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Massive MIMO

• promise many nice things

source: https://www.rohde-schwarz.com
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Massive MIMO

• large no. of antennas = large no. of RF chains (inc. ADCs/DACs)

+ large no. of power amplifiers (PAs)

• hardware cost and power consumption scale up

source: http://www.bristol.ac.uk/news/2017/february/massive-mimo-trials.html
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Hybrid Digital-Analog MIMO

Source: P. Delos, S. Ringwood, and M. Jones, “Hybrid Beamforming Receiver Dynamic Range Theory to Practice,” Technical Article, Analog
Devices, 2022. Available at https://www.analog.com/en/technical-articles/hybrid-beamforming-receiver-dynamic-range.html
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Hybrid Digital-Analog MIMO

Source: H. Yan and D. Cabric, “Digital predistortion for hybrid precoding architecture in millimeter-wave massive MIMO systems,” ICASSP
2017.
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Nonlinear PA Effects

• input-output amplitude relation of PAs

• α = PA gain; rmax = maximum input amplitude

•
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Nonlinear PA Effects

• input-output amplitude relation of PAs

• backoff: use the linear amp. region, avoid the nonlinear region

• backoff sacrifices energy efficiency
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Digital Predistortion (DPD) for Mitigating
Nonlinear PA Effects

• use a nonlinear inverse mapping to equalize the nonlinear PA effects
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• DPD for each antenna is very expensive for massive MIMO

• the story is complicated for DPD for hybrid MIMO
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MIMO with Low-Resolution ADCs/DACs

• replace high-resolution ADCs/DACs with lower-resolution ones

– one-bit DACs (signals being −1 or 1) lead to constant envelope

signals, PAs can work in low backoff mode

– DACs with few no. of levels (say {±1,±3}) lead to signals that

are easier to predistort
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Massive MIMO with Low-Resolution ADCs/DACs

• challenge: significant quantization errors

• recent trend: develop SP techniques to better cope with coarse

quantization effects
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Some MIMO Basics

...

• assumption: uniform linear array, single path, far field, downlink

• model:

y(t) =

N∑
n=1

xn(t)e−jω(n−1) + noise,

where ω = 2πd
λ sin(θ), λ is the carrier wavelength, θ ∈ (−90◦, 90◦)

is the user angle
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Some MIMO Basics

...

• precoding: design x1(t), . . . , xN(t) such that each user will receive

its designated information signal
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Some MIMO Basics

...

• precoding: design x1(t), . . . , xN(t) such that each user will receive

its designated information signal

• “easy” if x1(t), . . . , xN(t) are continuous valued (high DAC res.)

– precoding has been studied for more than two decades
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Some MIMO Basics

...

• precoding: design x1(t), . . . , xN(t) such that each user will receive

its designated information signal

• hard if x1(t), . . . , xN(t) are discrete valued (low DAC resolution)

• SOTA: optimize discrete variables, say, xn(t) ∈ {±1}

– massive-scale discrete optimization, difficult
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TSP Hardcopies in the 1990’s
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I Found This (1997)
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As We Take a Closer Look
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It’s Binary—Image Halftoning
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Temporal Σ∆ Modulation

• widely used in temporal DACs/ADCs

• commercial “high-resolution” ADCs/DACs (say, 16 bits) may use

a small number of signal levels (say, 5 to 7 levels) and Σ∆ mod.

• image halftoning is the 2D version of Σ∆ modulation
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Temporal Σ∆ Modulation

• Q is a quantizer; e.g., Q = sgn for the one-bit case

• postulate: Q(x) = x+ q, q is random & independent

• xn = Q(x̄n − qn) = (x̄n − qn−1) + qn, n = 0, 1, . . .

• Fourier transform: X(ω) = X̄(ω) + (1− e−jω)Q(ω)
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Temporal Σ∆ Modulation

• Fourier transform: X(ω) = X̄(ω) + (1− e−jω)︸ ︷︷ ︸
high pass!

Q(ω)
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Temporal Σ∆ Modulation

• oversampling: make x̄n lowpass, avoid the high frequency region
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Temporal Σ∆ Modulation

• xn is converted to analog via a lowpass filter, which removes much

of the q. noise
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Temporal Σ∆ Modulation

• can have large |qn|, or |qn| → ∞, if we don’t constrain {x̄n}

• Let Q be the rounding function for {±1,±3, . . . ,±(M−1)}, where

M is the no. of signal levels.

• no-overload condition: Let A be the maximum amplitude of {x̄n},
or |x̄n| ≤ A for all n.

A ≤M − 1 =⇒ |qn| ≤ 1 for all n.
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Spatial Σ∆ Modulation for Few-Bit Massive MIMO
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• idea: Σ∆ in space

– shape q. noise to high spatial frequencies

– serve users in low spatial frequencies

– precoding: same as the traditional (simply speaking)
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Illustration: Angular Power Spectrum
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Illustration: Angular Power Spectrum
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Illustration: Scatter Plot of One-Bit Σ∆, One User

N = 512, d = λ/8, θ = 0◦
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Illustration: Scatter Plot of One-Bit Σ∆, One User

N = 512, d = λ/8, θ = 10◦
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Illustration: Scatter Plot of One-Bit Σ∆, One User

N = 512, d = λ/8, θ = 20◦
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Illustration: Scatter Plot of One-Bit Σ∆, One User

N = 512, d = λ/8, θ = 30◦
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Illustration: Scatter Plot of One-Bit Σ∆, One User

N = 512, d = λ/8, θ = 40◦
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Illustration: Scatter Plot of One-Bit Σ∆, One User

N = 512, d = λ/8, θ = 50◦
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Illustration: Scatter Plot of One-Bit Σ∆, One User

N = 512, d = λ/8, θ = 60◦
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Illustration: Scatter Plot of One-Bit Σ∆, One User

N = 512, d = λ/8, θ = 70◦
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Illustration: Scatter Plot of One-Bit Σ∆, One User

N = 512, d = λ/8, θ = 80◦
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Illustration: Scatter Plot of One-Bit Σ∆, One User

N = 512, d = λ/8, θ = 90◦
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Analysis for the One-User Case

• the effective SNR:

SNReff =
|α|2PN

8|α|2P
3

∣∣sin (ω2)∣∣2︸ ︷︷ ︸
q. noise power

+2σ2
v

where ω = 2πd
λ sin(θ).

• model:

received signal =
√

P
2Nαa(θ)Tx(t) + noise,

P = tx power; N = no. of antennas; α = path gain; σ2
v = noise

power; a(θ) = (1, e−jω, . . . , e−j(N−1)ω); λ= carrier wavelength; d

= inter-antenna spacing; 1-bit; precoder = MRT (max. ratio tx)
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Analysis for the One-User Case

• the effective SNR:

SNReff =
|α|2PN

8|α|2P
3

∣∣sin (ω2)∣∣2︸ ︷︷ ︸
q. noise power

+2σ2
v

where ω = 2πd
λ sin(θ).

• implications:

– increasing tx power P does not reduce the q. noise power

– increasing the no. of antennas N increases the effective SNR

∗ favorable: massive antennas, small per-antenna power P
N
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Analysis for the One-User Case

• the effective SNR:

SNReff =
|α|2PN

8|α|2P
3

∣∣sin (ω2)∣∣2︸ ︷︷ ︸
q. noise power

+2σ2
v

where ω = 2πd
λ sin(θ).

• implications:

– smaller inter-antenna spacing d =⇒ smaller q. noise power

∗ identical to over-sampling in temporal Σ∆ modulation

∗ mutual coupling prohibits us from making d too small
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Analysis for the One-User Case

• the effective SNR:

SNReff =
|α|2PN

8|α|2P
3

∣∣sin (ω2)∣∣2︸ ︷︷ ︸
q. noise power

+2σ2
v

where ω = 2πd
λ sin(θ).

• implications:

– larger |θ| =⇒ larger q. noise power

– we can serve an angle sector,

say [−30◦, 30◦]

44



Simulation Result: Multiuser One-Bit MIMO
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• number of antennas N = 256, angle sector = [−30◦, 30◦], no. of users K = 24,

d = λ/8, 8-ary PSK
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Second-Order Σ∆ Modulator

• recall the first-order Σ∆ modulator:

– Fourier transform: X(ω) = X̄(ω) + (1− e−jω)︸ ︷︷ ︸
highpass

Q(ω)

– no-overload condition: A ≤M − 1
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Second-Order Σ∆ Modulator

• second-order Σ∆ modulator:

– Fourier transform: X(ω) = X̄(ω) + (1− e−jω)2︸ ︷︷ ︸
stronger highpass!

Q(ω)

– no-overload condition: A ≤M − 3

47



General Σ∆ Modulator Structure

• (g ~ q)n =
∑L
l=1 glqn−l: general higher-order filter

• X(ω) = X̄(ω) + (1 +G(ω))︸ ︷︷ ︸
flexible to design

Q(ω)

• no-overload condition: A ≤ M − (
∑L
l=1 |<(gl)| + |=(gl)|) =⇒

|<(qn)| ≤ 1, |=(qn)| ≤ 1 for all n
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General Σ∆ Modulator Structure

• the Σ∆ modulator needs not be highpass

• the Σ∆ modulator can be designed to have focused q. noise

suppression at the users’ angles θk’s in an instantaneous manner
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Numerical Result: Noise Shaping Response
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Numerical Result: Noise Shaping Response

-80 -60 -40 -20 0 20 40 60 80

User Angle

10-6

10-4

10-2

100

102

R
N

S
R

N = 1024,K = 8, L = 16, d = λ/4, M = 4

52



Numerical Result: Noise Shaping Response
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Numerical Result: Noise Shaping Response
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Numerical Result: Noise Shaping Response
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SQNR Maximization Design

• design: maximize the minimum signal-to-quantization-and-noise

ratio (SQNR) over all users, subject to the no-overload condition

max
A≥0,g∈CL

min
k=1,...,K

SQNRk

s.t. A ≤M − ‖<(g)‖1 − ‖=(g)‖1

where SQNRk = ρ|αk|2A2

2Nρ|αk|2
3 |1+G(2πd

λ sin(θk))|2+σ2
v

.

• can be solved by convex optimization
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Simulation Result: User-Targeted (UT) Σ∆
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• no. of antennas N = 1024, d = λ/2, angle sector = [−85◦, 85◦], 64-ary QAM,

no. of users K = 6
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Spatial Σ∆ for PA Distortion Mitigation

• scenario: large-scale MIMO with high-resolution DACs

• aim: PA distortion mitigation, without backoff and without DPD
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Spatial Σ∆ for PA Distortion Mitigation

 

 

 

 

 

 

noisy region

 

  

noisy region

 

 

 

 

 

 

 

 

 

 

 

 

 

     

• recall spatial Σ∆ modulation for few-bit MIMO

• quantizer becomes PA, q. noise becomes PA distortion

• built by analog circuits
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Spatial Σ∆ Mod. for PA Distortion Mitigation
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• idea: use Σ∆ mod. to shape PA distortion as highpass noise

• quantizer becomes PA, q. noise becomes PA distortion

• built by analog circuits
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Simulation Result: MIMO with PA Distortion
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• MIMO-OFDM, no. of antennas N = 16, OFDM size= 512, d = λ/8, angle

sector = [−30◦, 30◦], 64-ary QAM, no. of users K = 4
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Spatial Σ∆ Mod. for RIS

• recent research suggests that reconfigurable intelligent surface

(RIS) can be used as an information source
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Credit to Victor Cheng at Aarhus University, Denmark, who used this picture to explain RIS in his talk

the illuminant is the candle; the kid is the RIS; users are on the wall
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Spatial Σ∆ Mod. for RIS

• rx signal model:

yk(t) =
∑N
n=1 e

−jωin(n−1) ejψn(t)︸ ︷︷ ︸
phase shift of the RIS

e−jωk(n−1) + noise

= (a(θin) ◦ a(θk))
>x(t) + noise

where x(t) = (ejψ1(t), ejψ2(t), . . . , ejψN(t))
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Spatial Σ∆ Mod. for RIS

• rx signal model: yk(t) = (a(θin) ◦ a(θk))
>x(t) + noise

• aim: control the RIS phase vector x(t) = (ejψ1(t), ejψ2(t), . . . , ejψN(t))

such that users receive their designated information symbols
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Spatial Σ∆ Mod. for RIS
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• recall spatial Σ∆ modulation for few-bit MIMO
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Spatial Σ∆ Mod. for RIS

 

 

   

 

 

 

 

  

 

 

 

 

noisy region

noisy region

 

 

 

 

 

 

 

 

 

• idea: use spatial Σ∆ mod., with the quantizer being a constant-

amplitude discrete-phase rounding function
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Spatial Σ∆ Mod. for RIS
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• idea: use spatial Σ∆ mod., with the quantizer being a constant-

amplitude discrete-phase rounding function
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A Bit Error Rate Simulation Result
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Precoding Design (Multiuser)

• common theme in precoding (with high resolution DACs):

– consider linear precoding x(t) =
∑K
k=1 wksk(t), where wk is a

beamformer vector and {sk(t)}Tt=1 is a symbol stream for user k

– design the precoder via

max
w1,...,wK∈CN

performance (e.g., sum achievable rate)

s.t. E[‖x(t)‖22] ≤ P (average power constraint)

• precoding for spatial Σ∆ modulation:

max
w1,...,wK∈CN

performance

s.t. |<(x̄n(t))| ≤ A, |=(x̄n(t))| ≤ A ∀n, t
(signal amplitude constraints)
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Zero-Forcing (ZF) Precoding for Spatial Σ∆

• for illustration, consider real-valued x̄(t)’s and PAM symbols (e.g.,

sk(t) ∈ {±1,±3})

• model: kth user’s received signal = hTkx(t) + noise, t = 1, . . . , T

• ZF precoding with normalization:

x̄(t) = A
H†(d ◦ s(t))

max
t=1,...,T

‖H†(d ◦ s(t))‖∞
,

where s(t) = (s1(t), . . . , sK(t)); d is a symbol power scaling factor;

H† is the pseudoinverse of [ h1, . . . ,hK ]T .

• the normalization makes |x̄n(t)| ≤ A ∀n, t
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Symbol-Level Precoding (SLP) for Spatial Σ∆

• linear precoding: x(t) =
∑K
k=1 wksk(t)

• SLP: x(t) takes any form

• aim: shape symbols, i.e., hTkx(t) ≈ dksk(t), at the users’ side

• characteristics:

– good control with signal amplitudes

– exploit symbol (e.g., QAM) structures to enhance performance

at the symbol level
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SLP for Spatial Σ∆

• again, consider real-valued x̄(t)’s and PAM symbols

• design: minimize the maximum symbol-error probability (SEP)

over all symbols, subject to signal amplitude constraints

min
d≥0,x̄(1),...,x̄(T )∈RN

max
t=1,...,T,
k=1,...,K

SEPi,t

s.t. |x̄n(t)| ≤ A, ∀n, t

73



SLP for Spatial Σ∆

• model: yk(t) = hTkx(t) + noise; detection: ŝk(t) = dec(yk(t)/dk);

SEPi,t := Prob(ŝk(t) 6= sk(t))

≤ Q

(
dk − (hTkx(t)− dksk(t))

σv/
√

2

)
+Q

(
dk + (hTkx(t)− dksk(t))

σv/
√

2

)

≤ 2Q

(
dk − |hTkx(t)− dksk(t)|

σv/
√

2

)

where Q(x) =
∫∞
x
e−z

2/2/(2
√
π)dx.decision boundary
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SLP for Spatial Σ∆

• the design can be rewritten as

min
d≥0,x̄(1),...,x̄(T )∈RN

max
t=1,...,T,
k=1,...,K

|hTk x̄(t)− dksk(t)| − dk

s.t. |x̄n(t)| ≤ A, ∀n, t

• a convex optimization problem

• our algorithm: smoothing + accelerated proximal gradient
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Simulation Result: Multiuser One-Bit MIMO
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Conclusion and Discussion

• Σ∆ mod. in time is classic, dating back to as early as 1962

• its adaptation to space gives new opportunity for few-bit MIMO

• pros: simple, practical, allow us to reuse classic precoding schemes

• cons: q. noise gets to go somewhere

• spatial Σ∆ offers new possibilities for

– PA distortion mitigation for large-scale MIMO

– phase-only MIMO

– MIMO uplink with few-bit ADCs (not covered in this talk)
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