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A Linear Fractional Semidefinite Relaxation

Approach to Maximum-Likelihood

Detection of Higher-Order QAM OSTBC in

Unknown Channels§

Tsung-Hui Chang†, Chien-Wei Hsin‡, Wing-Kin Ma⋆, and Chong-Yung Chi∗

Abstract—This paper considers the blind maximum-likelihood
(ML) detection problem for orthogonal space-time block codes
(OSTBCs) in multiple-input multiple-output flat-fading channels.
While the blind ML detection problem for general space-time
codes is difficult to solve, it has been shown that for OSTBCs
with constant modulus constellations, the blind ML detection
problem can be formulated as a discrete quadratic program, and
then handled by a powerful convex approximation technique
known as semidefinite relaxation (SDR). In this paper, we turn
our attention to the case of higher-order QAM OSTBCs. Due to
the nonconstant modulus nature of higher-order QAM signals,
the blind ML detection problem turns out to be a discrete
Rayleigh quotient maximization problem, and as a result the
current SDR technique is no longer directly applicable. We
propose a linear fractional SDR (LFSDR) approach to this
problem. This approach first relaxes the higher-order QAM blind
ML detection problem into a quasiconvex problem, followed
by a simple solution approximation procedure. In general,
quasiconvex problems are computationally more complex to
solve than convex problems, but we show that an optimum
solution of our quasiconvex problem can be efficiently obtained
by solving a convex semidefinite program. The approximation
accuracy of the proposed approach relative to other possible
relaxation approaches is also studied. Simulation results are
presented to demonstrate that the proposed LFSDR-based blind
ML detector outperforms some existing suboptimal detectors
and can yield promising performance even with a small to
moderate number of code blocks.

Index terms− Orthogonal space-time block coding (OSTBC),
maximum-likelihood (ML) detection, noncoherent detection,

Copyright (c) 2008 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

§This work is supported by the National Science Council, R.O.C., under
Grant NSC 97-2221-E-007-073-MY3, NSC 96-2219-E007-001 and NSC 96-
2628-E-007-002-MY2; and partly by the Chinese University of Hong Kong
(Project ID 2050396), and by a General Research Fund awarded by Research
Grant Council, Hong Kong (Project No. CUHK 415908). Part of this work
was presented at the International Conference on Communications, Beijing,
China, May 19-23, 2008.

‡Tsung-Hui Chang is with Institute of Communications Engineering & De-
partment of Electrical Engineering, National Tsing Hua University, Hsinchu,
Taiwan 30013, R.O.C. E-mail: changth@mx.nthu.edu.tw.

†Chien-Wei Hsin is with Realtek Semiconductor Corporation, Hsinchu,
Taiwan 300, R.O.C. E-mail: garyhsinf@gmail.com.

⋆Wing-Kin Ma is the corresponding author. Address: Department of Elec-
tronic Engineering, Chinese University of Hong Kong, Shatin, Hong Kong
S.A.R., China. E-mail: wkma@ieee.org.

∗Chong-Yung Chi is with Institute of Communications Engineering & De-
partment of Electrical Engineering, National Tsing Hua University, Hsinchu,
Taiwan 30013, R.O.C. E-mail: cychi@ee.nthu.edu.tw.

blind detection, semidefinite relaxation.

I. INTRODUCTION

The orthogonal space-time block codes (OSTBCs) have

been of great interest because they can achieve the full transmit

diversity by a simple symbol-by-symbol coherent maximum-

likelihood (ML) detector. For blind or noncoherent data de-

tection and channel estimation techniques, the OSTBCs are

also attractive because, compared to other space-time codes,

they have a much simpler blind receiver structure [1]. For

instance, blind OSTBC channel estimators based on second-

order statistics or signal subspace [2]–[4] have been found to

yield simple closed-form solutions and they may achieve near-

coherent performance provided that the channel is static for a

large number of code blocks. For channels that are static only

for two code blocks, the differential OSTBC scheme [5] can be

applied with a symbol-by-symbol ML detector at the receiver.

It however suffers from a 3 dB performance loss in signal-

to-noise ratio (SNR) compared to the coherent ML detector.

By contrast, the blind ML detector [6]–[10] based on the

deterministic blind ML criterion [7], [11] has been shown to

be able to provide near-coherent performance even for a small

to moderate number of code blocks (say, 8-20 code blocks).

The blind ML detection problem is a computationally difficult

optimization problem. For BPSK/QPSK constellations, it has

been shown [6] that the blind ML detection problem can be

simplified to a Boolean quadratic program (BQP). To solve

the BQP, the sphere decoding methods originally developed

for integer least squares (LS) problems [12] can be used [6].

It is empirically found that sphere decoding is computationally

very efficient in solving BQP problems of small size; however

its complexity quickly becomes unaffordable for problems of

moderate to large size. Alternatively, it has been found that the

BQP can be efficiently (in polynomial time) and accurately

approximated by a semidefinite relaxation (SDR) method [6],

[13]. This successful endeavor has motivated some works that

extend the framework to M-ary PSK (MPSK) OSTBCs [9],

[10], [14], [15] and to orthogonal space-time block coded

orthogonal frequency division multiplexing (OSTBC-OFDM)

[16], [17].

In this paper, we consider blind OSTBC detection tech-

niques for higher-order QAM signaling. The detection prob-
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lems in this case can be quite different compared with their

BPSK/QPSK and MPSK counterparts. First, we show in the

paper that the higher-order QAM blind ML OSTBC detection

problem is equivalent to a discrete optimization problem with

a Rayleigh quotient objective function. This problem is much

more difficult to handle than the BQP encountered in the

BPSK/QPSK case: Not only the former has more complex

objective and constraint structures, but the standard SDR and

sphere decoding approaches used in the previous works [6],

[9], [10], [12] are no longer directly applicable. The modified

sphere decoder by Cui and Tellambura [9] can be used to

search for the global blind ML solution in this nonconstant

modulus case. However, our simulation results will show that

for higher-order QAM OSTBCs the complexity of the mod-

ified sphere decoder increases very rapidly with the problem

size (in an exponential fashion). Another work particularly

worth mentioning is that by Xu et al. [18] who proposed

a more efficient optimal detector for nonconstant modulus

blind ML single-input multiple-output (SIMO) detection. This

very recently proposed work has not considered the OSTBC

scenario so far.

In this paper, we propose a linear fractional SDR (LFSDR)

approach to efficient approximation of the higher-order QAM

blind ML OSTBC detection problem. In this approach, we

first apply an SDR idea similar to the bound-constrained

SDR (BC-SDR) in higher-order QAM coherent multiple-input

multiple-output (MIMO) detection [19]. However, unlike the

work in [19], we will be faced with a relaxation problem that

is quasiconvex due to its linear fractional objective structure.

Though a quasiconvex problem can be optimally solved using

the bisection method [20], it is generally argued that solving

a quasiconvex problem would be more complex than solving

a convex problem. We will show that the optimum solution of

our quasiconvex problem can be obtained by simply solving

a convex semidefinite program (SDP). Hence, the proposed

LFSDR approach can be efficiently implemented, like the

previous SDR method for BPSK/QPSK OSTBCs [6]. For the

LFSDR approach, two more contributions are provided in this

paper. First, we provide a specialized interior-point algorithm

(IPA) for the proposed LFSDR, in order to improve the compu-

tational efficiency in implementations. Simulation results will

show that the specialized IPA is much faster than general-

purpose SDP solvers such as SeDuMi [21]. Second, we study

the relationship of the proposed LFSDR with other relaxation

methods. For instance, we will show that the approximation

accuracy of the proposed LFSDR is at least no worse than a

simple norm relaxation method.

The rest of this paper is organized as follows. The higher-

order QAM blind ML OSTBC detection problem and the

associated background are described in Section II. In Section

III, the proposed LFSDR-based approximation method is

presented. The relationship of the proposed LFSDR method

with some other relaxation methods is also investigated in

that section. Performance advantages of the proposed LFSDR

approach over existing suboptimal methods are demonstrated

in Section IV by simulation results. Finally, we give the

conclusions in Section V.

II. PROBLEM STATEMENT AND BACKGROUND

We consider an MIMO OSTBC system with Nt transmit

antennas and Nr receive antennas. It is assumed that the

channel is frequency flat and it remains static for a number

of P consecutive code blocks. The respective received signal

model is given by

Yp = HC(up) +Wp, p = 1, . . . , P. (1)

Here,

Yp ∈ CNr×T received code matrix at block p, with T
being the block length of the OSTBCs;

up ∈ UK transmitted symbol vector at block p,

with U ⊂ C being the symbol constel-

lation set and K being the number of

symbols per block;

C : CK → CNt×T function that maps the given symbol

vector to an OSTBC block;

H ∈ CNr×Nt MIMO channel matrix;

Wp ∈ CNr×T additive white Gaussian noise matrix

with the average power per entry given

by σ2
w.

An OSTBC mapping function C(·) can always be expressed

in a linear dispersion form as [22], [23]

C(up) =

K
∑

k=1

Re(up,k)Ak + j

K
∑

k=1

Im(up,k)Bk (2)

where j =
√
−1 and Ak,Bk ∈ RNt×T are the code basis

matrices. The basis matrices are specially designed such that,

for any up ∈ CK , the orthogonal condition is satisfied:

C(up)C
H(up) = ‖up‖2INt

, (3)

where INt
is the Nt ×Nt identity matrix.

Here we are interested in detecting {up}Pp=1 from {Yp}Pp=1

without knowing H (a.k.a. noncoherent OSTBC detection). To

this end, we consider the deterministic blind ML problem [7],

[11]

min
up∈UK

p=1,...,P

{

min
H∈CNr×Nt

P
∑

p=1

‖Yp −HC(up)‖2
}

, (4)

in which the unknown data {up}Pp=1 and channel H are jointly

detected and estimated. To see how the joint optimization

problem (4) can be handled, let us define

Y = [Y1,Y2, . . . ,YP ] ∈ C
Nr×PT , (5)

C(u) = [C(u1),C(u2), . . . ,C(uP )] ∈ C
Nt×PT , (6)

u = [uT
1 ,u

T
2 , . . . ,u

T
P ]

T ∈ UPK , (7)

and write (4) as

min
u∈UPK

{

min
H∈CNr×Nt

‖Y −HC(u)‖2F
}

. (8)

The solution of the inner minimization term in (8) is given by

H = YCH(u)
[

C(u)CH(u)
]−1

. (9)
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By substituting (9) into (8) and after some matrix manipula-

tions, the blind ML problem (4) can be reformulated as the

following maximization problem

max
u∈UPK

Tr
(

YCH(u)
[

C(u)CH(u)
]−1

C(u)YH
)

, (10)

in which Tr(·) denotes the trace of a matrix. To show how

(10) can be further simplified, let us take the QPSK as an

example, i.e., U = {±1± j}. One can define

sp , [sp,1, . . . , sp,2K ]T = [Re(uT
p ), Im(uT

p )]
T ∈ {±1}2K,

(11)

and rewrite (2) into a more convenient form as

C(up) = C(sp) =

2K
∑

k=1

sp,kXk, (12)

where Xk = Ak and Xk+K = jBk for k = 1, . . . ,K . Due

to the constant modulus property of QPSK and the orthogonal

property in (3), the term C(u)CH(u) in (10) can be reduced

to

C(u)CH(u) = 2PKINt
, (13)

which is constant and does not depend on {up}Pp=1. By

utilizing the linear dispersion property in (12) and by (13),

it can be shown [6] that problem (10) can be expressed as a

Boolean quadratic program (BQP) as follows

s⋆ = arg max
s∈{±1}2PK

sTFs, (14)

where s = [sT1 , . . . , s
T
P ]

T ∈ {±1}2PK and

F =







F1,1 · · · F1,P

...
. . .

...

FP,1 · · · FP,P






∈ R

2PK×2PK ,

[Fp,q]k,ℓ = Re{Tr{YpX
H
k XℓY

H
q }}.

Though the BQP in (14) appears to be simple, it in essence

is an NP-hard problem, which indicates that the BQP is

unlikely to be solved in polynomial time. Fortunately, recent

developments [6] have shown that an approximation method

based on semidefinite relaxation (SDR) is able to provide a

near-optimal solution of (14) with a polynomial-time worst-

case complexity of O((2PK)3.5). Alternatively, the BQP can

be optimally solved by a standard sphere decoding algorithm.

Readers are referred to [6] for the details; also to [9], [10],

[15], [24] and [25] for the extension of the SDR method and

the sphere decoding algorithm to MPSK signals.

In this paper, we investigate the blind ML OSTBC detection

problem (4) with nonconstant modulus signal constellations.

Specifically, we focus on the case of higher-order QAM

signaling (e.g., 16-QAM and 64-QAM). Mathematically, a 4q-

QAM constellation set (where q > 1 is a positive integer) can

be represented by

U = { u = uR + j uI | uR, uI ∈ {±1,±3, . . . ,±(2q − 1)} }.

Since a QAM symbol is composed of two independent pulse

amplitude modulated (PAM) symbols, the sp in (11) in this

case is a 2q-PAM vector, i.e.,

sp , [sp,1, . . . , sp,2K ]T ∈ {±1,±3, . . . ,±(2q − 1)}2K .
(15)

Because QAM signals are not constant modulus, we instead

have (13) as

C(u)CH(u) = ‖u‖2INt
= ‖s‖2INt

. (16)

By following the same reformulation idea as for BPSK and

QPSK constellations [6], but considering (16), one can show

that the blind ML OSTBC detection problem [viz., Prob-

lem (10)] for the 4q-QAM signaling case can be simplified

to a discrete maximization problem as follows

s⋆ = arg max
s∈{±1,±3,...,±(2q−1)}2PK

sTFs

sT s
. (17)

Comparing (17) with the BQP in (14), one can observe that

the former has a Rayleigh quotient objective function. As

a result, one would find that the standard SDR method and

sphere decoding algorithm for the QPSK constellation cannot

be applied to the higher-order QAM case.

III. LINEAR FRACTIONAL SDR APPROACH

In this section, we present the main results of this paper,

namely the LFSDR approach to the approximation of the

higher-order QAM blind ML OSTBC detection problem.

A. Linear Fractional Semidefinite Relaxation (LFSDR)

In the higher-order QAM blind ML OSTBC detection prob-

lem in (17), one can see that the optimal symbol decision suf-

fers from ambiguity up to a scalar of {±1,±3, . . . ,±(2q−1)}.

To fix this problem, we assume that one of the 2q-PAM

symbols in s is known to the receiver; e.g., through the use of

one pilot symbol. Without loss of generality, s1,1 is assumed

to be the known symbol.

Let us partition

F =

[

u vT

v R

]

, s =

[

s1,1
x̃

]

, (18)

where u ∈ R, v ∈ R2PK−1, R ∈ R(2PK−1)×(2PK−1) and

x̃ ∈ {±1,±3, . . . ,±(2q − 1)}2PK−1. With s1,1 being known,

the blind ML detection problem [in (17)] is modified as

fML ,

max
x̃∈{±1,±3,...,±(2q−1)}2PK−1

x̃TRx̃+ 2(s1,1v
T )x̃+ s21,1u

x̃T x̃+ s21,1
(19a)

We consider a homogeneous reformulation of (19) which is

an essential procedure in applying SDR [6], [13], [19]. By

following the reformulation steps for semiblind ML OSTBC

detection (see Section VI in [6]), one can show that:

Fact 1 Define n = 2PK , and

G =

[

R s1,1v
s1,1v

T s21,1u

]

, D =

[

In−1 0

0T s21,1

]

. (20)
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Problem (19) can be reformulated as

max
x∈Rn

xTGx

xTDx
(21a)

subject to (s.t.) xk ∈ {±1,±3, . . . ,±(2q − 1)}, (21b)

k = 1, . . . , n− 1,

xn ∈ {±1}, (21c)

and the relationship between (21) and (19) is as follows: If

x⋆ = [x⋆
1, . . . , x

⋆
n−1, x

⋆
n]

T is a solution of (21), then x̃⋆ =
[x⋆

1x
⋆
n, . . . , x

⋆
n−1x

⋆
n]

T is a solution of (19).

Let us now introduce the LFSDR approach to (21). By

defining X = xxT , one can rewrite (21) in terms of X as

follows:

max
X∈Rn×n

Tr(GX)

Tr(DX)
(22a)

s.t. [X]k,k ∈ {1, 9, . . . , (2q − 1)2}, (22b)

k = 1, . . . , n− 1,

[X]n,n = 1, (22c)

X � 0 (positive semidefinite (PSD)), (22d)

rank(X) = 1, (22e)

where [X]k,k denotes the kth diagonal entry of X. In (22),

constraints (22b) and (22c) are due to (21b) and (21c),

respectively, and (22d) and (22e) are owing to X = xxT .

It can be observed from (22) that the discrete constraints in

(22b) and the rank-1 constraint in (22e) are not convex and

are difficult to handle. The idea of SDR is to approximate

problem (21) by removing the rank-1 constraint but keep the

PSD constraint X � 0. To deal with the discrete constraint

in (22b), we adopt the idea of bound-constrained SDR (BC-

SDR) in coherent higher-order QAM MIMO detection [19]

where the discrete set {1, 9, . . . , (2q − 1)2} is relaxed to an

interval [1, (2q − 1)2]. We then end up with the following

LFSDR problem

X⋆ = arg max
X∈Rn×n

Tr(GX)

Tr(DX)
(23a)

s.t. 1 ≤ [X]k,k ≤ (2q − 1)2, (23b)

k = 1, . . . , n− 1,

[X]n,n = 1, (23c)

X � 0. (23d)

Note that the notation X⋆ in (23a) represents a globally

optimum solution of problem (23). We should emphasize that

problem (23) is structurally quite different from the BC-SDR

problem in coherent MIMO detection [19]. In the latter, the

relaxation problem is a convex SDP and can be directly solved

by an interior point SDP algorithm [26], [27]. By contrast,

problem (23) is a quasiconvex problem. In general, this class

of problems can be solved in a globally optimal fashion by the

classical bisection method [20] in which a sequence of SDP

feasibility problems need to be solved. Fortunately, we will

show in the next subsection that a globally optimum solution

to problem (23) can be obtained by solving just one SDP.

B. SDP Reformulation of LFSDR and Custom-Built Interior-

Point Algorithm

The quasiconvex LFSDR problem in (23) can be turned into

a (convex) SDP as follows

Z⋆ = arg max
Z∈Rn×n

Tr(GZ) (24a)

s.t. Tr(DZ) = 1, (24b)

[Z]n,n ≤ [Z]k,k ≤ (2q − 1)2[Z]n,n, (24c)

k = 1, . . . , n− 1,

Z � 0, (24d)

as stated in the following proposition.

Proposition 1 The linear fractional quasiconvex problem (23)

has the same optimum objective value as the SDP in (24).

Moreover, an optimum solution of (23) can be obtained from

that of (24) through the relation

X⋆ = Z⋆/[Z⋆]n,n. (25)

Proof : We first show that for any feasible Z of problem

(24), [Z]n,n 6= 0. Suppose that [Z]n,n = 0. Then by (24c)

and (24d), Z = 0, which however violates (24b). Therefore,

we can always define a point X̄ = Z/[Z]n,n. It is easy to

show that X̄ is feasible for problem (23) and has the same

objective value Tr(GX̄)/Tr(DX̄) = Tr(GZ). On the other

hand, it can be seen from (20), (23c) and (23d) that for any

feasible X of problem (23), Tr(DX) =
∑n−1

k=1 [X]k,k+s21,1 >
0. Let Z̄ = X/Tr(DX). Then it is also easy to show that

Z̄ is feasible for problem (24) and has the same objective

value Tr(GZ̄) = Tr(GX)/Tr(DX). Hence we conclude that

problems (23) and (24) are equivalent and X⋆ = Z⋆/[Z⋆]n,n.
�

Proposition 1 implies that the optimum solution X⋆ of (23)

can simply be obtained by solving the SDP (24) in lieu of the

bisection method. The SDP (24) can be solved in polynomial

time using an interior-point algorithm (IPA) [26]. While (24)

can be solved conveniently by calling popular, general-purpose

SDP solvers such as SeDuMi [21], we can build a specialized

IPA for (24) to further improve the computational efficiency.

Table I shows our custom-built IPA. This specialized IPA

can be shown to have a worst-case complexity of O(n3.5)
(through counting the arithmetic operations and using known

results in convergence of interior-point methods). The special-

ized IPA follows the primal-dual path following principle in

[26] (see also [24], [27]), but carefully exploits structures of

the inequality and equality constraints of (24) to trim down the

computations. In particular, the search direction computations

in Step 2 of Table I are specially designed for (24). Since

the development involves tedious, laborous derivations, the

complete details are omitted here.

To give some insights, let us briefly describe how the

developed IPA works in principle. Essentially we consider

solving (24) by solving its dual which can be shown to be
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min ν (26a)

s.t. ν ∈ R, t ∈ R
2(n−1), Y ∈ R

n×n, (26b)

Y � 0, t � 0, (26c)

Y = Diag

([

ν1n−1 − t1 + t2
s21,1ν + 1T

n−1(t1 − (2q − 1)2t2)

])

−G,

(26d)

where (Y, t, ν) are the dual variables of (24), 1n−1 is an all-

one vector with dimension n− 1, Diag(x) denotes a diagonal

matrix with the diagonal elements given by the elements of

x, and t1, t2 ∈ Rn−1 respectively represent the upper and

lower part of t; i.e., t = [ tT1 tT2 ]T . The idea is to apply

a logarithmetic barrier approximation to (26) to implicitly

handle the constraints Y � 0 and t � 0:

min ν − µ



log det(Y) +

2(n−1)
∑

i=1

log ti



 (27a)

s.t. ν ∈ R, t ∈ R
2(n−1), Y ∈ R

n×n, (27b)

Y = Diag

([

ν1n−1 − t1 + t2
s21,1ν + 1T

n−1(t1 − (2q − 1)2t2)

])

−G,

(27c)

where µ > 0 is called the barrier parameter. It is known

that (27) approaches (26) as µ → 0. At each iteration of the

proposed IPA, we reduce µ in a data adaptive fashion (Step 2

in Table I), and then compute a primal-dual search direction

that approximates the Karush-Kuhn-Tucker conditions of (27)

with respect to the updated µ (Steps 2-3 in Table I). The

IPA terminates when µ is sufficiently small. One essential

implementation aspect about the specialized IPA is that we

need a primal-dual strictly feasible point (Z,Y, t, ν) as an

initialization. Here we provide a simple closed-form initial

point: Let q ∈ Rn with the ith element given by

qi = α
n
∑

j=1

|[G]i,j | (28)

for some α > 1. The following point can be shown to

be strictly primal-dual feasible (and thus can serve as an

initialization):

Z =
1

5(n− 1) + s21,1

[

5In−1 0

0 1

]

≻ 0, (29a)

Y = Diag

([

ν1n−1 + q1:n−1

qn

])

−G ≻ 0, (29b)

t = [tT1 , tT2 ]
T , t1 = q1:n−1, t2 = 2q1:n−1, (29c)

ν =
[

qn + 1T
n−1

(

(2q − 1)2t2 − t1
)]

/s21,1, (29d)

where q1:n−1 ∈ Rn−1 contains the first n− 1 elements of q.

We provide the MATLAB source codes of the specialized

IPA in http://www.ee.cuhk.edu.hk/∼wkma/SDR/download/

blind lfsdr.rar, for readers who are interested in implementing

our method.

C. Solution Approximation Procedures

The development above has enabled an efficient way to

compute the optimum solution X⋆ of the LFSDR problem

(23). We now turn our attention to the last step of the

proposed LFSDR approach: Using X⋆ to find a feasible, rank-

1 approximate solution of the original problem (21). One

straightforward method to do this is to compute the principal

eigenvector of X⋆ (thereby performing rank-1 approximation),

and then quantize the principal eigenvector into one belonging

to the set {±1,±3, . . . ,±(2q − 1)}n−1 ×{±1}. Another

method practically proven to be effective is the Gaussian

randomization [19], [28]. In this method, we first generate

L random vectors ξ(ℓ) ∈ Rn, ℓ = 1, . . . , L, following the

Gaussian distribution N (0,X⋆) (i.e., zero mean and covari-

ance matrix equal to X⋆), and then quantize ξ(ℓ) into one

belonging to the set {±1,±3, . . . ,±(2q − 1)}n−1 × {±1}.

Denote by x̂(ℓ) ∈ {±1,±3, . . . ,±(2q − 1)}n−1 × {±1} the

quantized vector of ξ(ℓ), that is,

x̂(ℓ) = [ σPAM(ξ
(ℓ)
1 ), . . . , σPAM(ξ

(ℓ)
n−1), sgn(ξ(ℓ)n ) ]T ,

where sgn : R → {±1} is the sign function, and σPAM :
R → {±1,±3, . . . ,±(2q − 1)} is a function in which

σPAM(x) is obtained by rounding x to an integer in the set

{±1,±3, . . . ,±(2q − 1)}. We pick the quantized vector that

yields the largest objective value, i.e.,

ℓ⋆ = arg max
ℓ=1,...,L

(x̂(ℓ))TGx̂(ℓ)

(x̂(ℓ))TDx̂(ℓ)
,

and choose x̂(ℓ⋆) as the approximate solution of problem (21).

By our experience, L = 50 ∼ 100 is typically sufficient to

obtain a good approximation performance.

D. Relationships with Other Relaxation Methods

In the subsection, we present some other relaxation meth-

ods for the higher-order QAM blind ML OSTBC detection

problem and study their connections to the proposed LFSDR.

One simple approach to approximating the higher-order

QAM blind ML OSTBC detection problem in (17) is actually

to relax the discrete set {±1,±3, . . . ,±(2q − 1)} to the real

space R:

fNR , max
s∈R2PK

sTFs

sT s
. (30)

which we call the norm relaxed blind ML problem. It can

be seen that the principal eigenvector of F is the associated

optimum solution. A feasible, approximate solution to (17)

can then be obtained by quantizing the principal eigenvector

into the set {±1,±3, . . . ,±(2q − 1)}2PK . More specifically,

let v⋆ ∈ R2PK denote the principal eigenvector of F, and

assume that s1,1 is known to the receiver. Then an approximate

solution of (17) by norm relaxation is given by

ŝNR = σPAM

(

s1,1
v⋆1

v⋆

)

, (31)

where σPAM : R2PK → {±1,±3, . . . ,±(2q − 1)}2PK is a

function in which the ith element of σPAM(x) is obtained by

rounding xi to an integer in the set {±1,±3, . . . ,±(2q − 1)}.
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TABLE I. Pseudo code of the specialized interior-point algo-

rithm for solving (24).

Given a primal-dual strictly feasible initial point (Z,Y, ν, t) [see (29)]
and a solution accuracy ǫ > 0.

Step 1. Set µ := 0.5× [ν − tr(GZ)]/(3n− 2).
Step 2. Compute the search directions (∆ν,∆t) by solving the linear

system of equations

F

[

∆ν
∆t

]

= g,

where F and g are constructed by the following formulae

Y−1 ⊙ Z :=

[

W11 wT
12

w12 w22

]

, F :=





f11 fT21 fT31
f21 F22 FT

32
f31 F32 F33





(in which ⊙ denotes the Hadamard (componentwise)

product of matrices),

f11 := 1T
n−1W111n−1 + 2s21,11

T
n−1w12 + s41,1w22,

f21 :=−W111n−1 − s21,1w12 + (1T
n−1w12 + s21,1w22)1n−1,

f31 := W111n−1 + s21,1w12

− (2q − 1)2(1T
n−1w12 + s21,1w22)1n−1

F22 := W11 −w121
T
n−1 − 1n−1w

T
12

+ w221n−11
T
n−1 +D1

F32 := −W11 +w121
T
n−1 + (2q − 1)21n−1w

T
12

− (2q − 1)2w221n−11
T
n−1

F33 := W11 − (2q − 1)2w121
T
n−1 − (2q − 1)21n−1w

T
12

+ (2q − 1)4w221n−11
T
n−1 +D2

D1 := Diag

















t−1
1 ([Z]1,1 − [Z]n,n)

.

.

.

t−1
n−1([Z]n−1,n−1 − [Z]n,n)

















,

D2 := Diag

















t−1
n ((2q − 1)2[Z]n,n − [Z]1,1)

.

.

.

t−1
2(n−1)

((2q − 1)2[Z]n,n − [Z]n−1,n−1)

















g := µ





∑n−1
i=1 [Y−1]i,i + s21,1[Y

−1]n,n

κ1

κ2



+





−1
0
0





κ1 :=









−[Y−1]1,1 + [Y−1]n,n + t−1
1

.

.

.

−[Y−1]n−1,n−1 + [Y−1]n,n + t−1
n−1









,

κ2 :=









[Y−1]1,1 − (2q − 1)2[Y−1]n,n + t−1
n

.

.

.

[Y−1]n−1,n−1 − (2q − 1)2[Y−1]n,n + t−1
2(n−1)









Step 3. Compute the search directions

∆Y := Diag

([

∆ν1n−1 −∆t1 +∆t2
s21,1∆ν + 1T

n−1(∆t1 − (2q − 1)2∆t2)

])

,

∆Z := µY−1 − Z−Y−1(∆Y)Z

and symmetrize ∆Z by ∆Z := (∆Z+ (∆Z)T )/2.
Step 4. Use line search to find a primal step-size αp ∈ (0, 1] such that

Z+ αp(∆Z) ≻ 0 and [Z]n,n + [∆Z]n,n ≤ [Z]i,i + [∆Z]i,i ≤
(2q − 1)2([Z]n,n + [∆Z]n,n) for i = 1, . . . , n− 1.

Step 5. Use line search to find a dual step size αd ∈ (0, 1] such that
Y + αd(∆Y) ≻ 0 and t+ αd(∆t) ≻ 0.

Step 6. Update Z := Z + αp(∆Z), Y := Y + αd(∆Y), ν := ν +
αd(∆ν), and t := t+ αd(∆t).

Step 7. If ν− tr(GZ) ≤ ǫ (i.e., duality gap is less than ǫ), then terminate
and output (Z,Y, ν, t); otherwise go to Step 1.

It can be proved that the proposed LFSDR approach has

an approximation accuracy at least no worse than this simple

norm relaxation method, as stated in the following proposition.

Proposition 2 Let fLFSDR , Tr(GZ⋆) be the optimum

objective value of the SDP problem (24), and recall that fML

and fNR are the optimum values of the original blind ML

detection problem [in (19)] and the norm relaxed problem [in

(30)], respectively. Then

|fML − fLFSDR| ≤ |fML − fNR|.

Proof : The idea of this proof follows that of Theorem 1 in

[6]. Since fLFSDR ≥ fML and fNR ≥ fML (a basic result in

relaxation), it suffices to show that fLFSDR ≤ fNR. Suppose

that

Z⋆ =

[

P q

qT r

]

� 0,

where P ∈ R(n−1)×(n−1), q ∈ Rn−1 and r ∈ R. Let

Z̃ =

[

s21,1r s1,1q
T

s1,1q P

]

� 0.

Then one can readily show from (18), (20) and (24) that

Tr(GZ⋆) = Tr(FZ̃), (32)

Tr(DZ⋆) = Tr(Z̃) = 1. (33)

Consider the eigenvalue decomposition of Z̃ =
∑n

k=1 λkgkg
T
k , where λk ≥ 0 is the kth eigenvalue of

Z̃, and gk ∈ Rn is the associated unit-norm eigenvector. Then

Tr(FZ̃) =

n
∑

k=1

λkg
T
k Fgk ≤

(

n
∑

k=1

λk

)

max
‖g‖2=1

gTFg

= Tr(Z̃)fNR, (34)

where the last equality is due to (30) and Tr(Z̃) =
∑n

k=1 λk.

By (32), (33) and (34), we obtain fLFSDR = Tr(GZ⋆) =
Tr(FZ̃) ≤ fNR. �

In fact, we will further show by simulations in Section IV

that this simple norm relaxation method has symbol error

performance far from what the proposed LFSDR approach

offers.

In addition to the LFSDR proposed in the previous sub-

sections, there are two other possible ways of relaxations

that may also provide effective approximations to the higher-

order QAM blind ML OSTBC detection problem. Specifically,

by applying the virtually-antipodal SDR (VA-SDR) [29] and

polynomial-inspired SDR (PI-SDR) [30] concepts respectively

(which were developed for coherent higher-order QAM MIMO

detection), we can propose two more relaxation methods to the

blind ML problem. But, interestingly, our recent theoretical

analysis in coherent MIMO detection has shown [27], [31]

that the rationale adopted in the proposed LFSDR, and the

relaxation methods based on VA-SDR, and PI-SDR are equiv-

alent in attaining the same optimal values. More importantly,

the SDR equivalence theorems in [31] are directly applicable
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to the blind ML OSTBC detection problem here 1. Hence we

conclude that

Proposition 3 The proposed LFSDR, given in (23), is equiva-

lent to the two relaxation alternatives where the VA-SDR [29]

and PI-SDR [30] are respectively applied to the higher-order

QAM blind ML OSTBC detection problem [in (21)]. The

equivalence lies in the identical optimum objective values for

the three relaxation methods.

The details of the VA-SDR and PI-SDR alternatives and

their equivalence to the proposed LFSDR are given in a sepa-

rate technical report [32] rather than in this paper due to space

limit. That technical report also gives useful simulation results,

namely, verification of the SDR equivalence in Proposition 3,

and numerical complexity comparisons. There one can see that

the proposed LFSDR costs less amount of computations than

its VA-SDR and PI-SDR alternatives.

IV. SIMULATION RESULTS

Extensive simulation results are given in this section to

demonstrate the effectiveness of the proposed LFSDR-based

higher-order QAM blind ML OSTBC detector. The channel

coefficients in H were independent and identically distributed

(i.i.d.) circular complex Gaussian random variables with zero

mean and unit variance. The signal-to-noise ratio (SNR) was

defined as

SNR =
E{‖HC(sp)‖2F }
E{‖Wp‖2F}

=
γNtK

Tσ2
w

,

where γ = 10 for 16-QAM and γ = 42 for 64-QAM. If not

mentioned specifically, the complex 3 × 4 OSTBC (Nt = 3,

T = 4, K = 3) [33]

C(s) =





s1 + js2 −s3 + js4 −s5 + js6 0
s3 + js4 s1 − js2 0 −s5 + js6
s5 + js6 0 s1 − js2 s3 − js4





(35)

was used in the simulation, and the LFSDR problem (24)

was solved by the specialized IPA in Table I. An approximate

solution of problem (21) was obtained either by quantizing the

principal eigenvector of X⋆ or by the Gaussian randomization

procedure in Section III-C with 100 random vectors (L = 100)

generated. The detector performance was evaluated using

average symbol error rate (SER), and at least 10, 000 trials

were performed for each simulation result.

A. Performance Comparison with Some Existing Methods

Here we present the performance comparison results of

the proposed LFSDR blind ML detector, the norm relaxed

blind ML detector (i.e., Eqn. (31)), the blind subspace channel

estimator by Shahbazpanahi et al. [2], the cyclic ML method

[7] (initialized by the norm relaxed blind ML detector), and

the coherent ML detector (which assumes perfect channel state

1While the focus of [31] is on proving the equivalence of SDRs under
the coherent MIMO detection context, the analysis there does not place an
assumption on the objective function structures. For this reason, the SDR
equivalence theorems in [31] can be applied to the blind ML problem.

information (CSI)). Note that for the white Gaussian noise

case, the Shahbazpanahi’s blind subspace channel estimator

is equivalent to the norm relaxed blind ML detector [2], [6]

from a theoretical viewpoint. However, the former employs a

different method of using the pilot to fix the channel ambiguity

(please see [2] for the details). As a result, the two methods

will be seen to exhibit different simulation performances.

Figure 1(a) and Figure 1(b) show the performance results (SER

vs. SNR) for the case of 16-QAM OSTBC, and Fig. 1(c) and

Fig. 1(d) display the results for the 64-QAM OSTBC.

One can see from Fig. 1(a) and Fig. 1(c) that Shah-

bazpanahi’s subspace method, the norm relaxed blind ML

detector, and the cyclic ML method cannot properly decode the

transmitted OSTBCs when Nr = 1. In comparison with these

two methods, the proposed LFSDR-based blind ML detector

exhibits consistent SER performance. For the multiple-receive-

antenna case (Nr = 4) as presented in Fig. 1(b) and Fig.

1(d), Shahbazpanahi’s subspace method can properly identify

the transmitted symbols (some theoretical reasoning for the

significant performance difference of the subspace method

in the one-receive-antenna and multiple-receive-antenna cases

has been provided in [4]). Nevertheless, one can see from these

figures that the LFSDR-based blind ML detector outperforms

the subspace method as well as the norm relaxed blind ML

detector, thereby providing a numerical support to Proposition

2. By comparing Fig. 1(a) and Fig. 1(c), it can be seen

that for Nr = 1, the performance difference between the

proposed LFSDR and the coherent ML detector for 64-QAM

OSTBC is larger than that for 16-QAM OSTBC. However,

as observed from Fig. 1(b) and Fig. 1(d) where Nr = 4,

the performance differences between the LFSDR-based blind

ML detector (randomization) and the coherent ML detector at

SER=10−4 can be less than 1 dB and 0.5 dB, respectively.

These results illustrate that in the case of Nr = 4 and either

for 16-QAM or 64-QAM OSTBCs, the proposed LFSDR

approach is accurate in the approximation of the true blind ML

solution. The simulation results in Fig. 1 also indicate that the

Gaussian randomization procedure is a better approximation

method than the principal eigenvector procedure.

In Fig. 2, we further present some performance comparison

results for various numbers of block size P . One can see from

both Fig. 2(a) and 2(b) that all the methods under test can have

improved symbol error performance when P increases, but the

proposed LFSDR based blind ML detector outperforms all the

other methods for all P . The performance advantage is more

significant for 64-QAM OSTBCs as shown in Fig. 2(b). These

simulation results demonstrate that the proposed LFSDR blind

ML approach is more effective than other methods when the

channel is static for small to moderate number of OSTBC

blocks, which is consistent with the results for BPSK/QPSK

OSTBCs in [6], [8].

B. Performance Comparison with Higher-Order QAM Differ-

ential OSTBC Scheme

Traditionally the differential OSTBC scheme can only be

applied to the constant modulus case, but a recent work in

[34] has revealed that the differential OSTBC scheme can
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Fig. 1. Performance (SER v.s. SNR) comparison results of the proposed LFSDR blind ML detector with some existing methods for the
complex 3× 4 OSTBC under various settings.

be extended to the nonconstant modulus case through some

decision feedback procedure (see Eqn. (27) and Eqn. (30)

in [34] for the details). This example aims to compare the

differential OSTBC scheme and the proposed LFSDR-based

blind ML detector. The following 4 × 4 OSTBC (Nt = 4,

T = 4, K = 3) [22] was used in this simulation example

C(s) =









s1 + js2 −s3 + js4 −s5 + js6 0
s3 + js4 s1 − js2 0 −s5 + js6
s5 + js6 0 s1 − js2 s3 − js4

0 −s5 + js6 s3 + js4 −s1 + js2









.

(36)

Figure 3 shows the performance comparison results for P = 8,

Nr = 4. One can see from this figure that, either for 16-QAM

or 64-QAM QSTBC, the proposed LFSDR-based blind ML

detector outperforms the differential scheme.

C. Performance Comparison with Cui-Tellambura Modified

Sphere Decoder

In this subsection, the proposed LFSDR is compared with

an optimal blind ML detection method, namely the modified

sphere decoder by Cui and Tellambura [9]. Let us first examine

the computational complexity of the modified sphere decoder

and the proposed LFSDR-based blind ML detector. Figures

4(a) and 4(b) present the average computer running time (in

second) of the two methods with respective to the block

size P and SNR, respectively. Our implementation for the

modified sphere decoder was based on C language. To improve

the search efficiency, we incorporated the Schnorr-Euchner

enumeration [12] in the modified sphere decoder. For the

proposed LFSDR approach, the specialized IPA in Table I

was implemented in C language as well. To demonstrate the

computational advantage of the specialized IPA, we also in-

cluded the LFSDR implementation using the general-purpose

SDP solver SeDuMi [21]. The simulation was conducted under

MATLAB using a desktop computer with a 2.66GHz dual-
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Fig. 3. Performance (SER v.s. SNR) comparison results of the LFSDR and the differential OSTBC scheme for the complex 4× 4 OSTBC.

core CPU and 2GB RAM. The initial square search radius

for the modified sphere decoder was obtained by using the

norm relaxed blind ML solution (31). It can be seen from

Fig. 4(a) that the average running time of the LFSDR-based

blind ML detector either implemented by the specialized IPA

or by SeDuMi increases with P at a much slower rate than

the modified sphere decoder. Moreover, either for 16-QAM

OSTBC or 64-QAM OSTBC, the proposed LFSDR approach

has almost the same computational complexity. Besides, the

modified sphere decoder quickly becomes impractical when

P > 2 for 16-QAM and when P > 1 for 64-QAM. From Fig.

4(b), one can see that the average running time of the modified

sphere decoder remains almost constant with respect to SNR,

and is much higher than that of the LFSDR-based blind ML

detector. This is in sharp contrast to its BPSK/QPSK counter-

part in [6] where the computational time of the BPSK/QPSK

sphere decoder decreases when SNR increases. From both

figures, it can also be seen that the specialized IPA is around 10

times faster than SeDuMi, showing its advantages in practical

implementations.

Figure 5 shows the performance comparison results for

P = 2 and 16-QAM OSTBC (we cannot further increase P
since we have seen that the complexity of the modified sphere

decoder becomes overwhelming for P > 2). One can see from

this figure that the performance gap between the LFSDR-based

blind ML detector and the modified sphere decoder decreases

when the number of receive antenna Nr increases. Together

with the performance results in Fig. 1, we can see that the

proposed LFSDR approach can yield promising approximation

quality when P ≥ 8 or when Nr ≥ 2.

V. CONCLUSIONS

In the paper, we have presented a suboptimal LFSDR

approach to blind ML detection of higher-order QAM OS-
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TBCs. The proposed LFSDR approach is efficient, involving

solving only one SDP followed by a simple rank-1 solution

approximation procedure. Moreover, this approach has been

shown to be at least no worse than the simple norm relax-

ation method. Extensive simulation results for both 16-QAM

and 64-QAM OSTBCs have demonstrated that the proposed

LFSDR approach outperforms some existing suboptimal meth-

ods. Moreover, we have seen that, for both 16-QAM and 64-

QAM OSTBCs, the proposed LFSDR approach is effective in

approximating the true blind ML detection solution, especially

when there are multiple receive antennas.
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