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Tracking an Unknown Time-Varying Number of
Speakers using TDOA Measurements: A Random
Finite Set Approach

Wing-Kin Ma, Ba-Ngu Vo, S. Singh, and A. Baddeley

Abstract— Speaker location estimation techniques based on measured TDOAs, which embed location information relative
time-difference-of-arrival (TDOA) measurements have attracted to the microphone pair locations, are then fused to estimate the

much attention recently. Many existing localization ideas assume catesian coordinate of the speaker. This second stage process
that only one speaker is active at a time. In this paper, we focus on

a more realistic assumption that the number of active speakers is can be done by some simple, effective algorithms such as [3],
unknown and time-varying. Such an assumption results in a more [8]-[10].
complex localization problem, and we employ the random finite

set (RFS) theory to deal with that problem. The RFS concepts

provide us with an effective, solid foundation where the multi-

speaker locations and the number of speakers are integrated to °
form a single set-valued variable. By applying a sequential Monte
Carlo (SMC) implementation, we develop a Bayesian RFS filter Spesker source

that simultaneously tracks the time-varying speaker locations and . Microphone pair 1
number of speakers. The tracking capability of the proposed filter ——

is demonstrated in simulated reverberant environments. o o

o
} Microphone pair 2

Index Terms—Random finite set, source localization, time

difference of arrival, sequential Monte Carlo, Bayesian filter Fig. 1. TDOA microphone array system.

. INTRODUCTION The TDOA single-speaker localization approach mentioned

Speaker localization using voice activity is an importarﬁbr?]vri |§viunlnrerarlr)]let(rnwri(ravsrr:e;?;cr)]n, r? Er?nbli:n ttmat rIS qLIJt'te
problem in microphone array processing, driven by applicg9 froom reveorckJJeraE'iion C(J:an elead tE(B) acnom:;oss Gscg S‘I':IDO A
tions such as automatic camera steering in video-conferencing;

By localization, one can consider estimating the directions 5 tlmtc';tes.hUnd(?[: iu?hrrﬁ"c;l_rr:_lt_anégsé'tmlstﬁugaeftfdd toir(]em-
the speaker sources, or estimating the Cartesian coordin € phase transform ( ) ethod for reducing

of the sources. In this paper we are interested in the Carte- A estimation error [7]. To further suppress the effect of

sian coordinate localization, with particular emphasis on t'%@eﬁhmoﬂzuﬁalgg:e?ﬁ?rsouéﬁgznttcs{rgl'?fcglﬁgnﬂédffngggtl[%?
time-difference-of-arrival (TDOA) approach. Readers who a P '

r .
interested in the direction finding approach (which presents[:[algé [;Z]IIyA?h:Itggnztsl,\i/;n tr(])?otjer;?s,trz(r;?(ier:ge?ramzworrlf carg]ly
rather different signal processing framework compared to t P Y 9 '

. N 4] in the source localization stage. In this approach the
rTeI?é?:r)]CaersetLe;eerirr?d to the literature such as [1}-{4] and t possibility of GCC TDOA oultliers is incorporated in the

Fig. 1 depicts a microphone placement for the TDORrObIem formulation, thereby making the resultant speaker

. . . . location estimator less prone to reverberation (compared to
approach. Essentially microphones are grouped into pairs Tn

those pairs are distributed in the room (note that one can aggahzatlon methods that do not assume the presence of TDOA

choose to place those pairs in proximity to each other: S{%gtllers). Another salient feature of the Bayesian approach is

the setting in [5] for example). For each pair the TDOA i at the speaker location is sequentially tracked with respect

measured independently. Assuming single speaker activity aquo(w'r't') time, by following a Markov speaker motion model.

no reverberation, the TDOAs can be reliably measured usitl other words, the Bayesian approach exploits the correlation

a generalized cross correlation (GCC) method [6], [7]. Th%?speaker motions w.r.t. time, which can help improve local-

Ization accuracy. The Bayesian tracking approach has been
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The objective of this paper is to deal with TDOA based losbjects it is still computationally affordable to employ the
calization with unknown time-varying number of speakers ariBayes RFS SMC filter (see, for example, [22]), and it appears
with reverberation, by applying a Bayesian tracking framewotkat the multi-speaker tracking problem considered here falls
based on the random finite set (RFS) formulation [15]-[18hto such caseSection V deals with track association in
This multi-speaker localization problem presents a challenge RFS framework. The presently available track association
in signal processing, and very recently some attempts [18&solutions work by combining the RFS module with some
[20] have been made to tackle that problem for known numbether tracking modules [29], [30], but in this work we exploit
of speakers. Our attempt for locating unknown time-varyinipe ‘at-most-one-birth’ assumption to come up with a simple
numbers of speakers is based on the multi-object trackitrgck association method. The idea is to augment the speaker
approach, a generalization of the single-object tracking agtate vector by a discrete variable that records track association
proach. There is a variety of techniques for multi-objeéhformation. It is interesting to point out that such an idea
tracking; see the reviews in [16], [21], [22]. The RFS approadias been alluded to in [31].It is further shown that by
employed here is a recently emerged framework that has bemsing the proposed track association method, the respective
found to be promising for multi-object tracking [15]-[18].RFS state estimation process can be greatly simplified. To
RFS is a rigorous mathematical discipline for dealing witdemonstrate the performance of the Bayes RFS SMC filter,
random spatial patterns [23]-[26] that has long been used ibySection VI we provide two sets of simulation results based
statisticians in many diverse applications including agriculturen relatively realistic room simulations. In particular, in one of
geology, and epidemiology; see [25] and the references therthie simulation examples we tested the robustness of the Bayes
for further details.In essence, an RFS is a finite collectiorRFS SMC filter against the effects of model mismatch.
of elements where not only each RFS constituent elementThis work is a more complete version of the conference
is random, but the number of elements is also random. Thaper [32]. In particular, [32] did not consider the track
RFS approach to multi-object tracking is elegant in that thessociation method and the respective RFS state estimation
multiple object states and the number of objects are integratedéthod in Section V.
to a single RFS. More importantly, RFS provides a solid
foundation for Bayesian multi-object tracking, that is not found Il. BACKGROUND
in traditional multi-object tracking approaches. For further This section provides a brief review on TDOA speaker
discussions of the differences between the RFS and tl’aditiot’r@bking, by considering the simple case of single speaker
approaches, please read [15], [16], [27]. An exposition @ktivity and no reverberation. We should point out that the
RFS theory is rather involved particularly when it comes tmethod reviewed in the following subsections is a simplified
the constructions of probability densities for RFSs; see [15)ersion of the TDOA single-speaker location tracking method
[18], [25] for the details. Fortunately, for most engineeringh [13], [14], in which the reverberation problem was also
applications it suffices to know how to apply several keyddressed.
concepts and results, which in our opinion are presently notin the first subsection, some aspects regarding TDOA mea-
well publicized for the generally knowledgeable readers ar@rements are described. Then, in the second subsection we
therefore will be demonstrated in this paper. consider some basic concepts of Bayesian tracking.

The summary of this paper, together with the organization,
are as follows.After a background review in Section Il, inA. TDOA Measurement

Section IIl we propose an RFS model for the multi-speaker |, the scenario of a single speaker without reverberation, the

tracking application. Section IIl also lays several reasonallgcived signals at a microphone pair can be modeled as [7]
assumptions for the application, that turn out to greatly fa-

cilitate the RFS tracking implementation. Those assumptions ~ ¥1(t) = s(t) +vi(t), w2(t) =s(t —7) +r2(t) (1)

include wheres(t) is the signal due to the source,(t), i = 1,2 are

i) At each time instant, at most one speaker source can kgckground noise, andis the TDOA between thést and2nd

born. microphones. Letx € R? denote thgz, ) position vector of
ii) The number of simultaneously active speaker sourcesthe speaker source. The TDOAis dependent omx through
small. the following nonlinear relation:
The assumption in ii) is particularly true in applications such as 7=1(Jla =zl - o — wy]) )

video-conferencing, in which the most frequently encounter
events are no voice activity, one speaker voice activity, al

one speaker interrupting another. Section IV describes t%
Bayes RFS filter (or tracker) and its implementation using
the sequential Monte Carlo (SMC) method in [18]. The Bay
RFS SMC filter is known to be computationally expensiv

ereu; anduy are the positions of the two microphones,

is the 2-norm, andc is the speed of sound (note that
tension to the 3-dimensional coordinate is straightforward).
he TDOA can be measured by a generalized cross-correlation
%CC) estimator [6], given as follows:

for large number of objects [18], [22]. For those cases it 7 = arg max Rgee(T) 3)
would be appropriate to consider computationally efficient OoTe[fT"L“’T’”“]

approximations such as the probability hypothesis density Ryee(T) :/ (W) Sy, 4 (W)€ dw (4)
method [16], [18], [28]. Fortunately for small number of —o0
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Here, R,..(7) is called the GCC functions,,., = |jluz — density function (p.d.f.) ok, conditioned onx;_;, which we
u||/c is the maximum admissible TDOA valué,, ,,(w) denote by
is the cross spectral density ¢f(¢t) andy2(t), and ®(w) is f(xg|xE—1), (12)

a weighting function; see [6], [7] for details regarding the ) .
choices of ®(w). A popular choice of®(w) is the phase and the p.d.f. of;”! given x;., which we denote by
transform (PHAT), wheré(w) = 1/]5,, 4, (w)]. In this work g (Z[q]‘xk)_ (13)
we will employ the PHAT. Tk

In practice the speaker positiam can change over time, Eqs. (12) and (13) are called the state transition den-
in which case it is appropriate to estimatdrom a relatively Sity and the likelihood function, respectivelBy letting
short time frame so thak is (almost) static over each frame N (;; i, P) denotes the Gaussian density function with mean
Thus, we replace,, ,,(w) in (4) by a short-time estimate p and covarianceP, the expressions (12) and (13) are
f(xrlxk—1) = N(xp;Ax;_1,BBT) and gq(z,[cq]|xk) =

Syryz (Wi k) = Y1 (w; K)Yy (w; ) ®) J\/(z,[f];rq(ka),ag), respectively. Let zR,;Q] define the se-
wr : ining!*) for i = 1,...,k and forg = 1
Vil k) — gt 19 quence containing;” for i =1,....k and forg =1,...,Q.
i(ws k) /(k—l)T yi(t)e b, i =1, ) The Bayesian approach considers finding the posterior p.d.f.
where T is the time frame length, andl is the time frame p(xk\ZE;CQ]), (14)

index. _ . . . .
which then allows us to estimate, using some optimal cri-

terion such as the expectedposteriori(EAP). The posterior
B. Sequential State Estimation p.d.f. obeys the following recursion [33], [34]:

We consider a standard state space model [13], [14] for the (x |z[1’Q] V= [ Flalxe 1 )p(x |z[1’Q] Jdx (15)
single-speaker TDOA problem mentioned above. We use the’\**|1:k—1) = kI Xk—1)P\Xk—1]21:—1) Xk -1

notationa, to represent the speaker location at #tk time HQ g (Z[q]|x e |Z[1:Q] )
frame. By defining a state vector, = [ af,¢f |Te R” p(xp|2ih@) = Q":1 g ["j W [11_:5]_1 (16)
wheren is the state dimension angl, contains some kine- qu:1 gq(qu X5 )P (X |21, 01 ) dXRe

matic variables for the speaker motion (e.g., velocity), W8, solve (15) and (16) exactly is not easy due to the non-
modelx;, by a dynamic process: linearity of 7,(.). Presently, in TDOA single-speaker tracking,
7 @ promising approach to approximating (15) and (16) is the
sequential Monte Carlo methods [33], [34]; see [13], [14] for
where A and B are some pre-specified matrices, ang is the details.
a time-uncorrelated rando@aussiarvector with zero mean  Our proposed RFS method follows the same paradigm as
and covariancé. In speaker location tracking, it is popular tothe above Bayesian tracking framework. This is illustrated
employ the Langevin model [13], [14] in whict, consists in the following sections. Moreover, we should point out
of the (z,y) velocities. The state space equations for thiat in [13], [14], the above Bayesian framework has been

X, = Axp_1 + Bwy

Langevin model are given by extended to handle single-speaker tracking in the presence of
reverberation. In those works, the GCC method was slightly
o = ap-1+ Ty, (8)  modified to cater for the possibility of false TDOA peaks
b= Top | +vV1—e28Twy, (9) caused by reverberation. Since this work will employ the same

modified GCC method (which will be described in the next

Here, 5 and v are model parameters called the rate constagiiction), the proposed method may be considered as a multi-
and the steady-state root-mean-square velocity, respectivelypeaker generalization of [13], [14].

Next, we consider the TDOA measurements. We denote by

z,[f] the TDOA measured from thgh microphone pair at time IIl. RES FORMULATION FOR MULTI-SPEAKER
frame k. The measured TDOAs are modeled by: L OCALIZATION
A =7 (Cxp) + 0l g=1,...,Q. (10)  This section describes our problem formulation for TDOA
multi-speaker tracking in the presence of reverberation, using
Here,C = [1 0] so thatCx = ay, the random finite set (RFS) framework. In the first subsection,

we outline the characteristics of our multi-speaker problem.

— llewk —u1q]) 11 An RFS formulation for the problem is then presented in the

is the true TDOA value{u; 4,uy .} are the position vectors second subsection.

of the gth microphone pair, and,[f is time-uncorrelated noise.

We assume that” is independent ob!” for anyq + p, and A. The Multi-Speaker Problem

that eachv,[f] follows a Gaussian distribution with zero mean The multi-speaker scenario considered here has the follow-

and variancer2. ing characteristics: i) each speaker follows the state space
Our goal is to estimatex;, over time. In the sequential motion model described in Section II-B, but his/her own

Bayesian framework, we assume knowledge of the probabiligice activity interval is unknown to the system; and ii) each

Ta(ar) = t(lax —ug,
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speaker’s voice undergoes a multipath propagation, due $gbsection. The multi-speaker finite s&t is modeled by
room reverberation. In the proposed RFS treatment, we rep-
;\fg:tbtyhe state vectors of the speakers by a single finite set, Xy = Byy(by) U U Si(Xiho1, Wik) (19)

i=1,...,| X1

Xk - {Xl,kv"~,XNk,k}a (17)
o where By (by) contains state vectors of speakers ‘born’ at
where N, = || (|.| stands for the cardinality) is the numberge . Sk(xix—1,wix) is a finite set associated with the
of active speakers at timig and eactx; ; represents a distinct previous speéker sta’lt:ei +_1, and the vectorsw; , and by,

speaker state vector. We assume {#{| < N.q, for some 510 random variables independent of one other. Sigrwe
given N,,..., and that X | is unknown. In the next subsection have the following hypotheses:

we will develop a statistical finite set model fay;, which
describes not only the state space motion mechanism, but aIsoS (Xi b1, Wi ) = 0, Haeath
the appearance and disappearance events for each speaker. LR T {Axip—1+Bwir}, Hacatn

w0l True TDOA of Speaker 1 ‘ Trie TDOA of Speaker 2 ] where Hg..;, and Hg.,,, are respectively the death and no-

death hypotheses. Note that for the no-death hypothesis, the

state space process is exactly the same as that of the simple

single-speaker case in (7). The hypothddig., occurs with
probability P,;...,. For the birth process, we assume that at

100 ‘ ‘ ‘ ‘ ‘ most1 speaker is born at a time. |&);,_1| = N4, then we

o ! oA (nsec) L have B, = (. Otherwise, the following hypotheses apply:

Fig. 2. GCC function response in the presence of multi-speaker activity and B (bk) = (D’ Hyiren
reverberation. The response was obtained by using recorded real speech, and {bk-}7 Hyirtn

by simulating a room environment where reverberation is present. _ . ) .
whereHy,;,..;, and Hy;4j, are respectively the birth and no-birth

In the presence of multi-speaker, reverberation-induc&ypotheses, ant; is an initial state vector under the birth
multipath signal propagations, the GCC function in (4) iBypothesis. We denote the probability &fi,.n DY Pyiren.
composed of the cross-correlations of the various paths. Hert4®reover,b;, is assumed to follow an initial state distribution
some of the peaks of the GCC function are expected to #ewhich the(z, y) position is uniformly distributed within the
contributed by the direct path components of the speak&om enclosure and the other kinematic variables are zero.
sources. This can be seen from the illustration in Fig. 2, For the measurement model, we assume Bt is inde-
which shows a GCC function response in the presence pgndent OfZ,[f] for any q # p. EachZ,[f] is modeled by
multi-speaker multipath propagation. We follow the TDOA
extraction scheme in [13], [14] where multiple TDOAs are
measured from one GCC function by picking more than one
peak (or locally maximum point) in (4). By collecting those
TDOAs to form a finite sgt, we have the following ﬁ”it.e'setWhereC,[f] is the finite set of false TDOASs, ar@m is given
valued measurement at tinkefor the gth microphone pair: by

GCC function

(21)

zl — U i) pucd  (22)
i=1,...,| Xk

Z[‘I] — {Z[Q] e, Z[Q] } , 18 @, mis
k 1k Mg (18) 776[(1] (Xi’kwl[?]]c) - {T (Cxir) 4o } . Ll{ss 23)
q (2 ik [ miss
where M9 = |2l is the number of measured TDOAs.

We are now faced with the following problems: i) Giverwith vl[q,]C ~ N(0,07). Here, 7,(Cx;) is given in (11), and

anx; in Xx we expect that one of the measured TDOA$!.iss and H,,iss are respectively the detection and miss

in 2 is generated by, ;, but we do not know which hypotheses. The hypothesi$,;,;; happens with probability

element inzZ¥ is due tox; . ii) It may occasionally turn Phiss. For the false TDOAs, we follow the standard assump-
k , : PR la] [a] ;

| This tionin [13], [14] that eachr,” € C,.” independently follows

' é)_niform distribution over the admissible TDOA interval

maz> Tmaz |, WNEI€T 4, = ||ug g —uy 4] /¢ (For simplicity

out thatx; ;, does not contribute a measuremenﬁb
measurement miss situation can occur when one speaker cr
correlation response masks that of another, and/or when ' - X
speech signal powers are too weak in certain time frames d{J& Inter-sensor distandgs ; — .|| for every microphone

to the nonstationarity of speech signals. Eiq] may contain pair is assumed to be the same). In addition, the number of

false TDOAs; i.e., TDOAs that are not generated by the dird@'Se TDOAS|C, | is assumed to follow a Poisson distribution

paths. Such an effect can also be seen in Fig. 2. with an average rate of..
Some remarks are now in order:

. Remark 1: The above described RFS model is applicable

B. The RFS Formulation to any N,,..; that is, the maximum number of simultaneously
We consider an RFS formulation that models the multactive speakers. However, the performance of the GCC TDOA
speaker, multi-measurement problems described in the lastasurement method in practice incurs a limitation on the
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choice of N,,,,.. GCC benefits from its simplicity, but it is notand (25). The derivations of (24) and (25) are given in the
a super resolution method in the multiple TDOA estimatioAppendix. Second, many ideas in RFS Bayes estimation are
context. When there are many speakers or when the TDOd&ssentiallythe same athose of the standard Bayes framework
of two speakers are close, GCC may only be able to obtairf{af., Section II-B). To explain this, IeZE,;Q] define a sequence
few true TDOAs that are associated with the dominant sourcggnsisting of the finite set§i[‘” forall i = 1,...,k and

Fortunately, for speech applications it is generally true thatthe— 1, ... . In an RFS Bayesian framework, we consider de-
number_ of _s_|mL!Itaneousl_y active speakers is sm_all, suc{h afermining the posterior p-d-f?(XHZE;;Q]) thereby estimating
(some justification for this has been presented in Section }}k over time. MOfEOVGYp(XMZB,;Q]) has a recursive relation

Hen.ce, in this TDOA speaker localization application, it i5aminiscent of the prediction and update formulae in (15) and
pertinent to focus on a smaW,,,,... (16), given as follows:

Remark 2: The probability of birth Py;,..;, and the prob-
ability of death Psq.s, are not known in reality. In practice (x| 2142 ) :/ F (] X )p( X1 | 252 (d—y)
it is reasonable to make a guess Bk, and Pyeqn, and F(Rn)
such parameter adjustments generally lead to some tradeoffs (26)
on the performance of multi-speaker tracking (presented in the Q [a] [1:Q]
next sections). Increasing,;.., is expected to improve the MXHZP;CQ}) — Hqﬂgq(zk |X’“)p(x’“‘211:ff—1)
chance of identifying a newly born speaker source. Likewise, ' ff(R") H?:1 gq(Z][fq]‘Xk)p(Xk|Z{:kQ_]1)u(ka)
to quickly identify speaker source death is advised to increase (27)
Pyearn. However, increasing®y;,;, and/or Py..,, Mmay also
increase the chance of over-estimation and under-estimat!y
on the number of speakers, especially in the presence of fa?sg]
measurements. In other words, the tuning®f.;, and Pieqh
is a tradeoff between sensitivity and robustness.

Remark 3: Like Py.¢n, and Pyeqin, I practice the probabil-
ity of miss P,,.;, is decided by some rough guess. Increasirfg Sequential Monte Carlo Implementation
P,.iss IS expected to improve the robustness against theThe Bayes recursion in (26) and (27) can be com-
measurement miss situations. However, increasing may puted, in an approximate manner, by applying an RFS SMC

hereZ(R") is the class of all finite subsets &f*, and is
easure oF (R™); see [18], [35], [36] for the detalils.

he next section considers the implementation of (26) and
(27) using SMC.

also reduce the accuracy of speaker state estimation. method [18], [37]. In the single-speaker scenario, SMC has
been shown [13], [14] to be effective in handling the nonlin-
IV. BAYESIAN RFS HLTER earity of the TDOA function. In this multi-speaker extension

With the above RFS problem formulation, we can develofhere the p.d.f.s. exhibit even more complicated structures
a Bayesian framework for estimating;; i.e., sequentially (C-f.. the Appendix), the SMC implementations are particularly
estimating both the multi-speaker locations and the numgdayorable.
of active speakers. In the first subsection, we examine somé h€ implementation employed here is the RFS bootstrap
probabilistic results that are essential to the Bayesian REYIC method, which is a special case of the generic RFS SMC

framework. Then, the second subsection proposes an imgR&thod in [18] but is particularly easy to use (note that the
mentation for Bayesian RFS estimatiosing the sequential RFS bootstrap SMC method here is not related to the method

Monte Carlo (SMC) technique, also known as the particl@ [37]). The RFS boostrap SMC method is briefly described

filter. as follows. We use a random measu{rﬁ’(i),w](f)}f:1 to

approximate the posterior p.d.f..

A. Bayes Recursion for RFSs
The RFS theory provides two important tools for the multi-
speaker tracking application. First, we can construct p.d.f.s _ _
for the RFSX;, and Z,Lq] according to the model outlined inHere, X,ﬁl) is the ith (finite set) particle,w,(j) is the weight
the previous section. In particular, we can determine a muléissociated with\,’(l), L is the number of particles applied, and
speaker RFS state transition density, denoted by d o is a set-valued version of the standard Dirac delta func-
. k . - .y g .
F( X X)), (24) tion?. As an appr(_mmatlc()g to probability densTes, t(t])e weights
have the properties that,” > 0 for all i and _;_, w;” = 1.
The particles{é\.’,ﬁ”)}iL:1 are randomly drawn conditioned on

L
P20 = 37 w80 (). (28)

i=1

and RFS likelihood functions, denoted by

gq(Z,[fHXk) (25) the timek—1 random measur{a)(,gi_)l, w,(fil}f:l- Specifically,

. for eachi = 1,..., L we generate

for ¢ = 1,...,Q. To construct these p.d.f.s, some involved . .
mathematical concepts are required and the details are beyond X,i” ~ f(.\X,EQl). (29)

the scope of this application paper. Readers are referred to

[15], [18], [25] for complete descriptions of the RFS p.d.f. 2A set-valued Dirac delta functiofiy,(X) is a function such that given
L . . .every A C F(R™), we have [ , 0y (X)u(dX) = 14(Y). Here,14(Y)
concepts. From an application viewpoint, we are more iR a, indicator function wherd 4(3) = 1 if ¥ € A, and14() = 0

terested in the results, particularly the expressions for (2dtherwise.
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TABLE I

By the notion of importance sampling [33], [34] and by PARTICLE GENERATION

applying the timek — 1 counterpart of (28) to the Bayes
recursion in (26) and (27), one can obtain

. o Particle Generation Algorithm for X% ~ f(.|Xk—1)
Q (@ i
(X |Z[1:Q]) ~ Z [Tz 94(Z"1 7 )wy” 5 () Set Xy, = 0.
Pltklen, )~ . ZL HQ g (Z[q]\é\’(j))w(j) x\TR) step 1. Source Death and Survival:
=1 j=1 q=14949 k k k—1 (30) for each x,_1 € X1
Draw a random number w« uniformly distributed over

[0,1).

Table | summarizes the RFS bootstrap SMC filter. It should

be noted that in Table | there is an additional step called ifu> Proon

resampling. This step is used to reduce the degeneracy problem draw arandom vector w;, according to the state space
commonly encountered in SMC approximations; see [33], [34] model assumed;

for more details. The essential ingredients for the bootstrap compute x, := Axj—1 + Bwy; and

SMC filter are the particle generation at Step 1 of Table I, and set Xy := Xp U {xx}.

the expressions fay, (Z5|X%). In Table Il we show the particle end

generation algorithm. The general expressioryf@iZ;, | Xy) is gt“d » % Birth
shown in the Appendix. Some useful equationg g2 |X%) &p 2 Source Birt

N if [, < Ninae
for Nmas = 2 are shown at the top of the next page. Draw a random number u uniformly distributed over

[0,1).

If u S Pbir'th
draw an initial state by, according to the initial state
distribution assumed; and
set X = A U {bk}

TABLE |
RFSBOOTSTRAPSMC FILTER FOR MULTI-SPEAKER TRACKING.

RFS Bootstrap SMC Filter end

Given a particle size L. end
for k=1,2,...

Step 1. Sampling: ) A

For i = 1,...,L, generate X" ~ f(|x\”,) and

seen in the Appendix that the computations ¢gf Z;|X}%)

compute . . . . .
P are exponential inXy|. In this application wherdX}| are
W — 19[9 (21920 small (se.e thg argu'mefnt.in”Section | aRgmark }, this
k 1 Dk 1k k1 computational issue is insignificant.
—
ot @) ._ @) gL (0
;Te,”' gpply normalization wy,” = w;,”/ (32, wy ) for V. REFINEMENT OF THEBAYES RFS ALTER
7.
Step 2. Resampling: _ In this section we present some additional ideas that can
APF({;’ 2. resampling  algorithm [?g]),['ﬁ]i) on further enhance the effectiveness of the proposed RFS multi-
{7 wy e o >0bt6}|1_f)1 a;emmplegig)et {?‘Z;’f/iwk Fita speaker tracking method. The first subsectit#scribes the
Then, update { X", w,” }izq := {7, @, ity track association problem arising in the RFS framewdkk.
end simple method, calledrack labeling is proposed to handle

that problem.Then, in the second subsection, we propose a

We should point out that Egs. (31), (32), (33) represeftate estimation scheme that takes advantage of track label
the likelihood functions for no speaker, one speaker, and tWformation to simplify the estimation process.
speakers, respectively. Also, recall that the parama&tein
(31) to (33) represents the average number of false TDQA Track Association using Track Labeling
measurement. Some further remarks are now in order: . . : :
Remark 4:An asymptotic convergence property for the RF A problem with the RFS state formulation described in

SMC filter, such as the above described bootstrap filter ht gclfr:\sl's%fats.gﬁt'ggts Ee;?atalr: dg;\(/es nc?rr:g];o_rgwat!ognognthe
been considered in [18]. Specifically, it has been proven th ¢ atl wWeedy, k-1 LIS, gv .
ementx,_, € X;_1, we do not know which element in

for sufficiently largel, the mean square approximation error,~ . o .

of the RFS SMC filter is inversely proportional Is* for some U is originated fromx;._,. It follows that a Bayesian RFS

constant < a < 1. This implies that the RFS bootstrap SMC,mter based on this model will not provide such information.
- For the general RFS multi-object tracking scenario in which

filter is an r roximation for lar . . ) .
teris a a(‘jcu ate approximation for large target birth can be quite compfexhandling track association
Remark 5:1f we chooseN,,u. = 1, Pijeatn = 0, and . - . .
. ... _Is non-trivial; see, for example, [29], [30].In this multi-
Poirin = 1, the RFS SMC filter reduces to a form very S|m|IarS eaker tracking problem where at most one speaker source is
to the single-speaker SMC filter in [13], [14]. P gp P

Remark 6:The computational complexity of the RFS boot§1llowed to be born at one time, track association can be quite

. - . easily handled by considering the following idea.
strap SMC filter is linearly dependent on the particle size y y 9 9
Moreoyer, for each pa;mde' the c;omplexny depends on the3In a general RFS multi-object tracking framework, multiple targets can be
evaluation of the likelihood functiory,(Z;|X}%). It can be bom at one time. In addition, one target can split to form two or more .
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‘Z[,q]l
ga(ZN0) = e (2) (31)
9(Z1{1}) = 9a(Z110) | Prnios + (L= Piss) Y- (2522 ) gu(2f? ) (32)
Z[a]ez[tﬂ
k k
zldl = ¢.(29)0 P . 1P 2Tmae [a]|4 .
gq( k ‘{Xl,k-/X?,k}) gq( k ‘ ) miss + ( mlSS) e gq(zk- ‘lek)
i=1,2 Jal ¢ gla]
k k
_( - ’mzss (27—”1‘(”) gq Zk |X1 k gq(z XQ-,k)} (33)
]EZ q]

To avoid notational inconsistency, let us re-define the stateln the current RFS framework (i.e., without track label-
vector used in Sections Il and Ill to kg, = [ o], ¢ |7 € ing), a number of Bayesian estimation criteria have been
R™, in place ofx;. We define a new state vector proposed [15], [27]. Here we are interested in theensity

measure[16], [18]. # The following quantity
xp = [ &L, " (34)

where we augment the state vector by a variahléo indicate Ni(S) £ E{|X: NS ’ZE;;Q]} (38)

the track identity of the speaker state. The variableis 1.

set to the birth time of the speaker source. Since no two :/'X’“mS|p(Xk‘Z£kQ])”(dX’“) (39)

speakers share the same birth time,will provide adequate

information for resolving track association when in (34) defined for any setS C R", is called an intensity measure

is used in the RFS framework. We cal}, a track labelof of X, conditioned onZE}CQ]. The intensity measure is the

a speaker source. Moreover, we refer to a state vector as fingt-order moment oft).. Physically, N;(S) describes the

track-¢ speaker state if its track labe), takes the valué. expected number of state vectors lying $h e.g., N.(R")
To incorporate track labels into the previously developdad the expected total number of speaker sources at time

RFS framework, we only need minor modifications on thgiven the measurements!;?!. From (37), Ni(S) can be

state space equations. For the birth hypothesis process in (abproximated by

the birth state vector is modified as

L
T T e
be = [ &pit ik | (35) Ni(S) ~ E w1 xS (40)

whereg,,,;; . € R™ is the random initial state vector described =1

in Section IlI-B. For the survival process in (20), we have Roughly speaking, an intensity-measure-based state estimation

A0 B 36 method [18], [38], [39] consists of two steps: i) Obtain an
Xik =g q| Xk F g | Wik (36)  estimate of the number of speakeks — [N.(R™)| where

.| is the rounding operation. ii) Determine a number of sets
in which the track label at timé—1 is directly carried forward L«Jk fori—1,. ?Vk psuch that)the intensityv,,(S: .) shows

to time k. ) ) ) %ood response for eachwhilst S; , N S, = 0 for i# ]
Track labeling not only helps identify speaker tracks, n
also simplifies the state estimation process as shown in fH%dZ Ni(Six) = Ni(R™). lii) For eachi, determine the
following subsection. center osz,k, denoted byk; . The centergx; , } % are then
taken as the state estimates. The challenge of this approach
o ] lies in Step ii), where some clustering algorithm is usually
B. State Estimation Incorporating Track Labels used to numerically determine those sets. Since clustering is
Our algorithm development in the last section has focusedhonlinear nonconvex optimization problem, poor data fitting
on the particle posterior density approximation: could occur.
I The state estimation process can become simpler when track
[1: Q] (@) label information is available. Recall that a state vector with
P |Z ;wk 6&2” (%) 37) track labeling is in the form ok, = [ &1, v |7 € R™ x Z.

) , Hence, we can define the intensity measure for the tfack-
for some Weightﬁu,(j) and for some (set-valued) particlﬁ’%z).
This subsection describes our proposed method for estimatingr , _ _ _ . _
he density of the intensity measure is called the probability hypothesis

X from_ (37.)’ in Whi_Ch the tr_ackllabeling iqea i.n the preViouﬁensity (PHD). It is worth mentioning that PHD is an important concept in
subsection is exploited to simplify the estimation process. RFS multi-object tracking; see [16], [18] for the details.



PREPRINT: IEEE TRANSACTIONS ON SIGNAL PROCESSING,VOL. 54, NO. 9, PP. 3291-3304, SEPT 2006 8

TABLE Il
STATE ESTIMATION ALGORITHM WITH TRACK LABELING .

speaker state:

Ni(A;0) = Ni(A x {£}) (41)
1:Q
—[ X e ApIZEnEX)  Res sae eximation agoritom
T
L& :,/:J X Given a random measure {X\”, w(”}£ | at time k.

(42)  Set X, =0.

. Step 1. Extract the track label set
for any A C R"”, and for¢ < k. This track-label-dependent .
intensity measure allows us to perform state estimation on a T, = U U
speaker-by-speaker basis. First, we note that

{7}

el 1Tex?

Interpretation 1 The quantity N,(R";¢) is the expected Step 2.
number of times that the tracﬂ<sPeaker source is present at for each £ e 7

time k, given the measuremenﬁl Obtain a particle approximation to N (R™; £), denoted by
N (¢), by summing the weights associated with the track-

In other words, we can detect the tra€lource by testing ¢ speaker source:
whether N, (R™; ¢) is above certain threshold, s@yb. . L.
Ni(0) =Y w? > Hw=0
Interpretation 2 The vector =1 [ €7 v 1Tex?
ék(g) / €, Ny(d€,; 0) (43) If N.(£) > 0.5, compute a particle approximation to
R” €,(0), denoted by &, (¢), by making a particle weighted
is the expected state vector of the trackource at timek, average
conditioned on the hypothesis that the t{g?ckpeaker source . 1 @
is present at time, and conditioned org! . &x(0) = Ne(0) 2w > How = 8¢
: ) i=1 T T (i)
[ € 17 €X,
It is interesting to note that (43) is reminiscent of the R A o '
expecteda posteriori (EAP) estimate in the single-object and then update X == Xj, U {[ &, (0),£]" }.
tracking scenario. end

Based on Interpretations 1 and 2, we propose an RFS state
estimation procedure in Table IlI.

the speaker sources. The speaker sources are all female. The
VI. SIMULATION RESULTS acoustic image method [40] was used to simulate the room
Two room simulation examples are used to test the trackifgpulse responses. The reverberation time of the room impulse
performance of the proposed multi-speaker RFS SMC filteresponses is abod, = 0.15s (see the literature such as [7],
[14] for the definition ofT}). The speech-signal-to-noise ratio
A. Example 1 is about20dB. The time frame length for measuring TDOAs is
128ms, and the time frames are non-overlapping. Fig. 4 plots
sensor pair 3 the measured TDOAs against the time frame index (we only
displayed the measured TDOAs for two of the microphone
. pairs due to page limitation). We can see that the measured
‘ data is not very informative: For each time frame the largest
GCC peak does not always represent one of the true TDOAs.
Moreover, in the presence of two active speakers (from time
20 to 30), the accuracy of the measured TDOAs tend to
deteriorate due to mutual interference between the two speech
speakes 2 rectory signals.
k2.1 The parameter settings for the RFS SMC filter are as
follows. The state space model is the Langevin model [cf.,
— Egs. (8) and (9)], with the model parametets= 10s~!
e and v = 1ms~!. The standard deviation of the TDOA
Fig. 3. Geometric settings for the room simulation in Example 1. measurement error is, = 125us (which is also the sampling
period). The other parameters akg,,. = 2, Pyirtn = 0.05,

Fig. 3 illustrates the room settings for this example. ThB;..¢n = 0.01, Piss = 0.25, A, = 3, and L = 500. Fig. 5
dimensions of the enclosure are 3m 3m x 2.5m. We illustrates the tracking performance of the multi-speaker RFS
employ four microphone pairs, each of which has an inteBMC filter. The figures show that the RFS SMC filter is able
sensor spacing @f.5m (which corresponds tg,,., = 1.5ms). to determine the two speakers’ locations and their respective
Fig. 3 also shows the trajectories and birth/death times a€tivity intervals. Recall that in the legend of Fig. 5(b), the

@ k=45

sensor pair 2
—

sensor pair 4

speaker 1rgj ectqry’/ }

k=1 @
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. sensor pair 4 sensor pair 6
:L.5><10 T T T L T T Q - - pi
o 0(5 8 ® © O — True TDOA tracks (2 speakers in total) E ‘5
—~ 1} © . 0o © GCC peaks (o measured TDOAS) }o g { } a8
5 P o g + Largest GCC peak o5 q § . §
2 g ) 3 speaker 3 8
bt 7 active from k=51 to 75
< ]
o E
[a)] o
[ [} i
o o > ©
o] ~ oA
15 QO L L L L Q@ o, 5 speaker 2
° 10 1 Z?ime St(Z;;J %0 * 40 * (a) speaker 1 active from k=11 to 59
10° 4 active from k=1 to 30 ° ~
5 od)o o 77O 5 © gﬁoele §§©® ©00 ‘é ° .§-
—~ 1F oo %o o o 0o 5 o}
5 oo o, 00 ©00 ¢ o5 { } 2}
b 050 e o ; o o B § ﬁ
£ i > © 5 o i — ——
< o o o°%& © it sensor pair 2 sensor pair 8
8 -05 *Qm_@_wﬁ,—.
F oo o Ogsfjoo o 0% Fig. 6. Geometric settings for the room simulation in Example 2.
® o g o © o°
L8 5 10 15 20 ° 25 30 35 40 45
time step (b) 10°
e 20 0% Fo & 0 Boo 0 & O@@ oo = True T‘DOA tracks (3‘ speakers in ‘(ctal) F)
i i i — F o oo - O GCC peaks (or measured TDOAs)
Fig. 4. Measured TDOAs at (a) sensor pair 1, and (b) sensor pair 3. 3 Dz,oiﬁo OO%OOO e i SR Langent GGG poak )
g o
£
=4 or
‘ 1 H H H <
term ‘track label’ also represents the birth time of the estimateg -os;
speaker track. From Figs. 5(b)—(c) we can see that the RFF -1}
SMC filter produces two tracks with track lab@sand22, but -15
these two tracks actually correspond to the same speaker. Tt.._ time step (@)
is because the RFS SMC filter can have estimation error 0 15X — oo or
. . . . . © © o [oX
the birth time variables. For the readers’ interest, Figs. 5(b) ~ " &7 %o 90 CoPOREIBI0, $00 P oo > 0
— . Q 0 ~o O o © o
(c) also show the performance of the existing single-speake & © o & ° o
SMC filter [13], [14]. <
(]
w 3 , , =
3] — True, L S o @)
% 25F —-O- Multi-speaker RFS SMC | - ® ¢} <
% 2r ) f 7 time step (b)
2 15+ f \ i
= i \
& 1 c ) ) Fig. 7. Measured TDOAs at (a) sensor pair 3, and (b) sensor pair 7.
g osf | |
Z pbed . . . . . . .
5 10 15 ZOA 25 30 35 40 45 i . i
time step (@ interested in testing the robustness of the proposed method
3 T T . . . . . .
Lol against model mismatch. The room setting is shown in Fig. 6,
Al where the room dimensions afen x 3.5m x 2.5m. The
€ reverberation time is aboufsy = 0.35s, and the rest of the
£ 15 — True (2 speakers in total) . . . .
<, . Muli-Spealer RFS SMC | simulation parameters are the same as those in the previous
- rack label= . . .
o5l o~ track label= 21 1 example. In this example all the speakers are stationary, which
. ~A-track label= 22 . . . .
0 ‘ ‘ ‘ ‘ , L Single-speaker SMC violates the assumption that the speakers are moving following
T Besep 200" (y the Langevin motion model. Another model mismatch is with
the measured TDOAs, which are illustrated in Fig. 7. In
Fig. 7(b) we observe that from timél to 60, there is a
£ false TDOA that persistently appears with a value of about
3 1 x 1073 second. One can also find a few other persistent
> . .
false TDOA tracks in the figures. Those false TDOAs are
caused by room reverberation. Since the speaker positions are
° 5 10 N 30 s 4w s fixed, so do those reverberation-induced false TDOAs. This
ime step (©

Fig. 5. Location tracking performance in Example 1. (a) RFS SMC fitdime uncorrelated.

phenomenon violates the assumption that false TDOAs are

estimates of the number of active speakers. (b)—(c) Position estimates of thén this example we increase the number of microphone pairs

RFS SMC filter and the conventional single-speaker SMC filter.

to 8. The rationale is that the effect of model mismatch might

be reduced when more sensors are available. Fig. 8 shows the
localization results of the proposed multi-speaker RFS SMC
B. Example 2 filter. The figures indicate that inaccurate position estimates do
This example considers a situation where some mod®ppen sometimes; e.g., the track from time 59 to 61 with track
assumptions are not well satisfied. In other words, we dabel 11. But it is also seen from the figures that the proposed
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3 T

"
%2_57 o e speaker RES SMC_ | The performance measures (44) and (46) were evaluated
9] for Examples 1 and 2 withl, 000 trials. The results for
§ Examples 1 and 2 are shown in Figs. 9 and 10, respectively.
5 The figures illustrate that at the time instants where source
ki birth/death occurs, the RFS method yields a transient behavior:
o . . . age
z At those birth/death time instants, the probability of correct
time step (@) Speaker number estimation decreases and the conditional mean
s %‘ distance error increases. Then, the localization performance
af T T seteP e R improves gradually with time.
+
el =
-O-  track label= 1 — 1
-0~ track label= 11 | ;€
A~ track label= 52 o8l
‘ ‘ ‘ ‘ —+ track Iabe‘I: 54 i Il
0 10 20 30 40 50 60 70 Q; 06
time step (b) —oar
5 . &
0.21-
Al i 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30 35 40 45
time step (@)
3
E
S
LE 051 b
8 o4t 4
=
time step (c) £ osr 1
O oaf B
Fig. 8. Location tracking performance of the multi-speaker RFS SMC filte § o1l |
in Example 2. (a) Estimates of the number of active speakers. (b)—(c) Positi = ‘ ‘ ‘ / ‘ ‘ ‘ /
estimates. g 0 5 10 15 20 25 30 35 40 45
LO) time step (b)

method provides reasonable tracking performance on averagg.9. Average location tracking performance of the multi-speaker RFS
SMC filter in Example 1.

C. Average Performance
The above two examples show the localization performanc~ ‘ ‘ ‘ ‘ ‘ ‘ ‘

for one trial. In this subsection we are interested in the loca :ifls"[ T e v Cws ]
ization performance averaged over many ftrials. To do so it =,| - w\
important to consider measures for comparing the differenct e}, 1
between the true finite set stafg, and the estimated state %M :
setX,. First, it is useful to evaluate the probability of correct oz i
speaker number estimation: ° 10 20 % a0 5 Y 7
R time step (@)
P &Xg| = X ] (44)

N
o

Second, we are concerned with the location errors for tr
state vectors inX.. When the speaker number estimate is
incorrect such thaix,| # |X;| , defining a localization
error is a problem on its own; see [41]. Now, let us suppos
that |X,] = |Xx| = n, and thatXy = {Xi14, ..., Xni})
X, = {X1k,---,Xnk}. We consider the following multi-

N
T
I

=

o
T
I

i
T
I

:
4

o

Cond. Mean Distance Error (in m)

1 . 10 20 30 40 50 60 70
speaker distance error: time step o
1 n
d(Xk /?k) — min — Z ||CX‘ r — CX;. k—||2 Fig. 10. Average location tracking performance of the multi-speaker RFS
’ Gie{l,..n}i=1,..n \| n “ Z’ i SMC filter in Example 2.
Jitin itk =t
(45)
whereC = [I 0] is such that given a state,, Cx; outputs
the (x,y) position of that state. The idea of the minimization VIl. CONCLUSION AND DISCUSSION

in (45) is to find a proper assignment between elemenf;in
and X;,. Moreover, we should mention that theoretically, (45r)ﬂ
is a special case of thé&/assersteirdistance [41]. With (45),
we can measure eonditional mean distance errpgiven by

Using the RFS theory and the SMC implementation tech-
gue, we have developed a TDOA multi-speaker location
tracking algorithm that can handle unknown, time-varying
R number of active speakers. We have used simulations to show
E ¢ {d(X}, Xy)|correct speaker number estimpte (46) that the proposed algorithm can correctly determine not only
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the speaker locations, but also the voice activity interval for The expression for the birth state p.d.f. is as follows. For

each speaker. |Xk—1| = Nmae Where no speaker birth is allowed, we have
The proposed RFS algorithm is suitable for many speetimat

applications where the number of active speakers is usually Fo(X| Xer) = { L & = @. (52)

small. As a technical challenge, it will be worthwhile to 0, otherwise

examine the case of large number of speakers. This directig@ tor the case of 1| <
leads to several open questions. First, our method (as wglk;
as the other methods in [13], [14], [20]) has been relying on

Nyaz, it can be shown from (21)

the GCC TDOA measurement scheme, which has a modest 1= Poirin, &y =0
resolution that generally cannot handle a large number of fo(X| X 1) = § PoirenB(xx), Xy = {?‘k} (53)
active speakers. To deal with the case of large number of 0, otherwise

spga_kers, It appears that we need to employ_ some more \ﬁﬂ'ereﬁ(xk) 2 p(by, = x;) is the initial state distribution.
phisticated microphone array structures and agnal_processmq-o construct the density,(X;|X;_1), it is instructive to
me_thod.s, such as those in the dlrectlon-of-gsnmanon (Do_'éé)nsider a one-speaker set-valued state transition density
estimation context [1]. Second, the RFS multi-speaker tracking
principle is applicable to any number of speakers. However, f, ;(Xy|X_1) £ p(Sk(Xi k-1, Wik) = Xi|X_1)

the RFS Bayesian filter becqmes more expensive to |mp_Iem§nt = p(Se(Xiho1,Wir) = Xilxin1) (54)
as the number of speaker increases. In those cases it might

be appropriate to apply approximations such as the first-orddnerex; ,_; is an element inYj, with x; 51 # x; ,—1 for
moment method [16], [28]. Third, it will be interesting toi # j. From (20), it is shown that
extend the present method to deal with more complicated

situations, such as when multiple source births are allow
at one time instant.

d Pdeath7 Xk == @
?s,i(xk‘Xk—l) = (1= Pacath)f(Xk|xik-1), X ={xz}

0, otherwise
(55)
APPENDIX where f(xy|xr—1) is the single-speaker, vector-valued p.d.f.

. L . . . considered in Section II-B. Let
The purpose of this section is to illustrate, in a concise

manner, the derivations of the set-valued state transition den-x, = {x4,...,Xm i}, X1 = {X1ks---»Xnk—1}

sity f(Xx|X,x—1) and the set-valued likelihoag, (Z|X}). The . .

principles of the derivations essentially follow those describa¥th 7 < n. By applying Lemma 1 to (51) repeatedly and by
in [15]. Readers are referred to [15] for further details. Th@XPloiting (55), it can be shown that

following lemma will be frequently used: Fo( Xkl K1) =PI (1 = Paeger)™ x

Lemma 1 [15] Consider > Ik n-1)  (56)

<irFim<nj=1
C=AUB (47) 1St #insn ]
where the summation term in the above equation means that
where A and B are two independent RFSs. Then, the p.d.f. of n n

Cis B n
5 ~ = . (57)
cce ia7i1 b P — 1. F 0

B. The Likelihood Functions

The ideas behind deriving the likelihood functions are simi-
r to those in the previous subsection. By applying Lemma 1
to the measurement model in (22), the likelihood function for

F( X Xer) = Z Fo( Bl X)) (X — Xl Xior) (49) the TDOAs of thegth microphone pair is shown to be
By 9(ZX) = D Gurueq(EN X (2 - 27) (58)
Grue.q (20 X) 2 P( U 7.7 (Xi,k7vz[?l]c) =z}

where sl zldl
fo (X X—1) £ p(Bi(by) = Xp|Xy—1) (50)  where
xk>
i=1,...,| X
X1 (59)

is the p.d.f. for the birth states, and
51) is the likelihood function of the true TDOAs, and

is the transition density for the previous states. cq(Z,[f]) = p(C,[f] = Z,[f]) (60)

A. The State Transition Density

Consider the finite set state structure in (19). By applyiqg
Lemma 1 to (19), the state transition density is given by:

Is(Xi|Xi1) £ P( U Sk(Xi k-1, Wik) = X

i=1,...,[Xk—1]
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is the p.d.f. of the false TDOAs. It can be shown, in a wajto]
similar to that for the state transition density in (55) to (56),
that for

[a] (11]

m,kJ>

zld = {zk]k, ... X = {x1,;, - -

with n < m, the true TDOA likelihood function is given by [12]

Gtrue,q (Z]Lq] |Xk)

s 2 . axn,k}

— Pnfm(l

miss

m
- Pmiss) X

m [13]

> Ieaakm-  61)
1<ig#. Fip<n j=1 [14]
where g,(21%xx) = N(2l%;7,(Cxy),02) is the single- s
speaker likelihood function described in Section II-B. As fo[r ]
the false TDOA p.d.f, it is shown that [16]
[17]

cq({zg‘f]k, . ,zgk )= P|Z;[f]\(m) m! H /f(zl[q,l) (62)
i=1

where P\ZE]I(m) = P[|Z,LQ]| = m)] is the probability of the [18]
number of false TDOAs, anl(z) is a uniform density with an
interval [~ Trmaz, Tmaz |- Under the assumption that the number
of false TDOAs is Poisson distributed with an average rate’]
Ae, WE havePlzgq]‘(m) = e A" /m! and Eq. (62) can be
re-expressed as [20]
c(ZM) =e T Aewl=?)

ZLq] EZ,[:‘]

(63) [21]

Substituting (63) into (58), the likelihood function can bg22]
simplified as

>[d] [23]
Gtrue, Z Xk
0,212 = e (217) Y 2 gy foa
sz ez Aer(Z7) [25]
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