

Multimedia Laboratory

SENSETIME

專

茵

SenseTime Group

Object Detection in Videos with Tubelets and Multi-context Cues

Kai Kang **CUvideo Team** The Chinese University of Hong Kong, SenseTime Group

Wanli Ouyang

Kai Kang

Hongsheng Li

Bin Yang

Junjie Yan

Xingyu Zeng

Tong Xiao

Cong Zhang

Ruohui Wang

Xiaogang Wang

Still-image Detection

Proposed Framework

Still-image Detection

ILSVRC Detection #1 Performance

Still-image Detection: Limitation I Large Temporal Variations

Time

Solution - Tubelets

Still-image Detection

Proposed Framework

Temporal Tubelet Re-scoring

High-confidence Tracking

- Obtain detection results from still-image detectors
- tracking algorithms [1]

[1] Wang, Lijun et al. Visual Tracking with Fully Convolutional Networks. ICCV 2015

Choose high-confidence detections as starting points (anchors) for tracking

Obtain tubelets, which are bounding box sequences generated from

Spatial Max-pooling: Why?

- The detection scores on the tracked tubelets are not satisfactory
 - Boxes from tracked tubelets and those from still-image detection have different statistics
 - Tracked box locations are not optimal due to tracking failures
- Neighboring high-confidence detections are utilized to improve tubelet detection scores, which is called **spatial max-pooling**

Spatial Max-pooling

- **boxes** are chosen for each tubelet
- spatial max-pooling
- Use the Kalman Filter to smooth the bounding box locations.

Still-image detection results that have large overlaps with tubelet

Only detections with maximum detection scores are left after

- Tubelet Classification. Classify tubelets based on statistics of based on the statistics.
- [0.5, 1], negative ones to [0, 0.5].

Temporal Re-scoring

detection scores (mean, median, top-k). A linear classifier is learnt

Tubelet Re-scoring. Map detection scores of positive tubelets to

Temporal Tubelet Re-scoring

Still-image Detection: Limitation II Ignored Context

red panda

red panda turtle

red panda

red panda

red panda

Proposed Framework

Multi-context Suppression and Motion Guided Propagation

Multi-context Suppression (MCS)

- order
- The classes of the high rankings are denoted as the confident classes
- scores of confident classes remain unchanged

Sort all detection scores of all proposals in a video in descending

The scores of classes with low rankings are suppressed, while the

Motion Guided Propagation (MGP)

Frame t-1

- adjacent frames are complementary to each other.
- propagation.
- Propagation results in redundant boxes, which can be easily handled by nonmaximum suppression (NMS)

Frame t Frame t+1 • In each frame, some objects are **not found by detector**. However, detections on

Detections are propagated to adjacent frames. Optical flow is used for guiding the

Proposed Framework

Nodel Combination

- Two groups of proposals:
 - 1) Proposals from CRAFT [1]: scores from CRAFT
 - 2) Selective Search + EdgeBox: scores from DeepID-net [2]
- NMS is used for combining multiple groups of proposals

[1] J. Yan, et al. CRAFT Objects from Images, axiv preprint. [2] W. Ouyang, et al. Deepid-net: Deformable deep convolutional neural networks for object detection. CVPR, 2015.

• Given a group of proposals, their detection scores can be obtained by averaging several models.

Still-image Detection

Multi-context Suppression and Motion Guided Propagation

Proposed Framework

Component Analysis

Training Data Configuration

CNN Training Data

DET:VID Ratio	1:0	3:1	2:1	1:1	1:3
MeanAP / %	49.8	56.9	58.2	57.6	57.1

DET Positive						
VID Positive						
DET Negative						
VID Negative						
MeanAP / %	49.8	47.1	35.8	51.6	52.3	53.7

SVM Training Data

Framework Components

Framework Components 65 70 80 60 75

Model Combine (Provided)

Still-image Detection

Framework Components 65 60 70 75 80 **Temporal Tubelet Re-scoring**

DeepID-Net (Provided)

Model Combine (Provided)

CRAFT (Additional)

DeepID-Net (Additional) Model Combine (Provided)

Multi-context Suppression and Motion Guided Propagation

Framework Components

Data	Model	Still- image	MCS+MGP +Rescoring	Model Combine	Test Set (official results)	Rank in ILSVRC 2015	#win
Provided	CRAFT [1]	67.7	73.6	73.8	67.8	#1	28/30
	DeepID-net [2,3,4]	65.8	72.5				
Additional	CRAFT [1]	69.5	75.0	77.0	69.7	#2	11/30
	DeeplD-net [2,3,4]	70.7	75.4				

Validation set

[1] J. Yan, et al. CRAFT Objects from Images, axiv preprint.
[2] W. Ouyang, et al. Deepid-net: Deformable deep convolutional neural networks for object detection. CVPR, 2015.
[3] X. Zeng, et al. Window-Object Relationship Guided Representation Learning for Generic Object Detections, axiv preprint.
[4] W. Ouyang, et al. Factors in Finetuning Deep Model for object detection, axiv preprint.

Test set

Our Team in ILSVRC2015

Track	Rank
Provided	#3
Additional	#2
Provided	#1
Additional	#2

Questions?