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Tracking an Unknown Time-Varying Number of
Speakers using TDOA Measurements: A Random

Finite Set Approach
Wing-Kin Ma, Ba-Ngu Vo, S. Singh, and A. Baddeley

Abstract— Speaker location estimation techniques based on
time-difference-of-arrival (TDOA) measurements have attracted
much attention recently. Many existing localization ideas assume
that only one speaker is active at a time. In this paper, we focus on
a more realistic assumption that the number of active speakers is
unknown and time-varying. Such an assumption results in a more
complex localization problem, and we employ the random finite
set (RFS) theory to deal with that problem. The RFS concepts
provide us with an effective, solid foundation where the multi-
speaker locations and the number of speakers are integrated to
form a single set-valued variable. By applying a sequential Monte
Carlo (SMC) implementation, we develop a Bayesian RFS filter
that simultaneously tracks the time-varying speaker locations and
number of speakers. The tracking capability of the proposed filter
is demonstrated in simulated reverberant environments.

Index Terms— Random finite set, source localization, time
difference of arrival, sequential Monte Carlo, Bayesian filter

I. I NTRODUCTION

Speaker localization using voice activity is an important
problem in microphone array processing, driven by applica-
tions such as automatic camera steering in video-conferencing.
By localization, one can consider estimating the directions of
the speaker sources, or estimating the Cartesian coordinates
of the sources. In this paper we are interested in the Carte-
sian coordinate localization, with particular emphasis on the
time-difference-of-arrival (TDOA) approach. Readers who are
interested in the direction finding approach (which presents a
rather different signal processing framework compared to the
TDOA) are referred to the literature such as [1]–[4] and the
references therein.

Fig. 1 depicts a microphone placement for the TDOA
approach. Essentially microphones are grouped into pairs and
those pairs are distributed in the room (note that one can also
choose to place those pairs in proximity to each other; see
the setting in [5] for example). For each pair the TDOA is
measured independently. Assuming single speaker activity and
no reverberation, the TDOAs can be reliably measured using
a generalized cross correlation (GCC) method [6], [7]. The
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measured TDOAs, which embed location information relative
to the microphone pair locations, are then fused to estimate the
Cartesian coordinate of the speaker. This second stage process
can be done by some simple, effective algorithms such as [5],
[8]–[10].

Microphone pair 2

Speaker source

Microphone pair 1

Fig. 1. TDOA microphone array system.

The TDOA single-speaker localization approach mentioned
above isvulnerableto reverberation, a problem that is quite
common in room environments.The rich multipaths result-
ing from reverberation can lead to anomalous GCC TDOA
estimates. Under such circumstances it is suggested to em-
ploy the phase transform (PHAT) GCC method for reducing
TDOA estimation error [7]. To further suppress the effect of
anomalous TDOA measurements, blind channel identification
methods have been introduced to replace the role of GCC [5],
[11], [12]. An alternative that has emerged more recently
is to apply the Bayesian object tracking framework [13],
[14] in the source localization stage. In this approach the
possibility of GCC TDOA outliers is incorporated in the
problem formulation, thereby making the resultant speaker
location estimator less prone to reverberation (compared to
localization methods that do not assume the presence of TDOA
outliers). Another salient feature of the Bayesian approach is
that the speaker location is sequentially tracked with respect
to (w.r.t.) time, by following a Markov speaker motion model.
In other words, the Bayesian approach exploits the correlation
of speaker motions w.r.t. time, which can help improve local-
ization accuracy. The Bayesian tracking approach has been
numerically demonstrated [13], [14] to be robust against the
effects of reverberation. Moreover, performance comparisons
of the Bayesian approach with the blind channel identification
based localization approach have been examined in [14]1.

1It is interesting to mention that conceptually, the Bayesian tracking idea
can be applied to the blind channel identification methods to further improve
localization accuracy. However, no such work has yet appeared in the speaker
localization literature.
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The objective of this paper is to deal with TDOA based lo-
calization with unknown time-varying number of speakers and
with reverberation, by applying a Bayesian tracking framework
based on the random finite set (RFS) formulation [15]–[18].
This multi-speaker localization problem presents a challenge
in signal processing, and very recently some attempts [19],
[20] have been made to tackle that problem for known number
of speakers. Our attempt for locating unknown time-varying
numbers of speakers is based on the multi-object tracking
approach, a generalization of the single-object tracking ap-
proach. There is a variety of techniques for multi-object
tracking; see the reviews in [16], [21], [22]. The RFS approach
employed here is a recently emerged framework that has been
found to be promising for multi-object tracking [15]–[18].
RFS is a rigorous mathematical discipline for dealing with
random spatial patterns [23]–[26] that has long been used by
statisticians in many diverse applications including agriculture,
geology, and epidemiology; see [25] and the references therein
for further details.In essence, an RFS is a finite collection
of elements where not only each RFS constituent element
is random, but the number of elements is also random. The
RFS approach to multi-object tracking is elegant in that the
multiple object states and the number of objects are integrated
to a single RFS. More importantly, RFS provides a solid
foundation for Bayesian multi-object tracking, that is not found
in traditional multi-object tracking approaches. For further
discussions of the differences between the RFS and traditional
approaches, please read [15], [16], [27]. An exposition of
RFS theory is rather involved particularly when it comes to
the constructions of probability densities for RFSs; see [15],
[18], [25] for the details. Fortunately, for most engineering
applications it suffices to know how to apply several key
concepts and results, which in our opinion are presently not
well publicized for the generally knowledgeable readers and
therefore will be demonstrated in this paper.

The summary of this paper, together with the organization,
are as follows.After a background review in Section II, in
Section III we propose an RFS model for the multi-speaker
tracking application. Section III also lays several reasonable
assumptions for the application, that turn out to greatly fa-
cilitate the RFS tracking implementation. Those assumptions
include

i) At each time instant, at most one speaker source can be
born.

ii) The number of simultaneously active speaker sources is
small.

The assumption in ii) is particularly true in applications such as
video-conferencing, in which the most frequently encountered
events are no voice activity, one speaker voice activity, and
one speaker interrupting another. Section IV describes the
Bayes RFS filter (or tracker) and its implementation using
the sequential Monte Carlo (SMC) method in [18]. The Bayes
RFS SMC filter is known to be computationally expensive
for large number of objects [18], [22]. For those cases it
would be appropriate to consider computationally efficient
approximations such as the probability hypothesis density
method [16], [18], [28]. Fortunately for small number of

objects it is still computationally affordable to employ the
Bayes RFS SMC filter (see, for example, [22]), and it appears
that the multi-speaker tracking problem considered here falls
into such case.Section V deals with track association in
the RFS framework. The presently available track association
resolutions work by combining the RFS module with some
other tracking modules [29], [30], but in this work we exploit
the ‘at-most-one-birth’ assumption to come up with a simple
track association method. The idea is to augment the speaker
state vector by a discrete variable that records track association
information. It is interesting to point out that such an idea
has been alluded to in [31]. It is further shown that by
using the proposed track association method, the respective
RFS state estimation process can be greatly simplified. To
demonstrate the performance of the Bayes RFS SMC filter,
in Section VI we provide two sets of simulation results based
on relatively realistic room simulations. In particular, in one of
the simulation examples we tested the robustness of the Bayes
RFS SMC filter against the effects of model mismatch.

This work is a more complete version of the conference
paper [32]. In particular, [32] did not consider the track
association method and the respective RFS state estimation
method in Section V.

II. BACKGROUND

This section provides a brief review on TDOA speaker
tracking, by considering the simple case of single speaker
activity and no reverberation. We should point out that the
method reviewed in the following subsections is a simplified
version of the TDOA single-speaker location tracking method
in [13], [14], in which the reverberation problem was also
addressed.

In the first subsection, some aspects regarding TDOA mea-
surements are described. Then, in the second subsection we
consider some basic concepts of Bayesian tracking.

A. TDOA Measurement

In the scenario of a single speaker without reverberation, the
received signals at a microphone pair can be modeled as [7]

y1(t) = s(t) + ν1(t), y2(t) = s(t− τ) + ν2(t) (1)

wheres(t) is the signal due to the source,νi(t), i = 1, 2 are
background noise, andτ is the TDOA between the1st and2nd
microphones. Letα ∈ R2 denote the(x, y) position vector of
the speaker source. The TDOAτ is dependent onα through
the following nonlinear relation:

τ = 1
c (‖α− u2‖ − ‖α− u1‖) (2)

whereu1 and u2 are the positions of the two microphones,
‖.‖ is the 2-norm, andc is the speed of sound (note that
extension to the 3-dimensional coordinate is straightforward).
The TDOA can be measured by a generalized cross-correlation
(GCC) estimator [6], given as follows:

τ̂ = arg max
τ∈[−τmax,τmax]

Rgcc(τ) (3)

Rgcc(τ) =
∫ ∞

−∞
Φ(ω)Sy1,y2(ω)ejωτdω (4)
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Here, Rgcc(τ) is called the GCC function,τmax = ‖u2 −
u1‖/c is the maximum admissible TDOA value,Sy1,y2(ω)
is the cross spectral density ofy1(t) and y2(t), andΦ(ω) is
a weighting function; see [6], [7] for details regarding the
choices ofΦ(ω). A popular choice ofΦ(ω) is the phase
transform (PHAT), whereΦ(ω) = 1/|Sy1,y2(ω)|. In this work
we will employ the PHAT.

In practice the speaker positionα can change over time,
in which case it is appropriate to estimateτ from a relatively
short time frame so thatα is (almost) static over each frame.
Thus, we replaceSy1,y2(ω) in (4) by a short-time estimate

Ŝy1,y2(ω; k) = Y1(ω; k)Y ∗
2 (ω; k) (5)

Yi(ω; k) =
∫ kT

(k−1)T

yi(t)e−jωtdt, i = 1, 2 (6)

where T is the time frame length, andk is the time frame
index.

B. Sequential State Estimation

We consider a standard state space model [13], [14] for the
single-speaker TDOA problem mentioned above. We use the
notationαk to represent the speaker location at thekth time
frame. By defining a state vectorxk = [ αT

k , φT
k ]T∈ Rn

wheren is the state dimension andφk contains some kine-
matic variables for the speaker motion (e.g., velocity), we
modelxk by a dynamic process:

xk = Axk−1 + Bwk (7)

whereA and B are some pre-specified matrices, andwk is
a time-uncorrelated randomGaussianvector with zero mean
and covarianceI. In speaker location tracking, it is popular to
employ the Langevin model [13], [14] in whichφk consists
of the (x, y) velocities. The state space equations for the
Langevin model are given by

αk = αk−1 + Tφk−1 (8)

φk = e−βT φk−1 + ν
√

1− e−2βT wk (9)

Here,β and ν are model parameters called the rate constant
and the steady-state root-mean-square velocity, respectively.

Next, we consider the TDOA measurements. We denote by
z
[q]
k the TDOA measured from theqth microphone pair at time

framek. The measured TDOAs are modeled by:

z
[q]
k = τq(Cxk) + v

[q]
k , q = 1, . . . , Q. (10)

Here,C = [ I 0 ] so thatCxk = αk,

τq(αk) = 1
c (‖αk − u2,q‖ − ‖αk − u1,q‖) (11)

is the true TDOA value,{u1,q,u2,q} are the position vectors
of theqth microphone pair, andv[q]

k is time-uncorrelated noise.
We assume thatv[q]

k is independent ofv[p]
k for any q 6= p, and

that eachv[q]
k follows a Gaussian distribution with zero mean

and varianceσ2
v .

Our goal is to estimatexk over time. In the sequential
Bayesian framework, we assume knowledge of the probability

density function (p.d.f.) ofxk conditioned onxk−1, which we
denote by

f(xk|xk−1), (12)

and the p.d.f. ofz[q]
k given xk, which we denote by

gq(z
[q]
k |xk). (13)

Eqs. (12) and (13) are called the state transition den-
sity and the likelihood function, respectively.By letting
N (.;µ,P) denotes the Gaussian density function with mean
µ and covarianceP, the expressions (12) and (13) are
f(xk|xk−1) = N (xk;Axk−1,BBT ) and gq(z

[q]
k |xk) =

N (z[q]
k ; τq(Cxk), σ2

v), respectively. Let z
[1:Q]
1:k define the se-

quence containingz[q]
i for i = 1, . . . , k and forq = 1, . . . , Q.

The Bayesian approach considers finding the posterior p.d.f.

p(xk|z[1:Q]
1:k ), (14)

which then allows us to estimatexk using some optimal cri-
terion such as the expecteda posteriori (EAP). The posterior
p.d.f. obeys the following recursion [33], [34]:

p(xk|z[1:Q]
1:k−1) =

∫
f(xk|xk−1)p(xk−1|z[1:Q]

1:k−1)dxk−1 (15)

p(xk|z[1:Q]
1:k ) =

∏Q
q=1 gq(z

[q]
k |xk)p(xk|z[1:Q]

1:k−1)∫ ∏Q
q=1 gq(z

[q]
k |xk)p(xk|z[1:Q]

1:k−1)dxk

(16)

To solve (15) and (16) exactly is not easy due to the non-
linearity of τq(.). Presently, in TDOA single-speaker tracking,
a promising approach to approximating (15) and (16) is the
sequential Monte Carlo methods [33], [34]; see [13], [14] for
the details.

Our proposed RFS method follows the same paradigm as
the above Bayesian tracking framework. This is illustrated
in the following sections. Moreover, we should point out
that in [13], [14], the above Bayesian framework has been
extended to handle single-speaker tracking in the presence of
reverberation. In those works, the GCC method was slightly
modified to cater for the possibility of false TDOA peaks
caused by reverberation. Since this work will employ the same
modified GCC method (which will be described in the next
section), the proposed method may be considered as a multi-
speaker generalization of [13], [14].

III. RFS FORMULATION FOR MULTI -SPEAKER

LOCALIZATION

This section describes our problem formulation for TDOA
multi-speaker tracking in the presence of reverberation, using
the random finite set (RFS) framework. In the first subsection,
we outline the characteristics of our multi-speaker problem.
An RFS formulation for the problem is then presented in the
second subsection.

A. The Multi-Speaker Problem

The multi-speaker scenario considered here has the follow-
ing characteristics: i) each speaker follows the state space
motion model described in Section II-B, but his/her own
voice activity interval is unknown to the system; and ii) each
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speaker’s voice undergoes a multipath propagation, due to
room reverberation. In the proposed RFS treatment, we rep-
resent the state vectors of the speakers by a single finite set,
given by:

Xk = {x1,k, . . . ,xNk,k} , (17)

whereNk = |Xk| (|.| stands for the cardinality) is the number
of active speakers at timek, and eachxi,k represents a distinct
speaker state vector. We assume that|Xk| ≤ Nmax for some
givenNmax, and that|Xk| is unknown. In the next subsection
we will develop a statistical finite set model forXk, which
describes not only the state space motion mechanism, but also
the appearance and disappearance events for each speaker.
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Fig. 2. GCC function response in the presence of multi-speaker activity and
reverberation. The response was obtained by using recorded real speech, and
by simulating a room environment where reverberation is present.

In the presence of multi-speaker, reverberation-induced
multipath signal propagations, the GCC function in (4) is
composed of the cross-correlations of the various paths. Hence,
some of the peaks of the GCC function are expected to be
contributed by the direct path components of the speaker
sources. This can be seen from the illustration in Fig. 2,
which shows a GCC function response in the presence of
multi-speaker multipath propagation. We follow the TDOA
extraction scheme in [13], [14] where multiple TDOAs are
measured from one GCC function by picking more than one
peak (or locally maximum point) in (4). By collecting those
TDOAs to form a finite set, we have the following finite-set-
valued measurement at timek for the qth microphone pair:

Z [q]
k =

{
z
[q]
1,k, . . . , z

[q]

M
[q]
k ,k

}
, (18)

where M
[q]
k = |Z [q]

k | is the number of measured TDOAs.
We are now faced with the following problems: i) Given
an xi,k in Xk we expect that one of the measured TDOAs
in Z [q]

k is generated byxi,k, but we do not know which
element inZ [q]

k is due toxi,k. ii) It may occasionally turn
out thatxi,k does not contribute a measurement toZ [q]

k . This
measurement miss situation can occur when one speaker cross-
correlation response masks that of another, and/or when the
speech signal powers are too weak in certain time frames due
to the nonstationarity of speech signals. iii)Z [q]

k may contain
false TDOAs; i.e., TDOAs that are not generated by the direct
paths. Such an effect can also be seen in Fig. 2.

B. The RFS Formulation

We consider an RFS formulation that models the multi-
speaker, multi-measurement problems described in the last

subsection. The multi-speaker finite setXk is modeled by

Xk = Bk(bk) ∪




⋃

i=1,...,|Xk−1|
Sk(xi,k−1,wi,k)



 (19)

where Bk(bk) contains state vectors of speakers ‘born’ at
time k, Sk(xi,k−1,wi,k) is a finite set associated with the
previous speaker statexi,k−1, and the vectorswi,k and bk

are random variables independent of one other. ForSk, we
have the following hypotheses:

Sk(xi,k−1,wi,k) =
{ ∅, Hdeath

{Axi,k−1 + Bwi,k} , H̄death

(20)
whereHdeath and H̄death are respectively the death and no-
death hypotheses. Note that for the no-death hypothesis, the
state space process is exactly the same as that of the simple
single-speaker case in (7). The hypothesisHdeath occurs with
probability Pdeath. For the birth process, we assume that at
most1 speaker is born at a time. If|Xk−1| = Nmax then we
haveBk = ∅. Otherwise, the following hypotheses apply:

Bk(bk) =
{ ∅, H̄birth

{bk}, Hbirth
(21)

whereHbirth andH̄birth are respectively the birth and no-birth
hypotheses, andbk is an initial state vector under the birth
hypothesis. We denote the probability ofHbirth by Pbirth.
Moreover,bk is assumed to follow an initial state distribution
in which the(x, y) position is uniformly distributed within the
room enclosure and the other kinematic variables are zero.

For the measurement model, we assume thatZ [q]
k is inde-

pendent ofZ [p]
k for any q 6= p. EachZ [q]

k is modeled by

Z [q]
k =





⋃

i=1,...,|Xk|
T [q]

k (xi,k, v
[q]
i,k)



 ∪ C[q]

k (22)

whereC[q]
k is the finite set of false TDOAs, andT [q]

k is given
by

T [q]
k (xi,k, v

[q]
i,k) =

{ ∅, Hmiss{
τq(Cxi,k) + v

[q]
i,k

}
, H̄miss

(23)

with v
[q]
i,k ∼ N (0, σ2

v). Here, τq(Cxk) is given in (11), and
H̄miss and Hmiss are respectively the detection and miss
hypotheses. The hypothesisHmiss happens with probability
Pmiss. For the false TDOAs, we follow the standard assump-
tion in [13], [14] that eachc[q]

k ∈ C[q]
k independently follows

a uniform distribution over the admissible TDOA interval
[−τmax, τmax], whereτmax = ‖u2,q−u1,q‖/c (For simplicity
the inter-sensor distance‖u2,q − u1,q‖ for every microphone
pair is assumed to be the same). In addition, the number of
false TDOAs|C[q]

k | is assumed to follow a Poisson distribution
with an average rate ofλc.

Some remarks are now in order:
Remark 1: The above described RFS model is applicable

to anyNmax; that is, the maximum number of simultaneously
active speakers. However, the performance of the GCC TDOA
measurement method in practice incurs a limitation on the



PREPRINT: IEEE TRANSACTIONS ON SIGNAL PROCESSING,VOL. 54, NO. 9, PP. 3291–3304, SEPT 2006 5

choice ofNmax. GCC benefits from its simplicity, but it is not
a super resolution method in the multiple TDOA estimation
context. When there are many speakers or when the TDOAs
of two speakers are close, GCC may only be able to obtain a
few true TDOAs that are associated with the dominant sources.
Fortunately, for speech applications it is generally true that the
number of simultaneously active speakers is small, such as2
(some justification for this has been presented in Section I).
Hence, in this TDOA speaker localization application, it is
pertinent to focus on a smallNmax.

Remark 2: The probability of birthPbirth and the prob-
ability of deathPdeath are not known in reality. In practice
it is reasonable to make a guess onPbirth and Pdeath, and
such parameter adjustments generally lead to some tradeoffs
on the performance of multi-speaker tracking (presented in the
next sections). IncreasingPbirth is expected to improve the
chance of identifying a newly born speaker source. Likewise,
to quickly identify speaker source death is advised to increase
Pdeath. However, increasingPbirth and/or Pdeath may also
increase the chance of over-estimation and under-estimation
on the number of speakers, especially in the presence of false
measurements. In other words, the tuning ofPbirth andPdeath

is a tradeoff between sensitivity and robustness.
Remark 3: Like Pbirth andPdeath, in practice the probabil-

ity of missPmiss is decided by some rough guess. Increasing
Pmiss is expected to improve the robustness against the
measurement miss situations. However, increasingPmiss may
also reduce the accuracy of speaker state estimation.

IV. BAYESIAN RFS FILTER

With the above RFS problem formulation, we can develop
a Bayesian framework for estimatingXk; i.e., sequentially
estimating both the multi-speaker locations and the number
of active speakers. In the first subsection, we examine some
probabilistic results that are essential to the Bayesian RFS
framework. Then, the second subsection proposes an imple-
mentation for Bayesian RFS estimationusing the sequential
Monte Carlo (SMC) technique, also known as the particle
filter.

A. Bayes Recursion for RFSs

The RFS theory provides two important tools for the multi-
speaker tracking application. First, we can construct p.d.f.s
for the RFSXk andZ [q]

k according to the model outlined in
the previous section. In particular, we can determine a multi-
speaker RFS state transition density, denoted by

f(Xk|Xk−1), (24)

and RFS likelihood functions, denoted by

gq(Z [q]
k |Xk) (25)

for q = 1, . . . , Q. To construct these p.d.f.s, some involved
mathematical concepts are required and the details are beyond
the scope of this application paper. Readers are referred to
[15], [18], [25] for complete descriptions of the RFS p.d.f.
concepts. From an application viewpoint, we are more in-
terested in the results, particularly the expressions for (24)

and (25). The derivations of (24) and (25) are given in the
Appendix. Second, many ideas in RFS Bayes estimation are
essentiallythe same asthose of the standard Bayes framework
(c.f., Section II-B). To explain this, letZ [1:Q]

1:k define a sequence
consisting of the finite setsZ [q]

i for all i = 1, . . . , k and
q = 1, . . . , Q. In an RFS Bayesian framework, we consider de-
termining the posterior p.d.f.p(Xk|Z [1:Q]

1:k ) thereby estimating
Xk over time. Moreover,p(Xk|Z [1:Q]

1:k ) has a recursive relation
reminiscent of the prediction and update formulae in (15) and
(16), given as follows:

p(Xk|Z [1:Q]
1:k−1) =

∫

F(Rn)

f(Xk|Xk−1)p(Xk−1|Z [1:Q]
1:k−1)µ(dXk−1)

(26)

p(Xk|Z [1:Q]
1:k ) =

∏Q
q=1 gq(Z [q]

k |Xk)p(Xk|Z [1:Q]
1:k−1)∫

F(Rn)

∏Q
q=1 gq(Z [q]

k |Xk)p(Xk|Z [1:Q]
1:k−1)µ(dXk)

.

(27)

whereF(Rn) is the class of all finite subsets ofRn, andµ is
a measure onF(Rn); see [18], [35], [36] for the details.

The next section considers the implementation of (26) and
(27) using SMC.

B. Sequential Monte Carlo Implementation

The Bayes recursion in (26) and (27) can be com-
puted, in an approximate manner, by applying an RFS SMC
method [18], [37]. In the single-speaker scenario, SMC has
been shown [13], [14] to be effective in handling the nonlin-
earity of the TDOA function. In this multi-speaker extension
where the p.d.f.s. exhibit even more complicated structures
(c.f., the Appendix), the SMC implementations are particularly
favorable.

The implementation employed here is the RFS bootstrap
SMC method, which is a special case of the generic RFS SMC
method in [18] but is particularly easy to use (note that the
RFS bootstrap SMC method here is not related to the method
in [37]). The RFS boostrap SMC method is briefly described
as follows. We use a random measure{X (i)

k , w
(i)
k }L

i=1 to
approximate the posterior p.d.f.:

p(Xk|Z [1:Q]
1:k ) ≈

L∑

i=1

w
(i)
k δX (i)

k

(Xk). (28)

Here,X (i)
k is the ith (finite set) particle,w(i)

k is the weight
associated withX (i)

k , L is the number of particles applied, and
δX (i)

k

is a set-valued version of the standard Dirac delta func-

tion2. As an approximation to probability densities, the weights
have the properties thatw(i)

k ≥ 0 for all i and
∑L

i=1 w
(i)
k = 1.

The particles{X (i)
k }L

i=1 are randomly drawn conditioned on
the timek−1 random measure{X (i)

k−1, w
(i)
k−1}L

i=1. Specifically,
for eachi = 1, . . . , L we generate

X (i)
k ∼ f(.|X (i)

k−1). (29)

2A set-valued Dirac delta functionδY (X ) is a function such that given
everyA ⊆ F(Rn), we have

∫
A δY (X )µ(dX ) = 1A(Y). Here,1A(Y)

is an indicator function where1A(Y) = 1 if Y ∈ A, and 1A(Y) = 0
otherwise.
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By the notion of importance sampling [33], [34] and by
applying the timek − 1 counterpart of (28) to the Bayes
recursion in (26) and (27), one can obtain

p(Xk|Z [1:Q]
1:k ) ≈

L∑

i=1

∏Q
q=1 gq(Z [q]

k |X (i)
k )w(i)

k−1∑L
j=1

∏Q
q=1 gq(Z [q]

k |X (j)
k )w(j)

k−1

δX (i)
k

(Xk).

(30)
Table I summarizes the RFS bootstrap SMC filter. It should

be noted that in Table I there is an additional step called
resampling. This step is used to reduce the degeneracy problem
commonly encountered in SMC approximations; see [33], [34]
for more details. The essential ingredients for the bootstrap
SMC filter are the particle generation at Step 1 of Table I, and
the expressions forgq(Zk|Xk). In Table II we show the particle
generation algorithm. The general expression forgq(Zk|Xk) is
shown in the Appendix. Some useful equations ofgq(Zk|Xk)
for Nmax = 2 are shown at the top of the next page.

TABLE I

RFSBOOTSTRAPSMC FILTER FOR MULTI-SPEAKER TRACKING.

RFS Bootstrap SMC Filter

Given a particle size L.
for k = 1, 2, . . .

Step 1. Sampling:
For i = 1, . . . , L, generate X

(i)
k ∼ f(.|X

(i)
k−1) and

compute

w
(i)
k =

Q�
q=1

gq(Z
[q]
k |X

(i)
k )w

(i)
k−1.

Then, apply normalization w
(i)
k := w

(i)
k /(�L

`=1 w
(`)
k ) for

all i.
Step 2. Resampling:
Apply a resampling algorithm [33],[34] on
{X

(i)
k , w

(i)
k }L

i=1 to obtain a resampled set {X̃ (i)
k , w̃

(i)
k }L

i=1.
Then, update {X

(i)
k , w

(i)
k }L

i=1 := {X̃
(i)
k , w̃

(i)
k }L

i=1.
end

We should point out that Eqs. (31), (32), (33) represent
the likelihood functions for no speaker, one speaker, and two
speakers, respectively. Also, recall that the parameterλc in
(31) to (33) represents the average number of false TDOA
measurement. Some further remarks are now in order:

Remark 4:An asymptotic convergence property for the RFS
SMC filter, such as the above described bootstrap filter has
been considered in [18]. Specifically, it has been proven that
for sufficiently largeL, the mean square approximation error
of the RFS SMC filter is inversely proportional toLα for some
constant0 < α ≤ 1. This implies that the RFS bootstrap SMC
filter is an accurate approximation for largeL.

Remark 5: If we chooseNmax = 1, Pdeath = 0, and
Pbirth = 1, the RFS SMC filter reduces to a form very similar
to the single-speaker SMC filter in [13], [14].

Remark 6:The computational complexity of the RFS boot-
strap SMC filter is linearly dependent on the particle sizeL.
Moreover, for each particle, the complexity depends on the
evaluation of the likelihood functiongq(Zk|Xk). It can be

TABLE II

PARTICLE GENERATION.

Particle Generation Algorithm for Xk ∼ f(.|Xk−1)

Set Xk = ∅.
Step 1. Source Death and Survival:
for each xk−1 ∈ Xk−1

Draw a random number u uniformly distributed over
[0, 1).
if u > Pdeath

draw a random vector wk according to the state space
model assumed;
compute xk := Axk−1 + Bwk; and
set Xk := Xk ∪ {xk}.

end
end
Step 2. Source Birth
if |X (i)

k−1| < Nmax

Draw a random number u uniformly distributed over
[0, 1).
if u ≤ Pbirth

draw an initial state bk according to the initial state
distribution assumed; and
set Xk := Xk ∪ {bk}.

end
end

seen in the Appendix that the computations ofgq(Zk|Xk)
are exponential in|Xk|. In this application where|Xk| are
small (see the argument in Section I andRemark 1), this
computational issue is insignificant.

V. REFINEMENT OF THEBAYES RFS FILTER

In this section we present some additional ideas that can
further enhance the effectiveness of the proposed RFS multi-
speaker tracking method. The first subsectiondescribes the
track association problem arising in the RFS framework.A
simple method, calledtrack labeling, is proposed to handle
that problem.Then, in the second subsection, we propose a
state estimation scheme that takes advantage of track label
information to simplify the estimation process.

A. Track Association using Track Labeling

A problem with the RFS state formulation described in
the previous sections is that it gives no information on the
track association betweenXk and Xk−1. That is, given an
elementxk−1 ∈ Xk−1, we do not know which element in
Xk is originated fromxk−1. It follows that a Bayesian RFS
filter based on this model will not provide such information.
For the general RFS multi-object tracking scenario in which
target birth can be quite complex3, handling track association
is non-trivial; see, for example, [29], [30].In this multi-
speaker tracking problem where at most one speaker source is
allowed to be born at one time, track association can be quite
easily handled by considering the following idea.

3In a general RFS multi-object tracking framework, multiple targets can be
born at one time. In addition, one target can split to form two or more .
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gq(Z [q]
k |∅) = e−λc

(
λc

2τmax

)|Z[q]
k |

(31)

gq(Z [q]
k |{xk}) = gq(Z [q]

k |∅)


Pmiss + (1− Pmiss)

∑

z
[q]
k ∈Z[q]

k

(
2τmax

λc

)
gq(z

[q]
k |xk)


 (32)

gq(Z [q]
k |{x1,k,x2,k}) = gq(Z [q]

k |∅)
{ ∏

i=1,2


Pmiss + (1− Pmiss)

∑

z
[q]
k ∈Z[q]

k

(
2τmax

λc

)
gq(z

[q]
k |xi,k)




− (1− Pmiss)2
∑

z
[q]
k ∈Z[q]

k

(
2τmax

λc

)2

gq(z
[q]
k |x1,k)gq(z

[q]
k |x2,k)

}
(33)

To avoid notational inconsistency, let us re-define the state
vector used in Sections II and III to beξk = [ αT

k , φT
k ]T ∈

Rn, in place ofxk. We define a new state vector

xk = [ ξT
k , γk ]T (34)

where we augment the state vector by a variableγk to indicate
the track identity of the speaker state. The variableγk is
set to the birth time of the speaker source. Since no two
speakers share the same birth time,γk will provide adequate
information for resolving track association whenxk in (34)
is used in the RFS framework. We callγk a track label of
a speaker source. Moreover, we refer to a state vector as the
track-̀ speaker state if its track labelγk takes the valuè.

To incorporate track labels into the previously developed
RFS framework, we only need minor modifications on the
state space equations. For the birth hypothesis process in (21),
the birth state vector is modified as

bk = [ ξT
init,k, k ]T (35)

whereξinit,k ∈ Rn is the random initial state vector described
in Section III-B. For the survival process in (20), we have

xi,k =
[
A 0
0 1

]
xi,k−1 +

[
B
0

]
wi,k (36)

in which the track label at timek−1 is directly carried forward
to time k.

Track labeling not only helps identify speaker tracks, it
also simplifies the state estimation process as shown in the
following subsection.

B. State Estimation Incorporating Track Labels

Our algorithm development in the last section has focused
on the particle posterior density approximation:

p(Xk|Z [1:Q]
1:k ) ≈

L∑

i=1

w
(i)
k δX (i)

k

(Xk) (37)

for some weightsw(i)
k and for some (set-valued) particlesX (i)

k .
This subsection describes our proposed method for estimating
Xk from (37), in which the track labeling idea in the previous
subsection is exploited to simplify the estimation process.

In the current RFS framework (i.e., without track label-
ing), a number of Bayesian estimation criteria have been
proposed [15], [27]. Here we are interested in theintensity
measure[16], [18]. 4 The following quantity

Nk(S) , E
{|Xk ∩ S|

∣∣Z [1:Q]
1:k

}
(38)

=
∫
|Xk ∩ S|p(Xk|Z [1:Q]

1:k )µ(dXk) (39)

defined for any setS ⊆ Rn, is called an intensity measure
of Xk conditioned onZ [1:Q]

1:k . The intensity measure is the
first-order moment ofXk. Physically, Nk(S) describes the
expected number of state vectors lying inS; e.g., Nk(Rn)
is the expected total number of speaker sources at timek,
given the measurementsZ [1:Q]

1:k . From (37), Nk(S) can be
approximated by

Nk(S) ≈
L∑

i=1

w
(i)
k |X (i)

k ∩ S| (40)

Roughly speaking, an intensity-measure-based state estimation
method [18], [38], [39] consists of two steps: i) Obtain an
estimate of the number of speakerŝNk = dNk(Rn)c where
d.c is the rounding operation. ii) Determine a number of sets
Si,k for i = 1, . . . , N̂k, such that the intensityNk(Si,k) shows
good response for eachi whilst Si,k ∩ Sj,k = ∅ for i 6= j

and
∑N̂k

i=1 Nk(Si,k) = Nk(Rn). iii) For eachi, determine the

center ofSi,k, denoted bŷxi,k. The centers{x̂i,k}N̂k
i=1 are then

taken as the state estimates. The challenge of this approach
lies in Step ii), where some clustering algorithm is usually
used to numerically determine those sets. Since clustering is
a nonlinear nonconvex optimization problem, poor data fitting
could occur.

The state estimation process can become simpler when track
label information is available. Recall that a state vector with
track labeling is in the form ofxk = [ ξT

k , γk ]T ∈ Rn × Z.
Hence, we can define the intensity measure for the track-`

4The density of the intensity measure is called the probability hypothesis
density (PHD). It is worth mentioning that PHD is an important concept in
RFS multi-object tracking; see [16], [18] for the details.



PREPRINT: IEEE TRANSACTIONS ON SIGNAL PROCESSING,VOL. 54, NO. 9, PP. 3291–3304, SEPT 2006 8

speaker state:

Nk(A; `) , Nk(A× {`}) (41)

=
∫ ∑

[ ξT
k ,γk ]T∈Xk

γk=`

|{ξk} ∩ A|p(Xk|Z [1:Q]
1:k )µ(dXk)

(42)

for anyA ⊆ Rn, and for ` ≤ k. This track-label-dependent
intensity measure allows us to perform state estimation on a
speaker-by-speaker basis. First, we note that

Interpretation 1 The quantity Nk(Rn; `) is the expected
number of times that the track-` speaker source is present at
time k, given the measurementsZ [1:Q]

1:k .

In other words, we can detect the track-` source by testing
whetherNk(Rn; `) is above certain threshold, say0.5.

Interpretation 2 The vector

ξ̂k(`) =
1

Nk(Rn; `)

∫

Rn

ξkNk(dξk; `) (43)

is the expected state vector of the track-` source at timek,
conditioned on the hypothesis that the track-` speaker source
is present at timek, and conditioned onZ [1:Q]

1:k .

It is interesting to note that (43) is reminiscent of the
expecteda posteriori (EAP) estimate in the single-object
tracking scenario.

Based on Interpretations 1 and 2, we propose an RFS state
estimation procedure in Table III.

VI. SIMULATION RESULTS

Two room simulation examples are used to test the tracking
performance of the proposed multi-speaker RFS SMC filter.

A. Example 1

speaker 2 trajectory
k=1

k=30

k=21

k=45

speaker 1 trajectory

se
ns

or
 p

ai
r 

2

sensor pair 3

se
ns

or
 p

ai
r 

4

sensor pair 1

Fig. 3. Geometric settings for the room simulation in Example 1.

Fig. 3 illustrates the room settings for this example. The
dimensions of the enclosure are 3m× 3m × 2.5m. We
employ four microphone pairs, each of which has an inter-
sensor spacing of0.5m (which corresponds toτmax = 1.5ms).
Fig. 3 also shows the trajectories and birth/death times of

TABLE III

STATE ESTIMATION ALGORITHM WITH TRACK LABELING .

RFS state estimation algorithm

Given a random measure {X
(i)
k , w

(i)
k }L

i=1 at time k.
Set X̂k = ∅.
Step 1. Extract the track label set

Ik =

L�
i=1

�
[ ξT

k
,γk ]T ∈X

(i)
k

{γk}

Step 2.
for each ` ∈ Ik

Obtain a particle approximation to Nk(Rn; `), denoted by
N̂k(`), by summing the weights associated with the track-
` speaker source:

N̂k(`) =
L�

i=1

w
(i)
k

�
[ ξT

k
,γk ]T ∈X

(i)
k

1{γk = `}

If N̂k(`) ≥ 0.5, compute a particle approximation to
ξk(`), denoted by ξ̂k(`), by making a particle weighted
average

ξ̂k(`) =
1

N̂k(`)

L�
i=1

w
(i)
k

�
[ ξT

k
,γk ]T ∈X

(i)
k

1{γk = `}ξk,

and then update X̂k := X̂k ∪�[ ξ̂
T

k (`), ` ]T�.
end

the speaker sources. The speaker sources are all female. The
acoustic image method [40] was used to simulate the room
impulse responses. The reverberation time of the room impulse
responses is aboutT60 = 0.15s (see the literature such as [7],
[14] for the definition ofT60). The speech-signal-to-noise ratio
is about20dB. The time frame length for measuring TDOAs is
128ms, and the time frames are non-overlapping. Fig. 4 plots
the measured TDOAs against the time frame index (we only
displayed the measured TDOAs for two of the microphone
pairs due to page limitation). We can see that the measured
data is not very informative: For each time frame the largest
GCC peak does not always represent one of the true TDOAs.
Moreover, in the presence of two active speakers (from time
20 to 30), the accuracy of the measured TDOAs tend to
deteriorate due to mutual interference between the two speech
signals.

The parameter settings for the RFS SMC filter are as
follows. The state space model is the Langevin model [cf.,
Eqs. (8) and (9)], with the model parametersβ = 10s−1

and ν = 1ms−1. The standard deviation of the TDOA
measurement error isσv = 125µs (which is also the sampling
period). The other parameters areNmax = 2, Pbirth = 0.05,
Pdeath = 0.01, Pmiss = 0.25, λc = 3, andL = 500. Fig. 5
illustrates the tracking performance of the multi-speaker RFS
SMC filter. The figures show that the RFS SMC filter is able
to determine the two speakers’ locations and their respective
activity intervals. Recall that in the legend of Fig. 5(b), the
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Fig. 4. Measured TDOAs at (a) sensor pair 1, and (b) sensor pair 3.

term ‘track label’ also represents the birth time of the estimated
speaker track. From Figs. 5(b)–(c) we can see that the RFS
SMC filter produces two tracks with track labels21 and22, but
these two tracks actually correspond to the same speaker. This
is because the RFS SMC filter can have estimation error on
the birth time variables. For the readers’ interest, Figs. 5(b)–
(c) also show the performance of the existing single-speaker
SMC filter [13], [14].
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Fig. 5. Location tracking performance in Example 1. (a) RFS SMC filter
estimates of the number of active speakers. (b)–(c) Position estimates of the
RFS SMC filter and the conventional single-speaker SMC filter.

B. Example 2

This example considers a situation where some model
assumptions are not well satisfied. In other words, we are
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Fig. 6. Geometric settings for the room simulation in Example 2.

10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

time step
T

D
O

A
 (

in
 s

ec
.)

True TDOA tracks (3 speakers in total)
GCC peaks (or measured TDOAs)
Largest GCC peak

(a)

10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

time step

T
D

O
A

 (
in

 s
ec

.)

(b)

Fig. 7. Measured TDOAs at (a) sensor pair 3, and (b) sensor pair 7.

interested in testing the robustness of the proposed method
against model mismatch. The room setting is shown in Fig. 6,
where the room dimensions are5m × 3.5m × 2.5m. The
reverberation time is aboutT60 = 0.35s, and the rest of the
simulation parameters are the same as those in the previous
example. In this example all the speakers are stationary, which
violates the assumption that the speakers are moving following
the Langevin motion model. Another model mismatch is with
the measured TDOAs, which are illustrated in Fig. 7. In
Fig. 7(b) we observe that from time11 to 60, there is a
false TDOA that persistently appears with a value of about
1 × 10−3 second. One can also find a few other persistent
false TDOA tracks in the figures. Those false TDOAs are
caused by room reverberation. Since the speaker positions are
fixed, so do those reverberation-induced false TDOAs. This
phenomenon violates the assumption that false TDOAs are
time uncorrelated.

In this example we increase the number of microphone pairs
to 8. The rationale is that the effect of model mismatch might
be reduced when more sensors are available. Fig. 8 shows the
localization results of the proposed multi-speaker RFS SMC
filter. The figures indicate that inaccurate position estimates do
happen sometimes; e.g., the track from time 59 to 61 with track
label 11. But it is also seen from the figures that the proposed
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Fig. 8. Location tracking performance of the multi-speaker RFS SMC filter
in Example 2. (a) Estimates of the number of active speakers. (b)–(c) Position
estimates.

method provides reasonable tracking performance on average.

C. Average Performance

The above two examples show the localization performance
for one trial. In this subsection we are interested in the local-
ization performance averaged over many trials. To do so it is
important to consider measures for comparing the differences
between the true finite set stateXk and the estimated state
setX̂k. First, it is useful to evaluate the probability of correct
speaker number estimation:

P [ |X̂k| = |Xk| ] (44)

Second, we are concerned with the location errors for the
state vectors inX̂k. When the speaker number estimate is
incorrect such that|Xk| 6= |X̂k| , defining a localization
error is a problem on its own; see [41]. Now, let us suppose
that |Xk| = |X̂k| = n, and thatXk = {x1,k, . . . ,xn,k},
X̂k = {x̂1,k, . . . , x̂n,k}. We consider the following multi-
speaker distance error:

d(Xk, X̂k) = min
ji∈{1,...,n},i=1,...,n

ji 6=jk,∀i 6=k

√√√√ 1
n

n∑

i=1

‖Cxi,k −Cx̂ji,k‖2

(45)
whereC = [I 0] is such that given a statexk, Cxk outputs
the (x, y) position of that state. The idea of the minimization
in (45) is to find a proper assignment between elements inXk

and X̂k. Moreover, we should mention that theoretically, (45)
is a special case of theWassersteindistance [41]. With (45),
we can measure aconditional mean distance error, given by

EX̂k
{d(Xk, X̂k)|correct speaker number estimate} (46)

The performance measures (44) and (46) were evaluated
for Examples 1 and 2 with1, 000 trials. The results for
Examples 1 and 2 are shown in Figs. 9 and 10, respectively.
The figures illustrate that at the time instants where source
birth/death occurs, the RFS method yields a transient behavior:
At those birth/death time instants, the probability of correct
speaker number estimation decreases and the conditional mean
distance error increases. Then, the localization performance
improves gradually with time.
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Fig. 9. Average location tracking performance of the multi-speaker RFS
SMC filter in Example 1.
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Fig. 10. Average location tracking performance of the multi-speaker RFS
SMC filter in Example 2.

VII. C ONCLUSION AND DISCUSSION

Using the RFS theory and the SMC implementation tech-
nique, we have developed a TDOA multi-speaker location
tracking algorithm that can handle unknown, time-varying
number of active speakers. We have used simulations to show
that the proposed algorithm can correctly determine not only



PREPRINT: IEEE TRANSACTIONS ON SIGNAL PROCESSING,VOL. 54, NO. 9, PP. 3291–3304, SEPT 2006 11

the speaker locations, but also the voice activity interval for
each speaker.

The proposed RFS algorithm is suitable for many speech
applications where the number of active speakers is usually
small. As a technical challenge, it will be worthwhile to
examine the case of large number of speakers. This direction
leads to several open questions. First, our method (as well
as the other methods in [13], [14], [20]) has been relying on
the GCC TDOA measurement scheme, which has a modest
resolution that generally cannot handle a large number of
active speakers. To deal with the case of large number of
speakers, it appears that we need to employ some more so-
phisticated microphone array structures and signal processing
methods, such as those in the direction-of-estimation (DOA)
estimation context [1]. Second, the RFS multi-speaker tracking
principle is applicable to any number of speakers. However,
the RFS Bayesian filter becomes more expensive to implement
as the number of speaker increases. In those cases it might
be appropriate to apply approximations such as the first-order
moment method [16], [28]. Third, it will be interesting to
extend the present method to deal with more complicated
situations, such as when multiple source births are allowed
at one time instant.

APPENDIX

The purpose of this section is to illustrate, in a concise
manner, the derivations of the set-valued state transition den-
sity f(Xk|Xk−1) and the set-valued likelihoodgq(Zk|Xk). The
principles of the derivations essentially follow those described
in [15]. Readers are referred to [15] for further details. The
following lemma will be frequently used:

Lemma 1 [15] Consider

C = A ∪ B (47)

whereA andB are two independent RFSs. Then, the p.d.f. of
C is

p(C) =
∑

C̃⊆C
p(A = C̃)p(B = C − C̃) (48)

A. The State Transition Density

Consider the finite set state structure in (19). By applying
Lemma 1 to (19), the state transition density is given by:

f(Xk|Xk−1) =
∑

X̃k⊆Xk

fb(X̃k|Xk−1)fs(Xk − X̃k|Xk−1) (49)

where
fb(Xk|Xk−1) , p(Bk(bk) = Xk|Xk−1) (50)

is the p.d.f. for the birth states, and

fs(Xk|Xk−1) , p

( ⋃

i=1,...,|Xk−1|
Sk(xi,k−1,wi,k) = Xk

∣∣∣∣∣Xk−1

)

(51)
is the transition density for the previous states.

The expression for the birth state p.d.f. is as follows. For
|Xk−1| = Nmax where no speaker birth is allowed, we have
that

fb(Xk|Xk−1) =
{

1, Xk = ∅
0, otherwise (52)

As for the case of|Xk−1| < Nmax, it can be shown from (21)
that

fb(Xk|Xk−1) =





1− Pbirth, Xk = ∅
Pbirthβ(xk), Xk = {xk}

0, otherwise
(53)

whereβ(xk) , p(bk = xk) is the initial state distribution.
To construct the densityfs(Xk|Xk−1), it is instructive to

consider a one-speaker set-valued state transition density

fs,i(Xk|Xk−1) , p(Sk(xi,k−1,wi,k) = Xk|Xk−1)
= p(Sk(xi,k−1,wi,k) = Xk|xi,k−1) (54)

wherexi,k−1 is an element inXk with xi,k−1 6= xj,k−1 for
i 6= j. From (20), it is shown that

fs,i(Xk|Xk−1) =





Pdeath, Xk = ∅
(1− Pdeath)f(xk|xi,k−1), Xk = {xk}

0, otherwise
(55)

wheref(xk|xk−1) is the single-speaker, vector-valued p.d.f.
considered in Section II-B. Let

Xk = {x1,k, . . . ,xm,k}, Xk−1 = {x1,k, . . . ,xn,k−1}
with m ≤ n. By applying Lemma 1 to (51) repeatedly and by
exploiting (55), it can be shown that

fs(Xk|Xk−1) =Pn−m
death(1− Pdeath)m×

∑

1≤i1 6=im≤n

m∏

j=1

f(xj,k|xij ,k−1) (56)

where the summation term in the above equation means that

∑

1≤i1 6=... 6=im≤n

=
n∑

i1=1

n∑

i2=1
i2 6=i1

. . .

n∑

im=1
im 6=im−1 6=... 6=i1

(57)

B. The Likelihood Functions

The ideas behind deriving the likelihood functions are simi-
lar to those in the previous subsection. By applying Lemma 1
to the measurement model in (22), the likelihood function for
the TDOAs of theqth microphone pair is shown to be

gq(Z [q]
k |Xk) =

∑

Z̃[q]
k ⊆Z[q]

k

gtrue,q(Z̃ [q]
k |Xk)cq(Z [q]

k −Z̃ [q]
k ) (58)

where

gtrue,q(Z [q]
k |Xk) , p

( ⋃

i=1,...,|Xk|
T [q]

k (xi,k, v
[q]
i,k) = Z [q]

k

∣∣∣∣∣Xk

)

(59)
is the likelihood function of the true TDOAs, and

cq(Z [q]
k ) , p(C[q]

k = Z [q]
k ) (60)
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is the p.d.f. of the false TDOAs. It can be shown, in a way
similar to that for the state transition density in (55) to (56),
that for

Z [q]
k = {z[q]

1,k, . . . , z
[q]
m,k}, Xk = {x1,k, . . . ,xn,k}

with n ≤ m, the true TDOA likelihood function is given by

gtrue,q(Z [q]
k |Xk) = Pn−m

miss (1− Pmiss)m×
∑

1≤i1 6=... 6=im≤n

m∏

j=1

gq(z
[q]
j,k|xij ,k). (61)

where gq(z
[q]
k |xk) = N (z[q]

k ; τq(Cxk), σ2
v) is the single-

speaker likelihood function described in Section II-B. As for
the false TDOA p.d.f., it is shown that

cq({z[q]
1,k, . . . , z

[q]
m,k}) = P|Z[q]

k |(m)

(
m!

m∏

i=1

κ(z[q]
i,k)

)
(62)

whereP|Z[q]
k |(m) = P [|Z [q]

k | = m] is the probability of the
number of false TDOAs, andκ(z) is a uniform density with an
interval [−τmax, τmax]. Under the assumption that the number
of false TDOAs is Poisson distributed with an average rate
λc, we haveP|Z[q]

k |(m) = e−λcλm
c /m! and Eq. (62) can be

re-expressed as

cq(Z [q]
k ) = e−λc

∏

z
[q]
k ∈Z[q]

k

λcκ(z[q]
k ) (63)

Substituting (63) into (58), the likelihood function can be
simplified as

gq(Z [q]
k |Xk) = cq(Z [q]

k )
∑

Z̃[q]
k ⊆Z[q]

k

gtrue,q(Z̃ [q]
k |Xk)

∏
z̃
[q]
k ∈Z̃[q]

k

λcκ(z̃[q]
k )

(64)
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