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Abstract

In recent years significant progress has been made learn-
ing generic pedestrian detectors from manually labeled
large scale training sets. However, when a generic pedes-
trian detector is applied to a specific scene where the test-
ing data does not match with the training data because
of variations of viewpoints, resolutions, illuminations and
backgrounds, its accuracy may decrease greatly. In this pa-
per, we propose a new framework of adapting a pre-trained
generic pedestrian detector to a specific traffic scene by au-
tomatically selecting both confident positive and negative
examples from the target scene to re-train the detector it-
eratively. An important feature of the proposed framework
is to utilize unsupervisedly learned models of vehicle and
pedestrian paths, together with multiple other cues such
as locations, sizes, appearance and motions to select new
training samples. The information of scene structures in-
creases the reliability of selected samples and is comple-
mentary to the appearance-based detector. However, it was
not well explored in previous studies. In order to further
improve the reliability of selected samples, outliers are re-
moved through multiple hierarchical clustering steps. The
effectiveness of different cues and clustering steps is evalu-
ated through experiments. The proposed approach signifi-
cantly improves the accuracy of the generic pedestrian de-
tector and also outperforms the scene specific detector re-
trained using background subtraction. Its results are com-
parable with the detector trained using a large number of
manually labeled frames from the target scene.

1. Introduction

Detecting pedestrians from video sequences is of great
interest in video surveillance in traffic scenes (see an ex-
ample in Figure 1 (a)). It is useful when analyzing typi-
cal and abnormal behaviors of pedestrians, detecting dan-
gerous activities and counting pedestrians along different
paths. Many existing works [14, 23] on pedestrian detec-
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Figure 1: (a) Typical traffic scene from the MIT traffic data
set [20]. (b) Distribution of manually labeled pedestrian
bounding boxes from this traffic scene. (c) Spatial distri-
butions of pedestrian paths unsupervised learned using the
approach in [20]. (d) Estimated regions of pedestrian paths
by thresholding the distribution density in (c).

tion in video surveillance were based on background sub-
traction. However, it is well known that background sub-
traction is sensitive to lighting variations and scene clusters,
and has difficulty in handling the grouping and fragmenta-
tion problems [1]. In recent years, appearance-based pedes-
trian detectors [4, 12, 22, 7, 2] based on large-scale training
sets became more and more popular and have achieved great
success. There is a huge literature [8] on this topic. How-
ever, it is difficult to train a generic appearance-based pedes-
trian detector which works robustly in different scenes be-
cause there is a large diversity of both positive and negative
examples and there are also large variations of viewpoints,
illuminations, resolutions and backgrounds across different
scenes. For example, it was shown that the detection rate
of the popular HOG pedestrian detector [4] trained on the



(a) Some models of vehicle paths.

g

(b) Some models of pedestrian paths.

Figure 2: Examples of models of vehicle and pedestrian paths learned by [20] from the MIT traffic data set [20]. Each model
is a distribution of over locations and moving directions of objects. Colors indicate moving directions: red (—), cyan (<—),
magenta (1) and green (). The intensity of colors indicates the distribution over space.

INRIA data set dropped significantly when being tested on
the Caltech benchmark video data set [6].

In video surveillance most cameras are stationary. If the
scene is fixed, the diversity both of positive and negative
examples will be significantly reduced. Therefore it is at-
tractive to learn a scene specific detector with a higher ac-
curacy in the target scene than a generic detector. Although
higher accuracy can be achieved if the detector is trained
using manually labeled examples from the target scene, re-
peating the manually labeling work for every different scene
is costly and this approach is not scalable. A more practical
way is to automatically adapt a generic detector to a tar-
get scene given a batch of video frames collected from that
scene for training, however without manually labeling. Our
work is along this direction. The focus is how to automati-
cally select training examples from the target scene.

1.1. Related Work

Compared with extensive research done on generic ob-
ject detectors, existing works on scene specific pedestrian
detectors are limited. They typically designed a labeler
which automatically selected positive and negative exam-
ples from the target scene to re-train the generic detector.
In order to effectively improve the performance, the train-
ing examples selected by the automatic labeler must be reli-
able and informative to the detector. Semi-supervised self-
training was used in [15]. Examples confidently classified
by the detector were used to re-train the detector. Since
the detector itself was the labeler and not reliable, the se-
lected examples were not informative and likely to have the
wrong labels, which made the detector drift. Nair et al. [13]
used background subtraction results to label training exam-
ples for an appearance-based pedestrian detector. The ac-
curacy of the background subtraction labeler was low and it
introduced biased labeling which misled the learning of the
detector. For example, static pedestrians might be labeled
as non-pedestrian examples. It was unlikely for pedestri-
ans with clothes of a similar color to the background to be
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labeled as pedestrian examples.

Some automatic labelers were designed under the co-
training framework [11, 10, 16, 21]. Two detectors based
on different types of features were trained iteratively. The
prediction of one detector on unlabeled examples was used
to enlarge the training set of the other. For example, Levin
et al. [11] built two car detectors using gray images and
background subtracted images. They all required manually
labeling a small training set from the target scene for initial-
ization. In order for co-training to be effective, the detectors
need to be independent, which is difficult to achieve. Dalal
et al. [5] showed that the appearance-based and motion-
based pedestrian detectors were highly correlated.

When cameras are stationary, the distribution of the neg-
ative class is region-specific. Roth et al. [16, 17] introduced
classifier grids to train a separate detector for each local re-
gion. Stalder et al. [18] used tracking and manually-input
scene geometry to assist labeling.

1.2. Our Approach

We focus on traffic scenes, which are more challeng-
ing and where moving objects consist mainly of pedestri-
ans and vehicles. Eagle-eye perspective is assumed. The
movements of pedestrians and vehicles are regularized by
scene structures and they follow certain motion patterns.
The models of pedestrian and vehicle paths can increase
the reliability of the automatic labeler. It is more reliable
to select positive examples on pedestrian paths (see Figure
1 (b)). Because it is rare for vehicles to move on pedestrian
paths, knowing that examples on a pedestrian path are either
pedestrians or negative examples from the background, the
automatic labeling then becomes easier. Negative examples
on the background and vehicle paths can also be better se-
lected with the assistance of path models. Because the mod-
els of paths are distributions over locations, they are less
correlated with appearance and can select more informative
examples for re-training. If the locations help to select pos-
itive examples on pedestrian paths, after being re-trained,
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Figure 3: Diagram of our approach.

the detector can detect more pedestrians outside pedestrian
paths based on appearance.

However, this information was not well explored in pre-
vious works, partially because obtaining the models of
scene structures required manual input or reliable detec-
tors and trackers as prerequisites. Manually inputting scene
structures is not only costly but also inaccurate. As shown
in Figure 2, it is difficult to manually draw the boundaries
of paths to accurately match the moving patterns of objects.
Some paths cannot be identified from the background im-
age. In our previous work [20] proposed an approach of
automatically learning the motion patterns of objects from
simple location motions (see examples in Figure 2) was pro-
posed. Benefiting from this outcome, our approach uses the
models of pedestrians and vehicles paths learned by [20] to
train scene specific pedestrian detector. Other cues such as
locations, sizes, appearance and motions are also integrated
to select training examples in the target scene. To improve
reliability, we remove outliers through multiple clustering
steps.

The effectiveness of different cues and clustering steps
is evaluated through experiments. The proposed approach
significantly improves the accuracy of the generic pedes-
trian detector and also outperforms the scene specific detec-
tor re-trained using the background subtraction. Its results
are comparable with the detector trained using manually la-
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beled examples from the target scene.

2. Data Set

We conduct the experimental evaluations on the MIT
Traffic data set!. It consists of around 162,000 frames
from a 90 minutes long video sequence (30 fps), which was
recorded by a stationary camera facing a street intersection.
This video includes both pedestrian and vehicle movements
with occlusions and varying illumination conditions. We
uniformly sample 420 frames from the first half 45 min-
utes long video to train the scene-specific pedestrian detec-
tor and uniformly sample 100 frames from the second half
45 minutes long video to test the performance of the de-
tector after re-training. The bounding boxes of pedestrians
in the sampled 520 frames are manually labeled as ground
truth and they are plotted in Figure 1 (a). However, they are
NOT used during the training of the scene specific detector.

3. Method

The diagram of our approach is shown in Figure 3. It
starts with a generic appearance-based pedestrian detector
pre-trained from a common data set and the detector is it-

I'The data set is available at
http://www.ee.cuhk.edu.hk/~xgwang/MITtraffic.html.
The manually labeled ground truth is also available from this webpage.



Figure 4: (a) Examples detected by the generic detector,
with positive scores and within the regions of pedestrian
paths. They include a lot of false alarms (left side) to be
purified. See text in Section 3.1. (b) A background false
alarm cluster (left side) obtained by clustering on locations
and sizes includes a few pedestrians accidentally passing by
the same location. They are removed by further clustering
on appearance (right side), since background false alarms
are also clustered in appearance. See text in Section 3.2. (c)
Examples detected on vehicle paths. Some true positives
are included (left side).

eratively re-trained. In each round, the detector is applied
to the training video frames and three types of examples
(confident positive examples of pedestrians, confident neg-
ative examples from the background and confident negative
examples from vehicles) from the target scene are automat-
ically selected to re-train the detector. We assume that the
models of pedestrian and vehicle paths are learned and their
regions are segmented using the approach in [20] 2.

To obtain the generic detector, we choose the
HOG+SVM pedestrian detector [4], and train it on the
INRIA data set. A detection window is denoted by
(x,y,0.5s, s), where = and y are the coordinates of the cen-
ter of the detection window, 0.5s and s are the width and
the height. The HOG feature associated with a detection
window is denoted as f, ,, ;. The output of the linear SVM

classifier takes the form,
score = a - f; , . + ao,

6]

where a and a are the weights and bias learned by SVM.
Since ours is a general framework, other generic pedestrian

2Given the output of [20], the user needs to label a path model to be a
pedestrian path or a vehicle path. However, this workload is light.

3404

detectors and training sets can also be used. Normally, the
back-end of a detector clusters detection windows based on
their sizes and locations, yielding merged windows at the
final result. Instead, we select training examples from un-
merged windows and this leads to a more robust scene spe-
cific detector. The details of automatically selecting training
examples are given in the following sub-sections.

3.1. Confident Positive Examples of Pedestrians

The sampled video frames are scanned with the pedes-
trian detector at multiple scales. Since it is more likely for
pedestrians to appear on pedestrian paths, in order to ob-
tain confident positive examples, we only consider detec-
tion windows, which fall in the regions pedestrian paths (as
shown in Figure 1d) and whose scores given by Eq. (1) are
positive, as candidates. As shown in Figure 4 (a), these can-
didates include a lot of negative examples to be purified in
the further steps.

Estimating sizes of pedestrians. In order to estimate the
size range of pedestrians in the target scene, we construct
the histograms of the sizes of the detected windows. The
mode s of the histogram is selected by mean shift [3] as
the mean of the pedestrian sizes and the variance (o) of the
mode is also estimated. Pedestrians appear in different sizes
in the scene because of perspective distortion. Their size
variation is modeled as a single global Gaussian distribution
G(3,0) in our approach and this model will be integrated
with other cues in a probabilistic way as described later. The
size variation could be better modeled through estimating
the perspective transformation of the scene [9] or estimating
different Gaussian distributions in different local regions.

Hierarchical clustering of detection windows. In a traf-
fic scene, it is uncommon for pedestrians to stay at the same
location for a long time. On the other hand, if a background
patch is misclassified as a pedestrian, similar patterns tend
to repeatedly appear at the same location and be misclas-
sified over a long period. Through hierarchical clustering
illustrated in Figure 5, we find such examples and exclude
them from selected confident positive examples, since they
are more likely to be false alarms on the background. As
shown in Figure 5, the hierarchical clustering on the loca-
tions and sizes of detection windows has two stages, clus-
tering within a single frame and clustering across frames.
Clustering within a single frame is similar to window merg-
ing commonly used in sliding-window based detection [4].
A sliding-window based detector usually gives multiple de-
tections around the location of one pedestrian. Mean shift
based on locations and sizes of windows (x,y, s) is used
to cluster these windows and merge them into one win-
dow (Zm, Ym, Sm). The bandwidth is chosen as 5/3, which
is tuned on the INRIA data set. The merged windows
are further clustered across frames using mean shift based
on (L, Ym, Sm ). Large clusters across many frames (e.g.



Figure 5: Hierarchical clustering of detection windows.

longer than 3 minutes in our implementation) are removed
from confident positive examples and selected as candidates
of confident negative examples from the background. Note
that they are not necessarily negative examples and will be
further processed in Section 3.2.

Filtering with Multi-cues. Confident positive examples
of pedestrians are selected by integrating multiple cues of
motions, models of pedestrian paths and sizes of detection
windows in a probabilistic way. Let z (z,y,8,n,N)
be a detected window. n is the number of moving pixels
in the window and N is the total number of pixels in the
window. Then the log likelihood of this detected window
being a pedestrian is given by the joint probability,

Ly(2) =logps(s[s, o) + log pe((z, y, s)|dx)

+ log pm(n, N). 2)

ps models the pedestrian sizes as a Gaussian distribution and
(s —5)

therefore,
1 2
exp | — .
Voro P ( 202 ) )

log pe((x,y, s)|¢r) is the log likelihood based on the mod-
els of pedestrian paths. Suppose the detection window con-
tains N pixels whose locations are {(xj,y])} . Ok
(Pk1y- .-, oxw) (W is the number of dlscretlzed cells in
the target scene) is the discrete spatial distribution of the
pedestrian path where the window is detected. Then,

log ps(s|5,0) = log (

N
lngg((ZII,y, |¢k Z ng x]ayj |¢k)
=1

A detection window on a pedestrian often contains more
moving pixels than that on the background. log p,,(n, N)
is the log likelihood based on the motion cue,

n
1og pm (1, N) = log —.
0g pm(n, V) g
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Moving pixels are detected in a simple way. Suppose the
current frame is I;. Two reference frames I;_5¢ and [;450
50 frames before and after the current frame are selected.
By calculating the frame difference as 0.5(|1; — I;_50| +
I — Ii150]), moving pixels inside a detection window are
thresholded and counted.

Similar to other self-training [15, 13] or co-training [11,
10, 16, 21] frameworks, the confident positive examples are
found by thresholding L, (z) > L. The larger the threshold
is, the more conservative the strategy of selecting examples
is. In our approach, L can be decided by interpreting the
probabilistic meanings of the three terms in Eq. (2). For
example, in our experiments, Ly is chosen as

Lo = logps(5+0/2|5,0)+10g 0.75 max({ prw }) +1og 0.2.

Clustering on Appearance. The remaining examples af-
ter thresholding include a small portion of outliers from the
background and vehicles. These outliers are removed by
clustering the HOG features f, , s by mean shift. Examples
on pedestrians, vehicles and the background form different
clusters on appearance and pedestrians take majority in the
remaining examples. The bandwidth for mean shift is au-
tomatically decided by the criterion that 90% (in our exper-
iments, this threshold in the range of 70% — 95% leads to
satisfactory results) of examples fall into one cluster. Ex-
amples in this cluster are selected as confident positive ex-
amples of pedestrians.

3.2. Confident Negative Examples from the Back-
ground

In order to automatically select confident negative ex-
amples, we only consider detection windows whose scores
satisfy 0 < score < 0.5 as candidates. These examples
are misclassified by the detector and close to the decision
boundary. They are informative to the detector and are also
known as hard examples in literature [4, 7]. As explained in
Section 3.1, false alarms on the background tends to repeat
over time at the same location with similar appearance pat-
terns. Therefore, their examples tend to be highly clustered
in both the location-size space and the appearance space.
After hierarchical clustering on sizes and locations as de-
scribed in Section 3.1, clusters of detection windows ob-
served at the same locations over a long period are selected
as negative examples. However, as shown in Figure 4 (b),
they may include a small number of pedestrians who acci-
dentally pass by the same locations. To remove these posi-
tive examples, examples within each cluster are further clus-
tered using mean shift on HOG features. Again, 90% exam-
ples are kept by automatically adjusting the bandwidth.

3.3. Confident Negative Examples from Vehicles

It is unreliable to directly count windows detected on ve-
hicle paths as negative examples, since some pedestrians



and bicycles also move on the vehicle paths (some exam-
ples are shown in Figure 4 (c)). In order to select con-
fident negative examples from moving vehicles, the exis-
tence of moving vehicles need to be first detected. This is
achieved by feature point tracking and clustering. Corner
feature points in the scene are detected and tracked using
the KLT tracker [19]. Stationary points and short trajecto-
ries are removed. Then trajectories are clustered based on
their temporal and spatial proximity by mean shift. Each
trajectory cluster is assigned to one of the vehicle paths or
removed? based on the spatial overlap between the cluster
and the path. The remaining trajectory clusters mainly cor-
respond to vehicles. The size range of vehicles along each
vehicle path is estimated using mean shift in a similar way
as estimating pedestrian size in Section 3.1. The trajectory
clusters of pedestrians on vehicle paths are removed using
the size evidence. If a detection window is on a trajectory
cluster which is on a vehicle path and whose size is large
enough, the detection window is selected as a confident neg-
ative example on a moving vehicle.

3.4. Final Scene Specific Pedestrian Detector

Once the scene specific pedestrian detector has been well
trained on the sampled video frames, it will be used to de-
tect pedestrians in new frames purely based on appearance
without the assistance of other cues. Although the multi-
ple cues discussed above are effective on selecting training
examples, they cannot guarantee high detection accuracy*.
For example, if the detector relies on path models, pedes-
trians walking on the vehicle paths may be missed (these
pedestrians are of great interest in video surveillance). Re-
plying on motions and sizes, some stationary pedestrians
and small pedestrians may be missed. The final detector
gives multiple detection windows around the location of a
pedestrian. The windows are merged to give the final result.

4. Experiment Results

Experiments are conducted on the MIT traffic data set
described in Section 2. We adopt the PASCAL criterion [6]
that a detection is correct if the ratio between the intersec-
tion and the union is larger than 0.5 comparing the detec-
tion window and the ground truth. The ROC curve is used
as the evaluation metric. We have particular interest in the
detection rates when the false alarm rate (FAR) is 107, as
it corresponds approximately to 1 false alarm per frame on
this data set. This comparison result is shown in Table 1.

1) Overall performance. Figure 7 (a) and (b) plot the
ROC curves of the initial generic detector and our scene-
specific detector after different rounds of re-training. They

3The removed clusters are from pedestrians or background clutters.
4The purpose of using these cues is to find some confident examples
without introducing bias on appearance but not all the examples.
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Figure 6: Detection examples. Our scene-specific detector
(a) significantly enhances the detection rate of the generic
detector (b).

are evaluated on both the training set and the testing set>.
The performance of the generic detector is low on our data
set and achieves a detection rate of only 21% at FAR =
1075, This result is consistent with the observation in
[6].0ur scene specific detector converges® after 10 rounds
of automatic re-training. It greatly enhances the detection
rate to 61% (on the training set) and 62% (on the testing
set) at FAR = 1075, An example is shown in Figure 6.

2) Comparison with the automatic labeler based on
background subtraction. We compare with a scene-specific
detector re-trained using the automatic labeler based on
background subtraction. Positive and negative examples for
re-training are automatically selected according to the num-
ber of foreground pixels within the detection windows. A
similar strategy was used in [13]. [13] used Haar features +
Boosting. To make the comparison consistent, we still use
SVM + HOG. Its best ROC curve (after the 5-th round of
re-training) on the testing set is plotted in 7 (c). This scene-
specific detector does not perform as well as ours because
many false alarms on moving vehicles are selected as posi-
tive examples and stationary pedestrians are selected as neg-
ative examples. Starting from the 7-th round of re-training,
the detector drifts and its performance dramatically deterio-
rates.

3) Comparison with the scene-specific detector trained
using manually labeled examples from the target scene.
We also train detectors using different numbers of manu-
ally labeled frames in the training set. These detectors are
bootstrapped according to the strategy in [4]”. Their ROC
curves on the testing set are plotted in Figure 7 (d). Intu-
itively, the detector trained using all the manually labeled

5The ROC curves on the testing set are slightly higher than on the train-
ing set, because the sampled training frames are more difficult.

6Convergence means that the performance of the detector does not im-
prove significantly anymore.

7 After the first round of training, the detector is re-trained by adding
more hard negative examples found in the frames.



GE Ours SSB SS_M(420)
021 0.62 0.43 0.66
SS_M(300) | SS_M(150) | SS_M(100) | SS_M(50)
0.62 0.52 0.45 0.42

Table 1: Detection rates of different detectors when FAR =
10~%. GE: generic detector; Ours: our scene-specific de-
tector; SS_B: scene-specific detector using background sub-
traction as the automatic labeler; SS_M(n): scene-specific
detector trained using n manually labeled frames.

frames from the target scene is the best one we can get.
The ROC curve of our detector is slightly lower than that
of this best one. But it performs better than the detectors
trained using 50 ~ 300 manually labeled frames. As shown
in Table 1, the detection rate of our detector is the same
as the one trained using 300 manually labeled frames when
FAR = 1076,

4) Effectiveness of different cues for selecting confident
positive examples. As shown in Eq (2), the cues of detection
window sizes, models of pedestrian paths and motions are
integrated to select confident positive examples. Figure 7
(e) plots the ROC curves of removing each of the three cues
separately. It shows that the models of pedestrian paths are
most effective. Removing this cue during re-training, the
detection rate of the final scene specific detector will signif-
icantly decrease by 17% at FAR = 1076,

5) Effectiveness of removing outliers through cluster-
ing on appearance. In both Section 3.1 and Section 3.2,
some outliers are removed through clustering on appear-
ance. Our experiments show that this is crucial for the
convergence of the scene specific detector. Without these
clustering steps, the detector drifts after several rounds of
re-training due to the massive inclusion of training exam-
ples with wrong labels. In our approach, mean shift is used
for clustering and its bandwidth is automatically selected to
reject 10% examples as outliers. In practice, we find that
this threshold (the mean shift rejection rate) is highly con-
figurable and can be set as 5% ~ 30%. The ROC curves
of choosing different thresholds are shown in Figure 7 (f).
We recommend a relatively high threshold, since it reduces
the risk of detector drifting, although it may result in more
rounds of re-training to converge.

5. Conclusions and Discussions

We propose a novel framework of adapting a generic
pedestrian detector to a specific traffic scene by automat-
ically selecting confident positive and negative examples
from the target scene. It integrates the models of pedes-
trian and vehicle paths with other cues to make the se-
lected examples informative and reliable. Experiment on
the MIT Traffic data set shows that our approach signifi-
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cantly improves the detection rate from 21% to 62% given
FAR = 10~% compared with the generic detector. It even
outperforms the scene-specific detector trained directly us-
ing fewer than 300 manually labeled frames.

Our approach only has two parameters to be set empiri-
cally: Lo described in Section 3.1 and the mean shift rejec-
tion rate in Figure 7 (f). They controls how aggressive the
automatic training process is. Similar parameters also exist
in other approaches of automatically training scene specific
detectors [10, 11, 12, 13, 14, 15, 16]. Our approach has
robustness to these parameters within certain range. It is
also possible to tune the two parameters using a few man-
ually labeled frames. As shown in Figure 7 (d), given a
small number of labeled frames, our approach greatly out-
performs the approach of directly using these labels to train
the detector.
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