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Abstract

This report considers a discrete fractional quadraticoigation problem motivated by a recent
application in blind maximume-likelihood (ML) detection bfgher-order QAM orthogonal space-
time block codes (OSTBCSs) in wireless multiple-input mulisroutput (MIMO) communications.
Since this discrete fractional quadratic optimizationigbeon is NP-hard in general, we present a
suboptimal approach, called linear fractional semidefiretaxation (LFSDR), for obtaining an ac-
curate approximate solution in polynomial complexity. &hpossible relaxation possibilities are
presented, namely the bounded-constrained LFSDR (BC-EjSibe virtually-antipodal LFSDR
(VA-LFSDR), and the polynomial-inspired LFSDR (PI-LFSDRYe compare the three LFSDR
methods in terms of their approximation performances angptexities. Simulation results under
the scenario of blind ML higher-order QAM OSTBC detectior aresented to show the perfor-
mance of the three LFSDR methods as well as their computdttmmplexities.

Keywords. Fractional quadratic function, semidefinite relaxati®@DR), orthogonal space-time
block coding (OSTBC), blind maximume-likelihood (ML) detemn.



1. Introduction

In the report, we consider a discrete maximization problath & fractional quadratic objective
function as follows

TTAz +2aTz +a
ZTBz + 2bT& + b
st. @ e {+1,43,...,£27 - 1)}V (1b)

f* £ max

(1a)

where A, B € RWN-Dx(N-1) gre symmetrica,b € RY"! a,b € R, ¢ is an positive integer,
and the optimization variabled = [7,,7,,...,7y_1|7 are discrete and are of thé-ary pulse
amplitude modulation (PAM) symbols. Problem (1) has beetsittered recently [2] in the context
of blind maximume-likelihood (ML) detection of orthogongbace time block codes (OSTBCs) in
wireless communications. The discrete fractional quadlpabblem (1) is in general very difficult
to solve. In fact, it has been shown that problem (1) is NRthargeneral, which means that
it is unlikely to obtain the global optimum solution of (1) polynomial complexity time for all
possible problem instances. Therefore, it would be degir@bconsider suboptimal but effective
optimization methods for (1).

In the ensuing sections, three suboptimal approaches lmsidear fractional semidefinite
relaxation (LFSDR) [2] are presented. They are the bourtdedtrained LFSDR (BC-LFSDR),
the virtually-antipodal LFSDR (VA-LFSDR), and the polyn@hinspired LFSDR (PI-LFSDR).
These three methods basically have the same spirit in rgjakie original fractional quadratic
problem (1), but employing different ideas in dealing witle tliscrete constraint in (1b). Actually,
the three methods are motivated respectively by the bouodestrained SDR (BC-SDR) [8],
the virtually-antipodal SDR (VA-SDR) [7], and the polynaahinspired SDR (PI-SDR) [11] that
were originally proposed for approximating the coherent iildtiple-input multiple-out (MIMO)
detection problem. Following our recent developments Jrafid [6], we will show in this report
that the BC-LFSDR and VA-LFSDR are equivalent to each otbemahy positive integey, and
the PI-LFSDR is equivalent to the BC-LFSDR and VA-LFSDR jot 2. Besides, the complexity
of these three methods will be compared by comparing theimigation variable sizes and their
numbers of constraints. Simulation results based on timedfinaork of blind ML OSTBC detection
[2] are presented to demonstrate the performances and eritigs of the three methods.

2. Linear Fractional SDR Approach

Before presenting the LFSDR approach, we require to reftat@il) into a homogeneous frac-
tional quadratic problem. In particular, by defining
A a B b

G= , D=
[aT a] b” b




one can reformulate (1) as follows

' Gz
et 27Dx (33)
subject to (s.t.) xp € {£1,£3,...,£2 -1}, k=1,...,n—1, (3b)
x, € {£1}. (3c)
It can be shown [2] thatit* = [z}, ..., 2%, 2%]T isasolution of (3), the@* = [x3z%, ... 2% 2%]T

is a solution of (1). Based on problem (3), we present theethFESDR approaches, BC-LFSDR,
VA-LFSDR and PI-LFSDR, in the ensuing subsections.

2.1 Bounded-Constrained LFSDR

Let us now introduce the BC-LFSDR approach to (3). By defifing- zx”, one can rewrite (3)
in terms ofX as follows:

B TDX] )
st [Xpr €{1,9...,(29 =1}, k=1,...,n—1, (4b)
Xlnn =1, (4c)

X = 0 (positive semidefinite (PSD)), (4d)
rank(X) =1, (4e)

where[X],. » denotes théth diagonal entry oX. In (4), constraints (4b) and (4c) are due to (3b)
and (3c), respectively, and (4d) and (4e) are owinXte- xz”. It can be observed from (4) that
the discrete constraints in (4b) and the rank-1 constraiifdé) are not convex and are difficult
to handle. The idea of SDR is @pproximate problem (3) by removing the rank-1 constraint but
keep the PSD constraid > 0. To deal with the discrete constraint in (4b), we adopt tleaidf
bound-constrained SDR (BC-SDR) in coherent higher-ord&MIMO detection [8] where the
discrete sef1,9,...,(29 — 1)?} is relaxed to an intervdll, (27 — 1)?]. We then end up with the
following LFSDR problem

Tr(GX
fBC_LFSDR = xﬁ@é}z}in ﬁ (5a)
st 1< [Xpp < (29—1)2 k=1,...,n—1, (5b)
X]pn =1, X>0. (5¢)

We should emphasize that problem (5) is structurally quiterént from the BC-SDR problem in
coherent MIMO detection [8]. In the latter, the relaxatioligdem is a convex SDP and can be
directly solved by an interior point SDP algorithm [3, 6]. Byntrast, problem (5) is a quasiconvex



problem. In general, this class of problems can be solveddiobally optimal fashion by the
classical bisection method [1] in which a sequence of SDBilbddy problems need to be solved.
Fortunately, it can be shown that a globally optimum solutio problem (5) can be obtained by
solving just one SDP. The idea is to transform (5) to an SDPth@eadomplete description can be
found in [2, Proposition 1].

Since the relaxation problem (5) in general yields a matokitson with rank greater than
one, a rank-one feasible solution to the original problehcéh be obtained through a Gaussian
randomization procedure. Readers are referred to [2] ®d#tails. Next, we present the VA-
LFSDR and the PI-LFSDR which use quite different ideas from BC-LFSDR in handling the
27-ary PAM constraint.

2.2 Virtually-Antipodal LFSDR

The idea of VA-SDR is to represent ea2hrPAM symbol by a linear combination of binary
symbols [7], that is,

zp € {H1,43, ..., £(21 - 1)} &= zp = by g + by + -+ (297 by,
bl,k, bZJﬂ ey bq7k € {:f:l}. (6)

Let us defind & [bl, by, ..., bq(n_1)+1]T = [bclr, bg, cee 7b§7 bq(n_1)+1]T whereb, = [bi,la ceey bi,n_l]T S
{£1}"~!fori = 1,2, andby,_; € {1}. Then one can expressas

I,., 2L, --- 2¢°'1,, 0
A n—1 n—1 n—1
x=Tb= of o ... o7 ) b. (7)

By substituting (7) into (3), we obtain an equivalent foratidn of problem (3):

b’ TTGTb (8a)
berort BTTTDTh
st. b e{£l}, i=1,...,q(n—1)+1. (8b)
Again, applying the standard SDR principle to (8) gives tsthe VA-LFSDR
a Tr(TTGTB)
Soactrsor = o BBy —TI@TDTB) (%)
B > 0. (9¢)



Problem (9) is a quasiconvex problem. But, like the BC-LFSE&Re, a globally optimum so-
lution to (9) can be effectively obtained by solving an SDReidea is again to apply an SDP
transformation that follows the same spirit as that in [fesition 1].

2.3 Polynomial-Inspired LFSDR

We herein consider the PI-LFSDR for the case;of 2, for simplicity (extension ta; > 2 is
possible but would be complicated; e.g., see [5] for the cdse = 4 ). Letw, = 23, k =
1,...,n — 1. According to the following observation [11]:

wy € {1,9} < ('LUk — 1)(wk — 9) =0
< wi — 10w, +9=0, (10)

problem (3) can alternatively be expressed as

TGz
v 2Dz (11a)
st. x7 —wy =0, (11b)
wi — 10w, +9=0k=1,...,n—1, (11c)
2, € {E11, (11d)
wherew = [wy,...,w,1|T. By following the SDR principle where we writX = zz’ and

W = ww? and then relax them t& = 0 andW = ww?’, we obtain the following PI-LFSDR:

N Tr(GX)
fPi—LFsDR = VIVTl%?iU Tr(DX) (12a)
s.t. kk — W = U,

X, 0 (12b)
[th—lowk—l—gzo,]{?:1,...,71—1, (12¢)

= 0, e

X (12e)

W — ww” >~ 0. (12f)

Like the BC-LFSDR and VA-LFSDR, the SDP transformation ide§, Proposition 1] is appli-
cable to the PI-LFSDR problem in (12). Thus, a globally optimsolution to (12) can also be
obtained by solving an SDP.



2.4 Computational Complexity and Performance Comparisons

One can observe from (5), (9) and (12) that the BC-LFSDR, thd V'SDR and the PI-LFSDR
posses very different problem structures though all of tleenquasiconvex problems. We first
compare the complexities of the three LFSDRs in terms of timabrer of optimization variables
and the number of constraints, as shown in Table 1 for the @age= 2. One can see from the
table that the BC-LFSDR is most favorable in terms of comipaial complexity.

On the other hand, our parallel development on a relatecesufd, 6] has revealed that the
three LFSDR methods in fact are equivalent to each other. WWersrize this key result as the
following proposition:

Proposition 1

1. For any positive integer ¢, the BC-LFSDRin (5) and the VA-LFSDRin (9) are equivalent in
the sense that

fBC—LFSDR = fVA—LFSDPm (13)

and that the optimum solution of one of the LFSDRs can be used to construct that of another
LFSDR.

2. For the case of ¢ = 2, the PI-LFSDRin (12) and the BC-LFSDRin (5) are equivalent in the
sense that

fBC—LFSDR = fPI—LFSDRa (14)

and that the optimum solution of one of the LFSDRs can be used to construct that of another
LFSDR. This equivalence result also holds when PI-LFSDRis extended to ¢ = 4.

Readers are referred to [5, 6] for the full details. It is viaarhile to mention that the goal of [6]
and [5] is to prove the equivalence of the three SDR metho@sSBR, PI-SDR and VA-SDR, in
higher-order QAM coherent ML MIMO detection. Since the leépuesented there is independent
of the objective structure of the problems, it is perfecpplécable to the BC-LFSDR, VA-LFSDR
and the PI-LFSDR considered in the report. The equivalehtieedhree LFSDRs will be verified
in the next section by simulations.

3. Simulation Results

In this section, we examine the performance of the BC-LFSD&PI-LFSDR and the VA-LFSDR
by simulations. To this end, we consider the scenario of limel L higher-order QAM OSTBC



Number of variables

Number of constraints

BC-LFSDR

n? (2n — 1) inequality/equality constraints and 1 PSD constrg

VA-LFSDR

(2n —1)* (2n — 1) inequality/equality constraints and 1 PSD constrg

PI-LFSDR | n* + (n — 1)+ (n — 1)

(2n — 1) inequality/equality constraints and 2 PSD constra

Table 1. Comparison of number of optimization variables and consisaof BC-LFSDR, VA-

LFSDR, and PI-LFSDR fog = 2.

detection problem in wireless MIMO systems [2]. SupposéttaMIMO OSTBC system hay,
transmit antennas and, receive antennas. The received signal model at the redsigeren by

Here,
Y, € CNxT

u, € UX

C(u,) € CNexT

H e CNrxNe

W, € CNxT

It is assumed that the channel is frequency flat and it renstatis for a number oP consecutive
code blocks. The blind ML OSTBC detection problem is to cdasihe following optimization

problem

in which the unknown dat{aup}ff:l and channeH are jointly detected and estimated, respectively.

Y, =HC(u,) + W, p=1,..., P

received code matrix at blogk with 7" being the block length of the OSTBCs;

transmitted symbol vector at blogk with &/ C C being the symbol constel-

lation set and< being the number of symbols per block;

OSTBC mapping function [10] with

C(u,) =

wherej = /—1 andA,, B, € RV*T are the code basis matrices;

MIMO channel matrix;

additive white Gaussian noise matrix with the average pg@eeentry given

by o2 .

min min
u,eU® | HeCNrx Nt

]~

k=1

P

K

Re(up ) Ax + 5 Y Im(u,4)By
k=1

Z 1Y, — HC(up)||2} )

p=1

Suppose that the 16-QAM signals, e.g., are used, that is,

U={u=ur+jus|ug,ur € {£l,£3}}.

(15)

(16)

int
int
nts



Define

A T
Sp = [Sp71, ey Sp,ZK]

_ T T\|T 2K

= [Re(u, ), Im(u, )] € {£1, £3}°7, (17)
s=[s1,s5,...,80|" € {£1,£3}*"K. (18)

Then following the reformulation ideas in [2], one can refoitate (16) into a fractional quadratic
problem as follows

A iTRi + 2(5171VT)Q + Silu
fML - max

Be{+1,43)2PK-1 T + s%,

, (19)

wheres; ; is assumed to be the pilot PAM symbol, and

F: : '.. : =

1,1 1,P a7
v R|’

Fp, --- Fpp
[Fpqlke = Re{Tr{prffof}}7

andXy,_ 1 = Ay, Xy, = By fork = 1,..., K. It can be seen that (19) has an identical form as
(1), and hence the three LFSDR methods presented in theopsesection can be applied.

In the simulations, we assumed that the channel coefficlHnigere independent and iden-
tically distributed (i.i.d.) circular complex Gaussiamdmm variables with zero mean and unit
variance. The signal-to-noise ratio (SNR) was defined as

2
SNR — E{HHC(ungF} _ 10N132K‘
E{[[W, %} To3,

The complexd x 4 OSTBC (V; =3, T =4, K = 3) [4]

S1 +j82 —S83 +j84 — S5 —|-j86 0
C(s) = [ss+jsa s1—7jso 0 —S5 + J5S6 (20)
S5 + JSe 0 S1—7JS2 83— ]S4

was used. SeDuMi [9] was employed to solve the three LFSDRI@nas. Each simulation result
was obtained by averaging at least 000 trials.

Figure 1 presents the performance comparison results)fay,(a= 1 and (b) N, = 4. As seen
from this figure, the three different detectors exhibit adinithe same performance for different
numbers ofP and V,, consistent with the theoretical result in Proposition 1.
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Figure 1. Performance (SER v.s. SNR) comparison results of the peagpb&SDR (BC-LFSDR), the
PI-LFSDR and the VA-LFSDR blind ML detectors for the compex 4 OSTBC.

To compare the complexities of the three LFSDR methods garéi2 we present their average
running times for SNR23 dB andN,, = 1. One can see from this figure that the BC-LFSDR is
computationally more efficient than the PI-LFSDR and VA-ILHS

4. Conclusion

In conclusion, we have considered three LFSDR methods faroxpmating a discrete fractional
guadratic optimization problem, with an application tanbliML higher-order OSTBC detection.
While the three LFSDRs are rather different in appeararitay; &re equivalent problems as in-
dicated by the concurrent theoretical analysis in [5]. Weehased simulations to verify that the
three LFSDRs indeed yield identical performance. Moreower have compared the numerical
complexities of the three LFSDRs, and found that the BC-LRS® computationally most effi-
cient among the three.
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