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Background




Hyperspectral Imaging

cover visible to near-infrared wavelengths, with 10nm resolution and > 200 bands
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A Hyperspectral Image Example: Real or Fake?

A hyperspectral image shown in RGB. Captured by SPCIM 1Q HS camera.




A Hyperspectral Image Example: Real or Fake?
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A false colormap of its underlying materials. Taking out the background, the image
Is composed of real leaves, leaf veins, and fake leaves.




Why Hyperspectral?

e allow us to “see” different materials, revealed by their spectral signatures




Example: Mineral Identification in Remote Sensing

: Cuprite, Nevada
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AVIRIS 1995 data
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AVIRIS Cuprite image. Courtesy to USGS.




Applications
e remote sensing (studied extensively)

e food safety, art conservation, archaeology, medical imagery,...
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(b) pigment identification in art
(a) food safety conservation

Source: (a) http://tao.umd.edu/html/fecal_contamination.html (b) H. Deborah, Pigment Mapping of
Cultural Heritage Paintings Based on Hyperspectral Imaging, MSc Thesis, Gjgvik University College, Norway.
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What We Will See in This Talk

e hyperspectral unmixing (HU), a key topic in remote sensing with nearly 30 years
of history

e a study of an essentially simplex-structured matrix factorization problem:

L L
M2 < >
X = A S ] N

where
— A has full column rank;

— every column of S lies in the unit simplex, i.e., s; > 0,s]1 =1 for all 4

e a branch of structured matrix factorization methods that has identifiability guar-
antees in theory




What Do You Mean by ldentifiability Guarantees?

e for example, consider non-negative matrix factorization (NMF)

L ) L .
M < ?
X = A S I N

where A > 0,5 > 0
e we want the true (A, .S) to be recoverable (subject to trivial effects)

e observe
X =AS8 = 49(3_15, for some invertible C
=A =§

If A,S >0, then (A, S) is also an NMF solution; NMF may not recover (A, S)
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Outline of this Talk

HU model, the notion of convex geometry
pure-pixel search, or separable NMF
applications beyond HU

(highlight) simplex volume minimization

if time permits, probabilistic simplex component analysis and hyperspectral super-
resolution

HU is a rich topic. We will not go through Bayesian methods (via Monte Carlo),
dictionary-aided sparse regression, simplex volume maximization, minimum volume
enclosing ellipsoid, maximum volume inscribed ellipsoid, nonlinear unmixing,
endmember variability,...
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HU: Linear Spectral Mixture Model

e Postulate: a pixel is a linear proportional combination of pure materials

e example:
a hyperspectral pixel (as reflectance) = X% spectral signature of water+

Y % spectral signature of soil + Z% spectral signature of vegetation

where X% + Y% + Z% = 100%.
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HU: Linear Spectral Mixture Model

Model:
y[n] = SN agsin] +vin] = Asln]+v[n], n=1,...,L,
where
— y[n] € RM is the measured hyperspectral vector at pixel n;
— A=lai,...,ay], a; € RM is an endmember signature vector;

— s[n] € RY is the abundance vector at pixel n, with s[n] > 0,17s[n| = 1;
— v|n] is noise; N is the model order.

as
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HU: Linear Spectral Mixture Model

e Model:
Y =AS+V
where Y = [ y[l],...,y[L] |; S=s[1],...,s]L]|; V =[v[l],...,v[L] ];
recall s[n] > 0,1%s[n] =1

Spatial dimension
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e HU: recover A fromY
— once we have A we can get S by S = ATY
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Convex Geometry
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Convex Geometry Preliminaries

e convex hull: conv{ay,...,an} ={y = Z,fil a;f;|6>0,110 =1}

e simplex: conv{ai,..

.,an} is a simplex if ay,...,ay are affinely independent.
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Convex Geometry Observation

e consider the noiseless model

Since s;[n] >0, 3200, si[n] = 1,

y[n] € conv{ay,...,an}.

e assume linearly independent aq,...,ayn

e Observation: each pixel y[n] lies in the simplex conv{as,...,an}.
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Convex Geometry Observation

e consider the noiseless model

y[n] = Zsi[n]ai.

1=1

Since s;[n] >0, 3200, si[n] = 1,

y[n] € conv{ay,...,an}.
e assume linearly independent aq,...,ay
e Observation: each pixel y[n] lies in the simplex conv{a,...,an}.

e Question: can we identify the vertices of conv{ay,...,ayn} from y[l],..., y[L]?
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Craig’s Seminal Work [Craig1994]

542 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 32, NO. 3, MAY 1994

Minimum-Volume Transforms for Remotely
Sensed Data

Maurice D. Craig

Abstract—Scatter diagrams for multispectral remote sensing
data tend to be triangular, in the two-band case, pyramidal for
three bands, and so on. They radiate away from the so-called
darkpoint, which represents the scanner’s response to an un-
illuminated target. A minimum-volume transform may be de-
scribed (provisionally) as a nonorthogonal linear transforma-
tion of the multivariate data to new axes passing through the
dark point, with directions chosen such that they (for two
bands), or the new coordinate planes (for three bands, etc.)
embrace the data cloud as tightly as possible.

The reason for the observed shapes of scatter diagrams is to
be found in the theory of linear mixing at the subfootprint scale.
Thus, suitably defined, minimum-volume transforms can often
be used to unmix images into new spatial variables showing the
proportions of the different cover types present, a type of en-
hancement that is not only intense, but physically meaningful.
The present paper furnishes details for constructing computer
programs to effect this operation. It will serve as a convenient
technical source that may be referenced in subsequent, more
profusely illustrated publications that address the intended ap-
plication, the mapping of surface mineralogy.

I. INTRODUCTION

HIS paper describes processing algorithms for two
closely related transformations, both applicable to ra-
diance data from multispectral scanners. It supplies de-

BAND 1

Fig. 1. Two-band triangular scatter plot for a 512 X 512 subscene of a
Landsat Thematic Mapper image (actually WRS 111-075, Nullagine, W.A.,
acquired August 18, 1986).

away from the so-called dark point, the scanner’s re-
sponse to a target of nil reflectance in all bands (see Fig.

1).

This appearance of bivariate scatter diagrams now sug-

19



Drawing a Connection Between NMF and HU
consider NMF, which has a model

z[n] = Beln] = Zbici[n], n=1,...,L,

where B > 0, c[n] > 0. We don't have 1%¢[n] = 1.

column normalization preprocessing:

N
b; 17b,¢;
z[n] = — ] D alnl Al
17z 7] i=1 1\29 2:1 17bjc; [nl
i =5[]

the normalized data points x[n|'s adhere to the HU model.

this means that HU can be applied to NMF through column normalization.
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Converting NMF to HU

Blue: the original data points z[n] = Bc|n]. Red: the normalized data points
z[n] = z[n]/(1" z[n]).

21



Converting NMF to HU

Blue: the original data points z[n] = Bc|n]. Red: the normalized data points
x[n| = z[n]/(112z[n]). Green: a noisy data point.
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Pure Pixel Search




Pure Pixels

e Observation: there are instances for which some pixels contain only one
endmember; you may even read them out manually

reflectance

reflectance

reflectance

real leaves

wavelength

real leaf veins

wavelength

fake leaves

e

wavelength
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Pure Pixels

Definition: Endmember 7 is said to have a pure pixel if, without noise, there
exists an index ¢; such that

yll;] = a;

e or, endmember i has pure pixels if s[¢;] = e; for some ¢;; e;'s are unit vectors

(pure pixel of soil

____________________

pL(re pixel of water

(a) pure pixel case (b) no-pure pixel case

25



Pure Pixels

Definition: Endmember 7 is said to have a pure pixel if, without noise, there
exists an index ¢; such that

Yy [fz] = a;

e Implication:

_ ure pixel of soil
— Suppose that every endmember has a pure pixel, and (p

there is no noise. soil
— I we know £4,...,0x, then [ylti],....yltn] ] = A ot
— and the problem is solved! S water

ptfre pixel of water
e Problem: find the pure pixel indices.
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Convex Geometry With and Without Pure Pixels

a; a;

(a) pure pixel case (b) no pure pixel case

e the pure pixel case has points on the vertices

e the no pure pixel case does not.
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Successive Projection Algorithm (SPA)

e there are numerous pure pixel search algorithms, e.g.,

— pure pixel index (PPI) [Boardman-Kruse-Green1995], the first in HU

— vertex component analysis (VCA) [Nascimento-Bioucas2003], the most popular

e we consider SPA [Gillis-Vavasis2014], arguably the easiest one to understand
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A Simple Geometrical Question

Question: the dark dots are the hyperspectral pixels y[n]'s. Which y[n]| gives
the largest Euclidean norm ||y[n]||2?

29



A Simple Geometrical Question

Question: the dark dots are the hyperspectral pixels y|n]'s. Which y[n] gives
the largest Euclidean norm ||y[n]||2?

Answer: the pure pixel y[n] = a; of endmember 1

30



A Simple Geometrical Question

Question: the dark dots are the hyperspectral pixels y[n]'s. Which y[n] gives
the largest Euclidean norm ||y[n]||2?

Implication: ¢, = arg max ly[n]||3 finds a pure pixel

31



Another Simple Geometrical Question

Question:  suppose that a; is known and we project y|[n|'s onto a line
perpendicular to a;. Which y[n| has the largest Euclidean norm on that line?

32



Another Simple Geometrical Question

Question:  suppose that a; is known and we project y[n]'s onto a line
perpendicular to a;. Which y[n| has the largest Euclidean norm on that line?

Answer: either the pure pixel y[n] = as or y|n] = as

33



Another Simple Geometrical Question

Question:  suppose that a; is known and we project y[n]'s onto a line
perpendicular to a;. Which y|[n] has the largest Euclidean norm on that line?

Implication: /5 = arg max HPély[nH 2, Where Pil = I —aial/||a|3is

n=1,...,
the orthogonal complement projector of a;, finds a pure pixel

34



Successive Projection Algorithm (SPA)

Algorithm: SPA
input {y[n|}L_,, N.
{1 = arg max ly[n]||3. % find the pixel with the largest Euclidean norm

n=1,...,
A = ylly].
fork=2,...,N

% project pixels onto the orthogonal complement subspace of A, and

find the projected pixel with the largest Euclidean norm
N AT A AT
5, where P2 =T - A(A" A)7'A

) L
(), = arg max | PZy[n]

n=1,...,
A=A, ylb] ]
end )
output A.

e simple algorithm; computationally cheap

35



SPA is Theoretically Interesting

e guarantee exact recovery in the noiseless case [Chan-Ma-Ambikapathi-Chi2011]

Fact: If the pure pixel assumption holds and a1, ..., ay are linearly independent,
SPA recovers aq,...,ay exactly in the noiseless case.

e shown to be robust to noise [Gillis-Vavasis2014]

Theorem: If the pure pixel assumption holds and the noise level € =

maxy,—1..r5 |[¥[n]||2 is sufficient small, SPA recovers ai,...,an up to er-
ror O(ex(A)?) where k(A) is the condition number of A.

e many extensions (with provable guarantees), has tight connections to simplex
volume maximization [Chan-Ma-Ambikapathi-Chi2011] and self-dictionary sparse
regression [Fu-Ma-Chan-Bioucas2015]
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A Self-Dictionary Example:
Video Summarization in Computer Vision

The video summarization result shown in [Elhamifar-Sapiro-Vidal2012]. Courtesy to the above reference.

e Problem: find a (small) subset of video frames that best represents the whole
set of video frames.

37



Self-Dictionary Sparse Regression

e Problem: use a smallest subset of measurements to represent all measurements
min [ Clrow—o
st. Y =YC, C>0, 1'C=1",

where ||C|;ow_0o counts the number of nonzero rows of C.

Y
L

38



Self-Dictionary Sparse Regression

e Problem: use a smallest subset of measurements to represent all measurements

m(%n HCHrOW—O

st. Y =YC, C>0, 1'C =1".

e turns out to be equivalent to pure pixel search— but without requiring knowledge
of N [Esser-Moller-Osher-Sapiro-Xin2012]

Y Y C>0
- L > - L > N - L >
| | —
M — X

I g2

L .

a| as any .

t f

-:L ! l — s

I~/ "V
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Self-Dictionary Sparse Regression

e Problem: use a smallest subset of measurements to represent all measurements

m(%n HCHrOW—O

st. Y =YC, C>0, 1'C =1".

e same as separable NMF for topic modeling [Arora-Ge-Kannan-Moitra2012]; the
separability assumption is the same as the pure pixel assumption

Y Y C>0
L L

\J
A
=~
\

\/
A

A
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Self-Dictionary Sparse Regression

e Problem: .
mén HCHrOW—O

st.Y=YC, C>0, 11Cc =1".

e how to (approximately) solve this problem?

— convex relaxation:  approximate || - |l;ow—0 by a convex function, such as
ICll2,1 = >, 1]l

— references: [Esser-Moller-Osher-Sapiro-Xin2012], [Elhamifar-Sapiro-Vidal2012],
[Recht-Re-Tropp-Bittorf2012], and more...
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Self-Dictionary Sparse Regression

e Problem:

mé'n |C|row—0

st.Y=YC, C>0, 11Cc =1".

e how to (approximately) solve this problem?
— greedy pursuit: greedily picks one atom at a time, and repeat

Y Y Cc>0
L L

A
\
A
\
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Self-Dictionary Sparse Regression

e Problem: .
min [[Clrow—o

st.Y=YC, C>0, 11Cc =1".

e how to (approximately) solve this problem?

— greedy pursuit: greedily picks one atom at a time, and repeat

Y Y Cc>0
- L > - L > “4 L >
| | —
M m— X
J e g2
L
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Self-Dictionary Sparse Regression

e Problem:

mCiYn HCHrOW—O

st.Y=YC, C>0, 11C =1".

e how to (approximately) solve this problem?

— greedy pursuit: greedily picks one atom at a time, and repeat

Y Y Cc>0
L - - L > A - [ —
| | —
M — X
I g2
L s°

a as as




Self-Dictionary Sparse Regression

e Problem:

mci’n HCHrOW—O

st.Y=YC, C>0, 11Cc =1".

e how to (approximately) solve this problem?

— greedy pursuit:  one instance of greedy pursuit, simultaneous orthogonal
matching pursuit, is the same as SPA [Fu-Ma-Chan-Bioucas2015]

Y Y c>0
- L > - L > “4 L, —
| | ——
M m— X
I 52
L s®
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Applications Beyond HU ltself




Who Invented Convex Geometry?

e Craig is most widely recognized for introducing CG in hyperspectral remote sensing
[Craig1990], [Craigl1994]

— worth mentioning: Boardman and Winter for pioneering pure pixel search
[Boardman-Kruse-Green1995], [Winter1999]

e intriguingly, CG has been discovered or rediscovered several times in other fields

— geology [Imbriel964], also [Full-Ehrlich-Klovan1981]

— chemometrics [Perczel et al. 1989]

— nuclear magnetic resonance spectroscopy [Naanaa-Nuzillard2005]
— signal processing theory and methods [Chan-Ma-Chi-Wang2008]

— (in a way) machine learning [Arora-Ge-Kannan-Moitra2012]
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Applications Beyond HU

machine learning and data science: topic modeling, as mentioned; community
detection; crowdsourcing

biomedical imaging
signal processing: classical blind source separation
remote sensing: hyperspectral super-resolution

many more...
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Dynamic Fluorescent Imaging (DFI) and My CG in 2008

Kidney Lungs Brain Spine

Linear mixing model

Dynamic fluorescent imaging data *

Time

e DFIl images are linear mixtures of the anatomical maps of different organs

e model: y[n] = As[n], s[n] >0, 17 A =11 (not 17s[n] =1 as in HU)

49



DFI and My CG in 2008

50



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}



DFI_mouse_supine

MacX Video Converter Pro

Video


DFI and My CG in 2008

Liver

Brain Lung

Anatomical map

Blood vessels

e anatomical maps recovered by a CG method [Chan-Ma-Chi-Wang2008]
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Blind Source Separation (BSS)

separated source 1

—
BSS reco

Algorithm separated source 2

8 PN 0 recolfed 2
mig.dire

e a classic problem in signal processing, similar model and problem statement as
HU

e can we apply convex geometry to BSS?

52



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



9.952652


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}


9.952652


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}


9.952652


Pure Pixels and Classical BSS
e Our work in [Fu-Ma-Huang-Sidiropoulos2015]:

— hypothesis: existence of pure short-time frames; reasonable for speech

— formulation: a tensor factorization problem with one factor having pure pixels

interval only contributed by source 1

interval only contributed by source 2
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Pure Pixels and Classical BSS

SPA
5 Y Y | | | —A— PAPA
—8— ProSPA
—#— FFDIAG
Or —o— VoIMin-AO
' -« - UWEDGE
_ - + - Clustering-based
—p— FastICA
-4 -TALS
—10 -8-ACDC
Q ~-1-P-DIEM
o -15F 1 - 8 -PHAM
= SOBIUM
—20}
ProSPA
-25F
VolMin—-AO
-30F
35 1 1 1 ! |
-10 -5 0 5 10 15 20 25 30

SNR (dB)

Performance comparison of various BSS algorithms. ‘ProSPA’ is a modified version
of SPA, custom-designed for the blind speech separation application.
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Simplex Volume Minimization
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Simplex Volume Minimization: Intuition

Craig’s belief [Craigl994]: the true endmembers may be located by finding
a data enclosing simplex whose volume is the smallest.

a. . - . as

as
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Simplex Volume Minimization: Intuition

Craig’s belief [Craigl994]: the true endmembers may be located by finding
a data enclosing simplex whose volume is the smallest.

ay. - - . as

as
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Simplex Volume Minimization: Intuition

Craig’s belief [Craigl994]: the true endmembers may be located by finding
a data enclosing simplex whose volume is the smallest.

a. - - o a3

as
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Simplex Volume Minimization: Intuition

Craig’s belief [Craigl994]: the true endmembers may be located by finding
a data enclosing simplex whose volume is the smallest.

a. - - — a3

as

e it seems volume min. (VolMin) can identify the true endmembers without
pure pixels.
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Simplex Volume Minimization: Formulation

e Formulation:

min vol(A)
ai,...,anyERM
s.t. y|n] € conv{ay,...,an},
n=1,...,L.

where

VOI(A) = ﬁ\/det(ATA), A = [ a,—aN,...,anN-1 —an ]7

e non-convex, NP-hard [Packer2008]

e algorithms rely on non-convex optimization
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Simplex Volume Minimization: Optimization
e dimensionally reduce {y[n]} to {[n]} such that x[n] = Bs[n|, B € RY 11XV

e by transformation of a simplex to a polyhedron, recast VolMin as

max |det(H )|
mBin vol(B) H,g
<~ s.t. Hxn] —g > 0,
s.t. x[n] € conv{by,...,by},Vn

(Hx[n] —g)'1 <1,vn

b

by

where H = [bl — bN, .. -abN—l — bN]_l, g = Hby.
e algorithms: [Li-Bioucas2008], [Chan-Chi-Huang-Ma2009], [Bioucas2009]




Simplex Volume Minimization and Matrix Factorization

e recall the VolMin problem

min  vol(A) s.t. y[n| € conv{ai,...,an}, n=1,...,L
al,...,anN
e by noting y[n] € conv{ay,...,an} < y[n] = As,, for some s, > 0,511 =1,

VolMin can be equivalently written as

I}‘ligl vol(A) st. Y =AS8, §>0, S'1=1

e or, a regularized form may be considered:

min 1Y — AS||% 4+ X - vol(A); A > 0 is given,
A,8>0,8T1=1

which looks like a volume-regularized semi-NMF

— do alternating opt. [Miao-Qi2007], [Fu-Huang-Yang-Ma-Sidiropoulos2016]
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José Bioucas-Dias’ Famous SISAL Scheme for VolMin

consider the case of square A, and consider the VolMin problem

I;‘ligl log(|det(A)]) st. Y =AS8, §>0, ST1=1

by the change of variable B = A™!, so that S = BY,

mBi‘n — log(|det(B)]) st. BY >0, Y!B'1=1

SISAL [Bioucas2009]:

min — log(|det(B)]) + Ap(BY)  st. BT1=(vy")"

where p(X) = >, . max{0, —z;;} is a penalty function for promoting non-
negativity; A > 0 is given.

the problem is solved by a line-search-based proximal gradient method and ADMM
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Numerical Demo.: Three Endmembers, Pure Pixel Case

+ true endmembers
A SPA

O VolMin
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Numerical Demo.: Three Endmembers, No-Pure Pixel Case

+ true endmembers
A SPA
O VolMin
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Numerical Demo.: Three Endmembers, No-Pure Pixel Case

+ true endmembers
+ A SPA

) ~ .
[ IR O VolMin
| 1 Y
I ! \\\
| 4 \\\
| / \
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Simulation Results: Mean Squared Error Comparison

002 T T T T T T

0.018 _e_SPA -
—a—\/olMin
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0.012

Mean Square Error

o o I
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= 15} ® =
T

0.002

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Purity p

A Monte Carlo result. N = 8. “Purity p" describes the pixel purity: p =1
corresponds to the pure pixel case, and p = 1/v/ N the most heavily mixed case.
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Unique ldentifiability of VolMin

e numerical evidence suggests that VolMin works well without pure pixels

e Question: can we prove that VolMin can uniquely recover the true endmembers
when the pure pixel assumption does not hold?

e Answer: YES! [Lin-Ma-Li-Chi-Ambikapathi2015], [Fu-Ma-Huang-Sidiropoulos2015]
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Unique ldentifiability of VolMin

Theorem [Lin-Ma-Li-Chi-Ambikapathi2015]: Suppose no noise, N > 3 and that
ai,...,ay are linearly independent. Define

v=max{r <1| (conv{ey,...,en})NB(r) C conv{sy,...,sr}},

1
N-1"

where B(r) = {x | ||x|l2 < r}. VolMin exactly recovers aq,...,ay if v >

/\
N
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Unique ldentifiability of VolMin

Theorem [Lin-Ma-Li-Chi-Ambikapathi2015]: Suppose no noise, N > 3 and that

ai,...,ay are linearly independent. Define
v=max{r <1]| (conv{ey,...,en})NB(r) C conv{sy,...,sp}}, (%)
where B(r) = {z | |||l < r}. VoIMin exactly recovers ai,...,an if v > —=—.

e much more relaxed than the pure pixel assumption (and separable NMF)
e arguably more relaxed than known NMF recovery conditions

— [Donoho-Stodden2003]: require the pure pixel assumption

— [Huang-Sidiropoulos-Swami2014]: require both A and S to satisfy (x), roughly
speaking, while VolMin requires only S to satisfy (x)

e [Fu-Huang-Sidiropoulos2018] further shows that VolMin can be applied to NMF
without 17s[n] = 1 and without column normalization preprocessing
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Probabilistic Simplex Component Analysis (PRISM)
e VolMin assumes no noise, to begin with

e how about the noisy case?

e we consider statistical inference, which is a more disciplined approach to deal with
noise

71



Probabilistic Simplex Component Analysis (PRISM)

consider statistical inference akin to probabilistic PCA

assume that s[n]'s are i.i.d. distributed on the unit simplex

— probabilistic PCA assumes i.i.d. Gaussian s[n|'s

in the noiseless case, the marginalized likelihood is

pawin]) = [ patylnllsip(sin])dsin] = st a(win)

where A = conv{ay,...,an}; Ia(y)=1ifye A Ix(y)=0ify ¢ A

maximum-likelihood estimator (alluded to in [Nascimento-Bioucas2012]):

L
max Zl log(pa(y(n])) = max — log(vol(A)) s.t. y|n] € A Vn = VolMin!

Implication: VolMin is PRISM when there is no noise




Probabilistic Simplex Component Analysis (PRISM)

we study the noisy case [Wu-Ma-Li-So-Sidiropoulos2021]
we show how volume-regularized factorization and SISAL are related to PRISM

we show that, as the data length L goes to infinity, PRISM exactly identifies the
true A

we consider variational inference as an algorithmic scheme for PRISM
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Beyond HU:
Hyperspectral Super-Resolution




A Fundamental Limitation

e Problem: none of the known optical sensing systems can achieve both high
spectral resolution and high spatial resolution

e hyperspectral cameras have high spectral resolution, but low spatial resolution

e RGB or multispectral cameras, on the other hand, can have high spatial resolution
but low spectral resolution

7Y/

| Y

Hyperspectral Image Multispectral Image
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Hyperspectral Super-Resolution

e Question: can we have both high spectral and spatial resolution?

Super-resolution Image

e doing so has significant implications in many applications
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Hyperspectral Super-Resolution

e Question: can we have both high spectral and spatial resolution?

e A Promising Candidate: fusion of a hyperspectral image and a multispectral
image—a.k.a. hyperspectral super-resolution (HSR)

T/

’ Hyperspectral Image \

Hyperspectral
Super-resolution

Super-resolution Image

Multispectral Image
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HSR Model

spatial degradation

A
¥

SR image HS image

e Model: let X be the super-resolution image.
hyperspectral image = Yy = X G, G being a (tall) spatial degradation matrix

multispectral image =Y = FFX, F being a (fat) spectral degradation matrix

e Issue: the number of measurements (multispectral+hyperspectral) is much less
than the number of the unknowns (the super-resolution image)
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Hyperspectral Super-Resolution via Matrix Factorization

Spatial Degradation
G

\ Spectral Degradation

Super-resolution Image F

X e R]WXL

e ldea: use the HU model X = AS, and solve

) %’!l /’

Hyperspectral Image
Yy = XG e RM*Lu

Multispectral Image
Yy = FX € RMuxE

rgigl 1Yy — ASG||7 + ||[YMm — FAS||7  s.t. appropriate constraints on A, S

e reminiscent of matrix completion
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Hyperspectral Super-Resolution via Matrix Factorization

e first proposed in [Kawakmai-Matsushita-et al.'11] for computer vision and in
[Yokoya-Yairi-lwaski'12] for remote sensing

e received much attention, has many algorithms these days

e our interest: algorithmic schemes that have identifiability guarantees; see [Li-Ma-
Wu-Liu2023] and the references therein
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Separable Coupled Factorization (SECO) for HSR

we don't want to solve the coupled factorization

112112 1Yy — ASG||7 +||[YMm — FAS|7  s.t. appropriate constraints on A, S

let C = SG, and note Yy = AC.

SECO Step 1: retrieve A from Yy by pure pixel search (or VolMin)

— idea: solve a structured factorization problem mina ¢ ||Yu — AC||% first
SECO Step 2: given the retrieved A in Step 1, retrieve S from Y y; by
min [[Y'y — FAS|[%

we show that, if S satisfies some sparsity and pure-pixel assumptions, then, with

a certain modification of Step 2, we can exactly recover A and S [Li-Ma-Wu-
Liu2023]
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A Semi-Real Experiment Result for HSR

Left: The color composite image of the super-resolution image.

Middle: spectral angle mapper (SAM) of coupled factorization. Mean SAM = 1.15,
runtime = 88.09 seconds.

Right: SAM of SECO. Mean SAM = 0.89, runtime= 2.57 seconds.
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Conclusion and Discussion

e what are the great insights to learn from HU in remote sensing?

— convex geometry, pure pixel search, volume minimization

e other than hyperspectral imaging, what is worthwhile to note?

— its connections to important problems in machine learning and data science
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Thank You! Main References of This Talk

W.-K. Ma, J. M. Bioucas-Dias, T.-H. Chan, N. Gillis, et al., “A signal processing perspective
on hyperpsectral unmixing,” IEEE SP Mag., Jan. 2014.

N. Gillis, “The why and how of nonnegative matrix factorization,” in Regularization,
Optimization, Kernels, and Support Vector Machines, 2014.

X. Fu, K. Huang, N. D. Sidiropoulos, and W.-K. Ma, “Nonnegative matrix factorization
for signal and data analytics: ldentifiability, algorithms, and applications,” IEEE SP Mag.,
2019.
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