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Problem Statement

Problem: A robust quadratically constrained quadratic program (QCQP)

min Z lwillz

wi,...,wreC CcN

s.t. max 0+hH g w ;W wwH h, <0, :=1,... K,
|hi—hill2<e; Vi
JFi
where h; € CV, 02,¢;,7; > 0,i=1,..., K, are given.

® NOoNn-convex

e may be approximated by techniques like convex restrictions and relaxations

Question: How well does semidefinite relaxation (SDR) perform?




Motivating Application: Downlink Beamforming in
Communications

Scenario: a base station (BS) sending K independent information signals to K
users simultaneously; BS has IV transmit antennas; users have one receive antenna.

Quality-of-service characterization: the signal-to-
interference-and-noise ratios (SINRs)

h w;|?
SINR; = MH‘w\Q =1 K,
> iz IRy wil? + o

where
h; € C" is the channel from the BS to user i;

_ .. '-3 I . .
Basestation M w; € CV the beamforming vector of user i;
&

o? the noise power.
User 2




Basestation

A Downlink Beamforming Formulation

User 2

Problem: an SINR-constrained design

! % ,
min K .
w17---7wKECN Z’L—lH z”g
R w2
Zj#z’ ‘hz’ ’wj| + o
i=1,...,K,

where ~; is user-z's minimum SINR requirement.




Sensitivity Issues under Imperfect Channel Information
Issue:

e the SINR-constrained design assumes that the channels hq, ..., h are perfectly
known at the BS;

e in practice, hq,..., hg are often imperfectly known
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Robustifying the Beamforming Design

Goal:

Guarantee that the SINR requirements are satisfied under any spherically

bounded channel uncertainties.
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Problem:
: K ;
min Sy
wi,...,weCN Z:Z—l || 7,H2
S.t. min  SINR; > ~,,

|h;—h;|l2<e;
1=1,..., K,

where h; is the presumed channel of user 7; ¢; is
the uncertainty radius.




A Review of SDR: The Non-Robust Case

Recall the (non-robust) SINR-constrained design

. K ,
min *w.
w1,..., wreCN Z’L—l H zHQ
h w12 |
St SINRZ: | sz| 227’2‘,7 Zzlny

1

> jzi IR w2 +o

SDR: apply W, = w;w¥ < W, = 0, rank(W;) < 1 to the above problem,
and drop the rank constraints to obtain a relaxed problem

: K
Wl’.loﬂ.f’l%}‘l/KiO i1 Tr(W3)

S.t. O',?—l-h,f{ (Zj#iwj —,YLWI) hz S O, 1= 1,...,K.
e convex, a semidefinite program (SDP)

e Question: Is SDR tight? Or, does SDR always admit a rank-one solution?




Rank-0One Solution Guarantee via SDP Rank Reduction

Consider an extension of the Shapiro-Barvinok-Pataki (SBP) rank reduction result:

Fact [Huang-Palomar’09]: Consider a complex-valued SDP

1 k
i 2 TH(CW)

st S Tr(A W) > b,y i=1,...,m.

If m < k + 2 and some mild assumptions hold, then there exists a solution
(WT,...,WZ) such that rank(W?7) = 1 for all i.

e SDR is tight for the SINR-constrained problem since k = m = K

e note: the same conclusion can also be drawn via other proof approaches, such
as uplink-downlink duality [Bengtsson-Ottersten’01] and a “folklore” result
(to be explained).




A Review of SDR: The Robust Case

The SDR of the robust SINR-constrained design:

. K
Wf;rélcr)lw 2im1 Tr(W) (P.1)
st.  max a?—i—hf](z.#w- 1W>h <0i=1,....K. (P2)
|h;—h;ll2<e; J

e convex, but (P.2) are semi-infinite

e By applying the S-lemma to (P.2), Problem (P) can be reformulated as an SDP

. K
Wl,..r.r,l%/iI/thO, Zz‘zl Tr(W;)

t1,..., ti>0

H
’I",L- S; — ti&‘

s.t. 2 EO,’IZZL...,K,

where Qz = %Wz — Zj#z‘ Wj, r, = Q@Bfu S; — FL,{{QZFLZ — 0'2
— first proposed in [Zheng-Wang-Ng’08]




Observation:

A Curious Numerical Finding

The SDR problem was empirically found to admit a rank-one
solution in almost all feasible instances!

number of rank-1 instances / number of feasible instances

. (N KT =(4,3) MK =(5.3) (N, K1 = (5,7) (N, K) = (1%,7) (N, K) = (1%, 11)
(bits/s/Hz) | &2 =0.1 | e7=0.05| =01 [ e =005] e2=01 [ e7=005] ef=01 | e7=0.05 | e7=0.1 [ 7 =0.05
0.1375 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000
0.2122 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000
0.3233 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000
0.4835 1999/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000
0.7057 1999/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000
1.0000 1973/1973 1995/1995 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000
1.3701 1933/1933 | 1993/1993 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000
1.8122 1688/1688 1889/1889 | 2000/2000 | 2000/2000 | 1950/1952 1997/1997 | 2000/2000 | 2000/2000 | 2000/2000 | 2000/2000
2.3165 1535/1535 1833/1833 | 2000/2000 | 2000/2000 | 1084/1084 | 1814/1814 | 1999/1999 | 2000/2000 | 1483/1485 1976/1976
2.8698 1258/1258 1743/1743 | 2000/2000 | 2000/2000 271/ 271 995/ 995 1964/1964 | 1998/1998 109/ 109 1068/1068
3.4594 839/ 839 1539/1539 | 1994/1994 | 2000/2000 51/ 51 549/ 549 1795/1795 1993/1993 6/ 6 160/ 160
4.0746 365/ 365 1187/1187 1961/1961 | 2000/2000 4/ 4 181/ 181 1262/1262 1936/1936 0/0 28/ 28
4.7070 68/ 68 688/ 688 1753/1753 1987/1987 0/0 19/ 19 354/ 354 1659/1659 0/0 2/ 2
5.3509 1/1 211/ 211 955/ 955 1920/1920 0/0 0/0 12/ 12 885/ 885 0/0 0/0
6.0022 0/0 21/ 21 106/ 106 1485/1485 0/0 0/0 0/0 122/ 122 0/0 0/0
6.6582 0/0 0/0 1/1 469/ 469 0/0 0/0 0/0 0/0 0/0 0/0




Comparison with Other Approximation Methods
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N =4, K =3, 0; = 0.1, & = 0.1. RSDR= robust SDR; RMMSE= [Vu€&i¢-Boche’09],
SOCP1= [Shenouda-Davidson’07], SOCP2= [Tajer-Prasad-Wang’11], SOCP3= [Huang-
Palomar-Zhang’13]. The benchmarked methods are convex restrictions.
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Our Main Interest

The SDR problem:

. K
T (W
W, Tim T (W)

- 1 | (P)
st.  max o2+ h! (z.#wj——wi)higo,2:1,...,K.
lh;—h;|l2<e; J K

Challenge: Can we theoretically identify conditions under which Problem (P) is
guaranteed to admit a rank-one solution?
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Can We Call Our Old Friend, SBP Rank Reduction?

Recall the SDP form of Problem (P):

. K
W .I.I’l‘lj‘I/thO’ > Tr(W5) (P-SDP.1)
Z1sZ 0
1, 7tKZO
st Zi= | T bl i= LK (P-SDP.2)

Question: Can we apply SBP rank reduction to Problem (P-SDP), just as in the
non-robust case, to obtain a rank-one solution result?
e Answer: No, at least by our experience.

— Why? Each matrix equality constraint in (P-SDP.P2) contains many scalar
equality constraints.

12



An Existing Result by Song, Shi, Sanjabi, Sun and Luo

Denote the optimal value of Problem (P) by

* . K
. Tr(W;
Wi’Zirtr})Iartl’éZOa V1 ZZ:l I‘( 7')

(%

Qz' -+ tiI r;
H

21

StZz: ’1,:1,,K

Result [Song-Shi-Sanjabi-Sun-Luo’12]: A solution (W7,..., W) to
Problem (P) must be of rank one if

2
YiO;

£2 < :
/U*

, fore=1,... K.

1

Implication: Problem (P) should admit a rank-one solution under sufficiently small
error bounds ¢;'s.

Drawback: unverifiable; v* also depends on the problem instance {h;, 02 €4y Vi ,fil.
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A Verifiable Result by Us

Let ) - ) )
F =|hi/|hi]2,....hi/|[hk]2]
be the presumed multiuser channel direction matrix.

Result [Ma-Pan-So-Chang’16]: Under a few mild assumptions, a solution
(W*)E | to Problem (P) must be of rank one if

hill3 3 1
%O‘min(F)2>l—l—K—l—(K—?>’yk, E=1,..., K,
k

where amin(ﬁ’) is the smallest singular value of F.

Implication: The SDR problem will admit a rank-one solution if

e the channel-to-uncertainty ratios ||h||3/e2 are sufficiently large;

e the channel direction matrix F' is sufficiently well-conditioned.
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Tightness of Our Verifiable Condition

I I I I | |
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There is a gap between our verifiable condition and numerical result. Nevertheless, the performance
trends of the two are consistent.
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Proof Sketch of Our Result: Setting the Stage

Let us write the robust SDR problem as

. K
C L Te(W,
in 5,0, Tr(Ws)

st. max ;,(W,h;) <0,i=1,..., K.
|hi—hill2<e;

where W= (Wq,... Wg), S={W | W, =0Vi},

Vi

o o, is affine in WW and indefinite in h;
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Proof Sketch of Our Result: An Equivalent Representation of

the Robust Constraints

Let's do SDR with the robust constraint functions:

max  ©;(W, h;)

lhi—h;ll2<e;
2 H 1
_ 24 (hihi ( | -W'——Wz-)>
; 44 Lw.)) 2 o, |
< max of +Tr (H, (3, W, — W) ) £ 6/W. H))

where V; = {H, | 3h; s.t. H; = h;h!, |h||2 — 2Re(h; h;) + Tr(H;) < 2},

SDR is tight in this case (SBP rank reduction). Thus,

na i(W, h;) = max ¢;(W, H;).
||hz'—ﬁv;||X2§€z'gp ( ) Hq;EVz'gb ( )

e ¢; is affine in W and affine in H;.
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Proof Sketch of Our Result: A New Duality Result

Theorem: Under a few mild assumptions, we have

min - Tr(W; — ‘ . :
Wek 2 W B 2 TV
s.t. Igig}éfbi(W:Hi) <0, Vi s.t. (W, H;) <0, Vi

Also,
there exists H* such that

(H*, W*) is a maximin solution
to the RHS problem

W™ is a solution
to the LHS problem

e Proof Idea: Sion’s maximin theorem and some simple arguments; the affine

property of ¢; is crucial.
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Proof Sketch of The New Duality Theorem
LHS Problem = min sup > . Tr(W;)+ > .\ sup ¢;(W, H;)

wes >\>0 H;eV;
=supmin ) . Tr(W;)+ > .\ sup ¢;(W, H;)
A>OWES H,;cV;

=sup min  sup Y. Tr(W,)+>  Nio;(W,H;)

A>0 WESH cV; Vi

= sup sup min Z TI‘( z) + ZZ )\z‘§bz‘(wa Hz)
A>0 H,eV; ViWeS

sup sup min y . Tr(W;) + > . \os(W, H;)

H,cV; ViA>0 WeS

— sup min L Sup ZZ TI‘(Wz') + ZZ )\igbz’(wv H’L)
H.cV; ViWeSA>0

= RHS Problem

where (a), (b) and (c) are all due to Sion's maximin theorem.

e all about flipping min and sup!

e the affine property of ¢; is essential in (b).
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Proof Sketch of Our Result: Further Discussion

Theorem: Under a few mild assumptions, we have

min ;Ir(W; — ; T .

wes 2 ST i 32 (W)

s:t. max ¢i(W, Hi) <0, Vi s.t. oW, H;) <0, Vi
Also, _

W* is a solution :Ehere*ex.lsts H .suc.:h that.
to the LHS problem (H*, YW*) is a maximin solution
to the RHS problem

Discussion:

e every inner problem on the RHS has a rank-one solution (SBP rank reduction)

e does that imply that the LHS problem has a rank-one solution?

20



Proof Sketch of Our Result: Further Discussion

Theorem: Under a few mild assumptions, we have

min Tr(W; _ : , .

wes 2 ity 2 TV
Also,

. *
W* is a solution :Ehere*ex_lsts H _suc_:h that.
to the LHS problem (H*, W*) is a maximin solution
to the RHS problem

Discussion:

e every inner problem on the RHS has a rank-one solution (SBP rank reduction)

e does that imply that the LHS problem has a rank-one solution?

— No, the theorem didn't say

(H*, W*) is a maximin solution N W™ is a solution
to the RHS problem to the LHS problem

21



Proof Sketch of Our Result: Further Discussion

Theorem: Under a few mild assumptions, we have

min - Tr(W; — ‘ . :
i 2 Tr(W) B i, 3 T (W)
s.t. Igig}éfbi(W:Hi) <0, Vi s.t. (W, H;) <0, Vi
Also,
L . there exists H* such that
W is a solution (H*, W) is a maximin solution
to the LHS problem ’
to the RHS problem
Discussion:

e however, if every inner problem on the RHS must admit a rank-one solution,
then the solution YWW* to the LHS problem must be of rank one.

— why don’t we check when such instances happen?

22



Proof Sketch of Our Result: A Different Rank-One Result

Consider the non-robust SINR-constrained design

in 3, Te(W,
Join >, Tr(Ws)

S.t. gbz(W,Hz) = O'Z-2—|—TI‘ (Hz (Zj#iwj _%Wz)) S O, 1= 1,...,K
(P2)
where H,; € V; for all 3.

Aim: Identify conditions under which a solution to (P2) must have rank one.

e SBP rank reduction doesn't work; it's only good at saying “there exists”
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Proof Sketch of Our Result: A Different Rank-One Result

Consider the non-robust SINR-constrained design

i Tr(W,;
Join >, Tr(Ws)

S.t. gbz(W,Hz) :U,?+TT (Hz (Z#ZWJ —%Wz)) SO, = 1,,K
(P2)
where H; € V; for all 1.

Fact (folklore): If all H;'s take a rank-one form H,; = hihf, then a solution
to (P2) must have rank one.

e Proof Idea: exploit the specific structures of the dual of (P2). Particularly, the
dual variables of (P2) w.r.t. W,'s take the form

Zz:I+Zj7gzﬂjHj_%Hzi07 uZO:>rank(Zz)2N—1

The complementary slackness Z;W; = 0 enforces rank(W ) < 1.

24



Proof Sketch of Our Result: A Different Rank-One Result

Consider the non-robust SINR-constrained design

min Y . Tr(W;)

wes

5.t ¢Z-(W,HZ-):0,L-2+T1“(HZ- (z#iwj 1W)> <0, i=1,....K
(P2)
where H; € V; for all 7.

Fact (folklore): If all H,'s take a rank-one form H; = h;h:’, then a solution
o (P2) must have rank one.

Our Finishing Touch:
e every H, € V; can be written as H; = h; hH + =, for some h;, & = 0;
e study a variation of the folklore fact for H; = hihf{ + E; (with E; being small);

e identify conditions under which (P2) must have rank-one solutions for all H; € V;
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Conclusion and Discussion

e We considered a specific robust QCQP and showed a verifiable sufficient condition
under which SDR is tight.

e Future challenge: Can we establish a strong rank-one solution result? Simulation
results indicate the SDR solution is almost always of rank one.

Thank you. Preprint available on https://arxiv.org/abs/1602.01569 or
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