Semidefinite Relaxation for a Class of Robust QCQPs: A Verifiable Sufficient Condition for Rank-One Solutions

Wing-Kin (Ken) Ma Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong

ICCOPT 2016, Tokyo, Japan, Aug. 8, 2016

Acknowledgement: Jiaxian Pan, Anthony Man-Cho So, Tsung-Hui Chang

Problem Statement

Problem: A robust quadratically constrained quadratic program (QCQP)

$$\min_{\boldsymbol{w}_1,\ldots,\boldsymbol{w}_K \in \mathbb{C}^N} \sum_{i=1}^K \|\boldsymbol{w}_i\|_2^2$$
s.t.
$$\max_{\|\boldsymbol{h}_i - \bar{\boldsymbol{h}}_i\|_2 \le \varepsilon_i} \sigma_i^2 + \boldsymbol{h}_i^H \left(\sum_{j \ne i} \boldsymbol{w}_j \boldsymbol{w}_j^H - \frac{1}{\gamma_i} \boldsymbol{w}_i \boldsymbol{w}_i^H \right) \boldsymbol{h}_i \le 0, \ i = 1,\ldots,K,$$

where $\bar{h}_i \in \mathbb{C}^N$, $\sigma_i^2, \varepsilon_i, \gamma_i > 0$, $i = 1, \ldots, K$, are given.

- non-convex
- may be approximated by techniques like convex restrictions and relaxations

Question: How well does semidefinite relaxation (SDR) perform?

Motivating Application: Downlink Beamforming in Communications

Scenario: a base station (BS) sending K independent information signals to K users simultaneously; BS has N transmit antennas; users have one receive antenna.

Quality-of-service characterization: the signal-tointerference-and-noise ratios (SINRs)

$$\mathsf{SINR}_i = \frac{|\boldsymbol{h}_i^H \boldsymbol{w}_i|^2}{\sum_{j \neq i} |\boldsymbol{h}_i^H \boldsymbol{w}_j|^2 + \sigma_i^2}, \quad i = 1, \dots, K,$$

where

 $h_i \in \mathbb{C}^N$ is the channel from the BS to user i; $w_i \in \mathbb{C}^N$ the beamforming vector of user i; σ_i^2 the noise power.

User 2

A Downlink Beamforming Formulation

User 2

Sensitivity Issues under Imperfect Channel Information

Issue:

- the SINR-constrained design assumes that the channels h_1, \ldots, h_K are perfectly known at the BS;
- in practice, $oldsymbol{h}_1,\ldots,oldsymbol{h}_K$ are often imperfectly known

Robustifying the Beamforming Design

Goal: Guarantee that the SINR requirements are satisfied under any spherically bounded channel uncertainties.

A Review of SDR: The Non-Robust Case

Recall the (non-robust) SINR-constrained design

$$\min_{\boldsymbol{w}_1,\ldots,\boldsymbol{w}_K \in \mathbb{C}^N} \quad \sum_{i=1}^K \|\boldsymbol{w}_i\|_2^2$$

s.t.
$$\mathsf{SINR}_i = \frac{|\boldsymbol{h}_i^H \boldsymbol{w}_i|^2}{\sum_{j \neq i} |\boldsymbol{h}_i^H \boldsymbol{w}_j|^2 + \sigma_i^2} \ge \gamma_i, \ i = 1,\ldots,K.$$

SDR: apply $W_i = w_i w_i^H \iff W_i \succeq 0$, $rank(W_i) \le 1$ to the above problem, and drop the rank constraints to obtain a relaxed problem

$$\min_{\boldsymbol{W}_{1},\ldots,\boldsymbol{W}_{K}\succeq\boldsymbol{0}} \sum_{i=1}^{K} \operatorname{Tr}(\boldsymbol{W}_{i})$$
s.t. $\sigma_{i}^{2} + \boldsymbol{h}_{i}^{H} \left(\sum_{j\neq i} \boldsymbol{W}_{j} - \frac{1}{\gamma_{i}} \boldsymbol{W}_{i} \right) \boldsymbol{h}_{i} \leq 0, \ i = 1,\ldots,K.$

• convex, a semidefinite program (SDP)

• Question: Is SDR tight? Or, does SDR always admit a rank-one solution?

Rank-One Solution Guarantee via SDP Rank Reduction

Consider an extension of the Shapiro-Barvinok-Pataki (SBP) rank reduction result:

Fact [Huang-Palomar'09]: Consider a complex-valued SDP

$$\min_{\boldsymbol{W}_{1},\ldots,\boldsymbol{W}_{k}\succeq\boldsymbol{0}} \sum_{i=1}^{k} \operatorname{Tr}(\boldsymbol{C}_{i}\boldsymbol{W}_{i})$$
s.t. $\sum_{l=1}^{k} \operatorname{Tr}(\boldsymbol{A}_{i,l}\boldsymbol{W}_{l}) \geq b_{i}, \quad i = 1,\ldots,m.$

If $m \leq k+2$ and some mild assumptions hold, then there exists a solution $(W_1^{\star}, \ldots, W_k^{\star})$ such that $\operatorname{rank}(W_i^{\star}) = 1$ for all *i*.

- SDR is tight for the SINR-constrained problem since k = m = K
- **note:** the same conclusion can also be drawn via other proof approaches, such as uplink-downlink duality **[Bengtsson-Ottersten'01]** and a "folklore" result (to be explained).

A Review of SDR: The Robust Case

The SDR of the robust SINR-constrained design:

$$\min_{\boldsymbol{W}_i \succeq \boldsymbol{0} \,\forall i} \, \sum_{i=1}^{K} \operatorname{Tr}(\boldsymbol{W}_i) \tag{P.1}$$

s.t.
$$\max_{\|\boldsymbol{h}_i - \bar{\boldsymbol{h}}_i\|_2 \le \varepsilon_i} \sigma_i^2 + \boldsymbol{h}_i^H \left(\sum_{j \ne i} \boldsymbol{W}_j - \frac{1}{\gamma_i} \boldsymbol{W}_i \right) \boldsymbol{h}_i \le 0, i = 1, \dots, K.$$
(P.2)

- convex, but (P.2) are semi-infinite
- By applying the \mathcal{S} -lemma to (P.2), Problem (P) can be reformulated as an SDP

$$\min_{\substack{\boldsymbol{W}_{1},\ldots,\boldsymbol{W}_{K}\succeq\boldsymbol{0},\\t_{1},\ldots,t_{K}\geq\boldsymbol{0}}} \sum_{i=1}^{K} \operatorname{Tr}(\boldsymbol{W}_{i})$$
s.t.
$$\begin{bmatrix} \boldsymbol{Q}_{i}+t_{i}\boldsymbol{I} & \boldsymbol{r}_{i} \\ \boldsymbol{r}_{i}^{H} & s_{i}-t_{i}\varepsilon_{i}^{2} \end{bmatrix} \succeq \boldsymbol{0}, \quad i=1,\ldots,K,$$

where $\boldsymbol{Q}_i = \frac{1}{\gamma_i} \boldsymbol{W}_i - \sum_{j \neq i} \boldsymbol{W}_j$, $\boldsymbol{r}_i = \boldsymbol{Q}_i \bar{\boldsymbol{h}}_i$, $s_i = \bar{\boldsymbol{h}}_i^H \boldsymbol{Q}_i \bar{\boldsymbol{h}}_i - \sigma_i^2$.

- first proposed in [Zheng-Wang-Ng'08]

A Curious Numerical Finding

Observation: The SDR problem was empirically found to admit a rank-one solution in almost all feasible instances!

	number of rank-1 instances / number of feasible instances									
r	(N,K) = (4,3)		(N,K) = (8,3)		(N,K) = (8,7)		(N,K) = (12,7)		(N,K) = (12,11)	
(bits/s/Hz)	$\varepsilon_i^2 = 0.1$	$\varepsilon_i^2 = 0.05$	$\varepsilon_i^2 = 0.1$	$\varepsilon_i^2 = 0.05$	$\varepsilon_i^2 = 0.1$	$\varepsilon_i^2 = 0.05$	$\varepsilon_i^2 = 0.1$	$\varepsilon_i^2 = 0.05$	$\varepsilon_i^2 = 0.1$	$\varepsilon_i^2 = 0.05$
0.1375	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000
0.2122	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000
0.3233	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000
0.4835	1999/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000
0.7057	1999/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000
1.0000	1973/1973	1995/1995	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000
1.3701	1933/1933	1993/1993	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000	2000/2000
1.8122	1688/1688	1889/1889	2000/2000	2000/2000	1950/1952	1997/1997	2000/2000	2000/2000	2000/2000	2000/2000
2.3165	1535/1535	1833/1833	2000/2000	2000/2000	1084/1084	1814/1814	1999/1999	2000/2000	1483/1485	1976/1976
2.8698	1258/1258	1743/1743	2000/2000	2000/2000	271/271	995/995	1964/1964	1998/1998	109/ 109	1068/1068
3.4594	839/ 839	1539/1539	1994/1994	2000/2000	51/51	549/ 549	1795/1795	1993/1993	6/6	160/160
4.0746	365/ 365	1187/1187	1961/1961	2000/2000	4/4	181/181	1262/1262	1936/1936	0/ 0	28/28
4.7070	68/ 68	688/ 688	1753/1753	1987/1987	0/ 0	19/19	354/354	1659/1659	0/ 0	2/2
5.3509	1/1	211/211	955/955	1920/1920	0/ 0	0/ 0	12/ 12	885/885	0/ 0	0/ 0
6.0022	0/ 0	21/21	106/ 106	1485/1485	0/ 0	0/ 0	0/ 0	122/ 122	0/ 0	0/ 0
6.6582	0/ 0	0/ 0	1/1	469/469	0/ 0	0/ 0	0/ 0	0/ 0	0/ 0	0/ 0

number of reals 1 instances / number of feasible instances

Comparison with Other Approximation Methods

N = 4, K = 3, $\sigma_i^2 = 0.1$, $\varepsilon_i^2 = 0.1$. RSDR= robust SDR; RMMSE= [Vučić-Boche'09], SOCP1= [Shenouda-Davidson'07], SOCP2= [Tajer-Prasad-Wang'11], SOCP3= [Huang-Palomar-Zhang'13]. The benchmarked methods are convex restrictions.

Our Main Interest

The SDR problem:

$$\min_{\boldsymbol{W}_{i} \succeq \boldsymbol{0} \ \forall i} \sum_{i=1}^{K} \operatorname{Tr}(\boldsymbol{W}_{i}) \\
\text{s.t.} \max_{\|\boldsymbol{h}_{i} - \bar{\boldsymbol{h}}_{i}\|_{2} \leq \varepsilon_{i}} \sigma_{i}^{2} + \boldsymbol{h}_{i}^{H} \left(\sum_{j \neq i} \boldsymbol{W}_{j} - \frac{1}{\gamma_{i}} \boldsymbol{W}_{i} \right) \boldsymbol{h}_{i} \leq 0, \ i = 1, \dots, K.$$
(P)

Challenge: Can we theoretically identify conditions under which Problem (P) is guaranteed to admit a rank-one solution?

Can We Call Our Old Friend, SBP Rank Reduction?

Recall the SDP form of Problem (P):

$$\min_{\substack{\boldsymbol{W}_{1},\ldots,\boldsymbol{W}_{K}\succeq\mathbf{0},\\ \boldsymbol{Z}_{1},\ldots,\boldsymbol{Z}_{K}\succeq\mathbf{0},\\ t_{1},\ldots,t_{K}\geq\mathbf{0}}} \sum_{i=1}^{K} \operatorname{Tr}(\boldsymbol{W}_{i})$$
(P-SDP.1)
s.t. $\boldsymbol{Z}_{i} = \begin{bmatrix} \boldsymbol{Q}_{i} + t_{i}\boldsymbol{I} & \boldsymbol{r}_{i} \\ \boldsymbol{r}_{i}^{H} & s_{i} - t_{i}\varepsilon_{i}^{2} \end{bmatrix}, i = 1,\ldots,K.$ (P-SDP.2)

Question: Can we apply SBP rank reduction to Problem (P-SDP), just as in the non-robust case, to obtain a rank-one solution result?

- Answer: No, at least by our experience.
 - Why? Each matrix equality constraint in (P-SDP.P2) contains many scalar equality constraints.

An Existing Result by Song, Shi, Sanjabi, Sun and Luo

Denote the optimal value of Problem (P) by

$$v^{\star} = \min_{\boldsymbol{W}_{i}, \boldsymbol{Z}_{i} \succeq \boldsymbol{0}, t_{i} \geq 0, \forall i} \sum_{i=1}^{K} \operatorname{Tr}(\boldsymbol{W}_{i})$$

s.t. $\boldsymbol{Z}_{i} = \begin{bmatrix} \boldsymbol{Q}_{i} + t_{i}\boldsymbol{I} & \boldsymbol{r}_{i} \\ \boldsymbol{r}_{i}^{H} & s_{i} - t_{i}\varepsilon_{i}^{2} \end{bmatrix}, i = 1, \dots, K.$

Result [Song-Shi-Sanjabi-Sun-Luo'12]: A solution $(W_1^{\star}, \ldots, W_K^{\star})$ to Problem (P) must be of rank one if

$$\varepsilon_i^2 < \frac{\gamma_i \sigma_i^2}{v^\star}$$
, for $i = 1, \dots, K$.

Implication: Problem (P) should admit a rank-one solution under sufficiently small error bounds ε_i 's.

Drawback: unverifiable; v^* also depends on the problem instance $\{\bar{h}_i, \sigma_i^2, \varepsilon_i, \gamma_i\}_{i=1}^K$.

A Verifiable Result by Us

Let

$$\hat{oldsymbol{F}} = [\; ar{oldsymbol{h}}_1 / \|ar{oldsymbol{h}}_1\|_2, \dots, ar{oldsymbol{h}}_K / \|ar{oldsymbol{h}}_K\|_2 \;]$$

be the presumed multiuser channel direction matrix.

Result [Ma-Pan-So-Chang'16]: Under a few mild assumptions, a solution $(\boldsymbol{W}_{i}^{\star})_{i=1}^{K}$ to Problem (P) must be of rank one if $\frac{\|\bar{\boldsymbol{h}}_{k}\|_{2}^{2}}{\varepsilon_{k}^{2}}\sigma_{\min}(\hat{\boldsymbol{F}})^{2} > 1 + K + \left(K - \frac{1}{K}\right)\gamma_{k}, \quad k = 1, \dots, K,$ where $\sigma_{\min}(\hat{\boldsymbol{F}})$ is the smallest singular value of $\hat{\boldsymbol{F}}$.

Implication: The SDR problem will admit a rank-one solution if

- the channel-to-uncertainty ratios $\|ar{m{h}}_k\|_2^2/arepsilon_k^2$ are sufficiently large;
- the channel direction matrix \hat{F} is sufficiently well-conditioned.

Tightness of Our Verifiable Condition

There is a gap between our verifiable condition and numerical result. Nevertheless, the performance trends of the two are consistent.

Proof Sketch of Our Result: Setting the Stage

Let us write the robust SDR problem as

$$\min_{\boldsymbol{\mathcal{W}}\in\mathcal{S}} \sum_{i=1}^{K} \operatorname{Tr}(\boldsymbol{W}_{i})$$

s.t.
$$\max_{\|\boldsymbol{h}_{i}-\bar{\boldsymbol{h}}_{i}\|_{2}\leq\varepsilon_{i}} \varphi_{i}(\boldsymbol{\mathcal{W}},\boldsymbol{h}_{i}) \leq 0, \ i=1,\ldots,K.$$

where $\boldsymbol{\mathcal{W}} = (\boldsymbol{W}_1, \dots, \boldsymbol{W}_K)$, $\boldsymbol{\mathcal{S}} = \{ \boldsymbol{\mathcal{W}} \mid \boldsymbol{W}_i \succeq \boldsymbol{0} \ \forall i \}$,

$$arphi_i(\boldsymbol{\mathcal{W}}, \boldsymbol{h}_i) = \sigma_i^2 + \boldsymbol{h}_i^H \left(\sum_{j \neq i} \boldsymbol{W}_j - \frac{1}{\gamma_i} \boldsymbol{W}_i \right) \boldsymbol{h}_i.$$

• φ_i is affine in ${\cal W}$ and indefinite in ${m h}_i$

Proof Sketch of Our Result: An Equivalent Representation of the Robust Constraints

Let's do SDR with the robust constraint functions:

$$\begin{aligned} \max_{\|\boldsymbol{h}_{i}-\bar{\boldsymbol{h}}_{i}\|_{2}\leq\varepsilon_{i}}\varphi_{i}(\boldsymbol{\mathcal{W}},\boldsymbol{h}_{i}) \\ &= \max_{\|\boldsymbol{h}_{i}-\bar{\boldsymbol{h}}_{i}\|_{2}\leq\varepsilon_{i}}\sigma_{i}^{2} + \operatorname{Tr}\left(\boldsymbol{h}_{i}\boldsymbol{h}_{i}^{H}\left(\sum_{j\neq i}\boldsymbol{W}_{j}-\frac{1}{\gamma_{i}}\boldsymbol{W}_{i}\right)\right) \\ &\leq \max_{\boldsymbol{H}_{i}\in\mathcal{V}_{i}}\sigma_{i}^{2} + \operatorname{Tr}\left(\boldsymbol{H}_{i}\left(\sum_{j\neq i}\boldsymbol{W}_{j}-\frac{1}{\gamma_{i}}\boldsymbol{W}_{i}\right)\right) \triangleq \phi_{i}(\boldsymbol{\mathcal{W}},\boldsymbol{H}_{i}) \end{aligned}$$

where $\mathcal{V}_i = \{ \boldsymbol{H}_i \mid \exists \boldsymbol{h}_i \text{ s.t. } \boldsymbol{H}_i \succeq \boldsymbol{h}_i \boldsymbol{h}_i^H, \| \bar{\boldsymbol{h}}_i \|_2^2 - 2 \operatorname{Re}(\bar{\boldsymbol{h}}_i^H \boldsymbol{h}_i) + \operatorname{Tr}(\boldsymbol{H}_i) \leq \varepsilon_i^2 \}.$ SDR is tight in this case (SBP rank reduction). Thus,

$$\max_{\|\boldsymbol{h}_i-\bar{\boldsymbol{h}}_i\|_2\leq\varepsilon_i}\varphi_i(\boldsymbol{\mathcal{W}},\boldsymbol{h}_i)=\max_{\boldsymbol{H}_i\in\mathcal{V}_i}\phi_i(\boldsymbol{\mathcal{W}},\boldsymbol{H}_i).$$

• ϕ_i is affine in \mathcal{W} and affine in H_i .

Proof Sketch of Our Result: A New Duality Result

Theorem: Under a few mild assumptions, we have

$$\min_{\boldsymbol{\mathcal{W}}\in\mathcal{S}} \sum_{i} \operatorname{Tr}(\boldsymbol{W}_{i}) = \max_{\boldsymbol{\mathcal{H}}_{i}\in\mathcal{V}_{i}} \min_{\forall i} \sum_{i} \operatorname{Tr}(\boldsymbol{W}_{i})$$

s.t.
$$\max_{\boldsymbol{H}_{i}\in\mathcal{V}_{i}} \phi_{i}(\boldsymbol{\mathcal{W}},\boldsymbol{H}_{i}) \leq 0, \ \forall i \qquad \text{s.t.} \ \phi_{i}(\boldsymbol{\mathcal{W}},\boldsymbol{H}_{i}) \leq 0, \ \forall i$$

Also,

$$\begin{array}{l} \mathcal{W}^{\star} \text{ is a solution} \\ \text{to the LHS problem} \end{array} \xrightarrow{} \begin{array}{l} \text{there exists } \mathcal{H}^{\star} \text{ such that} \\ \end{array} \\ \begin{array}{l} \overset{}{\rightarrow} \end{array} \xrightarrow{} \begin{array}{l} \mathcal{H}^{\star}, \mathcal{W}^{\star}) \text{ is a maximin solution} \\ \text{to the RHS problem} \end{array}$$

• Proof Idea: Sion's maximin theorem and some simple arguments; the affine property of ϕ_i is crucial.

Proof Sketch of The New Duality Theorem

LHS Problem =
$$\min_{\mathbf{W}\in\bar{S}} \sup_{\lambda\geq 0} \sum_{i} \operatorname{Tr}(\mathbf{W}_{i}) + \sum_{i} \lambda_{i} \sup_{\mathbf{H}_{i}\in\mathcal{V}_{i}} \phi_{i}(\mathbf{W}, \mathbf{H}_{i})$$

= $\sup_{\lambda\geq 0} \min_{\lambda\geq 0} \sum_{i} \operatorname{Tr}(\mathbf{W}_{i}) + \sum_{i} \lambda_{i} \sup_{\mathbf{H}_{i}\in\mathcal{V}_{i}} \phi_{i}(\mathbf{W}, \mathbf{H}_{i})$ (a)
= $\sup_{\lambda\geq 0} \min_{\mathbf{W}\in\bar{S}} \sup_{\mathbf{H}_{i}\in\mathcal{V}_{i}} \sum_{\forall i} \operatorname{Tr}(\mathbf{W}_{i}) + \sum_{i} \lambda_{i}\phi_{i}(\mathbf{W}, \mathbf{H}_{i})$
= $\sup_{\lambda\geq 0} \sup_{\mathbf{H}_{i}\in\mathcal{V}_{i}} \min_{\forall i} \sum_{i} \operatorname{Tr}(\mathbf{W}_{i}) + \sum_{i} \lambda_{i}\phi_{i}(\mathbf{W}, \mathbf{H}_{i})$ (b)
= $\sup_{\mathbf{H}_{i}\in\mathcal{V}_{i}} \sup_{\forall i} \max_{\lambda\geq 0} \sum_{i} \operatorname{Tr}(\mathbf{W}_{i}) + \sum_{i} \lambda_{i}\phi_{i}(\mathbf{W}, \mathbf{H}_{i})$
= $\sup_{\mathbf{H}_{i}\in\mathcal{V}_{i}} \min_{\forall i} \sup_{\lambda\geq 0} \sum_{i} \operatorname{Tr}(\mathbf{W}_{i}) + \sum_{i} \lambda_{i}\phi_{i}(\mathbf{W}, \mathbf{H}_{i})$ (c)
= RHS Problem

where (a), (b) and (c) are all due to Sion's maximin theorem.

- all about flipping min and sup!
- the affine property of ϕ_i is essential in (b).

Proof Sketch of Our Result: Further Discussion

Theorem: Under a few mild assumptions, we have

$$\min_{\boldsymbol{\mathcal{W}}\in\mathcal{S}} \sum_{i} \operatorname{Tr}(\boldsymbol{W}_{i}) = \max_{\boldsymbol{\mathcal{H}}_{i}\in\mathcal{V}_{i}} \min_{\forall i} \sum_{i} \operatorname{Tr}(\boldsymbol{W}_{i})$$

s.t.
$$\max_{\boldsymbol{H}_{i}\in\mathcal{V}_{i}} \phi_{i}(\boldsymbol{\mathcal{W}},\boldsymbol{H}_{i}) \leq 0, \ \forall i \qquad \text{s.t.} \ \phi_{i}(\boldsymbol{\mathcal{W}},\boldsymbol{H}_{i}) \leq 0, \ \forall i$$

Also,

$$\mathcal{W}^{\star}$$
 is a solution
to the LHS problem $\implies \begin{array}{l} \text{there exists } \mathcal{H}^{\star} \text{ such that} \\ (\mathcal{H}^{\star}, \mathcal{W}^{\star}) \text{ is a maximin solution} \\ \text{to the RHS problem} \end{array}$

Discussion:

- every inner problem on the RHS has a rank-one solution (SBP rank reduction)
- does that imply that the LHS problem has a rank-one solution?

Proof Sketch of Our Result: Further Discussion

Theorem: Under a few mild assumptions, we have

$$\min_{\boldsymbol{\mathcal{W}}\in\mathcal{S}} \sum_{i} \operatorname{Tr}(\boldsymbol{W}_{i}) = \max_{\boldsymbol{\mathcal{H}}_{i}\in\mathcal{V}_{i}} \min_{\forall i} \sum_{i} \operatorname{Tr}(\boldsymbol{W}_{i})$$

s.t.
$$\max_{\boldsymbol{H}_{i}\in\mathcal{V}_{i}} \phi_{i}(\boldsymbol{\mathcal{W}},\boldsymbol{H}_{i}) \leq 0, \ \forall i \qquad \text{s.t.} \ \phi_{i}(\boldsymbol{\mathcal{W}},\boldsymbol{H}_{i}) \leq 0, \ \forall i$$

Also,

$$\mathcal{W}^*$$
 is a solution
to the LHS problem $\Longrightarrow \begin{array}{l} \text{there exists } \mathcal{H}^* \text{ such that} \\ (\mathcal{H}^*, \mathcal{W}^*) \text{ is a maximin solution} \\ \text{to the RHS problem} \end{array}$

Discussion:

- every inner problem on the RHS has a rank-one solution (SBP rank reduction)
- does that imply that the LHS problem has a rank-one solution?
 - No, the theorem didn't say

 $\begin{array}{c} (\mathcal{H}^{\star}, \mathcal{W}^{\star}) \text{ is a maximin solution} \\ \text{ to the RHS problem} \end{array} \xrightarrow{} \begin{array}{c} \mathcal{W}^{\star} \text{ is a solution} \\ \text{ to the LHS problem} \end{array}$

Proof Sketch of Our Result: Further Discussion

Theorem: Under a few mild assumptions, we have

$$\min_{\boldsymbol{\mathcal{W}}\in\mathcal{S}} \sum_{i} \operatorname{Tr}(\boldsymbol{W}_{i}) = \max_{\boldsymbol{\mathcal{H}}_{i}\in\mathcal{V}_{i}} \min_{\forall i} \sum_{i} \operatorname{Tr}(\boldsymbol{W}_{i})$$

s.t.
$$\max_{\boldsymbol{H}_{i}\in\mathcal{V}_{i}} \phi_{i}(\boldsymbol{\mathcal{W}},\boldsymbol{H}_{i}) \leq 0, \ \forall i \qquad \text{s.t.} \ \phi_{i}(\boldsymbol{\mathcal{W}},\boldsymbol{H}_{i}) \leq 0, \ \forall i$$

Also,

$$\mathcal{W}^*$$
 is a solution
to the LHS problem $\implies (\mathcal{H}^*, \mathcal{W}^*)$ is a maximin solution
to the RHS problem

Discussion:

- however, if every inner problem on the RHS must admit a rank-one solution, then the solution \mathcal{W}^{\star} to the LHS problem must be of rank one.
 - why don't we check when such instances happen?

Proof Sketch of Our Result: A Different Rank-One Result

Consider the non-robust SINR-constrained design

$$\min_{\boldsymbol{\mathcal{W}}\in\mathcal{S}} \sum_{i} \operatorname{Tr}(\boldsymbol{W}_{i})$$
s.t. $\phi_{i}(\boldsymbol{\mathcal{W}}, \boldsymbol{H}_{i}) = \sigma_{i}^{2} + \operatorname{Tr}\left(\boldsymbol{H}_{i}\left(\sum_{j\neq i} \boldsymbol{W}_{j} - \frac{1}{\gamma_{i}}\boldsymbol{W}_{i}\right)\right) \leq 0, \ i = 1, \dots, K$
(P2)

where $\boldsymbol{H}_{i} \in \mathcal{V}_{i}$ for all i .

Aim: Identify conditions under which a solution to (P2) must have rank one.

• SBP rank reduction doesn't work; it's only good at saying "there exists"

Proof Sketch of Our Result: A Different Rank-One Result

Consider the non-robust SINR-constrained design

$$\min_{\boldsymbol{\mathcal{W}}\in\mathcal{S}} \sum_{i} \operatorname{Tr}(\boldsymbol{W}_{i})$$
s.t. $\phi_{i}(\boldsymbol{\mathcal{W}}, \boldsymbol{H}_{i}) = \sigma_{i}^{2} + \operatorname{Tr}\left(\boldsymbol{H}_{i}\left(\sum_{j\neq i} \boldsymbol{W}_{j} - \frac{1}{\gamma_{i}}\boldsymbol{W}_{i}\right)\right) \leq 0, \ i = 1, \dots, K$
(P2)

where $\boldsymbol{H}_i \in \mathcal{V}_i$ for all i.

Fact (folklore): If all H_i 's take a rank-one form $H_i = h_i h_i^H$, then a solution to (P2) must have rank one.

• Proof Idea: exploit the specific structures of the dual of (P2). Particularly, the dual variables of (P2) w.r.t. W_i 's take the form

$$\boldsymbol{Z}_i = \boldsymbol{I} + \sum_{j \neq i} \mu_j \boldsymbol{H}_j - \frac{\mu_i}{\gamma_i} \boldsymbol{H}_i \succeq \boldsymbol{0}, \ \boldsymbol{\mu} \ge \boldsymbol{0} \Longrightarrow \operatorname{rank}(\boldsymbol{Z}_i) \ge N - 1$$

The complementary slackness $Z_i W_i = 0$ enforces $rank(W_i) \le 1$.

Proof Sketch of Our Result: A Different Rank-One Result

Consider the non-robust SINR-constrained design

$$\min_{\boldsymbol{\mathcal{W}}\in\mathcal{S}} \sum_{i} \operatorname{Tr}(\boldsymbol{W}_{i})$$

s.t. $\phi_{i}(\boldsymbol{\mathcal{W}}, \boldsymbol{H}_{i}) = \sigma_{i}^{2} + \operatorname{Tr}\left(\boldsymbol{H}_{i}\left(\sum_{j\neq i} \boldsymbol{W}_{j} - \frac{1}{\gamma_{i}}\boldsymbol{W}_{i}\right)\right) \leq 0, \ i = 1, \dots, K$
(P2)

where $\boldsymbol{H}_i \in \mathcal{V}_i$ for all i.

Fact (folklore): If all H_i 's take a rank-one form $H_i = h_i h_i^H$, then a solution to (P2) must have rank one.

Our Finishing Touch:

- every $oldsymbol{H}_i \in \mathcal{V}_i$ can be written as $oldsymbol{H}_i = oldsymbol{h}_i oldsymbol{h}_i^H + oldsymbol{\Xi}_i$ for some $oldsymbol{h}_i$, $oldsymbol{\Xi} \succeq oldsymbol{0}$;
- study a variation of the folklore fact for $H_i = h_i h_i^H + \Xi_i$ (with Ξ_i being small);
- identify conditions under which (P2) must have rank-one solutions for all $m{H}_i \in \mathcal{V}_i$

Conclusion and Discussion

- We considered a specific robust QCQP and showed a verifiable sufficient condition under which SDR is tight.
- Future challenge: Can we establish a strong rank-one solution result? Simulation results indicate the SDR solution is almost always of rank one.

Thank you. Preprint available on https://arxiv.org/abs/1602.01569 or

References

[Bengtsson-Ottersten'01] M. Bengtsson & B. Ottersten, "Optimal & suboptimal transmit beamforming," in *Handbook of Antennas in Wireless Commun.*, L. C. Godara, Ed., CRC Press, 2001.

[Huang-Palomar'09] Y. Huang and D. Palomar, "Rank-constrained separable semidefinite program with applications to optimal beamforming," *IEEE Trans. Signal Process.*, 2010.

[Zheng-Wang-Ng'08] G. Zheng, K. K. Wong, and T. S. Ng, "Robust MIMO in the downlink: A worse-case optimization with ellipsoidal uncertainty regions," *EURASIP Journal on Advances in Signal Processing*, 2008.

[Vučić-Boche'09] N. Vučić and H. Boche, "Robust QoS-constrained optimization of downlink multiuser MISO systems," *IEEE Trans. Signal Process.*, Feb. 2009.

[Shenouda-Davidson'07] M. B. Shenouda and T. N. Davidson, "Convex conic formulations of robust downlink precoder designs with quality of service constraints," *IEEE J. Sel. Topics in Signal Process.* Dec. 2007.

[Tajer-Prasad-Wang'11] A. Tajer, N. Prasad, and X. Wang, "Robust linear precoder design for multi-cell downlink transmission," *IEEE Trans. Signal Process.*, 2011.

[Huang-Palomar-Zhang'13] Y. Huang, D. P. Palomar, and S. Zhang, "Lorentz-positive maps and quadratic matrix inequalities with applications to robust MISO transmit beamforming," *IEEE Trans. Signal Process.*, Mar. 2013.

[Song-Shi-Sanjabi-Sun-Luo'12] E. Song, Q. Shi, M. Sanjabi, R. Sun, and Z.-Q. Luo, "Robust SINR- constrained MISO downlink beamforming: When is semidefinite programming relaxation tight?" *EURASIP Journal on Wireless Communications and Networking*, 2012.

[Ma-Pan-So-Chang'16] W.-K. Ma, J. Pan, A. M.-C. So, and T.-H. Chang, "Unraveling the rank-one solution mystery of robust MISO downlink transmit optimization: A verifiable sufficient condition via a new duality result," AriXiv Preprint, 2016.