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e Face verification: binary classification

— Verify two images belonging to the same person or not

e Face identification: multi-class classification

— classify an image into one of N identity classes




Best results




Deep Learning Re sults on LFW

mm
Huang et al. CVPR’12 87% Unsupervised

Sun et al. ICCV’13 92.52% 5 87,628

Facebook (CVPR’14) 97.35% 6+ 67 7,000,000

DeeplD (CVPR’14) 97.45% 5 202,599

DeeplD2 (NIPS’14) 99.15% 18 202,599

DeepID2+ (CVPR’15) 99.47% 18 450,000

Google (CVPR’15) 99.63% 200,000,000

The first deep learning work on face recognition was done by Huang et al. in 2012. With
unsupervised learning, the accuracy was 87%

Our work at ICCV’13 achieved result (92.52%) comparable with state-of-the-art
Our work at CVPR’14 reached 97.45% close to “human cropped” performance (97.53%)

DeepFace developed by Facebook also at CVPR’14 used 73-point 3D face alignment and 7
million training data (35 times larger than us)

Our NIPS’14 work reached 99.15% close to “human funneled” performance (99.20%)



Closed- and open-set face
identification on LFW

Rank-1 (%) DIR @ 1% FAR (%)
COST-S1 [1] 56.7 25
COST-S1+s2 [1] 66.5 35
DeepFace [2] 64.9 44.5
DeepFace+ [3] 82.5 61.9
DeeplD2 91.1 61.6
DeeplD2+ 95.0 80.7

[1] L. Best-Rowden, H. Han, C. Otto, B. Klare, and A. K. Jain. Unconstrained face recognition:
Identifying a person of interest from a media collection. TR MSU-CSE-14-1, 2014.

[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the gap to human-level
performance in face verifica- tion. In Proc. CVPR, 2014.

[3] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Web- scale training for face identification.
Technical report, arXiv:1406.5266, 2014.



Learn face representations from

face verification, identification, multi-view reconstruction

Properties of face representations

sparseness, selectiveness, robustness

Applications of face representations

face localization, attribute recognition



Learn face representations from

face verification, identification, multi-view reconstruction



Inter-personal variation

How to separate the two types of variations?
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Learn face representations from

Prediction becomes richer

Prediction becomes more
challenging

Supervision becomes stronger

Feature learning becomes
more effective

Predicting binary labels (verification)

Predicting multi-class labels (identification)

Predicting thousands of real-valued pixels
(multi-view) reconstruction



Learn face representations
with verification signal

e Extract relational features with learned filter pairs
y = f (6 + kY s at + k%« 2?)
 These relational features are further processed through
multiple layers to extract global features
 The fully connected layer is the feature representation

Convolutional Fully-
Convolutional connected
layer 2 Convolutional layer

1 layer 3 Convolutional, Soft-max
layer 4 layer
s S “~4-f£ 2 ~ - \. f . 2 )
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Y. Sun, X. Wang, and X. Tang, “Hybrid Deep Learning for Computing Face Similarities,” Proc. ICCV, 2013.
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RBM combines features extracted by
multiple CNNs

RBM output layer/ —
face verification prediction
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DeeplD: Learn face representations
with identification signal

Soft-max
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Y. Sun, X. Wang, and X. Tang, “Deep Learning Face Representation from Predicting 10,000 classes,” Proc. CVPR, 2014.



Features are from the last two convolution layers
Learned features keep rich inter-personal variations

Features can be well generalized to other tasks (e.g.
verification) and identities outside the training set

Increasing the number of classes to be predicted, the
generalization power of the learned features
Improves
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Extract features from multiple ConvNets

Multiple ConvNets

n =~ 10000 n =~ 10000
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Learn feature representations
with identification signal

 These features can be further processed by other
classifiers in face verification. Interestingly, we find
Joint Bayesian is more effective than cascading
another neural network to classify these features



Why using identification as supervision is
more efficiency than verification?

: / ID,
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- Nimages

CNN \ —> Yes or no?

N (N-1)/2 image pairs




Identification supervision:
effective on capturing inter-personal variation

Verification supervision:
effective on reducing intra-personal variation



DeeplD2: Joint identification-
verification signals

e Every two feature vectors extracted from the same
identity should are close to each other

S1IF = £l ify; = 1
Verif(fiff'ayi':eve) — 2 e T2 9 tJ
T smax (0,m — || fi — fjll,)" ifyy =—1

f;and f; are feature vectors extracted from two face images in comparison

y; = 1 means they are from the same identity; y; = -1means different identities

m is a margin to be learned

Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification-Verification.
NIPS, 2014.
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Minimize the intra-personal variation under the constraint
that the distance between classes is constant (i.e. contracting
the volume of the image space without reducing the distance

between classes) N

y = f(x); g = softmax()

f* —algmm Z £ (i) — £

(i.j)efY;

<.t |g(f(x ))_gkf(x.f )| =1, label(x;) # label(xj)



Balancing identification and
verification sighals with parameter A
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Rich identity information improves

feature learning

e Face verification accuracies with the number of
training identities
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e 25 face regions at different scales and locations
around landmarks are selected to build 25 neural
networks

e Allthe 160 X 25 hidden identity features are further
compressed into a 180-dimensional feature vector
with PCA as a signature for each image

 With a single Titan GPU, the feature extraction
process takes 35ms per image



Cirnal Daciil+H Anrn | C\A/
I 1lidl NCTOUIL Ull LT VV
High-dim | TL Joint DeepFace | DeeplD | DeepliD2 | DeeplD2+
LBP [1] Bayesian [2] | [3] [4] [5]
Accuracy (%) 95.17 96.33 97.35 97.45 99.15 99.47

[1] Chen, Cao, Wen, and Sun. Blessing of dimensionality: High-dimensional feature and
its efficient compression for face verification. CVPR, 2013.

[2] Cao, Wipf, Wen, Duan, and Sun. A practical transfer learning algorithm for face
verification. ICCV, 2013.

[3] Taigman, Yang, Ranzato, and Wolf. DeepFace: Closing the gap to human-level
performance in face verification. CVPR, 2014.

[4] Sun, Wang, and Tang. Deep learning face representation from predicting 10,000
classes. CVPR, 2014.

[5] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep Learning Face Representation by Joint
Identification-Verification. NIPS, 2014.



Learning face representation from
recovering canonical-view face images
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Reconstruction examples from LFW

Z. Zhu, P. Luo, X. Wang, and X. Tang, “Deep Learning Identity Preserving Face Space,” ICCV 2013.



e Disentangle factors through feature extraction over multiple layers
* No 3D model; no prior information on pose and lighting condition
e Model multiple complex transforms

e Reconstructing the whole face is a much strong supervision than
predicting 0/1 class label

Feature Extraction Layers Reconstruction Layer
n,;=48 X 48X 32

FIP
=24X24 X 32 n;=24X24X32

wimd lere i

n,=96 X 96 n,=96 X 96

4

W
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Connected and Connected and Connected Connected Y v

Pooling Pooling

Arbitrary view Canonical view
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It is still not a 3D representation yet

Can we reconstruct all the views?



y1(0°) Yy, (4 50) y3(90°)
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----------
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Hidden Layer n (‘ ‘ ‘)

(0@®)

T A multi-task solution:
(‘ ’ ‘) discretize the view spectrum

Input Image (‘ - ‘)

1. The number of views to be reconstructed is predefined, equivalent to the number of tasks
2. Cannot reconstruct views not presented in the training set

3. Encounters problems when the training data of different views are unbalanced
4. Model complexity increases as the number of views



Deep learning multi-view
representation from 2D images

e Given an image under arbitrary view, its viewpoint can be
estimated and its full spectrum of views can be reconstructed

* Continuous view representation

e |dentity and view represented by different sets of neurons

e
Feynmanm.':'-: fjm t«"rﬂ ﬂ"!ﬂ
B P e

Z. Zhu, P. Luo, X. Wang and X. Tang, “Deep Learning and Disentangling Face Representation by Multi-View Perception,”
NIPS 2014.



Network is compose of deterministic
neurons and random neurons

x and y are input and output images of
the same identity but in different views;

v is the view label of the output image;

h'd are neurons encoding identity
features

h'are neurons encoding view features

h"are neurons encoding features to
X reconstruct the output images
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e EM updates on the probabilistic model are converted
to forward and backward propagation

L(O, @DM} — Z p(h"|y, v; E}G'!'i) log p(y.v,h" hid; )
hv

o E-step: proposes s samples of h
hY ~U(0,1)
ws = p(y,v|h?; %)
« M-step: compute gradient refer to h with largest w,
0L(O)
00 90

9 {w,(logp(v Iy, h?) + log p(y[h, h?)) }



Ave. | 0°  —15° +15° —30° +30° —45° +45° —60° +60°
Raw Pixels+LDA 367 | 813 592 583 355 373 210 197 128 7.63
LBP [1]+LDA 502 | 89.1 774 791 568 559 352 297 162 146
Landmark LBP [6]+LDA | 632 | 949 839 89 714 682 528 483 355 32.1
CNN+LDA 58.1 | 646 662 628 607 63.6 564 579 464 442
FIP [28]+LDA 729 | 943 914 900 789 825 66.1 620 493 425
RL [28]+LDA 708 | 943 905 898 775 80.0 636 59.5 446 389
MTL+RL+LDA 748 | 938 917 89.6 80.1 833 704 638 515 502
MVP,_, 4+LDA 615 | 925 854 849 643 670 51.6 454 351 283
1
MVP,_,4+LDA 793 | 957 933 922 834 839 752 706 602 60.0
2
MVPy+LDA 726 | 91.0 867 841 746 742 685 638 557  56.0
MVPy, - +LDA 623 | 834 773 731 620 639 573 532 444 469

Face recognition accuracies across views and illuminations on the Multi-PIE
dataset. The first and the second best performances are in bold.

[1] T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary patterns: Application to face

recognition. TPAMI, 28:2037-2041, 2006.

[6] Dong Chen, Xudong Cao, Fang Wen, and Jian Sun. Blessing of dimensionality: High-dimensional feature

and its efficient compression for face verification. In CVPR, 2013.

[28] Z.Zhu, P. Luo, X. Wang, and X. Tang. Deep learning identity preserving face space. In ICCV, 2013.




Deep Learning Multi-view
Representation from 2D Images

e Interpolate and predict images under viewpoints unobserved
in the training set

Tl v v e ey vl - o
v 7% Cn &g vy ey o x| Crlely e g
T 5 o s AR Ty e

(b)
The training set onIy has viewpoints of 0°, 30°, and 60°. (a): the reconstructed
images under 15° and 45° when the input is taken under 0°. (b) The input images
are under 15° and 45°.
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Face reconstruction across posSes and expressions



Face reconstruction across lightings and expressions



Properties of face representations

sparseness, selectiveness, robustness

Y. Sun, X. Wang, and X. Tang, “Deeply learned face representations are sparse, selective,
and robust,” CVPR 2015



Deeply learned features are moderately sparse

The binary codes on activation patterns are
very effective on face recognition

Save storage and speedup face search
dramatically

Activation patterns are more important than
activation magnitudes in face recognition

Joint Hamming distance
Bayesian (%) (%)
n/a

Combined model 99.47
(real values)
Combined model 99.12 97.47

(binary code)



Deeply learned features are moderately sparse
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e For an input image, about half of the neurons are activated
v' Maximize the Hamming distance between images



Deeply learned features are moderately sparse

Responses of a particular
neuron on all the images
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Deeply learned features are selective to
identities and attributes

e With a single neuron, DeeplD2 reaches 97% recognition
accuracy for some identity and attribute
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Deeply learned features are selective to
identities and attributes

e Excitatory and inhibitory neurons (on identities)

Neuron 56 Neuron 78 Neuron 344 Neuron 298 Neuron 157

L L

Neuron 116 Neuron 328 Neuron 459 Neuron 247 Neuron 131

m ] 4
o - | |
- —_ |
T o 5 0 5 0 5 0 5 0 5
E Neuron 487 Neuron 103 Neuron 291 Neuron 199 Neuron 457
2 | ] -
c
L
> L B}

0 5 0 5 0 5 0 5 0 5

Neuron 461 Neuron 473 Neuron 405 Neuron 393 Neuron 445

c & A 4 A A
30 5 0 5 0 5 0 5 0 5
E? Neuron 328 Neuron 235 Neuron 98 Neuron 110 Neuron 484
3 { L | | | | |
0 5 0 5 0 5 0 5 0 5

Histograms of neural activations over identities with the most images in LFW
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Deeply learned features are selective to

identities and attributes

 Excitatory and iqhibitory neurqns (on attributes)
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Histograms of neural activations over gender-related attributes (Male and Female)
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Histograms of neural activations over race-related attributes (White, Black, Asian and India)
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Deeply learned features are selective to
identities and attributes

e With a single neuron, DeeplD2 reaches 97% recognition
accuracy for some identity and attribute

1
%) >,
© Q
3 0.8
S0.8 g
g IDgepIII_)2+ @ EDeeplD2+
S gHigh-dim 5086 gHigh-dim
So6 L5P S LBP
2 0.4
© ©
Q [&]
0.4 0.2 : | :
GB CP TB DR GS Male White Black Asian Indian
Identity classification accuracy on LFW with Attribute classification accuracy on LFW with

one single DeeplD2+ or LBP feature. GB, CP, one single DeeplD2+ or LBP feature.
TB, DR, and GS are five celebrities with the
most images in LFW.
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Excitatory and

Inhibitory neurons
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Excitatory and
Inhibitory neurons
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Deeply learned features are selective to
identities and attributes

* Visualize the semantic meaning of each neuron

High Resp. <@==fp Low Resp. HighResp. <= TLow Resp.

Gender Hair Color

Face Shape Eye Shape




Deeply learned features are selective to
identities and attributes

e Visualize the semantic meaning of each neuron

Test Image Activations Neurons

Neurons are ranked by their responses in descending order with respect to test images



verification accuracy

Deeply learned features are robust to occlusions

Global features are more robust to occlusions

10% 20% 30% 40% 50% 60% 70%
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Applications of face representations

face localization, attribute recognition



DeeplD2 features for attribute recognition

e Features at top layers are more effective on recognizing
identity related attributes

e Features at lowers layers are more effective on identity-non-
related attributes

Top hidden layer Lower convolution layers

/ / /

M ANet (FC) M ANet(C4) M ANet (C3)

- Identity-related Attributes Identity-non-related Attributes
100% 90%
> 95% 85%
m
5 90% 80%
S
R Ii I | II
80% 70% —
Male White Black Asian Smiling Wearing Rosy 3SoClock

Hat Cheeks Shadow

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep Learning Face Attributes in the Wild,” ICCV 2015



DeeplD2 features for attribute recognition

DeeplD2 features can be directly used for attribute recognition

Use DeelD2 features as initialization (pre-trained result), and
then fine tune on attribute recognition

Multi-task learning face recognition and attribute prediction
does not improve performance, because face recognition is a
much stronger supervision than attribute prediction

FaceTracer [1] (HOG+SVM) 81 74
Training CNN from scratch with attributes 83 79
Directly use DeeplD2 features 84 82
DeeplID2 + fine-tuning 87 84



Features learned from face recognition can improve face localization?

/View N

O $ ‘ ® - ‘ E> Push the idea
to extreme?

Single face detector Multi-view detector
Hard to handle large variety View labels are given in training;
especially on views Each detector handles a view

Viewpoints ——> Gender, expression, race, hair style —>  Attributes

Neurons have selectiveness on attributes

A filter (or a group of filters) functions as a detector of a face attribute

When a subset of neurons are activated, they indicate existence of faces with an attribute configuration



Attribute configuration 1 Attribute configuration 2
Brow hair .~~~ ~~ Male

Big eyes e \ Black hair
ape /
Smiling , \ Sunglasses /

The neurons at different layers can form many activation patterns, implying that the

whole set of face images can be divided into many subsets based on attribute
configurations



High Cheekbones
Smiling

(d) Extracting features to predict attributes

LNet localizes faces

LNet is pre-trained with face recognition and fine-tuned with attribute prediction

By simply averaging response maps and good face localization is achieved

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep Learning Face Attributes in the Wild,” ICCV 2015
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Attribute selectiveness:
Identity selectiveness:

Precision

Precision plots of OPE
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Success plots of OPE

neurons serve as detectors
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2015.
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Face representation can be learned from the tasks of
verification, identification, and multi-view reconstruction

Face representation can be more effectively learned from rich
prediction and challenging tasks

Deeply learned features are moderately sparse, identity and
attribute selective, and robust to data corruption

Binary neuron activation patterns are effective for face
recognition than activation magnitudes

These properties are naturally learned by DeeplD2 through
large-scale training

Because of these properties, the learned face representation
are effective for applications beyond face recognition, such as
face localization and attribute prediction
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