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Course	Information

• Course	webpage	
http://www.ee.cuhk.edu.hk/~xgwang/dl/
• Discussions
–WeChat account	@DeepLearningCUHK
– Twitter	account	@dl_cuhk
–WeChat group	(see	QR	code	on	webpage)
– Notes	at	Github (https://eleg5491.github.io/)	 	



Course	Information

• Instructor:	Xiaogang Wang
– SHB	415
– Office	hours:	after	Tuesday’s	class	or	by	
appointment

• Tutor:	Hongyang Li	(leader)
– SHB	301
– yangli@ee.cuhk.edu.hk
– Office	hours:	10:00	– 12:00	on	Wednesday	



Course	Information

• Tutor:	Tong	Xiao
– SHB	304
– xiaotong@ee.cuhk.edu.hk
– Office	hours:	14:40-16:30	on	Monday		

• Tutor:	Wei	Yang
– SHB	304
– wyang@ee.cuhk.edu.hk
– Office	hour:	9:30-11:30	on	Friday



Course	Information

• Lecture	time	&	venue
– Tuesday:	14:30	– 15:15,	LT,	Basic	Medicine	Science	
Building

– Thursday:	14:30	– 16:15,	L4,	Science	Center
• Unofficial	optional	tutorials	(10	times,	one	
hour	each	time)
– Tuesday	15:30	– 16:30
–Wednesday	16:30	– 17:30
– Friday	16:30	– 17:30



Course	Information
• Homework	(30%)
• Quiz	1	(15%)
• Quiz	2	(15%)
• Project	(40%)

– Topics
• Applications	of	deep	learning
• Implementation	of	deep	 learning
• Study	deep	learning	algorithms

– You	should	submit
• One	page	proposal	and	discuss	 it	with	tutor	(topic,	idea,	method,	
experiments)

• A	term	paper	of	4	pages	(excluding	figures)	in	maximum,	double	
column,	font	size	is	equal	or	larger	than	10.

• Code	and	sample	data
• Project	presentation
• Poster	presentation	+	tea	party

– No	survey
– No	collaboration
– We	can	reimburse	cloud	computing	service	at	Amazon	up	to	20	hours	

each	person



Course	Information
• Examples	of	project	topics

– Implement	CNN	with	GPU	and	compare	its	efficiency	with	Caffe
– Fast	CPU	implementation	of	CNN
– We	provide	a	baseline	model	of	GoogLeNet on	ImageNet,	and	you	try	

to	improve	it
– Choose	one	of	the	deep	learning	related	competitions	(such	as	

ImageNet),	and	compare	your	result	with	published	ones
– Propose	a	deep	model	to	effectively	learn	dynamic	features	from	

videos
– Deep	learning	for	speech	recognition
– Deep	learning	for	object	detection	



Textbook

• Ian	Goodfellow and	Yoshua Bengio and	Aaron	
Courville,	“Deep	Learning,”	MIT	Press,	2016



Lectures
Week Topics Requirements

1	(Jan	10	&	12) Introduction

2	(Jan	17	& 19) Machine	learning	basics	

3	(Jan	24	&	26) Multilayer neural	networks Homework 1

Chinese	New Year

4	(Feb 7	&	9) Convolutional neural	netowrks Homework 2

5	(Feb	14	&	16) Optimization for	training	deep	neural	networks

6	(Feb	21	&	23) Network	structures Quiz	1	(Feb	21)

7	(Feb	28	&	Mar	2) Recurrent	neural network	(RNN)	and	LSTM

8	(Mar	7	&	9) Deep	belief	net	and	auto-encoder Homework	3

9	(Mar	14	& 16) Reinforcement learning	&	deep	learning Project	proposal

10	(Mar	21	&	23) Attention	models

11	(Mar	28	&	30) Generative	adversarial	networks	(GAN)

12	(Apr	6) Structured deep	learning

13	(Apr	11	&	18) Course sum-up Quiz	2	(Apr	18)

Project	presentation	(to	be	decided)



Tutorials
Times Topic

1 Python/Numpy tutorial/AWS	 tutorial	

2 Understand backpropagation

3 Torch	tutorial

4 Caffe/Tensorflow/Theano

5 Roadmaps	of	deep	learning	models

6 Hands	on	experiment	with	debugging	 models

7 GPU parallel	programming

8 Final	project	proposal discussion

9 Assignment	and	quiz	review

10 Fancy stuff:	deep	learning	on	spark,	future	directions

Hands-on	assignments	are	provided	in	tutorials.	Bring	your	laptop



Introduction	to	Deep	Learning



Outline

• Historical	review	of	deep	learning
• Understand	deep	learning
• Interpret	neural	semantics



Machine	Learning
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Lectures
Week Topics Requirements

1	(Jan	10	&	12) Introduction

2	(Jan	17	& 19) Machine	learning	basics	

3	(Jan	24	&	26) Multilayer neural	networks Homework 1

Chinese	New Year

4	(Feb 7	&	9) Convolutional neural	netowrks Homework 2

5	(Feb	14	&	16) Optimization for	training	deep	neural	networks

6	(Feb	21	&	23) Network	structures Quiz	1	(Feb	21)

7	(Feb	28	&	Mar	2) Recurrent	neural network	(RNN)	and	LSTM

8	(Mar	7	&	9) Deep	belief	net	and	auto-encoder Homework	3

9	(Mar	14	& 16) Reinforcement learning	&	deep	learning Project	proposal

10	(Mar	21	&	23) Attention	models

11	(Mar	28	&	30) Generative	adversarial	networks	(GAN)

12	(Apr	4	&	6) Structured deep	learning Quiz	2	(Apr	4)

13	(Apr	11	&	18) Course sum-up

Project	presentation	(to	be	decided)
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• Solve	general	learning	problems
• Tied	with	biological	system

But	it	is	given	up…

deep	learning	 results

Speech

2011
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Not	well	accepted	by	the	vision	community	L
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LeCun’s open	letter	in	CVPR	2012

So,	I’m	giving	up	on	submitting	to	computer	vision	conferences	altogether. CV	
reviewers	are	just	too	likely	to	be	clueless	or	hostile	towards	our	brand	of	
methods.	Submitting	our	papers	is	just	a	waste	of	everyone’s	time	(and	incredibly	
demoralizing	to	my	lab	members)

I	might	come	back	in	a	few	years,	if	at	least	two	things	change:
- Enough	people	in	CV	become	interested	in	feature	learning	that	the probability	
of	getting	a	non-clueless	and	non-hostile	reviewer	is	more than	50%	(hopefully	
[Computer	Vision	Researcher]‘s	tutorial	on	the	topic	at	CVPR	will	have	some	
positive	effect).
- CV	conference	proceedings	become	open	access.
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ImageNet
(vision)

2012

Rank Name Error	rate Description
1 U.	Toronto 0.15315 Deep	learning
2 U.	Tokyo 0.26172 Hand-crafted	

features	and	
learning	models.
Bottleneck.

3 U. Oxford 0.26979
4 Xerox/INRIA 0.27058

Object	recognition	 over	1,000,000	 images	and	1,000	categories	(2	GPU)

A. Krizhevsky, L. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS, 2012.

Current	best	result	<	0.03



AlexNet implemented	on	2	GPUs	(each	has	2GB	memory)



ImageNet Large	Scale	Visual	
Recognition	Challenge	(ILSVRC)



ImageNet Object	Detection	Task

29

• 200	object	classes
• 60,000	test	images



UvA-Euvision
22.581%

ILSVRC	2013 ILSVRC	2014

Google
GoogLeNet

43.9%

CUHK
DeepID-Net

50.3%

MSRA
ResNet
62.0%

CVPR’15

CUHK
GBD-Net
66.3%

ILSVRC	2015 ILSVRC	2016





Network	Structures

AlexNet

VGG

GoogLeNet

ResNet



Lectures
Week Topics Requirements

1	(Jan	10	&	12) Introduction

2	(Jan	17	& 19) Machine	learning	basics	

3	(Jan	24	&	26) Multilayer neural	networks Homework 1

Chinese	New Year

4	(Feb 7	&	9) Convolutional neural	netowrks Homework 2

5	(Feb	14	&	16) Optimization for	training	deep	neural	networks

6	(Feb	21	&	23) Network	structures Quiz	1	(Feb	21)

7	(Feb	28	&	Mar	2) Recurrent	neural network	(RNN)	and	LSTM

8	(Mar	7	&	9) Deep	belief	net	and	auto-encoder Homework	3

9	(Mar	14	& 16) Reinforcement learning	&	deep	learning Project	proposal

10	(Mar	21	&	23) Attention	models

11	(Mar	28	&	30) Generative	adversarial	networks	(GAN)

12	(Apr	4	&	6) Structured deep	learning Quiz	2	(Apr	4)

13	(Apr	11	&	18) Course sum-up

Project	presentation	(to	be	decided)



Deep	Learning	Frameworks

Caffe

Theano

Torch



Tutorials
Times Topic

1 Python/Numpy tutorial/AWS	 tutorial	

2 Understand backpropagation

3 Torch	tutorial

4 Caffe/Tensorflow/Theano

5 Roadmaps	of	deep	learning	models

6 Hands	on	experiment	with	debugging	 models

7 GPU parallel	programming

8 Final	project	proposal discussion

9 Assignment	and	quiz	review

10 Fancy stuff:	deep	learning	on	spark,	future	directions

Hands-on	assignments	are	provided	in	tutorials.	Bring	your	laptop



Pedestrian	Detection





Pedestrian	detection	on	Caltech	
(average	miss	detection	rates)

HOG+SVM
68% HOG+DPM

63%

Joint	DL
39%

DL	aided	by	
semantic	tasks

17%

W.	Ouyang and	X.	Wang,	“Joint	Deep	Learning	for	Pedestrian	Detection,”	ICCV 2013.

Y.	Tian,	P.	Luo,		X.	Wang,	and	X.	Tang,	“Pedestrian	Detection	aided	by	Deep	Learning	
Semantic	Tasks,”	CVPR 2015.

Pre-trained	on	
ImageNet

11%

Y.	Tian,	P.	Luo,		X.	Wang,	and	X.	Tang,	“Deep	Learning	Strong	Parts	for	Pedestrian	Detection,”	
ICCV 2015.
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Lectures
Week Topics Requirements

1	(Jan	10	&	12) Introduction

2	(Jan	17	& 19) Machine	learning	basics	

3	(Jan	24	&	26) Multilayer neural	networks Homework 1

Chinese	New Year

4	(Feb 7	&	9) Convolutional neural	netowrks Homework 2

5	(Feb	14	&	16) Optimization for	training	deep	neural	networks

6	(Feb	21	&	23) Network	structures Quiz	1	(Feb	21)

7	(Feb	28	&	Mar	2) Recurrent	neural network	(RNN)	and	LSTM

8	(Mar	7	&	9) Deep	belief	net	and	auto-encoder Homework	3

9	(Mar	14	& 16) Reinforcement learning	&	deep	learning Project	proposal

10	(Mar	21	&	23) Attention	models

11	(Mar	28	&	30) Generative	adversarial	networks	(GAN)

12	(Apr	4	&	6) Structured deep	learning Quiz	2	(Apr	4)

13	(Apr	11	&	18) Course sum-up

Project	presentation	(to	be	decided)



Yoshua Bengio, an AI researcher at the University of Montreal, estimates that there are
only about 50 experts worldwide in deep learning, many of whom are still graduate
students. He estimated that DeepMind employed about a dozen of them on its staff of
about 50. “I think this is the main reason that Google bought DeepMind. It has one of the
largest concentrations of deep learning experts,” Bengio says.
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Topics

Introduction

Machine	learning	basics	

Multilayer neural	networks

Convolutional neural	netowrks

Optimization for	training	deep	neural	networks

Network	structures

Recurrent	neural network	(RNN)	and	LSTM

Deep	belief	net	and	auto-encoder

Reinforcement learning	&	deep	learning

Attention	models

Generative	adversarial	networks	(GAN)

Structured deep	learning

Course sum-up



Outline

• Historical	review	of	deep	learning
• Understand	deep	learning
• Interpret	Neural	Semantics



Highly	complex	neural	
networks	with	many	layers,	
millions	or	billions	of	
neurons,	and	sophisticated	
architectures

Fit	billions	of	training	samples Trained	with	GPU	clusters	
with	millions	of	processors

Deep	learning	



Machine	Learning	with	Big	Data
• Machine	learning	with	small	data:	overfitting,	reducing	model	complexity	

(capacity),	adding	regularization
• Machine	learning	with	big	data:	underfitting,	increasing	model	complexity,	

optimization,	computation	resource
AI	system

Engine

Fuel Big	data

Deep	
learning



Feature	Learning	vs Feature	Engineering

Pattern	Recognition	=	Feature	+	Classifier

Deep	Learning



Pattern	Recognition	System

preprocessing

feature	extraction

classification

Input

Decision:	“salmon”	or	“sea	bass”

sensing



Artificial	neural	network
Human	brain

Neural	Responses	are	Features



Way	to	Learn	Features?

Images	from	ImageNet
will	 class	labels

Sky

Learn	feature	
representations	from	
image	classification	task

How	does	human	brain	
learn	about	the	world?



Images	from	
ImageNet

Feature	transform

Feature	transform

…

Predict	1,000	classes Image	segmentation	(accuracy)

Object	detection	(accuracy)

Object	tracking	(precision)…

Learning	features	from	ImageNet

Can	be	well	applied	to	many	other	vision	
tasks	and	datasets	and	boost	their	
performance	substantially

Deep	Learning	is	a	Universal	Feature	Learning	Engine

65%
85%

40%
81%

48%
84%



…
Features	learned	from	ImageNet serve	as	the	engine driving	many	vision	problems

Deep	Learning	is	a	Universal	Feature	Learning	Engine



How	to	increase	model	capacity?

Curse	of	dimensionality

Blessing	of	dimensionality

Learning	hierarchical	feature	transforms	
(Learning	features	with	deep	structures)



AlexNet (Google) 2012 GoogLeNet (Google)	2014 ResNet (Microsoft)	2015	 GBD-Net	(Ours)	2016

5	layers
22	layers

152	layers

296	layers

The	size	of	the	deep	neural	network	keeps	increasing



• The	performance	of	a	pattern	recognition	system	heavily	
depends	on	feature	representations

Feature	engineering Feature	learning

Reply	on	human	domain	knowledge	
much	more	than	data

Make	better	use	of	big	data

If	handcrafted	features	have	multiple	
parameters,	it	is	hard	to	manually	tune	
them

Learn	the	values	of	a	huge	number	 of	
parameters	in	feature	representations

Feature	design	 is	separate	from	training	
the	classifier

Jointly	learning	 feature	transformations	
and	classifiers	makes	their	integration	
optimal

Developing	effective	features	for	new	
applications	is	slow

Faster	to	get	feature	representations	 for	
new	applications



Handcrafted	Features	for	Face	Recognition

1980s

Geometric	features

1992

Pixel	vector

1997

Gabor	filters

2	parameters

2006

Local	binary	patterns

3	parameters



Design	Cycle start

Collect	data

Preprocessing

Feature	design

Choose and	
design model

Train	classifier

Evaluation

end

Domain	knowledge Interest	of	people	working	
on	computer	vision,	speech	
recognition,	medical	image	
processing,…

Interest	of	people	working	
on	machine	learning

Interest	of	people	working	
on	machine	learning	and	
computer	vision,	speech	
recognition,	medical	image	
processing,…

Preprocessing and feature	
design	may	lose	useful	
information	 and	not	be	
optimized,	 since	they	are	not	
parts	of	an	end-to-end	
learning	system

Preprocessing could	be	the	
result	of	another	pattern	
recognition	system



Face	recognition	pipeline

Face	
alignment

Geometric	
rectification

Photometric
rectification

Feature	
extraction

Classification



Design	Cycle	
with	Deep	Learning

start

Collect	data

Preprocessing
(Optional)

Design	network

Feature	learning

Classifier

Train	network

Evaluation

end

• Learning	plays	a	bigger	role	in	the	
design	cycle

• Feature	learning	becomes	part	of	the	
end-to-end	learning	system

• Preprocessing	becomes	optional	
means	that	several	pattern	
recognition	steps	can	be	merged	into	
one	end-to-end	learning	system

• Feature	learning	makes	the	key	
difference

• We	underestimated	the	importance	
of	data	collection	and	evaluation



What	makes	deep	learning	successful	
in	computer	vision?

Deep	learning

Li	Fei-Fei Geoffrey	Hinton	

Data	collection Evaluation	task

One	million	images	
with	labels

Predict	1,000	image	
categories

CNN	is	not	new

Design	network	structure

New	training	strategies

Feature	learned	from	ImageNet can	be	well	generalized	to	other	tasks	and	datasets!



Learning	features	and	classifiers	separately

• Not	all	the	datasets	and	prediction	tasks	are	suitable	
for	learning	features	with	deep	models

Dataset	A

feature	
transform

Classifier	1 Classifier	2 ...

Prediction	
on	task	1 ...

Prediction	
on	task	2

Deep	
learning

Training	
stage	A Dataset	B

feature	
transform

Classifier	B

Prediction	on	task	B	
(Our	target	task)

Training	
stage	B



Deep	Learning	Means	Feature	Learning
• Deep	learning	is	about	learning	hierarchical	feature	

representations

• Good	feature	representations	should	be	able	to	disentangle	
multiple	factors	coupled	in	the	data

Trainable	Feature	
Transform

Trainable	Feature	
Transform

Trainable	Feature	
Transform

Trainable	Feature	
Transform

Data …

Classifier

Pixel	1

Pixel	n

Pixel	2 Ideal	
Feature	
Transform

view

expression



Example	1:	General	object	detection	on	ImageNet

• How	to	effectively	learn	features	with	deep	models
– With	challenging	tasks
– Predict	high-dimensional	vectors

Pre-train	on	
classifying	1,000	

categories	

Fine-tune	on	
classifying	201	
categories	

Feature	
representation

SVM	binary	
classifier	for	each	

category
Detect	200	object	classes	on	ImageNet

W.	Ouyang and	X.	Wang	et	al.	“DeepID-Net:	deformable	deep	convolutional neural	
networks	for	object	detection”,	CVPR,	2015



Dataset	A

feature	
transform

Classifier	A

Distinguish	1000	
categories

Training	stage	A

Dataset	B

feature	
transform

Classifier	B

Distinguish	201	
categories

Training	stage	B

Dataset	C

feature	
transform

SVM

Distinguish	one	
object	class	from	
all	the	negatives

Training	stage	C

Fixed



Example	2:	Pedestrian	detection	aided	by	deep	
learning	semantic	tasks	
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Figure 2: Comparisons between different schemes of pedes-
trian detectors.

To account for more complex pose, the hierarchical de-
formable part models (DPM) [13, 39, 17] learned a mixture
of local templates for each body part. Although they are
sufficient to certain pose changes, the feature represen-
tations and the classifiers cannot be jointly optimized to
improve performance. In the second category, deep neural
networks achieved promising results [22, 24, 29, 23, 18],
owing to their capacity to learn middle-level representa-
tion. For example, Ouyang et al. [23] learned features
by designing specific hidden layers for the Convolutional
Neural Network (CNN), such that features, deformable
parts, and pedestrian classification can be jointly optimized.
However, previous deep models treated pedestrian detection
as a single binary classification task, they can mainly learn
middle-level features, which are not able to capture rich
pedestrian variations, as shown in Fig.1 (a).

To learn high-level representations, this work jointly op-
timizes pedestrian detection with auxiliary semantic tasks,
including pedestrian attributes (e.g. ‘backpack’, ‘gender’,
and ‘views’) and scene attributes (e.g. ‘vehicle’, ‘tree’, and
‘vertical’). To understand how this work, we provide an
example in Fig.2. If only a single detector is used to
classify all the positive and negative samples in Fig.2 (a), it
is difficult to handle complex pedestrian variations. There-
fore, the mixture models of multiple views were developed
in Fig.2 (b), i.e. pedestrian images in different views are
handled by different detectors. If views are treated as one
type of semantic tasks, learning pedestrian representation
by multiple attributes with deep models actually extends
this idea to extreme. As shown in Fig.2 (c), more supervised
information enriches the learned features to account for
combinatorial more pedestrian variations. The samples
with similar configurations of attributes can be grouped and
separated in the high-level feature space.

Specifically, given a pedestrian dataset (denoted by P),
the positive image patches are manually labeled with several
pedestrian attributes, which are suggested to be valuable
for surveillance analysis [21]. However, as the number
of negatives is significantly larger than the number of
positives, we transfer scene attributes information from

Figure 3: Comparisons of the feature spaces of HOG,
channel features, CNN that models pedestrian detection
as binary classification, and TA-CNN, using the Caltech-
Test set [11]. The positive and hard negative samples are
represented by red and green, respectively.

existing background scene segmentation databases (each
one is denoted by B) to the pedestrian dataset, other than
annotating them manually. A novel task-assistant CNN
(TA-CNN) is proposed to jointly learn multiple tasks using
multiple data sources. As different B’s may have different
data distributions, to reduce these discrepancies, we transfer
two types of scene attributes that are carefully chosen,
comprising the shared attributes that appear across all the
B’s and the unshared attributes that appear in only one of
them. The former one facilitates the learning of shared
representation among B’s, whilst the latter one increases
diversity of attribute. Furthermore, to reduce gaps between
P and B’s, we first project each sample in B’s to a structural
space of P and then the projected values are employed as
input to train TA-CNN. Learning TA-CNN is formulated
as minimizing a weighted multivariate cross-entropy loss,
where both the importance coefficients of tasks and the
network parameters can be iteratively solved via stochastic
gradient descent [16].

This work has the following main contributions. (1) To
our knowledge, this is the first attempt to learn high-level
representation for pedestrian detection by jointly optimizing
it with semantic attributes, including pedestrian attributes
and scene attributes. The scene attributes can be transferred
from existing scene datasets without annotating manually.
(2) These multiple tasks from multiple sources are trained
using a single task-assistant CNN (TA-CNN), which is
carefully designed to bridge the gaps between different
datasets. A weighted multivariate cross-entropy loss is
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To account for more complex pose, the hierarchical de-
formable part models (DPM) [13, 39, 17] learned a mixture
of local templates for each body part. Although they are
sufficient to certain pose changes, the feature represen-
tations and the classifiers cannot be jointly optimized to
improve performance. In the second category, deep neural
networks achieved promising results [22, 24, 29, 23, 18],
owing to their capacity to learn middle-level representa-
tion. For example, Ouyang et al. [23] learned features
by designing specific hidden layers for the Convolutional
Neural Network (CNN), such that features, deformable
parts, and pedestrian classification can be jointly optimized.
However, previous deep models treated pedestrian detection
as a single binary classification task, they can mainly learn
middle-level features, which are not able to capture rich
pedestrian variations, as shown in Fig.1 (a).

To learn high-level representations, this work jointly op-
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including pedestrian attributes (e.g. ‘backpack’, ‘gender’,
and ‘views’) and scene attributes (e.g. ‘vehicle’, ‘tree’, and
‘vertical’). To understand how this work, we provide an
example in Fig.2. If only a single detector is used to
classify all the positive and negative samples in Fig.2 (a), it
is difficult to handle complex pedestrian variations. There-
fore, the mixture models of multiple views were developed
in Fig.2 (b), i.e. pedestrian images in different views are
handled by different detectors. If views are treated as one
type of semantic tasks, learning pedestrian representation
by multiple attributes with deep models actually extends
this idea to extreme. As shown in Fig.2 (c), more supervised
information enriches the learned features to account for
combinatorial more pedestrian variations. The samples
with similar configurations of attributes can be grouped and
separated in the high-level feature space.
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pedestrian attributes, which are suggested to be valuable
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one is denoted by B) to the pedestrian dataset, other than
annotating them manually. A novel task-assistant CNN
(TA-CNN) is proposed to jointly learn multiple tasks using
multiple data sources. As different B’s may have different
data distributions, to reduce these discrepancies, we transfer
two types of scene attributes that are carefully chosen,
comprising the shared attributes that appear across all the
B’s and the unshared attributes that appear in only one of
them. The former one facilitates the learning of shared
representation among B’s, whilst the latter one increases
diversity of attribute. Furthermore, to reduce gaps between
P and B’s, we first project each sample in B’s to a structural
space of P and then the projected values are employed as
input to train TA-CNN. Learning TA-CNN is formulated
as minimizing a weighted multivariate cross-entropy loss,
where both the importance coefficients of tasks and the
network parameters can be iteratively solved via stochastic
gradient descent [16].

This work has the following main contributions. (1) To
our knowledge, this is the first attempt to learn high-level
representation for pedestrian detection by jointly optimizing
it with semantic attributes, including pedestrian attributes
and scene attributes. The scene attributes can be transferred
from existing scene datasets without annotating manually.
(2) These multiple tasks from multiple sources are trained
using a single task-assistant CNN (TA-CNN), which is
carefully designed to bridge the gaps between different
datasets. A weighted multivariate cross-entropy loss is
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To account for more complex pose, the hierarchical de-
formable part models (DPM) [13, 39, 17] learned a mixture
of local templates for each body part. Although they are
sufficient to certain pose changes, the feature represen-
tations and the classifiers cannot be jointly optimized to
improve performance. In the second category, deep neural
networks achieved promising results [22, 24, 29, 23, 18],
owing to their capacity to learn middle-level representa-
tion. For example, Ouyang et al. [23] learned features
by designing specific hidden layers for the Convolutional
Neural Network (CNN), such that features, deformable
parts, and pedestrian classification can be jointly optimized.
However, previous deep models treated pedestrian detection
as a single binary classification task, they can mainly learn
middle-level features, which are not able to capture rich
pedestrian variations, as shown in Fig.1 (a).

To learn high-level representations, this work jointly op-
timizes pedestrian detection with auxiliary semantic tasks,
including pedestrian attributes (e.g. ‘backpack’, ‘gender’,
and ‘views’) and scene attributes (e.g. ‘vehicle’, ‘tree’, and
‘vertical’). To understand how this work, we provide an
example in Fig.2. If only a single detector is used to
classify all the positive and negative samples in Fig.2 (a), it
is difficult to handle complex pedestrian variations. There-
fore, the mixture models of multiple views were developed
in Fig.2 (b), i.e. pedestrian images in different views are
handled by different detectors. If views are treated as one
type of semantic tasks, learning pedestrian representation
by multiple attributes with deep models actually extends
this idea to extreme. As shown in Fig.2 (c), more supervised
information enriches the learned features to account for
combinatorial more pedestrian variations. The samples
with similar configurations of attributes can be grouped and
separated in the high-level feature space.
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one is denoted by B) to the pedestrian dataset, other than
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(TA-CNN) is proposed to jointly learn multiple tasks using
multiple data sources. As different B’s may have different
data distributions, to reduce these discrepancies, we transfer
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comprising the shared attributes that appear across all the
B’s and the unshared attributes that appear in only one of
them. The former one facilitates the learning of shared
representation among B’s, whilst the latter one increases
diversity of attribute. Furthermore, to reduce gaps between
P and B’s, we first project each sample in B’s to a structural
space of P and then the projected values are employed as
input to train TA-CNN. Learning TA-CNN is formulated
as minimizing a weighted multivariate cross-entropy loss,
where both the importance coefficients of tasks and the
network parameters can be iteratively solved via stochastic
gradient descent [16].

This work has the following main contributions. (1) To
our knowledge, this is the first attempt to learn high-level
representation for pedestrian detection by jointly optimizing
it with semantic attributes, including pedestrian attributes
and scene attributes. The scene attributes can be transferred
from existing scene datasets without annotating manually.
(2) These multiple tasks from multiple sources are trained
using a single task-assistant CNN (TA-CNN), which is
carefully designed to bridge the gaps between different
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To account for more complex pose, the hierarchical de-
formable part models (DPM) [13, 39, 17] learned a mixture
of local templates for each body part. Although they are
sufficient to certain pose changes, the feature represen-
tations and the classifiers cannot be jointly optimized to
improve performance. In the second category, deep neural
networks achieved promising results [22, 24, 29, 23, 18],
owing to their capacity to learn middle-level representa-
tion. For example, Ouyang et al. [23] learned features
by designing specific hidden layers for the Convolutional
Neural Network (CNN), such that features, deformable
parts, and pedestrian classification can be jointly optimized.
However, previous deep models treated pedestrian detection
as a single binary classification task, they can mainly learn
middle-level features, which are not able to capture rich
pedestrian variations, as shown in Fig.1 (a).

To learn high-level representations, this work jointly op-
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including pedestrian attributes (e.g. ‘backpack’, ‘gender’,
and ‘views’) and scene attributes (e.g. ‘vehicle’, ‘tree’, and
‘vertical’). To understand how this work, we provide an
example in Fig.2. If only a single detector is used to
classify all the positive and negative samples in Fig.2 (a), it
is difficult to handle complex pedestrian variations. There-
fore, the mixture models of multiple views were developed
in Fig.2 (b), i.e. pedestrian images in different views are
handled by different detectors. If views are treated as one
type of semantic tasks, learning pedestrian representation
by multiple attributes with deep models actually extends
this idea to extreme. As shown in Fig.2 (c), more supervised
information enriches the learned features to account for
combinatorial more pedestrian variations. The samples
with similar configurations of attributes can be grouped and
separated in the high-level feature space.

Specifically, given a pedestrian dataset (denoted by P),
the positive image patches are manually labeled with several
pedestrian attributes, which are suggested to be valuable
for surveillance analysis [21]. However, as the number
of negatives is significantly larger than the number of
positives, we transfer scene attributes information from
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one is denoted by B) to the pedestrian dataset, other than
annotating them manually. A novel task-assistant CNN
(TA-CNN) is proposed to jointly learn multiple tasks using
multiple data sources. As different B’s may have different
data distributions, to reduce these discrepancies, we transfer
two types of scene attributes that are carefully chosen,
comprising the shared attributes that appear across all the
B’s and the unshared attributes that appear in only one of
them. The former one facilitates the learning of shared
representation among B’s, whilst the latter one increases
diversity of attribute. Furthermore, to reduce gaps between
P and B’s, we first project each sample in B’s to a structural
space of P and then the projected values are employed as
input to train TA-CNN. Learning TA-CNN is formulated
as minimizing a weighted multivariate cross-entropy loss,
where both the importance coefficients of tasks and the
network parameters can be iteratively solved via stochastic
gradient descent [16].

This work has the following main contributions. (1) To
our knowledge, this is the first attempt to learn high-level
representation for pedestrian detection by jointly optimizing
it with semantic attributes, including pedestrian attributes
and scene attributes. The scene attributes can be transferred
from existing scene datasets without annotating manually.
(2) These multiple tasks from multiple sources are trained
using a single task-assistant CNN (TA-CNN), which is
carefully designed to bridge the gaps between different
datasets. A weighted multivariate cross-entropy loss is
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To account for more complex pose, the hierarchical de-
formable part models (DPM) [13, 39, 17] learned a mixture
of local templates for each body part. Although they are
sufficient to certain pose changes, the feature represen-
tations and the classifiers cannot be jointly optimized to
improve performance. In the second category, deep neural
networks achieved promising results [22, 24, 29, 23, 18],
owing to their capacity to learn middle-level representa-
tion. For example, Ouyang et al. [23] learned features
by designing specific hidden layers for the Convolutional
Neural Network (CNN), such that features, deformable
parts, and pedestrian classification can be jointly optimized.
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example in Fig.2. If only a single detector is used to
classify all the positive and negative samples in Fig.2 (a), it
is difficult to handle complex pedestrian variations. There-
fore, the mixture models of multiple views were developed
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by multiple attributes with deep models actually extends
this idea to extreme. As shown in Fig.2 (c), more supervised
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combinatorial more pedestrian variations. The samples
with similar configurations of attributes can be grouped and
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To account for more complex pose, the hierarchical de-
formable part models (DPM) [13, 39, 17] learned a mixture
of local templates for each body part. Although they are
sufficient to certain pose changes, the feature represen-
tations and the classifiers cannot be jointly optimized to
improve performance. In the second category, deep neural
networks achieved promising results [22, 24, 29, 23, 18],
owing to their capacity to learn middle-level representa-
tion. For example, Ouyang et al. [23] learned features
by designing specific hidden layers for the Convolutional
Neural Network (CNN), such that features, deformable
parts, and pedestrian classification can be jointly optimized.
However, previous deep models treated pedestrian detection
as a single binary classification task, they can mainly learn
middle-level features, which are not able to capture rich
pedestrian variations, as shown in Fig.1 (a).
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with similar configurations of attributes can be grouped and
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Specifically, given a pedestrian dataset (denoted by P),
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one is denoted by B) to the pedestrian dataset, other than
annotating them manually. A novel task-assistant CNN
(TA-CNN) is proposed to jointly learn multiple tasks using
multiple data sources. As different B’s may have different
data distributions, to reduce these discrepancies, we transfer
two types of scene attributes that are carefully chosen,
comprising the shared attributes that appear across all the
B’s and the unshared attributes that appear in only one of
them. The former one facilitates the learning of shared
representation among B’s, whilst the latter one increases
diversity of attribute. Furthermore, to reduce gaps between
P and B’s, we first project each sample in B’s to a structural
space of P and then the projected values are employed as
input to train TA-CNN. Learning TA-CNN is formulated
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where both the importance coefficients of tasks and the
network parameters can be iteratively solved via stochastic
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from existing scene datasets without annotating manually.
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Figure 4: The proposed pipeline for pedestrian detection (Best viewed in color).

convolution and max-pooling, which are formulated as
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In Eqn.(1), relu(x) = max(0, x) is the rectified linear func-
tion [19] and ⇤ denotes the convolution operator applied on
every pixel of the feature map h

u(l�1)

n

, where h
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and
h

v(l)
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stand for the u-th input channel at the l � 1 layer and
the v-th output channel at the l layer, respectively. k
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and bv(l) denote the filters and bias. In Eqn.(2), the feature
map h
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is partitioned into grid with overlapping cells,
each of which is denoted as ⌦

(i,j)

, where (i, j) indicates
the cell index. The max-pooling compares value at each
location (p, q) of a cell and outputs the maximum value of
each cell.

Each hidden layer in fc5 and fc6 is obtained by
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where the higher level representation is transformed from
lower level with a non-linear mapping. W

(l) and b

(l) are
the weight matrixes and bias vector at the l-th layer.

TA-CNN can be formulated as minimizing the log poste-
rior probability with respect to a set of network parameters
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) is a com-
plete loss function regarding the entire training set. Here,
we illustrate that the shared attributes o
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in Eqn.(4) are
crucial to learn shared representation across multiple scene
datasets B’s.
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A shared representation can be learned if and only if all
the samples share at least one target (attribute). Since the
samples are independent, the loss function can be expanded
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), where I+J +K = N , implying that
each dataset is only used to optimize its corresponding un-
shared attribute, although all the datasets and attributes are
trained in a single TA-CNN. For instance, the classification
model of ou1 is learned by using B

a without leveraging
the existence of the other datasets. In other words, the
probability of p(ou1|xa,xb,xc

) = p(ou1|xa

) because of
missing labels. The above formulation is not sufficient
to learn shared features among datasets, especially when
the data have large differences. To bridge multiple scene
datasets B’s, we introduce the shared attributes o

s, the



Example	3:	deep	learning	face	identity	features	
by	recovering	canonical-view	face	images

Reconstruction	examples	from	LFW

Z.	Zhu,	P.	Luo,	X.	Wang,	and	X.	Tang,	“Deep	Learning	Identity	Preserving	Face	Space,”	ICCV	2013.	



• Deep	model	can	disentangle	hidden	factors	through	feature	
extraction	over	multiple	layers

• No	3D	model;	no	prior	information	on	pose	and	lighting	condition
• Model	multiple	complex	transforms
• Reconstructing	the	whole	face	is	a	much	strong	supervision	than	

predicting	0/1	class	label	and	helps	to	avoid	overfitting

Arbitrary	view Canonical	view





-45o -30o -15o +15o +30o +45o Avg Pose

LGBP [26] 37.7 62.5 77 83 59.2 36.1 59.3 √
VAAM	[17] 74.1 91 95.7 95.7 89.5 74.8 86.9 √
FA-EGFC[3] 84.7 95 99.3 99 92.9 85.2 92.7 x
SA-EGFC[3] 93 98.7 99.7 99.7 98.3 93.6 97.2 √
LE[4]	+	LDA 86.9 95.5 99.9 99.7 95.5 81.8 93.2 x
CRBM[9]	+	LDA 80.3 90.5 94.9 96.4 88.3 89.8 87.6 x
Ours 95.6 98.5 100.0 99.3 98.5 97.8 98.3 x

Comparison	on	Multi-PIE



Deep	learning	3D	model	from	2D	images,	
mimicking	human	brain	activities

Z.	Zhu,	P.	Luo,	X.	Wang,	and	X.	Tang,	“Deep	Learning	and	Disentangling	Face	Representation	by	Multi-View	
Perception,”	NIPS	2014.



Face	images	in	
arbitrary	views

Face	identity	
features

Regressor 1 Regressor 2 ...

Reconstruct	
view	1 ...Reconstruct	

view	2

Deep	
learning

Training	stage	A

feature	
transform

Linear	Discriminant
analysis

The	two	images	
belonging	to	the	

same	person	or	not	

Training	stage	B

Two	face	images	
in	arbitrary	views

Fixed

Face	reconstruction Face	verification



Deep	Structures	vs Shallow	Structures
(Why	deep?)



Shallow	Structures
• A	three-layer	neural	network	(with	one	hidden	layer)	can	

approximate	any	classification	function
• Most	machine	learning	tools	(such	as	SVM,	boosting,	and	

KNN)	can	be	approximated	as	neural	networks	with	one	or	
two	hidden	layers

• Shallow	models	divide	the	feature	space	into	regions	and	
match	templates	in	local	regions.	O(N)	parameters	are	needed	
to	represent	N	regions

SVM



Deep	Machines	are	More	Efficient	for	
Representing	Certain	Classes	of	Functions
• Theoretical	results	show	that	an	architecture	with	insufficient	

depth	can	require	many	more	computational	elements,	
potentially	exponentially	more	(with	respect	to	input	size),	
than	architectures	whose	depth	is	matched	to	the	task	
(Hastad 1986,	Hastad and	Goldmann 1991)

• It	also	means	many	more	parameters	to	learn



• Take	the	d-bit	parity	function	as	an	example

• d-bit	logical	parity	circuits	of	depth	2	have exponential	
size	(Andrew	Yao,	1985)

• There	are	functions	computable	with	a	polynomial-size	logic	
gates	circuits	of	depth	k	that	require	exponential	size	when	
restricted	to	depth	k	-1	(Hastad,	1986)

(X1,	.	.	. ,	 Xd) Xi	is	even



• Architectures	with	multiple	levels	naturally	provide	sharing	
and	re-use	of	components

Honglak Lee,	NIPS’10



Humans	Understand	the	World	through	
Multiple	Levels	of	Abstractions

• We	do	not	interpret	a	scene	image	with	pixels
– Objects	(sky,	cars,	roads,	buildings,	pedestrians)	->	parts	(wheels,	

doors,	heads)	->	texture	->	edges	->	pixels
– Attributes:	blue	sky,	red	car

• It	is	natural	for	humans	to	decompose	a	complex	problem	into	
sub-problems	through	multiple	levels	of	representations



Humans	Understand	the	World	through	
Multiple	Levels	of	Abstractions

• Humans	learn	abstract	concepts	on	top	of	less	abstract	ones
• Humans	can	imagine	new	pictures	by	re-configuring	these	

abstractions	at	multiple	levels.	Thus	our	brain	has	good	
generalization	can	recognize	things	never	seen	before.
– Our	brain	can	estimate	shape,	lighting	and	pose	from	a	face	image	and	

generate	new	images	under	various	lightings	and	poses.	That’s	why	we	
have	good	face	recognition	capability.



Local	and	Global	Representations



Human	Brains	Process	Visual	Signals	
through	Multiple	Layers

• A	visual	cortical	area	consists	of	six	layers	(Kruger	et	al.	2013)



• The	way	these	regions	carve	the	input	space	still	
depends	on	few	parameters:	this	huge	number	of	
regions	are	not	placed	independently	of	each	other

• We	can	thus	represent	a	function	that	looks	
complicated	but	actually	has	(global)	structures



How	do	shallow	models	increase	the	
model	capacity?

• Typically	increase	the	size	of	feature	vectors

D.	Chen,	X.	Cao,	F.	Wen,	and	J.	Sun.	Blessing	of	dimensionality:	Highdimensional feature	and	its	efficient	
compression	for	face	verification.	In	Proc.	IEEE	Int’l	Conf.	Computer	Vision	and	Pattern	Recognition,	2013.



Joint	Learning	vs Separate	Learning

Data	
collection

Preprocessing	
step	1

Preprocessing	
step	2

… Feature	
extraction

Training	or	
manual	design

Classification

Manual	
design

Training	or	
manual	design

Data	
collection

Feature	
transform

Feature	
transform

… Feature	
transform Classification

End-to-end	learning

? ? ?

Deep	learning	is	a	framework/language	but	not	a	black-box	model
Its	power	comes	from	joint	optimization	and	

increasing	the	capacity	of	the	learner



• N.	Dalal and	B.	Triggs.	Histograms	of	oriented	gradients	for	human	detection.		
CVPR,	2005.	(6000	citations)

• P.	Felzenszwalb,	D.	McAlester,	and	D.	Ramanan.	A	Discriminatively	Trained,	
Multiscale,	Deformable	Part	Model.	 	CVPR,	2008.	(2000	citations)

• W.	Ouyang and	X.	Wang.	A	Discriminative	Deep	Model	 for	Pedestrian	Detection	
with	Occlusion	Handling.		CVPR,	2012.	



Our	Joint	Deep	Learning	Model

W.	Ouyang and	X.	Wang,	“Joint	Deep	Learning	for	Pedestrian	Detection,”	Proc.	ICCV,	2013.



Modeling	Part	Detectors

• Design	the	filters	in	the	second	
convolutional layer	with	variable	sizes

Part	models Learned	filtered	at	the	second	
convolutional layer

Part	models	learned	
from	HOG



Deformation	Layer



Visibility	Reasoning	with	Deep	Belief	Net

Correlates	with	part	detection	score



Experimental	Results
• Caltech	– Test	dataset	(largest,	most	widely	used)	
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Experimental	Results
• Caltech	– Test	dataset	(largest,	most	widely	used)	

2000 2002 2004 2006 2008 2010 2012 2014
30

40
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60

70

80

90

100 95%
68%

63%	(state-of-the-art)

53%

39%	(best	performing)
Improve	by	~	20%

W.	Ouyang,	X.	Zeng and	X.	Wang,	"Modeling	Mutual	Visibility	 Relationship	 in	Pedestrian	Detection	",	CVPR 2013.
W.	Ouyang,	Xiaogang Wang,	"Single-Pedestrian	Detection	aided	by	Multi-pedestrian	Detection	",	CVPR 2013.
X.	Zeng,	W.	Ouyang and	X.	Wang,	”	A	Cascaded	Deep	Learning	Architecture	for	Pedestrian	Detection,”	ICCV	2013.
W.	Ouyang and	Xiaogang Wang,	“Joint	Deep	Learning	for	Pedestrian	Detection,”	IEEE	ICCV 2013.

W.	Ouyang and	X.	Wang,	"A	Discriminative	Deep	Model	for	Pedestrian	Detection	with	Occlusion	 Handling,“	CVPR 2012.
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Large	learning	capacity	makes	high	dimensional	
data	transforms	possible,	and	makes	better	use	

of	contextual	information



• How	to	make	use	of	the	large	learning	capacity	of	
deep	models?
– High	dimensional	data	transform
– Hierarchical	nonlinear	representations

?

SVM	+	feature
smoothness,	 shape	prior…

Output	

Input

High-dimensional	
data	transform



Face	Parsing

• P.	Luo,	X.	Wang	and	X.	Tang,	“Hierarchical	Face	
Parsing	via	Deep	Learning,”	CVPR	2012



Training	Segmentators





Big	data

Rich	information

Challenging	supervision	task	
with	rich	predictions

How	to	make	use	of	it?

Capacity

Go	deeper

Joint	
optimization

Hierarchical	
feature	learning

Go	wider

Take	
large	input

Capture	
contextual	information

Domain	
knowledge

Make	learning	more	efficient

Reduce	capacity



Outline

• Historical	review	of	deep	learning
• Understand	deep	learning
• Interpret	neural	semantics



DeepID2:	Joint	Identification	(Id)-
Verification	(Ve)	Signals

(Id)

Y.	Sun,	X.	Wang,	and	X.	Tang.	NIPS,	2014.



Biological	Motivation

Winrich A.	Freiwald and	Doris	Y.	Tsao,	“Functional	compartmentalization	and	viewpoint	generalization	
within	the	macaque	face-processing	system,”	Science,	330(6005):845–851,	2010.

• Monkey	has	a	face-processing	network	that	is	made	of	six	
interconnected	face-selective	regions

• Neurons	in	some	of	these	regions	were	view-specific,	while	
some	others	were	tuned	to	identity	across	views

• View	could	be	generalized	to	other	factors,	e.g.	expressions?



Deeply	learned	features	are	moderately	sparse

• The	binary	codes	on	activation	patterns	are	
very	effective	on	face	recognition

• Save	storage	and	speedup	face	search	
dramatically

• Activation	patterns	are	more	important	than	
activation	magnitudes	in	face	recognition

Joint
Bayesian	(%)

Hamming	distance	
(%)

Combined	model	
(real	values)

99.47 n/a

Combined	model	
(binary code)

99.12 97.47



Deeply	learned	features	are	selective	to	
identities	and	attributes

• With	a	single	neuron,	DeepID2	reaches	97%	recognition	
accuracy	for	some	identity	and	attribute



Deeply	learned	features	are	selective	to	
identities	and	attributes

• Excitatory	and	inhibitory	neurons	(on	identities)

Histograms	of	neural	activations	over	identities	with	the	most	images	in	LFW

Neuron	56 Neuron	78 Neuron	344 Neuron	298 Neuron	157

Neuron	116 Neuron	328 Neuron	459 Neuron	247 Neuron	131

Neuron	487 Neuron	103 Neuron	291 Neuron	199 Neuron	457

Neuron	461 Neuron	473 Neuron	405 Neuron	393 Neuron	445

Neuron	328 Neuron	235 Neuron	98 Neuron	110 Neuron	484



Neuron	38 Neuron	50 Neuron	462 Neuron	354 Neuron	418

Neuron	328 Neuron	316 Neuron	496 Neuron	484 Neuron	215

Neuron	5 Neuron	17 Neuron	432 Neuron	444 Neuron	28

Neuron	152 Neuron	105 Neuron	140 Neuron	493 Neuron	237

Neuron	12 Neuron	498 Neuron	342 Neuron	330 Neuron	10

Neuron	61 Neuron	73 Neuron	322 Neuron	410 Neuron	398



Deeply	learned	features	are	selective	to	
identities	and	attributes

• Excitatory	and	inhibitory	neurons	(on	attributes)

Histograms	of	neural	activations	over	gender-related	attributes	(Male	and	Female)

Histograms	of	neural	activations	over	race-related	attributes	(White,	Black,	Asian	and	India)

Neuron	77 Neuron	361 Neuron	65 Neuron	873 Neuron	117 Neuron	3 Neuron	491 Neuron	63 Neuron	75 Neuron	410

Neuron	444 Neuron	448 Neuron	108 Neuron	421 Neuron	490 Neuron	282 Neuron	241 Neuron	444



Histogram	of	neural	activations	over	age-related	attributes	(Baby,	Child,	 Youth,	Middle	Aged,	and	Senior)

Histogram	of	neural	activations	over	hair-related	attributes	(Bald,	Black	Hair,	Gray	Hair,	Blond	Hair,	and	Brown	Hair.

Neuron	205 Neuron	186 Neuron	249 Neuron	40 Neuron	200 Neuron	61 Neuron	212 Neuron	200 Neuron	106 Neuron	249

Neuron	36 Neuron	163 Neuron	212 Neuron	281 Neuron	122 Neuron	50 Neuron	406 Neuron	96 Neuron	167 Neuron	245



Deeply	learned	features	are	selective	to	
identities	and	attributes

• With	a	single	neuron,	DeepID2	reaches	97%	recognition	
accuracy	for	some	identity	and	attribute

Identity	classification	accuracy	on	LFW	with	
one	single	DeepID2+	or	LBP	feature.	GB,	CP,	
TB,	DR,	and	GS	are	five	celebrities	with	the	
most	images	in	LFW.

Attribute	classification	accuracy	on	LFW	with
one	single	DeepID2+	or	LBP	feature.



For the excited neurons, their activations are distributed in
higher values, while other images have significantly lower
mean values on these neurons. Therefore, the excitatory
neurons can easily distinguish an identity from others,
which is verified by their high classification accuracies
shown by the red dots with small neural IDs in figures in
the right column.

For neurons ranked in the middle (e.g., those with
neural ID around 400), their activation distributions on the
given identity are largely overlapped with those on other
identities. They have weak discrimination abilities for the
given identity, verified by the low accuracies of the red and
blue dots near the junction of the two colors. The excitation
or inhibition state of these neurons has much uncertainty.

When mean activations further decrease (e.g., neural ID
above 600), the neurons demonstrate inhibitory properties,
and are seldom activated for the given identity compared to
others. These inhibitory neurons also have discrimination
abilities with relatively high classification accuracies.

However, similar phenomena cannot be found on LBP
features as shown in Fig. 10b. The activation distributions
of LBP features on given identities and the remaining
images are overlapped for all features. A LBP feature
with high responses on images belonging to an identity
also has high responses on other images. Compared to
DeepID2+ neural activations, LBP features have much
lower classification accuracies, the majority of which are
accumulated on the 50% random guess line. The same
conclusion can applied to attributes shown in Fig. 11a and
Fig. 11b (see more examples and discussions of attributes
in the full version [26]).

6.3. Neural activation distribution

Fig. 12 and Fig. 13 show examples of the histograms
of neural activations over given identities or attributes.
Fig. 12 also shows the histograms over all images of
five randomly selected neurons in the first row. For each
neuron, approximately half of its activations are zero (or
close to zero) and the other half have larger values. In
contrast, the histograms over given identities exhibit strong
selectiveness. Some neurons are constantly activated for
a given identity, with activation histograms distributed in
positive values, as shown in the first row of histograms of
each identity in Fig. 12, while some others are constantly
inhibited, with activation histograms accumulated at zero or
small values, as shown in the second row of histograms of
each identity.

For attributes, in each column of Fig. 13a and 13b, we
show histograms of a single neuron over a few attributes,
i.e., those related to sex and race, respectively. The neurons
are selected to be excitatory (in red frames) or inhibitory
(in green frames) and can best classify the attribute shown
in the left of each row. As shown in these figures, neurons

(a) DeepID2+ neural activation distributions and per-neuron clas-
sification accuracies.

(b) LBP feature activation distributions and per-feature classifica-
tion accuracies.

Figure 10: Comparison of distributions of DeepID2+
neural and LBP feature activations and per-neuron (feature)
classification accuracies for the top three people with
the most face images in LFW. Left column: mean and
standard deviations of neural (feature) activations on images
belonging to a single identity. Mean is represented by
a red line while standard deviations are represented by
vertical segments between (mean � standard deviation) and
(mean + standard deviation). Neurons (features) are sorted
by their mean activations on the given identity. Middle
column: mean and standard deviations of neural (feature)
activations on the remaining images. Neural (feature)
orders are the same as those in the left column. Right
column: per-neuron (feature) classification accuracies on
the given identity. Neural (feature) orders are the same as
those in the left and middle columns. Neurons (features)
activated and inhibited for a given identity are marked as
red and blue dots, respectively.

exhibit strong selectiveness (either activated or inhibited)
to certain attributes, in which the neurons are activated
(inhibited) for the given attribute while inhibited (activated)
for the other attributes in the same category. In the full
version of the paper [26] we show distribution histograms
over more identities and attributes.

7. Robustness of DeepID2+ features
We test the robustness of DeepID2+ features on face

images with occlusions. In the first setting, faces are
partially occluded by 10% to 70% areas, as illustrated in
Fig. 14 first row. In the second setting, faces are occluded
by random blocks of 10 ⇥ 10 to 70 ⇥ 70 pixels in size,
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given identity, verified by the low accuracies of the red and
blue dots near the junction of the two colors. The excitation
or inhibition state of these neurons has much uncertainty.

When mean activations further decrease (e.g., neural ID
above 600), the neurons demonstrate inhibitory properties,
and are seldom activated for the given identity compared to
others. These inhibitory neurons also have discrimination
abilities with relatively high classification accuracies.

However, similar phenomena cannot be found on LBP
features as shown in Fig. 10b. The activation distributions
of LBP features on given identities and the remaining
images are overlapped for all features. A LBP feature
with high responses on images belonging to an identity
also has high responses on other images. Compared to
DeepID2+ neural activations, LBP features have much
lower classification accuracies, the majority of which are
accumulated on the 50% random guess line. The same
conclusion can applied to attributes shown in Fig. 11a and
Fig. 11b (see more examples and discussions of attributes
in the full version [26]).

6.3. Neural activation distribution

Fig. 12 and Fig. 13 show examples of the histograms
of neural activations over given identities or attributes.
Fig. 12 also shows the histograms over all images of
five randomly selected neurons in the first row. For each
neuron, approximately half of its activations are zero (or
close to zero) and the other half have larger values. In
contrast, the histograms over given identities exhibit strong
selectiveness. Some neurons are constantly activated for
a given identity, with activation histograms distributed in
positive values, as shown in the first row of histograms of
each identity in Fig. 12, while some others are constantly
inhibited, with activation histograms accumulated at zero or
small values, as shown in the second row of histograms of
each identity.

For attributes, in each column of Fig. 13a and 13b, we
show histograms of a single neuron over a few attributes,
i.e., those related to sex and race, respectively. The neurons
are selected to be excitatory (in red frames) or inhibitory
(in green frames) and can best classify the attribute shown
in the left of each row. As shown in these figures, neurons

(a) DeepID2+ neural activation distributions and per-neuron clas-
sification accuracies.

(b) LBP feature activation distributions and per-feature classifica-
tion accuracies.

Figure 10: Comparison of distributions of DeepID2+
neural and LBP feature activations and per-neuron (feature)
classification accuracies for the top three people with
the most face images in LFW. Left column: mean and
standard deviations of neural (feature) activations on images
belonging to a single identity. Mean is represented by
a red line while standard deviations are represented by
vertical segments between (mean � standard deviation) and
(mean + standard deviation). Neurons (features) are sorted
by their mean activations on the given identity. Middle
column: mean and standard deviations of neural (feature)
activations on the remaining images. Neural (feature)
orders are the same as those in the left column. Right
column: per-neuron (feature) classification accuracies on
the given identity. Neural (feature) orders are the same as
those in the left and middle columns. Neurons (features)
activated and inhibited for a given identity are marked as
red and blue dots, respectively.

exhibit strong selectiveness (either activated or inhibited)
to certain attributes, in which the neurons are activated
(inhibited) for the given attribute while inhibited (activated)
for the other attributes in the same category. In the full
version of the paper [26] we show distribution histograms
over more identities and attributes.

7. Robustness of DeepID2+ features
We test the robustness of DeepID2+ features on face

images with occlusions. In the first setting, faces are
partially occluded by 10% to 70% areas, as illustrated in
Fig. 14 first row. In the second setting, faces are occluded
by random blocks of 10 ⇥ 10 to 70 ⇥ 70 pixels in size,
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Sparsified deep	neural	network	and	only	keep	1/8	amount	of	
parameters	after	joint	optimization	of	weights	and	structures

Train	the	sparsifiednetwork	from	scratch

The	sparsified network	has	enough	learning	capacity,	but	the	original	denser	
network	helps	it	reach	a	better	intialization
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