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Abstract
This report considers a discrete fractional quadratic optimization problem motivated by a recent

application in blind maximum-likelihood (ML) detection ofhigher-order QAM orthogonal space-
time block codes (OSTBCs) in wireless multiple-input multiple-output (MIMO) communications.
Since this discrete fractional quadratic optimization problem is NP-hard in general, we present a
suboptimal approach, called linear fractional semidefinite relaxation (LFSDR), for obtaining an ac-
curate approximate solution in polynomial complexity. Three possible relaxation possibilities are
presented, namely the bounded-constrained LFSDR (BC-LFSDR), the virtually-antipodal LFSDR
(VA-LFSDR), and the polynomial-inspired LFSDR (PI-LFSDR). We compare the three LFSDR
methods in terms of their approximation performances and complexities. Simulation results under
the scenario of blind ML higher-order QAM OSTBC detection are presented to show the perfor-
mance of the three LFSDR methods as well as their computational complexities.

Keywords: Fractional quadratic function, semidefinite relaxation (SDR), orthogonal space-time
block coding (OSTBC), blind maximum-likelihood (ML) detection.



1. Introduction

In the report, we consider a discrete maximization problem with a fractional quadratic objective

function as follows

f ⋆ , max
x̃

T
Ax̃ + 2aT

x̃ + a

x̃
TBx̃ + 2bT

x̃ + b
(1a)

s.t. x̃ ∈ {±1,±3, . . . ,±(2q − 1)}N−1, (1b)

whereA,B ∈ R(N−1)×(N−1) are symmetric,a,b ∈ RN−1, a, b ∈ R, q is an positive integer,

and the optimization variables̃x = [x̃1, x̃2, . . . , x̃N−1]
T are discrete and are of the2q-ary pulse

amplitude modulation (PAM) symbols. Problem (1) has been considered recently [2] in the context

of blind maximum-likelihood (ML) detection of orthogonal space time block codes (OSTBCs) in

wireless communications. The discrete fractional quadratic problem (1) is in general very difficult

to solve. In fact, it has been shown that problem (1) is NP-hard in general, which means that

it is unlikely to obtain the global optimum solution of (1) inpolynomial complexity time for all

possible problem instances. Therefore, it would be desirable to consider suboptimal but effective

optimization methods for (1).

In the ensuing sections, three suboptimal approaches basedon linear fractional semidefinite

relaxation (LFSDR) [2] are presented. They are the bounded-constrained LFSDR (BC-LFSDR),

the virtually-antipodal LFSDR (VA-LFSDR), and the polynomial-inspired LFSDR (PI-LFSDR).

These three methods basically have the same spirit in relaxing the original fractional quadratic

problem (1), but employing different ideas in dealing with the discrete constraint in (1b). Actually,

the three methods are motivated respectively by the bounded-constrained SDR (BC-SDR) [8],

the virtually-antipodal SDR (VA-SDR) [7], and the polynomial-inspired SDR (PI-SDR) [11] that

were originally proposed for approximating the coherent MLmultiple-input multiple-out (MIMO)

detection problem. Following our recent developments in [5] and [6], we will show in this report

that the BC-LFSDR and VA-LFSDR are equivalent to each other for any positive integerq, and

the PI-LFSDR is equivalent to the BC-LFSDR and VA-LFSDR forq = 2. Besides, the complexity

of these three methods will be compared by comparing their optimization variable sizes and their

numbers of constraints. Simulation results based on the framework of blind ML OSTBC detection

[2] are presented to demonstrate the performances and complexities of the three methods.

2. Linear Fractional SDR Approach

Before presenting the LFSDR approach, we require to reformulate (1) into a homogeneous frac-

tional quadratic problem. In particular, by defining

G =

[

A a

a
T a

]

, D =

[

B b

b
T b

]

, (2)
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one can reformulate (1) as follows

max
x∈Rn

x
T
Gx

x
TDx

(3a)

subject to (s.t.) xk ∈ {±1,±3, . . . ,±(2q − 1)}, k = 1, . . . , n − 1, (3b)

xn ∈ {±1}. (3c)

It can be shown [2] that ifx⋆ = [x⋆
1, . . . , x

⋆
n−1, x

⋆
n]T is a solution of (3), theñx⋆ = [x⋆

1x
⋆
n, . . . , x⋆

n−1x
⋆
n]T

is a solution of (1). Based on problem (3), we present the three LFSDR approaches, BC-LFSDR,

VA-LFSDR and PI-LFSDR, in the ensuing subsections.

2.1 Bounded-Constrained LFSDR

Let us now introduce the BC-LFSDR approach to (3). By definingX = xx
T , one can rewrite (3)

in terms ofX as follows:

max
X∈Rn×n

Tr(GX)

Tr(DX)
(4a)

s.t. [X]k,k ∈ {1, 9 . . . , (2q − 1)2}, k = 1, . . . , n − 1, (4b)

[X]n,n = 1, (4c)

X � 0 (positive semidefinite (PSD)), (4d)

rank(X) = 1, (4e)

where[X]k,k denotes thekth diagonal entry ofX. In (4), constraints (4b) and (4c) are due to (3b)

and (3c), respectively, and (4d) and (4e) are owing toX = xx
T . It can be observed from (4) that

the discrete constraints in (4b) and the rank-1 constraint in (4e) are not convex and are difficult

to handle. The idea of SDR is toapproximate problem (3) by removing the rank-1 constraint but

keep the PSD constraintX � 0. To deal with the discrete constraint in (4b), we adopt the idea of

bound-constrained SDR (BC-SDR) in coherent higher-order QAM MIMO detection [8] where the

discrete set{1, 9, . . . , (2q − 1)2} is relaxed to an interval[1, (2q − 1)2]. We then end up with the

following LFSDR problem

fBC−LFSDR , max
X∈Rn×n

Tr(GX)

Tr(DX)
(5a)

s.t. 1 ≤ [X]k,k ≤ (2q − 1)2, k = 1, . . . , n − 1, (5b)

[X]n,n = 1, X � 0. (5c)

We should emphasize that problem (5) is structurally quite different from the BC-SDR problem in

coherent MIMO detection [8]. In the latter, the relaxation problem is a convex SDP and can be

directly solved by an interior point SDP algorithm [3,6]. Bycontrast, problem (5) is a quasiconvex
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problem. In general, this class of problems can be solved in aglobally optimal fashion by the

classical bisection method [1] in which a sequence of SDP feasibility problems need to be solved.

Fortunately, it can be shown that a globally optimum solution to problem (5) can be obtained by

solving just one SDP. The idea is to transform (5) to an SDP andthe complete description can be

found in [2, Proposition 1].

Since the relaxation problem (5) in general yields a matrix solution with rank greater than

one, a rank-one feasible solution to the original problem (3) can be obtained through a Gaussian

randomization procedure. Readers are referred to [2] for the details. Next, we present the VA-

LFSDR and the PI-LFSDR which use quite different ideas from the BC-LFSDR in handling the

2q-ary PAM constraint.

2.2 Virtually-Antipodal LFSDR

The idea of VA-SDR is to represent each2q-PAM symbol by a linear combination ofq binary

symbols [7], that is,

xk ∈ {±1,±3, . . . ,±(2q − 1)} ⇐⇒ xk = b1,k + 2b2,k + · · · + (2q−1)bq,k,

b1,k, b2,k, . . . , bq,k ∈ {±1}. (6)

Let us defineb , [b1, b2, . . . , bq(n−1)+1]
T = [ bT

1 , b
T
2 , · · · ,bT

q , bq(n−1)+1]
T wherebi = [bi,1, . . . , bi,n−1]

T ∈
{±1}n−1 for i = 1, 2, andb2n−1 ∈ {±1}. Then one can expressx as

x , Tb =

[

In−1 2In−1 · · · 2q−1
In−1 0

0
T

0
T · · · 0

T 1

]

b. (7)

By substituting (7) into (3), we obtain an equivalent formulation of problem (3):

max
b∈R2n−1

b
T
T

T
GTb

bTTTDTb
(8a)

s.t. bi ∈ {±1}, i = 1, ..., q(n − 1) + 1. (8b)

Again, applying the standard SDR principle to (8) gives riseto the VA-LFSDR

fVA−LFSDR , max
B∈Rq(n−1)+1×q(n−1)+1

Tr(TT
GTB)

Tr(TTDTB)
(9a)

s.t. [B]k,k = 1, k = 1, . . . , q(n − 1) + 1, (9b)

B � 0. (9c)
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Problem (9) is a quasiconvex problem. But, like the BC-LFSDRcase, a globally optimum so-

lution to (9) can be effectively obtained by solving an SDP. The idea is again to apply an SDP

transformation that follows the same spirit as that in [2, Proposition 1].

2.3 Polynomial-Inspired LFSDR

We herein consider the PI-LFSDR for the case ofq = 2, for simplicity (extension toq > 2 is

possible but would be complicated; e.g., see [5] for the caseof q = 4 ). Let wk = x2
k, k =

1, . . . , n − 1. According to the following observation [11]:

wk ∈ {1, 9} ⇐⇒ (wk − 1)(wk − 9) = 0

⇐⇒ w2
k − 10wk + 9 = 0, (10)

problem (3) can alternatively be expressed as

max
w∈Rn−1,x∈Rn

x
T
Gx

x
TDx

(11a)

s.t. x2
k − wk = 0, (11b)

w2
k − 10wk + 9 = 0, k = 1, . . . , n − 1, (11c)

xn ∈ {±1}, (11d)

wherew = [w1, . . . , wn−1]
T . By following the SDR principle where we writeX = xx

T and

W = ww
T and then relax them toX � 0 andW � ww

T , we obtain the following PI-LFSDR:

fPI−LFSDR , max
W,X,w

Tr(GX)

Tr(DX)
(12a)

s.t. [X]k,k − wk = 0, (12b)

[W]k,k − 10wk + 9 = 0, k = 1, . . . , n − 1, (12c)

[X]n,n = 1, (12d)

X � 0, (12e)

W − ww
T � 0. (12f)

Like the BC-LFSDR and VA-LFSDR, the SDP transformation ideain [2, Proposition 1] is appli-

cable to the PI-LFSDR problem in (12). Thus, a globally optimum solution to (12) can also be

obtained by solving an SDP.
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2.4 Computational Complexity and Performance Comparisons

One can observe from (5), (9) and (12) that the BC-LFSDR, the VA-LFSDR and the PI-LFSDR

posses very different problem structures though all of themare quasiconvex problems. We first

compare the complexities of the three LFSDRs in terms of the number of optimization variables

and the number of constraints, as shown in Table 1 for the caseof q = 2. One can see from the

table that the BC-LFSDR is most favorable in terms of computational complexity.

On the other hand, our parallel development on a related subject [5, 6] has revealed that the

three LFSDR methods in fact are equivalent to each other. We summarize this key result as the

following proposition:

Proposition 1

1. For any positive integer q, the BC-LFSDR in (5) and the VA-LFSDR in (9) are equivalent in

the sense that

fBC−LFSDR = fVA−LFSDR, (13)

and that the optimum solution of one of the LFSDRs can be used to construct that of another

LFSDR.

2. For the case of q = 2, the PI-LFSDR in (12) and the BC-LFSDR in (5) are equivalent in the

sense that

fBC−LFSDR = fPI−LFSDR, (14)

and that the optimum solution of one of the LFSDRs can be used to construct that of another

LFSDR. This equivalence result also holds when PI-LFSDR is extended to q = 4.

Readers are referred to [5,6] for the full details. It is worthwhile to mention that the goal of [6]

and [5] is to prove the equivalence of the three SDR methods, BC-SDR, PI-SDR and VA-SDR, in

higher-order QAM coherent ML MIMO detection. Since the result presented there is independent

of the objective structure of the problems, it is perfectly applicable to the BC-LFSDR, VA-LFSDR

and the PI-LFSDR considered in the report. The equivalence of the three LFSDRs will be verified

in the next section by simulations.

3. Simulation Results

In this section, we examine the performance of the BC-LFSDR,the PI-LFSDR and the VA-LFSDR

by simulations. To this end, we consider the scenario of the blind ML higher-order QAM OSTBC
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Number of variables Number of constraints
BC-LFSDR n2 (2n − 1) inequality/equality constraints and 1 PSD constraint
VA-LFSDR (2n − 1)2 (2n − 1) inequality/equality constraints and 1 PSD constraint
PI-LFSDR n2 + (n − 1)2 + (n − 1) (2n − 1) inequality/equality constraints and 2 PSD constraints

Table 1. Comparison of number of optimization variables and constraints of BC-LFSDR, VA-
LFSDR, and PI-LFSDR forq = 2.

detection problem in wireless MIMO systems [2]. Suppose that the MIMO OSTBC system hasNt

transmit antennas andNr receive antennas. The received signal model at the receiveris given by

Yp = HC(up) + Wp, p = 1, . . . , P. (15)

Here,

Yp ∈ CNr×T received code matrix at blockp, with T being the block length of the OSTBCs;

up ∈ UK transmitted symbol vector at blockp, with U ⊂ C being the symbol constel-

lation set andK being the number of symbols per block;

C(up) ∈ CNt×T OSTBC mapping function [10] with

C(up) =
K

∑

k=1

Re(up,k)Ak + j

K
∑

k=1

Im(up,k)Bk

wherej =
√
−1 andAk,Bk ∈ RNt×T are the code basis matrices;

H ∈ CNr×Nt MIMO channel matrix;

Wp ∈ CNr×T additive white Gaussian noise matrix with the average powerper entry given

by σ2
w.

It is assumed that the channel is frequency flat and it remainsstatic for a number ofP consecutive

code blocks. The blind ML OSTBC detection problem is to consider the following optimization

problem

min
up∈UK

p=1,...,P

{

min
H∈CNr×Nt

P
∑

p=1

‖Yp − HC(up)‖2

}

, (16)

in which the unknown data{up}P
p=1 and channelH are jointly detected and estimated, respectively.

Suppose that the 16-QAM signals, e.g., are used, that is,

U = { u = uR + j uI | uR, uI ∈ {±1,±3} }.
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Define

sp , [sp,1, . . . , sp,2K ]T

= [Re(uT
p ), Im(uT

p )]T ∈ {±1,±3}2K , (17)

s = [sT
1 , sT

2 , . . . , sT
P ]T ∈ {±1,±3}2PK . (18)

Then following the reformulation ideas in [2], one can reformulate (16) into a fractional quadratic

problem as follows

fML , max
x̃∈{±1,±3}2PK−1

x̃
T
Rx̃ + 2(s1,1v

T )x̃ + s2
1,1u

x̃
T
x̃ + s2

1,1

, (19)

wheres1,1 is assumed to be the pilot PAM symbol, and

F =









F1,1 · · · F1,P

...
. . .

...

FP,1 · · · FP,P









,

[

u v
T

v R

]

,

[Fp,q]k,ℓ = Re{Tr{YpX
H
k XℓY

H
q }},

andX2k−1 = Ak, X2k = Bk for k = 1, . . . , K. It can be seen that (19) has an identical form as

(1), and hence the three LFSDR methods presented in the previous section can be applied.

In the simulations, we assumed that the channel coefficientsH were independent and iden-

tically distributed (i.i.d.) circular complex Gaussian random variables with zero mean and unit

variance. The signal-to-noise ratio (SNR) was defined as

SNR =
E{‖HC(up)‖2

F}
E{‖Wp‖2

F}
=

10NtK

Tσ2
w

.

The complex3 × 4 OSTBC (Nt = 3, T = 4, K = 3) [4]

C(s) =







s1 + js2 −s3 + js4 −s5 + js6 0

s3 + js4 s1 − js2 0 −s5 + js6

s5 + js6 0 s1 − js2 s3 − js4






(20)

was used. SeDuMi [9] was employed to solve the three LFSDR problems. Each simulation result

was obtained by averaging at least10, 000 trials.

Figure 1 presents the performance comparison results for (a) Nr = 1 and (b)Nr = 4. As seen

from this figure, the three different detectors exhibit almost the same performance for different

numbers ofP andNr, consistent with the theoretical result in Proposition 1.
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Figure 1. Performance (SER v.s. SNR) comparison results of the proposed LFSDR (BC-LFSDR), the
PI-LFSDR and the VA-LFSDR blind ML detectors for the complex3 × 4 OSTBC.

To compare the complexities of the three LFSDR methods, in Figure 2 we present their average

running times for SNR=23 dB andNr = 1. One can see from this figure that the BC-LFSDR is

computationally more efficient than the PI-LFSDR and VA-LFSDR.

4. Conclusion

In conclusion, we have considered three LFSDR methods for approximating a discrete fractional

quadratic optimization problem, with an application to blind ML higher-order OSTBC detection.

While the three LFSDRs are rather different in appearance, they are equivalent problems as in-

dicated by the concurrent theoretical analysis in [5]. We have used simulations to verify that the

three LFSDRs indeed yield identical performance. Moreover, we have compared the numerical

complexities of the three LFSDRs, and found that the BC-LFSDR is computationally most effi-

cient among the three.
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