications we make are that, for a fair com-
parison purpose, we modify their initialization functions to 
ensure that they initialize the same shapes as ours does: the 
shapes are initialized to be the reference shape s0, with their 
positions and sizes adjusted according to the detected face 
rectangles. 

5.2. Results and Discussions 
In Fig.7 we show a part of our results (4th row) in 

comparison with: Independent AAM (top), RASL (2nd row) 
and their composition (3rd row). It is worth mentioning that 
in the visualization of RASL results we try our best at 
tuning the size of the reference shape and its offset from the 

Figure 5.  Iterative shape update in joint alignment of “Bush” 
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aligned face rectangles returned by RASL. Therefore, we 
can perceive the observed error as that a rigid alignment 
method produces in aligning objects with non-rigid de-
formation. We manually labeled 5 arbitrarily selected 
image sets consisting of totally 157 images, and show some 
of them in the bottom row. For more results, please refer to 
our supplementary material.  

Table 1: Mean point-point error (pixels) 

 AAM  RASL+AAM Ours Ground 

Obama 10.46 9.54 1.64 0.91 

Bush 10.14 10.25 3.52 1.89 

Sharon 9.92 8.39 2.45 2.11 

Rumsfeld 9.61 9.10 4.00 1.79 

Ashcroft 10.22 5.66 3.24 1.84 

Average 10.07 8.59 2.97 1.71 

To quantify the error, we record in Table 1 the mean 
point-point error in terms of Root Mean Square (RMS). 
Notice that the 4th column refers to the error of fitting a set 
of learned “ground-truth” person-specific AAM models to 
the input images in a supervised manner. It can be regarded 
as the minimum error that an algorithm can achieve on the 
dataset in an idealistic scenario. In addition, to evaluate the 

robustness against the initialization error of the algorithms, 
we systematically perturb the shapes around ground-truths 
by: ± 10-pixels in x/y translation, ± π/8 in rotation and ± 
0.2 in scaling, and count a convergent fit if its error is less 
than 5 pixels. The average convergence rate of 10 trials on 
the database is given in Table 2. 

Table 2: Convergence rate (%) 

AAM  AAM(IC) RASL+AAM Ours 

43.81 50.29 44.66 90.86 

As can be observed, our method performs consistently 
better than the others in the joint non-rigid alignment task. 
It is obvious from the result of compositional RASL and 
AAM that, conventional AAM still gets stuck into un-
wanted solutions although a pose correction has been done 
by RASL. The reason is mainly due to, as discussed in 
Section 3.3, the inaccurate generic appearance model and 
biased gradient directions. 

Besides the fact that the overwhelming majority of our 
results are good, there are also negative examples: those 
images with exaggerated facial  expressions, focusing blur 
or large outliers. For these images, the assumptions made 
in Section 4.1 are violated by occlusions and shadows. In 
the right hand of Fig.9, we show some of them. Notice that, 
as long as they are substantially minor in number, our 

Top row: Independent AAM [13]; second row: RASL [7]; third row: RASL + AAM; fourth row: our method; bottom row: ground-truths 

Figure 7.  Alignment results on “Sharon” in comparison with other work 
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method can still reliably identify the appearance of the 
input faces and generate good results on the normal ones, 
such as those shown in Fig.7 and Fig.8. 

6. Conclusion and Future Work 
In this paper, we propose a model-based method for joint 

alignment of multiple images of an object undergoing a 
variety of appearance variations. The method does not rely 
on an accurate appearance model which is learned from 
training data as conventional ones do. It simultaneously 
identifies the appearance of the interested object while 
bringing the images into alignment. Experiments on wild 
conditioned dataset demonstrate the effectiveness of the 
proposed method. 

On the other hand, our ongoing work involves perfor-
mance improvement in more challenging circumstances 
where outliers are present and images are degraded. 

 
Figure 9.  Some results on the extreme cases 
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