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I
n recent years, the semidefinite relaxation (SDR) technique has been at 

the center of some of very exciting developments in the area of signal 

processing and communications, and it has shown great signifi-

cance and relevance on a variety of applications. Roughly speak-

ing, SDR is a powerful, computationally efficient approximation

technique for a host of very difficult optimization problems. In 

particular, it can be applied to many nonconvex quadratically 

constrained quadratic programs (QCQPs) in an almost 

mechanical fashion, including the following problem: 

min
x[Rn

x
T
Cx

s.t. x
T
Fi x $ gi, i5 1, c, p,

x
T
Hi x5 li, i5 1, c, q, (1)

where the given matrices C, F1, c, Fp, H1, c, Hq are 

assumed to be general real symmetric matrices, possibly 

indefinite. The class of nonconvex QCQPs (1) captures 

many problems that are of interest to the signal process-

ing and communications community. For instance, con-

sider the Boolean quadratic program (BQP) 

min
x[Rn       

x
T
Cx

s.t. xi
2
5 1, i5 1, c, n. (2)

The BQP is long known to be a computationally difficult prob-

lem. In particular, it belongs to the class of NP-hard problems. 

Nevertheless, being able to handle the BQP well has an enormous 

impact on multiple-input, multiple-output (MIMO) detection and 

multiuser detection. Another important yet NP-hard problem in the 

nonconvex QCQP class (1) is 
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Outline

• Part I: Basic concepts and overview of semidefinite relaxation (SDR)

• Part II: Theory, and implications in practice

• Part III: Applications and Latest Advances

– A. transmit beamforming
– B. advanced topics in transmit beamforming
– C. sensor network localization

• Conclusion

• Bonus Material: MIMO detection
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Part I: Basic Concepts and Overview
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A quick reminder of what convex quadratic functions & constraints are:

• A function f(x) = xTCx =
∑n

i=1

∑n
j=1 xixjCij is convex if and only if C � 0

(C � 0 means that C is positive semidefinite (PSD)).
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(a) C � 0.
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(b) C � 0.
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• A constraint set {x ∈ Rn | xTFx ≤ 1} is convex if and only if F � 0.

0

(a) F � 0.

0

(b) F � 0.

• A constraint set {x ∈ Rn | xTFx = 1} is nonconvex.
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Quadratically Constrained Quadratic Program

Consider the class of real-valued quadratically constrained quadratic programs
(QCQPs):

min
x∈Rn

xTCx

s.t. xTF ix ≥ gi, i = 1, . . . , p,
xTH ix = li, i = 1, . . . , q,

where C,F 1, . . . ,F p,H1, . . . ,Hq ∈ Sn; Sn is the set of all n× n real symmetric
matrices.

• We do not assume convexity here. In particular, C,F i,Hi can be arbitrary.

• Nonconvex QCQP is a very difficult problem in general.
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Nonconvex QCQP: How Hard Could it Be?

Consider the Boolean quadratic program (BQP)

min
x∈Rn

xTCx

s.t. x2i = 1, i = 1, . . . , n,

a long-known difficult problem falling in the nonconvex QCQP class.

• One could solve it by evaluating all possible
combinations; i.e., brute-force search.

• The time complexity of a brute-force search
is O(2n), not okay at all for large n!

• The BQP is NP-hard in general— we still
can’t find an algorithm that can solve a
general BQP in time O(np) for any fixed
p > 0.
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Nonconvex QCQP: How Hard Could it Be?
Consider another QCQP:

min
x∈Rn

xTCx

s.t. xTF ix ≥ 1, i = 1, . . . ,m,

where C,F 1, . . . ,Fm � 0 (to make the dimension explicit, we will also use the
notation C,F 1, . . . ,Fm ∈ Sn+).

• Difficulty: feasible set is the intersection of
the exteriors of ellipsoids.

• This problem is also NP-hard.
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Semidefinite Relaxation for QCQP

Semidefinite relaxation (SDR) is a computationally efficient approximation
approach to QCQP.

• Approximate QCQPs by a semidefinite program (SDP), a class of convex
optimization problems where reliable, efficient algorithms are readily available.

• The idea can be found in an early paper of Lovász in 1979 [Lovász’79].

• It is arguably the work by Goemans & Williamson [Goemans-Williamson’95]
that sparked the significant interest in SDR.

• A key notion introduced by Goemans & Williamson is randomization; we will go
through that.

• SDR has received much interest in the optimization field; now we have seen a
number of theoretically elegant analysis results.

• (This may concern us more) In many applications, SDR works well empirically.
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Impacts of SDR in SP and Commun.

• The introduction of SDR in SP and commun. since the early 2000’s has reshaped
the way we see many topics today.

• Existing applications include
– multiuser/MIMO detection [Tan-Rasmussen’01], [Ma-Davidson-Wong-

Luo-Ching’02]

– transmit beamforming: unicast beamforming [Bengtsson-Ottersten’01],
multicast beamforming [Sidiropoulos-Davidson-Luo’06], & many others...

– source localization and sensor network localization [Cheung-Ma-So’04],
[Biswas-Liang-Wang-Ye’06]

– code waveform design in radar [De Maio et al.’08]

– large-margin parameter estimation in speech recognition [Li-Jiang’07]

– optimal power flow in electrical grids [Low’14] (also [Bienstock’14])

– (related) phase retrieval [Candès-Eldar-Strohmer-Voroninski’13]

– others: robust blind receive beamforming, transmit B1 shim in MRI,
distributed detection, phase unwrapping...

• We believe that more applications are on the way.
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The Concept of SDR

• For notational conciseness, we write the QCQP as

min
x∈Rn

xTCx

s.t. xTAix Di bi, i = 1, . . . ,m.
(QCQP)

Here, ‘Di’ can represent either ‘≥’, ‘=’, or ‘≤’ for each i; C,A1, . . . ,Am ∈ Sn;
and b1, . . . , bm ∈ R.

• A crucial first step of understanding SDR is to see that

xTCx = Tr(xTCx) = Tr(CxxT ), xTAix = Tr(xTAix) = Tr(Aixx
T ),

or, if we let X = xxT ,

xTCx = Tr(CX), xTAix = Tr(AiX)

• The objective and constraint functions are linear in X.
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The Concept of SDR

• The condition X = xxT is equivalent to

X � 0, rank(X) ≤ 1.

Hence, (QCQP) can be reformulated as

min
X∈Sn

Tr(CX)

s.t. Tr(AiX) Di bi, i = 1, . . . ,m,
X � 0, rank(X) ≤ 1.

(QCQP)

• The constraints Tr(AiX) Di bi are easy, but rank(X) ≤ 1 is hard.

• Key Insight: Drop the rank-one constraint to obtain a relaxed QCQP:

min
X∈Sn

Tr(CX)

s.t. Tr(AiX) Di bi, i = 1, . . . ,m,
X � 0.

(SDR)

(SDR) is convex and is an instance of semidefinite program (SDP).
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Some Merits We Can Immediately Say

• A globally optimal solution to an SDP can be found by available
numerical algorithms in polynomial time (often by interior-point methods, in
O(max{m,n}4n1/2 log(1/ǫ)), ǫ being soln. accuracy).

• For instance, using the software toolbox CVX, we can solve (SDR) in MATLAB
with the following lines: (for simplicity we assume ‘ Di’ = ‘≥’ for all i here)

cvx begin

variable X(n,n) symmetric

minimize(trace(C*X));

subject to

for i=1:m

trace(A(:,:,i)*X) >= b(i);

end

X == semidefinite(n)

cvx end
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Issues with the Use of SDR

• There is no free lunch in turning the NP-hard (QCQP) to the convex, polynomial-
time solvable (SDR).

• The issue is how to convert a solution to (SDR) into an approximate QCQP
solution.

• If an SDR solution, say, denoted by X⋆, is of rank one; or, equivalently,

X⋆ = x⋆x⋆T ,

then x⋆ is feasible— and in fact optimal— to (QCQP).

• However, we cannot guarantee that X⋆ is always of rank-one. (Otherwise we
would have solved an NP-hard problem in polynomial time!)

• There are many ways to produce an approximate QCQP solution from X⋆ when
rank(X⋆) > 1.
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QCQP Solution Approximation in SDR: An Example

• Consider again the BQP

min
x∈Rn

xTCx

s.t. x2i = 1, i = 1, . . . , n.
(BQP)

The SDR of (BQP) is

min
X∈Sn

Tr(CX)

s.t. X � 0, Xii = 1, i = 1, . . . , n.
(SDR)

• An intuitive (even for engineers) idea is to apply a rank-1 approximation to the
SDR solution X⋆:

1) Carry out the eigen-decomposition

X⋆ =

r∑

i=1

λiqiq
T
i ,

where r = rank(X⋆), λ1 ≥ λ2 ≥ . . . ≥ λr > 0 are the eigenvalues and
q1, . . . , qr ∈ Rn the respective eigenvectors.

2) Approximate the BQP by x̂ = sgn(
√
λ1q1).
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Application: MIMO Detection

Scenario: A spatial multiplexing system with Mt transmit & Mr receive antennae.

Spatial
Multiplexer

. . . . . 
.

. . . . . 
.

MIMO
Detector

Symbols
s
C

Detected
Symbols

MIMO channel
H

C

Objective: Detect symbols from the received signals, given channel information.

• Received signal model:
yC = HCsC + vC,

where HC ∈ CMr×Mt is the MIMO channel, sC ∈ CMt is the transmitted
symbol vector, & vC ∈ CMr is complex circular Gaussian noise.

• Assume QPSK constellations, sC ∈ {±1± j}Mt.
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• Problem: Maximum-likelihood (ML) detection (NP-hard)

ŝC,ML = arg min
sC∈{±1±j}Mt

‖yC −HCsC‖2.

• The received signal model can be converted to a real form

[
Re{yC}
Im{yC}

]

︸ ︷︷ ︸

y

=
[
Re{HC} −Im{HC}
Im{HC} Re{HC}

]

︸ ︷︷ ︸

H

[
Re{sC}
Im{sC}

]

︸ ︷︷ ︸

s∈{±1}2Mt

+
[
Re{vC}
Im{vC}

]

︸ ︷︷ ︸

v

,

and hence the ML problem can be rewritten (homogenized) as

min
s∈{±1}2Mt

‖y −Hs‖2 = min
s∈{±1}2Mt,t∈{±1}

‖ty −Hs‖2

= min
s∈{±1}2Mt,t∈{±1}

[
sT t

]
[
HTH −HTy

−yTH ‖y‖2
] [

s

t

]

,

which is a BQP. Subsequently, SDR can be applied [Tan-Rasmussen’01],
[Ma-Davidson-Wong-Luo-Ching’02].
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Additional Remarks about the MIMO Detection Application

• The idea is not restricted to spatial multiplexing! It can also be used in multiuser
CDMA, space-time/freq./time-freq. coding, multiuser MIMO, massive MIMO
and even blind MIMO [Li-Bai-Ding’03], [Ma-Vo-Davidson-Ching’06], ...

• Extensions that have been considered:

– MPSK constellations [Ma-Ching-Ding’04]

– higher-order QAM constellations [Ma-Su-Jaldén-Chang-Chi’09] (and refs.
therein)

– soft-in-soft-out MIMO detection (a.k.a. BICM-MIMO) [Steingrimsson-Luo-
Wong’03]

– fast implementations [Kisialiou-Luo-Luo’09], [Wai-Ma-So’11]

• Performance analysis for SDR MIMO detection:

– diversity analysis [Jaldén-Ottersten’08]

– probabilistic approximation accuracy analysis [Kisialiou-Luo’10], [So’10]
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Alternative Interpretation of SDR: Solving QCQP in

Expectation

• We return to the SDR solution approximation issue. Recall

min
x∈Rn

xTCx

s.t. xTAix Di bi, i = 1, . . . ,m.
(QCQP)

• Let ξ ∼ N (0,X), where X is the covariance. Consider a stochastic QCQP:

min
X∈Sn, X�0

Eξ∼N (0,X){ξTCξ}
s.t. Eξ∼N (0,X){ξTAiξ} Di bi, i = 1, . . . ,m,

(E-QCQP)

where we manipulate the statistics of ξ so that in expectation, the objective
function is minimized & constraints are satisfied.

• One can show that (E-QCQP) is the same as the following SDR of (QCQP):

min
X∈Sn

Tr(CX)

s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m.
(SDR)
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• The stochastic QCQP interpretation of SDR

min
X∈Sn, X�0

Eξ∼N (0,X){ξTCξ}
s.t. Eξ∼N (0,X){ξTAiξ} Di bi, i = 1, . . . ,m

(E-QCQP)

motivates another approach to approximating QCQPs, namely

generate a random vector ξ ∼ N (0,X⋆) (X⋆ is an SDR soln.),
then modify ξ so that it is QCQP-feasible.

• Such a randomized QCQP soln. approx. may be performed multiple times, to
get a better approx.

• The stochastic QCQP interpretation allows one to establish many important
theoretical SDR approx. accuracy results. This will be explained in Part II.
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Example: Randomization in BQP or MIMO Detection

A simple (and very important) example for illustrating randomizations is BQP:

min
x∈Rn

xTCx

s.t. x2i = 1, i = 1, . . . , n.
(BQP)

Box 1. Gaussian Randomization Procedure for BQP
given an SDR solution X⋆, and a number of randomizations L.
for ℓ = 1, . . . , L

generate ξℓ ∼ N (0,X⋆), and construct a feasible point

x̃ℓ = sgn(ξℓ);

end
determine ℓ⋆ = arg min

ℓ=1,...,L
x̃T
ℓ Cx̃ℓ.

output x̂ = x̃ℓ⋆ as an approximate solution to (BQP).
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Complex-valued QCQP and SDR

• Consider a general complex-valued QCQP

min
x∈Cn

xHCx

s.t. xHAix Di bi, i = 1, . . . ,m,

where C,A1, . . . ,Am ∈ Hn; Hn denotes the set of n× n Hermitian matrices.

• Using the same idea as before, one can derive an SDR for the complex-valued
QCQP:

min
X∈Hn

Tr(CX)

s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m.

The only difference is that the problem domain now is Hn (change ‘symmetric’
to ‘hermitian’ in your CVX code).

• Note that while the ideas leading to real and complex SDRs are the same, their
performance can be different. This will be explained in Part II.
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Application: Multicast Transmit Beamforming

Scenario: Common information broadcast in multiuser MISO downlink, assuming
channel state information at the transmitter (CSIT).

• The transmit signal:

x(t) = ws(t),

where s(t) ∈ C is the tx. data stream, &
w ∈ CNt is the tx. beamvector.

• Received signal for user i:

yi(t) = hH
i x(t) + vi(t),

where hi ∈ CNt is the channel of user i, &
vi(t) is noise with variance σ2

i .

⋮

Basestation

User 1

User 2

W.-K. Ma & A. M.-C. So, Semidefinite Relaxation, ICASSP 2014 Tutorial 26



• Problem: Optimize w by a QoS-assured design:

min
w∈CNt

‖w‖2

s.t. SNRi ≥ γ, i = 1, . . . ,K,

where γ is a prescribed SNR requirement for all users, and

SNRi = E{|hH
i ws(t)|2}/σ2

i = wHRiw/σ
2
i ,

Ri =

{
hih

H
i , hi is available (instant CSIT),

E{hih
H
i }, hi is random with known 2nd order stat. (stat. CSIT).

• The design problem can be rewritten as a complex-valued QCQP

min
w∈CN

‖w‖2

s.t. wHAiw ≥ 1, i = 1, . . . , K,

where Ai = Ri/γσ
2
i .

• This multicast problem is NP-hard in general, but can be approximated by SDR
[Sidiropoulos-Davidson-Luo’06].
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A Randomization Example Relevant to Multicast Beamforming
Consider the problem

min
x∈Cn

xHCx

s.t. xHAix ≥ 1, i = 1, . . . ,m,
(†)

where C,A1, . . . ,Am � 0.

Box 2. Gaussian Randomization Procedure for (†)
given an SDR solution X⋆, and a number of randomizations L.
for ℓ = 1, . . . , L

generate ξℓ ∼ CN (0,X⋆), and construct a feasible point

x̃ℓ =
ξℓ

√

mini=1,...,m ξHℓ Aiξℓ

;

end
determine ℓ⋆ = arg min

ℓ=1,...,L
x̃H
ℓ Cx̃ℓ.

output x̂ = x̃ℓ⋆ as an approximate solution to (†).
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Extension to Complex-Valued Separable QCQP

• Consider a further extension, called complex-valued separable QCQP:

min
x1,...,xk∈Cn

k∑

i=1

xH
i Cixi

s.t.
k∑

l=1

xH
l Ai,lxl Di bi, i = 1, . . . ,m.

• By writing Xi = xix
H
i for all i, and then “semidefinite-relaxing” them, we

obtain an SDR

min
X1,...,Xk∈Hn

k∑

i=1

Tr(CiXi)

s.t.
k∑

l=1

Tr(Ai,lXl) Di bi, i = 1, . . . ,m,

X1 � 0, . . . ,Xk � 0.
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Application: Unicast Transmit Downlink Beamforming

Scenario: Multiuser MISO downlink; each user receives an individual data stream.

⋮

Basestation

User 1

User 2

• Transmit signal:

x(t) =
K∑

i=1

wisi(t),

where si(t) ∈ C is the data stream for user i, &
wi ∈ CNt its tx. beamvector.

• Received signal of user i:

yi(t) = hH
i x(t) + vi(t)

= hH
i wisi(t) +

∑

l 6=i

hH
i wlsl(t)

︸ ︷︷ ︸
interference

+vi(t).
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• The signal-to-interference-and-noise ratio (SINR) of user i is given by

SINRi =
wH

i Riwi
∑

l 6=iw
H
l Riwl + σ2

i

,

where Ri = hih
H
i for instant. CSIT, and Ri = E{hih

H
i } for stat. CSIT.

• Problem: Given users’ SINR requirements γ1, . . . , γK, solve

min
w1,...,wK∈CNt

∑K
i=1 ‖wi‖2

s.t. SINRi ≥ γi, i = 1, . . . , K.
(†)

• Write W i = wiw
H
i . The SDR of (†) is

min
W 1,...,WK∈HNt

∑K
i=1Tr(W i)

s.t. Tr(RiW i) ≥ γi(
∑

l 6=iTr(RiW l) + σ2
i ), i = 1, . . . ,K,

W 1, . . . ,WK � 0.

(‡)

• (‡) is shown to have a rank-one solution forR1, . . . ,RK � 0, via uplink-downlink
duality [Bengtsson-Ottersten’01]. Thus, the SDR is tight!

• In Part II, we will introduce an “easier” way to establish the tightness of SDRs.
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Additional Remarks about the Transmit Beamforming Application

• Transmit beamforming is now a key topic. For review articles, see [Gershman-
Sidiropoulos-Shahbazpanahi-Bengtsson-Ottersten’10], [Luo-Chang’10].

• From the original unicast and multicast beamforming problems, numerous
extensions are emerging— e.g., multicell coordinated beamforming, cognitive
radio beamforming, relay beamforming, secrecy beamforming, and energy
harvesting beamforming— and they will be described in Part III.A.

• All these beamforming problems turn out to be, or be closely related to,
nonconvex QCQPs, and hence SDR plays a key role.

• In the transmit beamforming context, SDR is not just a direct application. There
are new developments that were not previously seen even in optimization; they
will be described in Part III.B.

W.-K. Ma & A. M.-C. So, Semidefinite Relaxation, ICASSP 2014 Tutorial 35



SDR Versus Nonlinear Programming: They complement, not

compete

• Since SDR is an approximation method, as an alternative one may choose to
approximate (QCQP) by a nonlinear programming method (NPM) (e.g., SQP
in the MATLAB Optimization Toolbox).

• So should we compare SDR and NPM?

• The interesting argument is that they complement each other, instead of
competing:

– An NPM depends much on a ‘good’ starting point, and that’s usually the
missing piece.

– To SDR, NPMs may serve as a local refinement of the solution.

• One may consider a two-stage approach where SDR is used as a starting point
for NPMs.
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Application: Sensor Network Localization (SNL)

Scenario: A network of sensors deployed in an area.

• A few sensors, called anchors,
have self-localization capability
(e.g., by GPS).

• The others (& the majority in
the network) do not.

Anchors

Sensors

• A pair of sensors that are within comm. range can measure their relative
distance, e.g., by measuring the time-of-arrival info., or by ping-pong.

• Goal: Estimate the unknown sensor locations using the distance measurements
& info. of anchor locations.
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• Model:

– Let
{a1, . . . ,am}, ai ∈ R2,

be the collection of all (known) anchor coordinates.

– Let
{x1, . . . ,xn}, xi ∈ R2,

be the collection of all (unknown) sensor coordinates.

– Let dij (resp. d̄ij) be the distance measurement between sensor i and sensor
j (resp. sensor i and anchor j). They are modeled as

dij = ‖xi − xj‖+ ηij,

d̄ij = ‖xi − aj‖+ η̄ij,

resp., where ηij, η̄ij are measurement noise.
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• Problem: Maximum-likelihood (ML) SNL formulation under noisy distance
measurements [Biswas-Liang-Wang-Ye’06]:

min
x1,...,xn∈R2

∑

(i,j)∈Ess

1

σ2
ij

(‖xi − xj‖ − dij)
2
+

∑

(i,j)∈Esa

1

σ̄2
ij

(
‖xi − aj‖ − d̄ij

)2
,

where Ess & Esa are the sensor-to-sensor & sensor-to-anchor edge sets, resp.;
σ2
ij & σ̄2

ij are noise variances w.r.t. dij & d̄ij, resp.

– The ML-SNL problem is an unconstrained nonconvex problem.

– One may handle the ML-SNL problem by applying gradient descent directly.

– Alternatively, one can tackle the ML-SNL problem by SDR, which is achieved
through a careful reformulation. This will be described in Part III.C.
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SDR (ML-SNL formulation), plus a 2nd-stage solution refinement by gradient descent. The

distance measurements are noisy. ◦: true sensor locations; ♦: anchor locations; ∗: SDR solution;

— : gradient descent trajectory (50 iterations).
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Gradient descent ML-SNL with a random starting point. ◦: true sensor locations; ♦: anchor

locations; — : gradient descent trajectory (50 iterations).
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Application: Transmit B1 Shim in MRI

Scenario: In MRI, a transmit RF coil array is used to generate a B1 field.

RF Coils
...........Load

• An undesirable effect is that the B1 field exhibits strong inhomogeneity (spatial
non-uniformity) across the load, due to complex interactions between the
magnetic field and the loaded tissues.

• The goal is to design the transmit amplitudes and phases of the RF coils such
that the resultant B1 map is as uniform as possible.

W.-K. Ma & A. M.-C. So, Semidefinite Relaxation, ICASSP 2014 Tutorial 42



RF Coils

...........Load

• Let ai ∈ Cn, i = 1, . . . ,m, be the field response from the array to the ith pixel
(MISO); i.e., the ith pixel receives a B1 field of magnitude |aT

i x|.

• Problem: Minimize the worst-case field magnitude difference

min
x∈Cn

max
i=1,...,m

∣
∣|aT

i x|2 − b2
∣
∣

s.t. xHGx ≤ ρ.

Here, x ∈ Cn is the transmit vector of the RF coil array, m is the total no. of
pixels, b > 0 is the desired pixel value (uniform over all pixels), xHGx is an
average specific absorption rate (SAR), and ρ is a pre-specified SAR limit.

• It can be approximated by SDR [Chang-Luo-Wu et al.’08].
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B1 maps of various optimization methods. You can see that the two-stage, SDR+NPM method

shows better solution fidelity.
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Part II: Theory
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Provable Approximation Accuracies: Motivation

• So far we have introduced several procedures for generating an approximate
QCQP solution from an SDR solution.

• A natural question arises: How good are these procedures?

– Of course, their performance can be observed empirically. However, can we
prove something about their approximation accuracy?

– Such theoretical results can provide strong justification for the use of SDR in
various problem settings.

• To measure the performance of a particular procedure, one intuitive approach is
to quantify the gap between the objective value of the QCQP solution generated
by the procedure and the optimal value of the QCQP.
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Provable Approximation Accuracies: Setup

• Let v(x) = xTCx, and denote the optimal values of (QCQP) and (SDR) by

vQP = min xTCx

s.t. xTAix Di bi, i = 1, . . . ,m;
vSDR = min Tr(CX)

s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m.

Moreover, let x̂ be an approximate solution to (QCQP), obtained using one of
the solution generation procedures (e.g., randomization). Note that

v(x̂) ≥ vQP.

• We are interested to know if there exists a finite number γ ≥ 1 (called the
approximation ratio) such that

v(x̂) ≤ γvQP

either in expectation, or with high probability, or almost surely (since x̂ can be
random). In general, the smaller γ, the better the solution generation procedure.
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Provable Approximation Accuracies: Remarks

• In the definition of approximation ratio, we are implicitly assuming that
vQP, vSDR > 0.

– The notion of approximation ratio can be defined for problems where vQP ≤ 0.
However, we shall not go through it in this tutorial.

• Given a solution generation procedure, we are usually interested in its
performance on arbitrary instances of (QCQP). Thus, the approximation ratio γ
should not depend on the problem data {A1, . . . ,Am, b,C}. However, it could
depend on the problem dimensions m,n.

• For quadratic maximization problems, the notion of approximation ratio can be
defined similarly.

• The problem of proving approximation accuracies has been of great interest to
optimization theorists, and it has enormous implications in practice.
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The Seminal Approx. Accuracy Result by Goemans &

Williamson
• Consider

vQP = max
x∈Rn

xTCx

s.t. x2i = 1, i = 1, . . . , n,

with C � 0, Cij ≤ 0 for all i 6= j.

• Such a problem arises in the so-called MAXCUT
in combinatorial optimization.

w13

w14

w25

1

2

3

4

5

• In [Goemans-Williamson’95], it was shown that if the randomization procedure
in Box 1 is used, then

γvQP ≤ E{v(x̂)} ≤ vQP,

where γ ≈ 0.87856.

• In particular, the approximation ratio is independent of the problem dimension
n. In the context of MAXCUT, this means that the approximation accuracy is
independent of the number of vertices in the graph.
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Complex k-ary Quadratic Maximization

• Consider the problem

vQP = max
x∈Cn

xHCx

s.t. xi ∈ {1, ω, . . . , ωk−1}, i = 1, . . . , n,
(CQP-k)

where C � 0 and ω = exp(j2π/k) is the kth root of unity, for some given
integer k ≥ 2.

– This is a generalization of the problem considered by Goemans and Williamson.

• Since |xi|2 = 1 for all i, (CQP-k) can be handled by SDR. Specifically,

vSDR = max
X∈Hn

Tr(CX)

s.t. X � 0, Xii = 1, i = 1, . . . , n.
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Randomization Procedure for Complex k-ary Quad. Max.

• Again, a Gaussian randomization procedure can be used to generate a feasible
solution to (CQP-k) from an SDR solution.

Box 3. Gaussian Randomization Procedure for CQP-k
given an SDR solution X⋆, and a number of randomizations L.
for ℓ = 1, . . . , L

generate ξℓ ∼ CN (0,X⋆), and construct the feasible point x̃ℓ ∈ Cn,
where [x̃ℓ]i = f([ξℓ]i) and

f(z) =







1, arg(z) ∈ [−π/k, π/k),
ω, arg(z) ∈ [π/k, 3π/k),
... ...
ωk−1, arg(z) ∈ [(2k − 3)π/k, (2k − 1)π/k);

end
determine ℓ⋆ = arg max

ℓ=1,...,L
x̃H
ℓ Cx̃ℓ.

output x̂ = x̃ℓ⋆ as the approximate solution to (CQP-k).
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Pictorial Illustration of the Randomization Procedure, for k = 3

...

...

..
.
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Approx. Accuracy Result for Complex k-ary Quad. Max.

• In [So-Zhang-Ye’07], it is shown that if the randomization procedure in Box 3
is used, then

γvQP ≤ E{x̂H
Cx̂} ≤ vQP,

where γ =
(k sin(π/k))2

4π
.

• If we take k = ∞, then the k-ary constraints in (CQP-k) become

|xi| = 1, i = 1, . . . , n. (†)

In [So-Zhang-Ye’07] it is shown that by letting the function f in Box 3 to be

f(z) =

{
z/|z|, |z| > 0,
0, |z| = 0,

the randomization procedure would yield γ = π/4 for the unit-modulus
constraints (†). It is interesting (and comforting) to note that

lim
k→∞

(k sin(π/k))2

4π
=
π

4
.
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Applications of Complex k-ary Quadratic Maximization

• (CQP-k) has many applications in signal processing, e.g.:

– blind orthogonal space-time block code detection [Zhang-Ma’09]

– radar code waveform design [De Maio et al.’09]

– distributed detection over multiple-access channels [Banavar-Smith-
Tepedelenlioğlu-Spanias’12]
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problem approx. accuracyγ; see (21)-(22) for def. references
Boolean QP

max
x∈Rn

xT Cx

s.t. x2

i = 1, i = 1, . . . , n γ =







0.87856, C � 0, Cij ≤ 0 ∀i 6= j
2/π ≃ 0.63661, C � 0

1 (opt.), Cij ≥ 0, ∀i 6= j

Goemans-Williamson [2],
Nesterov [3], Zhang [6].
Relevant applications: [24]–[26]

Complexk-ary QP

max
x∈Cn

xHCx

s.t. xi ∈ {1, ω, . . . , ωk−1},
i = 1, . . . , n

whereω = ej2π/k, andk > 1 is an integer.

For C � 0,

γ =
(k sin(π/k))2

4π
.

e.g.,γ = 0.7458 for k = 8, γ = 0.7754 for k = 16.

Zhang-Huang [7],
So-Zhang-Ye [8].
Relevant applications: [27], [37]

Complex constant-modulus QP

max
x∈Cn

xHCx

s.t. |xi|2 = 1, i = 1, . . . , n

For C � 0,
γ = π/4 = 0.7854.

Remark: coincide with complexk-ary QP ask → ∞.

Zhang-Huang [7],
So-Zhang-Ye [8].

max
x∈Cn

xHCx

s.t. (|x1|2, . . . , |xn|2) ∈ F

whereF ⊂ Rn is a closed convex set.

The same approx. ratio as in complex constant-modulus QP;
i.e., γ = π/4 for C � 0.

If the problem is reduced to the real-valued case, then the
approx. ratio results are the same as that in Boolean QP.

Ye [4], Zhang [6].

max
x∈Rn

xT Cx

s.t. xT Aix ≤ 1, i = 1, . . . , m

whereA1, . . . , Am � 0.

For anyC ∈ Sn,

γ =
1

2 ln(2mµ)

whereµ = min{m, maxi rank(Ai)}.

Nemirovski-Roos-Terlaky [5].
Extensions: Ye [72], Luo-Sidiropoulos-
Tseng-Zhang [9] and So-Ye-
Zhang [71].

Known approximation accuracies for quadratic maximization problems. The reference numbers

refer to those in our Signal Processing Magazine article.
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Approx. Accuracy Result for Quadratic Minimization

• Consider now the problem

vQP = min
x∈Rn

xTCx

s.t. xTAix ≥ 1, i = 1, . . . ,m,
(†)

where C,A1, . . . ,Am � 0. This arises in the study of multicast beamforming.

• It was shown in [Luo-Sidiropoulos-Tseng-Zhang’07] that if the randomization
procedure in Box 2 is used, then with high probability (instead of just in
expectation),

vQP ≤ v(x̂) ≤ γvQP,

where γ = 27m2/π.

– For the complex version of (†), one has a better approximation ratio: γ = 8m.

• Notice that this ratio accommodates the worst possible problem instance
{C,A1, . . . ,Am}. In practice, the approximation accuracies are usually much
better— a phenomenon that deserves further investigation.
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Interpretation in Multicast Transmit Beamforming

• Recall that in the context of multicast transmit beamforming, we encounter the
following optimization problem:

min
w∈CN

‖w‖2

s.t.
1

γiσ2
i

wHRiw ≥ 1, i = 1, . . . ,K.

• The aforementioned approximation accuracy result thus says that SDR together
with the randomization procedure can produce a beamvector that satisfies all
the prescribed SNR requirements and whose power is at most 8K times the
optimal.

• Again, this is just a worst-case guarantee. In practice, the performance is usually
much better.
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problem approx. accuracyγ; see (18)-(19) for def. references

min
x∈Cn

xHCx

s.t. xHAix ≥ 1, i = 1, . . . , m

whereA1, . . . , Am � 0.

γ = 8m.

If the problem is reduced to the real-valued case, then

γ =
27m2

π
.

Luo-Sidiropoulos-Tseng-Zhang [9]; see
also So-Ye-Zhang [71].
Relevant applications: [29]

MIMO Detection

min
x∈Rn

‖y − Hx‖2

2

s.t. x2

i
= 1, i = 1, . . . , n

wherey = Hs+v; H ∈ Cn×n has i.i.d. standard
complex Gaussian entries;s2

i
= 1 for i = 1, . . . , n;

andv ∈ Cn has i.i.d. complex mean zero Gaussian
entries with varianceσ2.

For σ2 ≥ 60n (which corresponds to the low signal-to-noise
ratio (SNR) region), with probability at least1−3 exp(−n/6),

γ ≤
11

2
.

For σ2 = O(1) (which corresponds to the high SNR region),
with probability at least1 − exp(−O(n)),

γ = 1,

i.e. the SDR is tight.

Kisialiou-Luo [67], So [69].
Extensions: So [68], [69].
Related: Jaldén-Ottersten [66].
Relevant applications: [17]–[20], [22],
[23]

Known approximation accuracies for quadratic minimization problems. The reference numbers

refer to those in our Signal Processing Magazine article.
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Rank Reduction in SDR

• The SDR methodology introduced so far can be summarized as follows:

1) formulate a hard problem (nonconvex QCQP) as a rank-one-constrained SDP
2) remove the rank constraint to obtain an SDP
3) use some methods, such as randomizations, to produce an approximate

solution to the original problem.

• It is natural to expect that the lower the rank of the SDP solution, the better
the approximation.

• Unfortunately, we cannot guarantee a low rank solution for the SDP in general.

• However, we can identify special cases where the SDP solution rank is low or
even equal to one.
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Shapiro-Barvinok-Pataki (SBP) Result

• Consider the real-valued SDP

min
X∈Sn

Tr(CX)

s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m.

SBP Result [Pataki’98]: There exists an optimal solution X⋆ such that

rank(X⋆)(rank(X⋆) + 1)

2
≤ m.

• In particular, SBP result implies that for m ≤ 2, a rank-1 X⋆ exists. Hence,

For a real-valued QCQP with m ≤ 2, SDR is tight; i.e., solving the SDR is
equivalent to solving the original QCQP.

• Note that a rank reduction algorithm may be required to turn an SDP solution
to a rank-one solution [Ye-Zhang’03].
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Complex Extension of the Rank Reduction Result

• Let us now consider the complex-valued SDP

min
X∈Hn

Tr(CX)

s.t. X � 0, Tr(AiX) Di bi, i = 1, . . . ,m.

• In this case, the SBP result can be generalized to [Huang-Zhang’07]

rank(X⋆)2 ≤ m.

As a direct corollary, we have

For a complex-valued QCQP with m ≤ 3, SDR is tight.

• A complex rank-1 decomposition algorithm for m ≤ 3 is available [Huang-
Zhang’07].
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Application Revisited: Multicast Beamforming

• Recall the multicast beamforming problem:

min
w∈CNt

‖w‖2

s.t. SNRi =
wHRiw

σ2
i

≥ γi,

i = 1, . . . , K,

K being the number of users.

⋮

Basestation

User 1

User 2

• By the SBP result, SDR solves the multicast problem optimally for K ≤ 3.
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Further Extension of the Rank Reduction Result

• Recall the problem

min
X1,...,Xk∈Hn

∑k
i=1Tr(CiXi)

s.t.
∑k

l=1Tr(Ai,lX l) Di bi, i = 1, . . . ,m,
X1 � 0, . . . ,Xk � 0,

which is an SDR of the so-called separable QCQP.

• We have the following generalization of the SBP result [Huang-Palomar’09]:

∑k
i=1 rank(X

⋆
i )

2 ≤ m.

Consequently,

Suppose that an SDR solution {X⋆
i }i satisfies X⋆

i 6= 0 for all i. Then, the
SDR is tight for m ≤ k + 2.
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Application Revisited: Unicast Beamforming

⋮

Basestation

User 1

User 2

• Recall the design problem

min
w1,...,wK∈CNt

∑K
i=1 ‖wi‖2

s.t.
wH

i Riwi
∑

l 6=iw
H
l Riwl + σ2

i

≥ γi,

i = 1, . . . , K,

(†)

which is a separable QCQP with K variables
(beamvectors) and K constraints (SINR req.).

• By the aforementioned result, SDR solves (†) optimally for any R1, . . . ,RK � 0.

• And hey, it’s still fine if you put two more quadratic constraints in (†)!
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Part III.A: Transmit Beamforming
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SDR in Transmit Beamforming

• Many forefront advances of SDR we see recently lie in transmit beamforming
(BF) optimization.
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Current Development of SDR in Transmit Beamforming

• Apart from unicast and multicast BF, we have seen numerous extensions:

– multigroup multicast [Karipidis-Sidiropoulos-Luo’08]

– cognitive radio BF [Phan-Vorobyov-Sidiropoulos-Tellambura’09]

– relay beamforming
∗ one-way relay beamforming [Fazeli-Dehkordy-Shahbazpanahi-Gazor’09],
[Chalise-Vandendorpe’09]

∗ two-way relay beamforming (a.k.a. analog network coding) [Zhang-Liang-
Chai-Cui’09]

∗ interference neutralization [Ho-Jorswieck’12]

– multicell coordinated beamforming [Bengtsson-Ottersten’01], [Dahrouj-
Yu’10], [Shen-Chang-Wang-Qiu-Chi’12]

– secrecy beamforming [Liao-Chang-Ma-Chi’11]

– energy harvesting [Xu-Liu-Zhang’13], [Chalise-Ma-Zhang-Suraweera-
Amin’13]
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Overview

• Our focus:

– QCQP-SDR perspective on various transmit BF problems.
– A glimpse of some nice formulations.

• What we will not go through:

– alternative solution approaches and comparison
∗ second-order cone program (SOCP) (for unicast BF with instant. CSIT only)
[Wiesel-Eldar-Shamai’06]

∗ uplink-downlink duality (for unicast BF only) [Schubert-Boche’04]
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Multi-Group Multicast Beamforming

• A natural generalization of unicast and multicast BF.

• Scenario: Multiuser MISO downlink with M groups of users, & with each
group receiving the same info. [Karipidis-Sidiropoulos-Luo’08].

|{z}

group 1

group 2

group 3

|{z}

|{z}
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• Transmit signal:

x(t) =
M∑

m=1

wmsm(t),

where sm(t) ∈ C is the data stream for group m, & wm ∈ CNt its beamvector.

• Received signal of user k in the mth group:

ym,k(t) = hH
m,kx(t) + vm,k(t)

= hH
m,kwmsm(t) +

∑

l 6=m

hH
m,kwlsl(t)

︸ ︷︷ ︸
inter-group interference

+vm,k(t),

where k = 1, . . . , Km, & Km is the number of users in the mth group.

• SINR:

SINRm,k =
wH

mRm,kwm
∑

l 6=mwH
l Rm,kwl + σ2

m,k

,

where Rm,k = hm,kh
H
m,k for instant. CSIT, & Rm,k = E{hm,kh

H
m,k} for stat.

CSIT.
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• Problem:

min
w1,...,wM∈CNt

M∑

m=1

‖wm‖2

s.t. SINRm,k =
wH

mRm,kwm
∑

l 6=mwH
l Rm,kwl + σ2

m,k

≥ γm,k,
k = 1, . . . ,Km,
m = 1, . . . ,M,

where γm,k’s are prescribed SINR requirements.

• A separable QCQP with M variables, w1, . . . ,wM , and
∑M

m=1Km constraints.

• By the SBP rank reduction result in Part II, SDR has rank-1 solution (and solves
the BF problem optimally) when

– K1 ≤ 3, Km = 1 ∀m 6= 1 (one group serving ≤ 3 users, the others 1 user);
– K1 ≤ 2, K2 ≤ 2, Km = 1 ∀m 6= 1, 2 (two groups serving ≤ 2 users, the

others 1 user).

• For non-rank-1 instances, solution approx. can be done by a (more sophisticated)
Gaussian randomization procedure [Karipidis-Sidiropoulos-Luo’08].
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Cognitive Radio (CR) Beamforming

• Goal: Access the channel owned by primary users through spectrum sharing.

• Scenario: MISO downlink with the CR (or secondary) system.

Primary 

Rx

Secondary 

Rx

Primary Tx

Secondary 

Tx

• Idea: Avoid excessive interference to the primary users through tx. opt.
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• CR spectrum-sharing model:

– K secondary users (SUs), L single-antenna primary users (PUs)

– tx. and rx. model for SUs: same as the previous multicast or unicast model

– interference to the lth PU given by

|gH
l w|2,

where gl is the channel from the secondary transmitter to the lth PU

– known CSIT from the secondary transmitter to the PUs

• Design for the multicast case [Phan-Vorobyov-Sidiropoulos-Tellambura’09]:

min
w

‖w‖2

s.t. SNRSU,i = wHRiw/σ
2
i ≥ γ, i = 1, . . . ,K,

wHGlw ≤ δl, l = 1, . . . , L, (interference temperature (IT) constraints)

where Gl is the CSIT of lth PU (defined in the same way as Rk); δl is the
tolerable interference level to the lth PU; γ is SUs’ SNR requirement.

– By the SBP result, SDR is tight when K ≤ 2, L = 1 (≤ 2 SUs, 1 PU).
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• Design for the unicast case (see, e.g., [Zhang-Liang-Cui’10]):

min
w1,...,wK

K∑

k=1

‖wk‖2

s.t. SINRSU,i =
wH

i Riwi
∑

l 6=iw
H
l Rkwl + σ2

i

≥ γi, i = 1, . . . , K,

∑K
k=1w

H
k Glwk ≤ δl, l = 1, . . . , L. (IT constraints)

– A separable QCQP with K variables and K + L constraints.

– By the SBP result, SDR is tight if L ≤ 2 (two PUs or less).

– Remark: For instant. CSIT with SUs, SDR can be shown to be rank-1 optimal
for any L. Alternatively, it can be reformulated as an SOCP.
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One-Way Relay Network Beamforming

• Scenario: One-way cooperative communication by a network ofN single-antenna
amplify-forward (AF) relays, K tx-rx pairs [Fazeli-Dehkordy-Shahbazpanahi-
Gazor’09].

Phase I Phase II

f1;1

f1;2

f1;N

g1;1

g1;2

g1;N

Source to Relay Relay to Destination 

fK;1

fK;2

fK;N

gK;1

gK;2

gK;N

Tx 1

Tx Rx 

Rx 1

1

2

N

• Goal: Design the AF weights so that the SINR requirements are met, and the
total relay tx. power is minimized.
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• System model:

– rx. signals for the source-to-relay link:

r(t) =
K∑

i=1

f isi(t) + n(t),

where r(t) = [ r1(t), . . . , rN(t) ], ri(t) being the rx. signal of relay i;
si(t) is the data stream from source i to destination i;
f i ∈ CN the channel from source i to the relays;
n(t) is noise with covariance Σn = Diag(σ2

n,1, . . . , σ
2
n,N).

– AF process:
x(t) = Wr(t),

where W = Diag(w1, . . . , wN); wi is the AF weight at relay i.

– rx. signals for the relay-to-destination link:

yi(t) = gH
i x(t) + vi(t), i = 1, . . . , K,

where gi is the channel from the relays to destination i; vi(t) is noise with
variance σ2

v,i.
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• Assuming instant. CSIT (for ease of illustration), we have

SINRi =
|gH

i Wf i|2
∑

k 6=i |gH
i Wfk|2

︸ ︷︷ ︸
interference

+ gH
i WΣnW

Hgi
︸ ︷︷ ︸

noise amplification due to AF

+σ2
v,i

, i = 1, . . . ,K.

• Problem: Let w = [ w1, . . . , wN ]T ∈ CN . Solve

min
w

E{‖x(t)‖2} = wHCw

s.t. SINRi =
wHAiw

wHBiw + σ2
v,i

≥ γi, i = 1, . . . , K,

where Ai = (f∗
i ⊙ gi)(f

∗
i ⊙ gi)

H, Bi =
∑

k 6=i(f
∗
k ⊙ gi)(f

∗
k ⊙ gi)

H +

Diag(|gi,1|2σ2
n,1, . . . , |gi,N |2σ2

n,N), C = Diag(‖f1‖2+σ2
n,1, . . . , ‖fN‖2+σ2

n,N).

– The problem is a QCQP with K constraints; SDR is tight for K ≤ 3.

– Remark: While this relay application has some unicast flavor— i.e., one data
stream for one user— it does not imply that the same SDR tightness result
in standard unicast BF holds for the relay BF problem.
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One-Way MIMO Relay Beamforming

• Scenario: One-way relaying by an MIMO AF relay, K tx-rx pairs [Chalise-
Vandendorpe’09].

Phase I Phase II

Source to Relay Relay to Destination 

Tx 1

Tx Rx 

Rx 1

Relay

f 1

fK

g
1

gK

• Everything is the same as that in the last relay example, except that a matrix
AF process is considered:

x(t) = Wr(t),

where W ∈ CN×N is a general N ×N matrix (instead of being diagonal).
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• Let w = vec(W ) ∈ CN2
.

• The design problem (after some careful derivations):

min
w

E{‖x(t)‖2} = wHCw

s.t. SINRi =
wHAiw

wHBiw + σ2
v,i

≥ γi, i = 1, . . . , K,

whereAi = (f∗
i⊗gi)(f

∗
i⊗gi)

H, Bi =
∑

k 6=i(f
∗
k⊗gi)(f

∗
k⊗gi)

H+Σ
T
n⊗(gig

H
i ),

& C = (
∑K

i=1 f
∗
if

T
i +Σ

T
n)⊗ I.

– Again, SDR is tight for K ≤ 3.
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Two-Way Relay Beamforming

• Scenario: Two-way communication between two users, using an MIMO AF
relay [Zhang-Liang-Chai-Cui’09]

Relay
User 1 User 2

Relay
User 1 User 2

h1

h1

h2

h2

– Phase I: Two users transmit

r(t) = h1s1(t)+h2s2(t)+n(t).

– Phase II: Matrix AF relaying

x(t) = Wr(t).

• In addition, the users can self-cancel their previously tx. data.

y1(t) = hH
1 x(t) + v1(t) = hH

1 Wh1s1(t)
︸ ︷︷ ︸
self interference,

cancelled

+hH
1 Wh2s2(t) + hH

1 Wn(t)
︸ ︷︷ ︸
noise amp.

+v1(t),

y2(t) = hH
2 x(t) + v2(t) = hH

2 Wh1s1(t) + hH
2 Wh2s2(t)
︸ ︷︷ ︸
self interference,

cancelled

+hH
1 Wn(t)
︸ ︷︷ ︸

noise amp.

+v2(t).
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• The design problem

min
W

E{‖x(t)‖2}

s.t. SNR1 =
|hH

1 Wh2|2
hH
1 WΣnWHh1 + σ2

v,1

≥ γ1,

SNR2 =
|hH

2 Wh1|2
hH
2 WΣnWHh2 + σ2

v,2

≥ γ2

can be converted to a 2-constraint QCQP, by applying w = vec(W ) ∈ CN2

(the same way as in the last example).

• Hence, SDR solves the two-relaying BF problem optimally.
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Physical-Layer Security

• Scenario: One intended user (Bob) and multiple illegitimate users (Eves).

• Goal: Block eavesdropping by degrading illegitimate users’ “QoS”.

Eavesdropper (Eve) 

Legitimate receiver (Bob)

Transmitter (Alice) 

Transmit beam for Bob

Artificial noise

• Idea: Use spatially selective artificial noise (AN) to jam illegitimate users
[Swindlehurst’09], [Liao-Chang-Ma-Chi’11].
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• tx. signal: x(t) = ws(t) + z(t), where z(t) ∼ CN (0,Σ) is AN. SINRs:

SINRBob =
|hHw|2

Tr(ΣhhH) + σ2
n

, SINREve,i =
|gH

i w|2
Tr(Σgig

H
i ) + σ2

v,i

, i = 1, . . . , L,

where h and gi are the channels of Bob and Eve i, resp.

• Problem: Given an SINR specification (γ, β), solve

min
w,Σ�0

‖w‖2 + Tr(Σ)

s.t. SINRBob ≥ γ, SINREve,i ≤ β, i = 1, . . . , L.
(†)

– (†) provides a secrecy rate guarantee log(1 + γ)− log(1 + β).

– (†) can be handled by SDR, by replacing W = wwH with W � 0.

– By the SBP result, you can (immediately!) declare that SDR is tight for
L ≤ 2.

– By exploiting specific problem structures of (†), it is proven that SDR always
gives rank-1 solution with W for any L [Liao-Chang-Ma-Chi’11].
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Transmit power performance of various secret BF designs. Nt = 4; L = 3; σ2
n = 0dB;

γ = 10dB; β = 0dB. No-AN design refers to (†) without AN. Isotropic AN design refers to a

closed-form design in which w =
√
αPmaxh/‖h‖, Σ = (1 − α)Pmax(I − hhH/‖h‖2), with

Pmax being the total tx power and 0 < α ≤ 1 being a power allocation factor.
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Energy Harvesting

• Scenario: Unicast multiuser MISO downlink, with energy harvesting (EH)
receivers that can harvest energy from radio signals.

• Goal: Simultaneous information transmission and wireless power transfer via BF
[Xu-Liu-Zhang’13], [Chalise-Ma-Zhang-Suraweera-Amin’13].

ID User

EH Receiver
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• System model:
– K information decoding (ID) users, L EH receivers.
– tx. signal model:

x(t) =
K∑

i=1

wisi(t) +
M∑

i=1

viui(t),

where
∗ si(t) & wi are ID user i’s data steam & beamvector, resp.;
∗ every ui(t) is an energy-carrying (& no-info.) signal for transfering energy
to EH receivers; vi is the corresponding energy beamvector.

– Power harvested by EH receiver i:

PEH
i = ζi · E{|yEHi (t)|2} = ζi ·

(
M∑

i=1

vH
i Givi +

K∑

i=1

wH
i Giwi

)

,

where yEHi (t) is EH receiver i’s rx. signal; ζi the EH efficiency; Gi the CSIT.
– ID users’ SINRs: Every ID user is assumed to know ui(t) and can cancel them

from the rx. signal. By letting Ri to be the CSIT of ID user i, the SINRs are

SINRID
i =

wH
i Riwi

∑

l 6=iw
H
l Riwl + σ2

i

, i = 1, . . . ,K.
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• Problem: Given ID users’ SINR requirements and EH receivers’ requirements,
denoted by γ1, . . . , γK and β1, . . . , βL, resp., solve

min
{wi},{vi}

K∑

i=1

‖wi‖2 +
M∑

i=1

‖vi‖2

s.t. SINRID
i ≥ γi, i = 1, . . . ,K,

PEH
i ≥ βi, i = 1, . . . , L.

• At first sight, one may do the following SDR formulation: Let

W i = wiw
H
i , i = 1, . . . , K, V i = viv

H
i , i = 1, . . . , L,

and then “SDR” them.

• Specific problem structures can be exploited to formulate a simpler SDR.
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• Recall the design problem

min
{wi},{vi}

∑K
i=1 ‖wi‖2 + Tr((

∑M
i=1 viv

H
i ))

s.t. SINRID
i =

wH
i Riwi

∑

l 6=iw
H
l Riwl + σ2

i

≥ γi, i = 1, . . . ,K,

PEH
i = ζi ·

(

Tr
(

Gi(
∑M

i=1 viv
H
i )
)

+Tr
(

Gi(
∑K

i=1wiw
H
i )
))

≥ βi,

i = 1, . . . , L.

• Let
W i = wiw

H
i , i = 1, . . . ,K, V =

∑M
i=1 viv

H
i ,

where one should note that V � 0, rank(V ) ≤M . Then, “SDR” {W i},V .

• The resulting SDR has less design variables than the previously mentioned SDR.
Also, by the SBP result,

– SDR has rank-1 solution w.r.t. {W i} for L ≤ 2 (two EH receivers or less);

– SDR has rank r ≤ 1 solution w.r.t. V for L ≤ 2; i.e., when there are two EH
receivers or less, it suffices to use M = 1, or one energy beam.
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EH beamforming without energy beams
EH beamforming with energy beams

Transmit power performance of EH beamforming with respect to the EH receivers’ power

requirement. “EH beamforming with energy beams” refers to the EH formulation in the previous

slide, while “EH beamforming without energy beams” refers to the same formulation without vi’s.

Nt = 8, K = 6, L = 2, γ1 = · · · = γK = 5dB, β = β1 = β2, ζ1 = ζ2 = 0.5.
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Multicell Coordinated Beamforming

• Motivation: Provide better interference management by coordinating the
transmissions of base stations at different cells.

• Scenario: Unicast MISO downlink in a multicell scale [Dahrouj-Yu’10],
[Bengtsson-Ottersten’01].
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• tx. signal of ith cell:

xi(t) =

Ki∑

j=1

wi,jsi,j(t), i = 1, . . . , N,

where si,j(t) and wi,j are the tx. stream and beamvector for user j in the ith
cell, resp.; Ki is the no. of users in the ith cell; N is the no. of cells.

• rx. signal of user j in the ith cell:

yi,j(t) = hH
i,i,jxi(t) +

∑

m 6=i

hH
m,i,jxm(t) + vi,j(t), j = 1, . . . ,Ki,

where hm,i,j is the channel from mth cell to user j in the ith cell.

• Define CSIT Rm,i,j in the same way as before. SINR:

SINRi,j =
wH

i,jRi,i,jwi,j
∑

l 6=j

wH
i,lRi,i,jwi,l

︸ ︷︷ ︸
intra-cell interference

+
∑

m 6=i

∑

n

wH
m,nRm,i,jwm,n

︸ ︷︷ ︸
inter-cell interference

+σ2
i,j

.
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• Problem:

min
{wi,j}

N∑

i=1

Ki∑

j=1

‖wi,j‖2

s.t.
wH

i,jRi,i,jwi,j
∑

l 6=j w
H
i,lRi,i,jwi,l +

∑

m 6=i

∑

nw
H
m,nRm,i,jwm,n + σ2

i,j

≥ γi,j,

j = 1, . . . ,Ki, i = 1, . . . , N.

(†)

• While (†) looks complicated, one can observe that

– (†) is a QCQP with
∑N

i=1Ki variables &
∑N

i=1Ki constraints;

– by the SBP result, (†) can be optimally solved by SDR.

• A recent direction: Distributed multicell coordinated BF

– practically desirable, free from centralized opt. (requires a central station)

– in the SDR context, the challenge is the same as solving SDP distributively

– can be achieved by application of distributed opt. methods, e.g., alternating
direction method of multipliers (ADMM) [Shen-Chang-Wang-Qiu-Chi’12]

W.-K. Ma & A. M.-C. So, Semidefinite Relaxation, ICASSP 2014 Tutorial 92



• In ADMM, the idea is to reformulate the SDR of (†) in a consensus opt. form:

min
{ti,j,um,i,j},

{upublic
m,i,j

}

N∑

i=1











min
{W i,j}j

∑

j

Tr(W i,j)

s.t.
Tr(Ri,i,jW i,j)

∑

l 6=j Tr(Ri,i,jW i,l) + ti,j + σ2
i,j

≥ γi,j, ∀i, j,

W i,1, . . . ,W i,Ki
� 0,

ui,m,j =
∑

nTr(Ri,m,jW i,n), ∀m 6= i, j











s.t. um,i,j = upublicm,i,j, ∀m, i, j,m 6= i,

ti,j =
∑

m 6=i u
public
m,i,j, ∀i, j,

where ti,j is the sum intercell interference (ICI) from other cells to user j in cell

i; um,i,j (resp. upublicm,i,j) is local (resp. public) ICI from cell m to user j in cell i.

• Then, one can apply ADMM to solve the above problem distributively (details
skipped). In layman terms, at each iteration ADMM does the following:

– Each cell solves a single-cell problem, but with ICI awareness.

– Cells exchange their local ICI info. and update public ICI info.
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Other Design Formulations

• For tutorial purposes, we so far considered only the QoS-constrained power
minimization design formulation.

• SDR can also handle design formulations such as

– max-min fairness;
– rate profile problems;
– joint BF and user selection [Matskani-Sidiropoulos-Luo-Tassiulas’08],

[Wai-Ma’12].

• Can SDR be employed to tackle even more challenging design formulations,
particularly, the (NP-hard) sum rate maximization (SRM) problem?

– Tricky, if not impossible...

– Doable when we consider a harder version of SRM, namely, discrete SRM
(DSRM) [Wai-Li-Ma’13].
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Discrete Sum Rate Maximization

• Scenario: Unicast multiuser MISO downlink.

• Problem: Maximize the discretized sum rate under the total power constraint:

max
w1,...,wK

∑K
i=1ϕ (log2(1 + SINRi))

s.t.
∑K

i=1 ‖w‖2 ≤ P,
(DSRM)

where SINRi =
wH

i Riwi
∑

l 6=iw
H
l
Riwl+σ2

i

with Ri = hih
H
i (instant. CSIT);

ϕ(r) =







RM if RM ≤ r,
...
R1 if R1 ≤ r < R2,
0 if 0 ≤ r < R1,

with 0 < R1 < · · · < RM being the supported rate values; P is the power limit.

• DSRM is motivated by finite rate constraints in practical modulation and coding
schemes [Cheng-Philipp-Pesavento’12].

• DSRM subsumes joint BF and user selection, wherein M = 1.
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• Consider the simple case of M = 1, where ϕ(r) = 0 if 0 ≤ r < R1 & ϕ(r) = R1

if R1 ≤ r. Since

R1 ≤ log2(1 + SINRi) ⇐⇒ 2R
1 ≤ 1 +

wH
i Riwi

∑

l 6=iw
H
l Riwl + σ2

i

⇐⇒fi({wl}) ,
∑

l 6=i

wH
l Riwl −

1

2R1 − 1
wH

i Riwi + σ2
i ≤ 0,

we can write

ϕ(log2(1 + SINRi)) = R1 −R1 · ψ(fi({wl})),

where ψ(x) is the unit step function.

• Idea: Apply the approx. (commonly seen in compressive sensing)

ϕ(log2(1 + SINRi)) ≈ R1 −R1 ·max{0, fi({wl})}.

Such an idea can be extended to M > 1.
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• Using the aforementioned step-to-hinge approx. and then SDR, (DSRM) can be
approximated by

max
{W l}

K∑

i=1

M∑

m=1

(Ri−1 −Ri)max






0, Ri +

Ri

σ2
i

Tr



Ri




∑

l 6=i

W l −
1

2Ri−1
W i















s.t. W 1, . . . ,WK � 0,
∑K

i=1Tr(W i) ≤ P,
(DSRM-SDR)

where R0 = 0.

• (DSRM-SDR) is convex.

• Technical remarks:

- (DSRM-SDR) guarantees rank-one optimal solution with {W l} if we add a

small regularization term −ǫ∑K
i=1Tr(W i), ǫ > 0, in the objective.

- However, (DSRM-SDR) is not tight with its discrete rate approx. An iterative
refinement procedure is employed to generate an approx. solution; see [Wai-
Li-Ma’13] for details.
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Sum rate performance with respect to the total power limit P . Nt = 6, K = 8, & the discrete

rate set follows that in 3GPP LTE standard (M = 15, from R1 = 0.15bits to RM = 5.55bits).

WMMSE refers to the SRM algorithm in [Shi-Razaviyayn-Luo-He’11], which does not take into

account finite rate constraints.
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Part III.B: Advanced Topics in Transmit
Beamforming

Topic 1. Rank-Two Beamforming
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Motivation

• Recall that the rationale of SDR is to use a rank-unconstrained SDP to find a
rank-1 solution W , which can be physically realized by BF.

• A natural question arises: Can we do rank-2 SDR?

• Suppose that we want to do this. Then, there are two challenges to tackle:

– From a communication viewpoint, we never said BF is the only way to go.
The question is how to design an alternative transmit scheme.

– From an optimization viewpoint, how to proceed with solution generation,
and what is its theoretical performance?

• Solution:

– A combination of BF and the Alamouti space-time block code.

– The SDP rank reduction theory in [So-Ye-Zhang’08].
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The Alamouti Space-Time Block Code

• Let s = [ s1, s2 ]T . The Alamouti code is

C(s) =

[
s1 s2
−s∗2 s∗1

]

,

which is arguably the most famous among space-time codes.

• Features:

– orthogonal: C(s)CH(s) = ‖s‖2I
– easy to detect s
– simple performance characterization
– ideal choice for isotropic transmission in 2× 1 MISO channels

• Extensions: Beamformed Alamouti coding, often for point-to-point MIMO
[Jöngren-Skoglund-Ottersten’02], [Pascual-Iserte-Palomar-et al.’06], ...

• Recent development: Beamformed Alamouti for multicasting [Wu-Ma-So’13]
(also [Wu-So-Ma’12]), [Wen-Law-Alabed-Pesavento’12].
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BF Alamouti System Model

• Scenario: Multicast MISO downlink with instant. CSIT.

• Parse x(t) into blocks via X(n) = [ x(2n) x(2n+1) ]. In block n, we transmit
s(n) = [ s(2n) s(2n+ 1) ]T by

X(n) = BC(s(n)),

where B ∈ CN×2 is a transmit beamforming matrix, and

C(s) =

[
s1 s2
−s∗2 s∗1

]

is the Alamouti space-time code.

• By utilizing the special structure of the Alamouti code, rx signals can be
equivalently turned to SISO models with SNRs

SNRi =
hH
i BBHhi

σ2
i

.
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Rank-2 Beamforming Problem

• Consider the power minimization design

vQP2 = min
B∈CN×2

Tr(BBH)

s.t. hH
i BBHhi/σ

2
i ≥ γ, i = 1, . . . , K.

(PM-ALAM)

• Observe that

W = BBH ⇐⇒ W � 0 and rank(W ) ≤ 2.

Hence, upon letting Ai = hih
H
i /(σ

2
i γ), (PM-ALAM) can be reformulated as

max
W∈HN

Tr(W )

s.t. Tr(AiW ) ≥ 1, i = 1, . . . ,K, W � 0, rank(W ) ≤ 2.

• Let us do the same trick— dropping the rank constraint. Then, we get

max
W∈HN

Tr(W )

s.t. Tr(AiW ) ≥ 1, i = 1, . . . ,K, W � 0,

which is the same SDR as that for the previous beamforming problem!
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Gaussian Randomization

• Let W ⋆ be a solution to (SDR).

• If W ⋆ satisfies W ⋆ = B̂B̂
H
, or rank(W ⋆) ≤ 2, then we are done— B̂ is

optimal to (PM-ALAM).

• Now, consider instances for which rank(W ⋆) > 2. Can we do Gaussian
randomization for rank-2 W ?

• The answer is yes.

Box 4. Gaussian Randomization Procedure for (PM-ALAM)
given an SDR solution W ⋆, and a number of randomizations L.
for j = 1, . . . , L

generate ξ1,j, ξ2,j ∼ CN (0,W ⋆), and define B̃j = [ ξ1,j ξ2,j ];

let B̂j =
B̃j

√

mini=1,...,K Tr(B̃jB̃
H
j Ai)

;

end
output B̂ = B̂j⋆, where j

⋆ = arg min
j=1,...,L

Tr(B̂jB̂
H

j ).
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Theoretical Performance of SDR-based BF Alamouti

• By the Shapiro-Barvinok-Pataki (SBP) rank reduction result (see Part II), we
have

When K ≤ 8, there exists a solution W ⋆ of (SDR) whose rank satisfies
rank(W ⋆) ≤ 2.

• Implication: SDR exactly solves the rank-two beamforming problem for eight
users or less (recall that for BF, we have three users or less).

• Let v(B) = Tr(BBH). For K ≥ 8, the following result is established in
[Wu-So-Ma’12], [Wu-Ma-So’13]:

With high probability, the solution B̂ generated by the rank-2 Gaussian
randomization procedure in Box 4 satisfies

vQP2 ≤ v(B̂) ≤ 12.22
√
KvQP2.

• This provable worst-case performance gain is better than that of BF, which is
8K.

W.-K. Ma & A. M.-C. So, Semidefinite Relaxation, ICASSP 2014 Tutorial 106



Remarks

• The ideas used in the rank-two SDR beamformed Alamouti scheme can also be
applied to other scenarios, such as

– multicast relaying [Schad-Law-Pesavento’12];
– multi-group multicast [Ji-Wu-So-Ma’13], [Law-Wen-Pesavento’13];
– energy harvesting [Chalise-Ma-Zhang-Suraweera-Amin’13].
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Extension: Multi-Group Multicast CR Networks

• Scenario: Multi-group multicast in a CR network.

• Problem: Max-min-fair design formulation under the rank-two beamformed
Alamouti scheme:

vMMF = max
B1,...,BM∈CN×2

min
k=1,...,Km
m=1,...,M

Tr(Rm,kBmBH
m)

∑

l 6=mTr(Rm,kBlB
H
l ) + σ2

m,k

s.t.
M∑

m=1

Tr(BmBH
m) ≤ P,

M∑

m=1

Tr(GlBmBH
m) ≤ δl, l = 1, . . . , L, (IT constraints)

(MMF)

where P is the transmit power limit.
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Theoretical Results for Multi-Group Multicast CR Networks
• Let Wm = BmBH

m. Using the Huang-Palomar extension of the SBP rank
reduction result, we obtain the following:

When
∑M

m=1Km ≤ M + 7, there exists an SDR solution {W ⋆
m} with

rank(W ⋆
m) ≤ 2 for m = 1, . . . ,M .

• Suppose now that
∑M

m=1Km > M + 7. Let

v({Bm}) = min
k=1,...,Km
m=1,...,M

Tr(Rm,kBmBH
m)

∑

l 6=mTr(Rm,kBlB
H
l ) + σ2

m,k

.

In [Ji-Wu-So-Ma’13], the following result is established:

A Gaussian randomization procedure can generate a feasible solution {B̂m}
to (MMF) with rank(B̂m) ≤ 2 for all m. Moreover, with high probability,

vMMF ≥ v({B̂m}) ≥ vMMF

8
√
∑M

m=1Km(3 log 8(L+ 1))
.
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Theoretical Results for Multi-Group Multicast CR Networks

• The above results generalize those in [Chang-Luo-Chi’08], which concern
rank-1 beamforming in the multi-group multicast scenario with no primary user.
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Further Discussion: Can We Do Rank-r Beamforming, r ≥ 3?

• From an optimization viewpoint, yes.

– For example, we can consider rank-3 SDR, wherein an effective power loss of
O(K1/3) can be proven.

• From a realizable physical layer viewpoint, not straightforward.

– A generalization of the Alamouti code is the class of orthogonal space-time
block codes (OSTBCs).

– Full-rate OSTBCs do not exist for r > 2 [Liang-Xia’03].

– For example, for r = 3, the maximal rate is 3/4, and the code is

C(s) =





s1 −s∗2 −s∗3 0
s2 s∗1 0 −s∗3
s3 0 s∗1 s∗2



 .

• The question of rank-r beamforming has led to new studies that are no longer
about SDR— e.g., stochastic beamforming [Wu-Ma-So’13], which can perform
virtual rank-r beamforming for any r ≥ 1.
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Part III.B: Advanced Topics in Transmit
Beamforming

Topic 2. Worst-Case Robust Beamforming
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Motivation

Scenario: Unicast multiuser MISO downlink, with instant. CSIT h1, . . . ,hK.

⋮

Basestation

User 1

User 2

• Previously, we have formulated the following
QoS-constrained power minimization problem:

min
w1,...,wK∈CN

∑K
i=1 ‖wi‖2

s.t.
|wH

i hi|2
∑

l 6=i |wH
l hi|2 + σ2

i

≥ γi,

i = 1, . . . ,K.

• As seen before, this can be handled by SDR.
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Motivation

Issue: CSIT is generally imperfectly known in practice.

⋮

Basestation

Presumed
User 1

Presumed 
User 2

Actual
User 2

Actual
User 1

• Suppose that the presumed CSIT, {hi}, is
inaccurate.

• If we directly substitute the presumed
CSIT into the standard power minimization
design

min
w1,...,wK∈CN

∑K
i=1 ‖wi‖2

s.t.
|wH

i hi|2
∑

l 6=i |wH
l hi|2 + σ2

i

≥ γi,

i = 1, . . . , K

and run it, then the resultant design may
have severe SINR outage.
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Non−robust

Histogram of the actual SINR satisfaction probabilities of the non-robust QoS-constrained power

minimization design. Nt = K = 3; i.i.d. complex Gaussian CSI errors with zero mean and

variance 0.002; γ = 11dB. The design has more than 50% outage most of the time.
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Worst-Case Robust Beamforming Problem

• Design goal: Guarantee the SINR requirements even in the worst-case scenario.

• Let W i = wiw
H
i , i = 1, . . . , K, and define

SINRi({W j},hi) =
Tr(W ihih

H
i )

∑

l 6=iTr(W lhih
H
i ) + σ2

i

.

• We adopt the CSIT model
hi = h̄i + ei,

where h̄i is the presumed channel; ei is a deterministic unknown with ‖ei‖ ≤ ri
(ri is known).

• Consider the following worst-case robust BF design problem:

min
W 1,...,WK

∑K
i=1Tr(W i)

s.t. SINRi({W j}, h̄i + ei) ≥ γi, ∀‖ei‖ ≤ ri, i = 1, . . . ,K,
rank(W i) ≤ 1, W i � 0, i = 1, . . . , K.

(RPM)
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• By noting that

SINRi({W j},hi) ≥ γi ⇐⇒ hH
i




1

γi
W i −

∑

l 6=i

W l



hi ≥ σ2
i ,

(RPM) can be rewritten as

min
W 1,...,WK

∑K
i=1Tr(W i)

s.t. (h̄i + ei)
H
(

1
γi
W i −

∑

l 6=iW l

)

(h̄i + ei) ≥ σ2
i , ∀‖ei‖ ≤ ri,∀i,

rank(W i) ≤ 1, W i � 0, i = 1, . . . ,K. (RPM)

– Again, the idea is to drop the rank constraints in (RPM).

– (RPM) without rank constraints, or SDR, is convex. However, it does not
mean that the problem is easy— there are infinitely many constraints w.r.t.
the ei’s.

– Question: Is the SDR of (RPM) efficiently solvable?

– The answer is yes, using the so-called S-lemma [Zheng-Wang-Ng’08].
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S-Lemma

• S-Lemma: Let

f0(x) = xHA0x+ 2Re{bH0 x}+ c0,

f1(x) = xHA1x+ 2Re{bH1 x}+ c1,

and suppose that there exists x̂ such that f1(x̂) < 0. Then,

f0(x) ≥ 0 for all x
satisfying f1(x) ≤ 0

⇐⇒
there exists λ ≥ 0 such that
[
A0 b0
bH0 c0

]

+ λ

[
A1 b1
bH1 c1

]

� 0.
(†)

• In other words, the infinitely many constraints on the LHS of (†) is equivalent
to the linear matrix inequality on the RHS.

• The S-lemma is widely used in optimization, signal processing, communications
and many other areas.
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Worst-Case Robust BF via SDR and S-Lemma

• By applying the S-lemma to (RPM) and dropping the rank constraints, we
obtain the following SDR:

min
λ1,...,λK,

W 1,...,WK

K∑

i=1

Tr(W i)

s.t.

[
I

h̄
H
i

]



1

γi
W i −

∑

l 6=i

W l




[
I h̄i

]
+

[
λiI 0

0 −σ2
i − λir

2
i

]

� 0, ∀i,

λ1, . . . , λK ≥ 0, W 1, . . . ,WK � 0.
(RPM-SDR)

• (RPM-SDR) is an SDP, with a finite number of constraints.

• A mysterious finding in simulations: Rank-one SDR solution is obtained in
almost all the problem instances!
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σ2
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K = 0.1, r1 = · · · = rK = 0.1. SDR yielded rank-1 solution in all the trials run.
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Rank-One Optimality for Worst-Case Robust BF?

• Challenge: Can we prove (or disprove) the rank-one optimality of SDR for the
worst-case robust unicast BF problem

min
W 1,...,WK∈HN

∑K
i=1Tr(W i)

s.t. SINRi({W j}, h̄i + ei) ≥ γi, ∀‖ei‖ ≤ ri, i = 1, . . . ,K,
W i � 0, i = 1, . . . ,K.

• Note: The SBP rank reduction result does not work here!

• Some sufficient conditions are currently available:

– [Song-Shi-Sanjabi-Sun-Luo’12]: An SDR solution {W ⋆
i } must be of rank

one if ri’s are small enough in a problem instance-dependent manner.

– [Chang-Ma-Chi’11]: An SDR solution {W ⋆
i} must be of rank one if another

related problem (what?) has a unique solution.

• Proving or disproving SDR rank-one optimality in unicast robust BF
remains an intriguing open problem.
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The Result in [Chang-Ma-Chi’11]

• Recall the SDR problem

min
W 1,...,WK�0

∑K
i=1Tr(W i)

s.t. min
‖ei‖≤ri

SINRi({W j}, h̄i + ei) ≥ γi, i = 1, . . . , K.
(†)

• Consider a different problem

max
‖ei‖≤ri,
i=1,...,K

min
W 1,...,WK�0

∑K
i=1Tr(W i)

s.t. SINRi({W j}, h̄i + ei) ≥ γi, i = 1, . . . , K.
(‡)

• [Chang-Ma-Chi’11] reveals the duality between (†) & (‡). Specifically,
– the SDR of (‡) (w.r.t. ei’s) yields the same optimal value as (†);
– any solution of (†) is a solution of the SDR of (‡);
– if the SDR of (‡) has a unique inner solution {Ŵ i}, then a solution of (†)

must be of rank one.
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Remarks

• The combination of SDR and S-lemma for robust BF design may also be applied
to other scenarios.

• A Gaussian randomization procedure can be developed for the robust BF design
case.
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Part III.B: Advanced Topics in Transmit
Beamforming

Topic 3. Outage-based Robust Beamforming
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Motivation

• Recall that to study the effect of imperfect CSIT, we have adopted the model

hi = h̄i + ei,

where h̄i is the presumed channel and ei is the channel error.

• Previously, we assumed that the error ei lies in a ball centered at the origin with
known radius; i.e., ‖ei‖ ≤ ri, where ri is known.

– This gives rise to a worst-case robust BF design problem.

• Alternatively, one can consider the following Gaussian channel error model:

ei ∼ CN (0,Ci),

where Ci � 0 is a known covariance matrix.

– In particular, we have hi ∼ CN (h̄i,Ci).
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Motivation

• Under this probabilistic error model, a meaningful, but very difficult, problem is
the following outage-based BF design problem:

min
W 1,...,WK

∑K
i=1Tr(W i)

s.t. Probhi∼CN (h̄i,Ci)
{SINRi({W j},hi) ≥ γi} ≥ 1− ρi,

i = 1, . . . , K,
rank(W i) ≤ 1, W i � 0, i = 1, . . . , K.

(OPM)
Here, ρi ∈ (0, 1) is user i’s maximum tolerable outage probability. Recall that

SINRi({W j},hi) =
Tr(W ihih

H
i )

∑

l 6=iTr(W lhih
H
i ) + σ2

i

.

• The above outage-based design problem is an instance of the so-called chance-
constrained or probabilistically-constrained optimization problem.
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Tackling the Probabilistic Constraints

• To get a more tractable problem, a natural move is to apply SDR and remove
the rank constraints. However, the SDRed (OPM) remains hard.

• Indeed, although the outage-based SINR constraints

Probhi∼CN (h̄i,Ci)
{SINRi({W j},hi) ≥ γi} ≥ 1− ρi

can be rewritten as

Probei∼CN (0,Ci)






(h̄i + ei)

H




1

γi
W i −

∑

l 6=i

W l



 (h̄i + ei) ≥ σ2
i






≥ 1− ρi,

the probability on the LHS has no simple closed form expression.
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Tackling the Probabilistic Constraint: Monte Carlo?

• In principle, we can handle the SDRed probabilistic constraint by Monte Carlo
methods.

• Specifically, let e1i , . . . ,e
L
i be i.i.d. according to CN (0,Ci). Here, L ≥ 1 is the

number of independent samples of ei. Consider the SDP constraints

(h̄i + eℓi)
H




1

γi
W i −

∑

l 6=i

W l



 (h̄i + eℓi) ≥ σ2
i , ℓ = 1, . . . , L,

W 1, . . . ,WK � 0.

(†)

• It can be shown [Calafiore-Campi’05] that for sufficiently large L (which
depends on the outage tolerance ρi), any solution to (†) will satisfy the
corresponding SDRed probabilistic constraint with high confidence (but not
necessarily always— this could be problematic in some applications).

• In addition, this method is extremely time consuming in practice.
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Tackling the Probabilistic Constraint: Convex Restriction

• To circumvent the aforementioned difficulties, let us consider an alternative
approach. Let

Vi({W j}) = Probei∼CN (0,Ci)






(h̄i + ei)

H




1

γi
W i −

∑

l 6=i

W l



 (h̄i + ei) < σ2
i







be the violation probability. Recall that we want

Vi({W j}) ≤ ρi.

• By applying some simple transformations, we can express Vi as

Vi({W j}) = Probe∼CN (0,I)

{
eHQe+ 2Re{eHr}+ s < 0

}

for some Q, r and s that depend on Ci, W 1, . . . ,WK, and the index i. (Here
and in the sequel, we drop the index i for notational simplicity.)
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• Thus, the crux of the outage-based design problem is how to process the
probabilistic constraint

Probe∼CN (0,I)

{
eHQe+ 2Re{eHr}+ s < 0

}
≤ ρ. (PC)

• Here is an idea: Suppose that we can find an efficiently computable convex
function f(Q, r, s) such that

Probe∼CN (0,I)

{
eHQe+ 2Re{eHr}+ s < 0

}
≤ f(Q, r, s).

Then, by construction, the convex constraint

f(Q, r, s) ≤ ρ (CR-PC)

serves as a sufficient condition for (PC) to hold.

– We call (CR-PC) a convex restriction of (PC).
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Finding a Convex Restriction

• Can we find such an f? Does it even exist?

– As it turns out, the answer is Yes! (And there are many such functions.)

• The constructions are based on large deviation bounds on the tail probability

Probe∼CN (0,I)

{
eHQe+ 2Re{eHr}+ s < 0

}
.
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Finding a Convex Restriction: Sphere Bounding

• The first construction is motivated by ideas from robust optimization. Consider
a set B such that

Probe∼CN (0,I){e ∈ B} ≥ 1− ρ.

• Then, we have the following implication:

δHQδ + 2Re{δHr}+ s ≥ 0 for all δ ∈ B
=⇒ Probe∼CN (0,I){eHQe+ 2Re{eHr}+ s < 0} ≤ ρ.

• Hence,

Probe∼CN (0,I){eHQe+ 2Re{eHr}+ s < 0} ≤ f(Q, r, s),

where

f(Q, r, s) =

{
ρ if δHQδ + 2Re{δHr}+ s ≥ 0 ∀δ ∈ B,

+∞ otherwise.
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Finding a Convex Restriction: Sphere Bounding

• Note that f(Q, r, s) ≤ ρ if and only if

δHQδ + 2Re{δHr}+ s ≥ 0 ∀δ ∈ B. (SB)

Thus, (SB) is a sufficient condition for (PC) to hold.

• Is (SB) an efficiently computable constraint? That depends on what B is.

• Suppose that we choose

B = {δ : ‖δ‖ ≤ d} , d =

√

Φ−1
χ2
2n
(1− ρ)

2
,

where Φ−1
χ2
m
(·) is the inverse cumulative distribution function of the (central) Chi-

square random variable with m degrees of freedom [Wang-Chang-Ma-Chi’10].

• Then, we have Probe∼CN (0,I){e ∈ B} = 1− ρ.
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Finding a Convex Restriction: Sphere Bounding

• Moreover, by the S-lemma, the constraint

δHQδ + 2Re{δHr}+ s ≥ 0 ∀δ ∈ B

is equivalent to [
Q+ tI r

rH s− td2

]

� 0, t ≥ 0, (SB-CR)

which is an SDP in the variables (Q, r, s, t).

• Thus, (SB-CR) is a convex restriction of (PC).
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Outage-Based BF Design via Sphere Bounding
• Applying the sphere bounding technique to the outage-based SINR constraint

Probei∼CN (0,Ci)

{

(h̄i + ei)
H
(

1
γi
W i −

∑

l 6=iW l

)

(h̄i + ei) ≥ σ2
i

}

≥ 1− ρi,

we obtain the following convex restriction:

[
I

h̄
H
i

] (
1
γi
W i −

∑

l 6=iW l

) [
I h̄i

]
+

[
tiI 0

0 −σ2
i − λid

2
i

]

� 0, ti ≥ 0, (†)

where d2i = Φ−1
χ2
2n
(1− ρi)/2.

• It is worth noting that the constraint (†) has exactly the same form as that in
the worst-case robust BF design problem (RPM-SDR). The only difference lies
in how the parameter di is determined.

– For worst-case robust design, di is a pre-specified parameter that determines
the radius of the ball in which the error vector ei lies; i.e., ‖ei‖ ≤ di.

– For outage-based design, di is determined by the maximum tolerable outage
probability ρi.
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Finding a Convex Restriction: Bernstein-Type Inequality

• Another construction is based on the so-called Bernstein-type inequality
[Bechar2009], [Wang-Chang-Ma-So-Chi’11], which states that

Probe∼CN (0,I){eHQe+ 2Re{eHr}+ s < 0} ≤ f(Q, r, s) = e−T−1(s),

where T (η) = Tr(Q)−√
2η
√

‖Q‖2F + ‖r‖2 − ηmax{λmax(−Q), 0}.

• Is the constraint
f(Q, r, s) = e−T−1(s) ≤ ρ

efficiently computable? Yes! It is equivalent to the SDP

Tr(Q)−
√

−2 ln(ρ) · t1 + ln(ρ) · t2 + s ≥ 0,
√

‖Q‖2F + 2‖r‖2 ≤ t1,

t2I +Q � 0,

t2 ≥ 0

(BI-CR)

in the variables (Q, r, s, t1, t2).

• Thus, (BI-CR) is a convex restriction of (PC).
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Outage-Based BF Design via Bernstein-Type Inequality

• Applying the Bernstein-type inequality to the outage-based SINR constraints,
we obtain another convex restriction of the outage-based BF design problem
[Wang-Chang-Ma-So-Chi’11].

• Yet another mysterious finding in simulations: For the Bernstein-type
inequality approach, rank-one SDR solution is obtained in almost all the problem
instances— the same phenomenon as that observed in worst-case robust design
(or the sphere bounding approach).
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Comparing the Convex Restrictions

• The above development raises the following natural question:

What is the approximation quality (w.r.t. the original probabilistic constraint)
of the convex restrictions obtained by the sphere bounding and Bernstein-type
inequality approaches?

• Unfortunately, this remains an intriguing open question.

• This leads to the next natural question:

Which of the two convex restrictions has better approximation quality?

• In [Wang-So-Chang-Ma-Chi’14], the following result is shown:

Under some mild assumptions, the convex restriction based on the
Bernstein-type inequality approach yields a better approximation of the
original probabilistic constraint than that based on the sphere bounding
approach.
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SDR + Sphere Bounding

Histogram of the actual SINR satisfaction probabilities of the SDR+sphere bounding method.

Nt = K = 3; i.i.d. complex Gaussian CSI errors with zero mean and variance 0.002; γ = 11dB;

ρ = 0.1 (90% SINR satisfaction).
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SDR + Bernstein-type Inequality

Histogram of the actual SINR satisfaction probabilities of the SDR+Bernstein method. Nt = K =

3; i.i.d. complex Gaussian CSI errors with zero mean and variance 0.002; γ = 11dB; ρ = 0.1

(90% SINR satisfaction).
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Feasibility performance of the SDR methods and the probabilistic SOCP method [Shenouda-

Davidson’08]. Nt = K = 3; σ2
e = 0.002; γ = 11dB; ρ = 0.1 (90% SINR satisfaction).
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Non-robust

Transmit power performance of the SDR methods and the probabilistic SOCP method.

Nt = K = 3; σ2
e = 0.002; ρ = 0.1 (90% SINR satisfaction). “Non-robust” refers to the

perfect CSIT-based design, which is not robust against CSIT errors.
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Part III.C: Sensor Network Localization
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Overview

The sensor network localization (SNL) problem is to determine the (x, y) coordinates
of the sensors, given distance measurements between sensors.

• In ad-hoc sensor networks, sensors’
locations are important but may
not be known.

• Though one can equip every sensor
with GPS, it is too expensive to do
so.

• Thus, we may only have several
sensors, called anchors, that have
self-localization capability.

Anchors

Sensors

• A pair of sensors that are within communication range of each other can measure
the distance between themselves (e.g., via TOA, RSS, etc.).

• The inter-sensor distance measurements, together with anchor locations, can be
used to jointly estimate the sensors’ locations.
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Problem Formulation

• Let {x1, . . . ,xn}, xi ∈ R2, be the collection of all (unknown) sensor coordinates.

• Let {a1, . . . ,am}, ai ∈ R2, be the collection of all (known) anchor coordinates.

• The distance between sensor i and sensor j (resp. sensor i and anchor j) is
‖xi − xj‖ (resp. ‖xi − aj‖).

• Let Ess and Esa denote the set of sensor-sensor and sensor-anchor edges, resp.

• Problem: Assuming the distance measurements {dij}(i,j)∈Ess and {d̄ij}(i,j)∈Esa

are noiseless (extensions for noisy cases will be discussed later), we need to find
x1, . . . ,xn ∈ R2 such that

‖xi − xj‖2 = d2ij, (i, j) ∈ Ess,

‖xi − aj‖2 = d̄2ij, (i, j) ∈ Esa.
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Deriving an SDR of the SNL Problem: A First Attempt
• Let X = [ x1, . . . ,xn ] ∈ R2×n. The SNL problem can be formulated as

find X ∈ R2×n

s.t. xT
i xi − 2xT

i xj + xT
j xj = d2ij, (i, j) ∈ Ess,

xT
i xi − 2xT

i aj + aT
j aj = d̄2ij, (i, j) ∈ Esa.

This follows since

‖xi − xj‖2 = (xi − xj)
T (xi − xj) = xT

i xi − 2xT
i xj + xT

j xj,

and similarly for ‖xi − aj‖2.
• By letting Y = XTX ∈ Rn×n, we can also formulate the SNL problem as

find X ∈ R2×n,Y ∈ Rn×n

s.t. Yii − 2Yij + Yjj = d2ij, (i, j) ∈ Ess,
Yii − 2xT

i aj + aT
j aj = d̄2ij, (i, j) ∈ Esa,

Y = XTX.

(SNL)

• It is known [Saxe’79] that finding a solution to (SNL) is NP-hard.
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• Observe that with X ∈ R2×n, the constraint Y = XTX is equivalent to

Y � 0, rank(Y ) ≤ 2.

• If we proceed as before and just drop the trouble-causing rank constraint, then
we get the following SDR:

find X ∈ R2×n,Y ∈ Rn×n

s.t. Yii − 2Yij + Yjj = d2ij, (i, j) ∈ Ess,
Yii − 2xT

i aj + aT
j aj = d̄2ij, (i, j) ∈ Esa,

Y � 0.

• In this formulation, there is no connection between X and Y . In other words,
the information in the original constraint Y = XTX is totally lost. The solution
obtained could be quite awful.
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Deriving an SDR of the SNL Problem: Another Attempt

• To keep the connection between X and Y , instead of relaxing Y = XTX to
Y � 0, we relax it to

Y � XTX.

– This is an SDP constraint, since by the Schur complement,

Y � XTX ⇐⇒ Z =

[
I X

XT Y

]

� 0.

• Then, we have the following SDR of the SNL problem:

find X ∈ R2×n,Y ∈ Rn×n

s.t. Yii − 2Yij + Yjj = d2ij, (i, j) ∈ Ess,
Yii − 2xT

i aj + aT
j aj = d̄2ij, (i, j) ∈ Esa,

Y � XTX.

(SNL-SDR)

• Note that rank(Z) ≤ 2 ⇐⇒ Y = XTX ⇐⇒ rank(Y ) ≤ 2.

• Remark: Although we focus on 2-D localization, our techniques can be easily
extended to handle r-D localization for any r ≥ 2.
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Theoretical Properties of the SDR

• Suppose that we have a solution (X⋆,Y ⋆) to (SNL-SDR). Under what conditions
will it be a solution to the original problem (SNL)?

• The following complete characterization is obtained in [So-Ye’07]:

Suppose that the given SNL instance is connected. Then, the following
statements are equivalent:

– The solution (X⋆,Y ⋆) to (SNL-SDR) is feasible for (SNL) (in particular,
we have Y ⋆ = X⋆TX⋆).

– The max-rank solution to (SNL-SDR) has rank at most 2.

– The given SNL instance is uniquely localizable; i.e., it has a unique
solution in all dimensions.

• Since most polynomial-time interior-point algorithms for solving SDPs will return
a solution that has the highest rank, we can localize uniquely localizable instances
in polynomial time.

• The above result fits the theme of compressed sensing and low-rank optimization,
which are two currently very active research areas.
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Rank of SDR Solution and Dimension Reduction

• The following was also established in [So-Ye’07]:

Every rank d ≥ 2 solution to (SNL-SDR) corresponds to a set of feasible
(w.r.t. the distance constraints) d-dimensional coordinates for the sensors.

• Question: While it is NP-hard to find a rank-2 solution to (SNL-SDR), is it
possible to find a low rank solution (and hence achieve dimension reduction)?
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Dimension Reduction via Unfolding

• One heuristic is to “stretch apart” pairs of non-adjacent nodes. This will tend
to flatten the configuration of nodes.

• Mathematically, this corresponds to adding an objective function to (SNL):

max
x1,...,xn∈R2

∑

(i,j)∈Nss

‖xi − xj‖2

s.t. ‖xi − xj‖2 = d2ij, (i, j) ∈ Ess,
‖xi − aj‖2 = d̄2ij, (i, j) ∈ Esa,

(SNL-OBJ)

where Nss ⊂ {(i, j) : (i, j) 6∈ Ess} is a subset of the non-adjacent pairs.

• Again, we can apply SDR to (SNL-OBJ).

• Interestingly, the solution to the resulting SDR often has low rank.

W.-K. Ma & A. M.-C. So, Semidefinite Relaxation, ICASSP 2014 Tutorial 151



• In [So-Ye’06], some theoretical justification is given to explain this phenomenon.
It is related to the so-called tensegrity theory in discrete geometry.
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Dimension Reduction via SDP Rank Reduction Theory

• If distortion of distances is allowed, then one can achieve dimension reduction
using the SDP rank reduction theory in [So-Ye-Zhang’08].

• To fix ideas, let us focus only on the sensor-sensor distance constraints:

‖xi − xj‖2 = d2ij, (i, j) ∈ Ess. (†)

Using the techniques introduced earlier, we obtain the following SDR of (†):

Xii − 2Xij +Xjj = d2ij, (i, j) ∈ Ess; X � 0. (††)

• Note that if {x̄i}i is a feasible solution to (†), then X̄ = [X̄ij], where
X̄ij = x̄T

i x̄j, is a feasible solution to (††).
Conversely, if X̄ is a rank-two matrix satisfying (††), then we can extract from
X̄ a feasible solution {x̄i}i to (†) using Cholesky factorization.

• However, there is no guarantee that the solution returned by a polynomial-time
algorithm for solving (††) is of rank-two.
– Question: Can we extract an (approximate) rank-two solution?
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SDP Rank Reduction: The So-Ye-Zhang (SYZ) Theorem
• The answer is yes! The key lies in the following result from [So-Ye-Zhang’08]:

Let A1, . . . ,Am � 0 and b1, . . . , bm ≥ 0 be given. Suppose there exists
an X⋆ ∈ Sn such that

Tr(AiX
⋆) = bi, i = 1, . . . ,m; X⋆ � 0.

Then, for any given r ≥ 1, one can find in randomized polynomial time a
rank-r matrix X̂ � 0 such that

α · bi ≤ Tr(AiX̂) ≤ β · bi, i = 1, . . . ,m

holds with high probability, where

α = Ω
(

m−2/r
)

, β = O

(
lnm

r

)

when r = O(lnm), and

α = 1−O

(√

lnm

r

)

, β = 1 +O

(√

lnm

r

)

when r = Ω(lnm).
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Application of the SYZ Theorem to the SNL Problem

• Observe that the system

Xii − 2Xij +Xjj = d2ij, (i, j) ∈ Ess; X � 0

is equivalent to

Tr(EijX) = d2ij, (i, j) ∈ Ess; X � 0,

where Eij = (ei − ej)(ei − ej)
T � 0. Here, ei is the ith basis vector.

• Hence, by the SYZ theorem, we can find an X̂ � 0 with rank(X̂) ≤ 2 such
that

Ω

(
1

|Ess|

)

d2ij ≤ Tr(EijX̂) ≤ O(ln(|Ess|))d2ij, (i, j) ∈ Ess.
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• In particular, let X̂ = [ x̂1, . . . , x̂n ]T [ x̂1, . . . , x̂n ] be the Cholesky

factorization of X̂, where x̂1, . . . , x̂n ∈ R2. Then, we have

Ω

(
1

|Ess|

)

d2ij ≤ ‖x̂i − x̂j‖2 ≤ O (ln(|Ess|)) d2ij, (i, j) ∈ Ess.
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Randomization Procedure for SDP Rank Reduction

• How to achieve the bounds claimed in the SYZ theorem? (Surprise) Use
Gaussian randomization!

Box 5. Gaussian Randomization Procedure for Rank Reduction
given a solution X⋆ that satisfies Tr(AiX

⋆) = bi for all i and X⋆ � 0,
and an integer r ≥ 1.

for ℓ = 1, . . . , r
generate ξℓ ∼ N (0,X⋆);

end

output X̂ =
1

r

r∑

ℓ=1

ξℓξ
T
ℓ as the candidate solution.

– Why this works? Intuitively,

X̂ � 0, rank(X̂) ≤ r, E{X̂} = X⋆.

– This generalizes our previous rank-1 and rank-2 Gaussian randomization
procedures for beamforming problems.
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Extensions of the Basic SDR: Noisy Distance Measurements

• So far we have only considered the noiseless version of the SNL problem.

• In general, the distance measurements {dij} and {d̄ij} could be corrupted. A
commonly used error model is

dij = ‖xi − xj‖+ ηij,

d̄ij = ‖xi − aj‖+ η̄ij,

where {ηij} (resp. {η̄ij}) are i.i.d. Gaussian random variables with mean 0 and
variance σ2

ij (resp. σ̄2
ij).

• In [Biswas-Liang-Wang-Ye’06], the following maximum-likelihood (ML) SNL
formulation is considered:

min
x1,...,xn∈R2

∑

(i,j)∈Ess

1

σ2
ij

(‖xi − xj‖ − dij)
2 +

∑

(i,j)∈Esa

1

σ̄2
ij

(
‖xi − aj‖ − d̄ij

)2
.

(ML-SNL)
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• As shown in [Biswas-Liang-Wang-Ye’06], SDR can be employed to tackle the
nonconvex problem (ML-SNL).

• The key lies in constructing suitable linearizations of the expressions

(‖xi − xj‖ − dij)
2

and
(
‖xi − aj‖ − d̄ij

)2
.

• Let us focus on the former. The strategy is to proceed “one level at a time”.
Let

ǫij = (‖xi − xj‖ − dij)
2
= ‖xi − xj‖2 − 2dij‖xi − xj‖+ d2ij. (†)

Upon defining
uij = ‖xi − xj‖, vij = ‖xi − xj‖2,

we see that (†) is equivalent to

vij − 2dijuij + d2ij = ǫij, vij = u2ij, vij = Yii − 2Yij + Yjj, Y = XTX.
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• Now, we can relax vij = u2ij to vij ≥ u2ij, and Y = XTX to Y � XTX.
Using the Schur complement, these are equivalent to the SDP constraints

U ij =

[
1 uij
uij vij

]

� 0, Z =

[
I X

XT Y

]

� 0.

• Hence, we obtain the following SDR of (ML-SNL):

min
X,Y ,{U ij},{Ū ij}

∑

(i,j)∈Ess

1

σ2
ij

ǫij +
∑

(i,j)∈Esa

1

σ̄2
ij

ǭij

s.t. Yii − 2Yij + Yjj = v2ij, (i, j) ∈ Ess,
Yii − 2xT

i aj + aT
j aj = v̄2ij, (i, j) ∈ Esa,

vij − 2dijuij + d2ij = ǫij, (i, j) ∈ Ess,
v̄ij − 2d̄ijūij + d̄2ij = ǭij, (i, j) ∈ Esa,
U ij � 0, (i, j) ∈ Ess; Ū ij � 0, (i, j) ∈ Esa; Z � 0.

(ML-SNL-SDR)
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Extensions of the Basic SDR: Uncertain Anchor Positions

• SDR can also be employed to handle ML-SNL formulations with uncertain anchor
locations, and/or with uncertain propagation speed [Lui-Ma-So-Chan’09] (the
latter happens in underground sensor networks).

• For uncertain anchor locations, one could adopt the following error model:

ai = āi + εi,

where āi is the presumed or nominal coordinate of anchor i, and ε ∈ R2 is a
Gaussian random vector with mean zero and covariance matrix Φi.

• Then, one has the following ML formulation:

min
x1,...,xn
a1,...,am

∑

(i,j)∈Ess

1

σ2
ij

(‖xi − xj‖ − dij)
2
+

∑

(i,j)∈Esa

1

σ̄2
ij

(
‖xi − aj‖ − d̄ij

)2

+
∑

i

(ai − āi)
T
Φ

−1
i (ai − āi).

– This is a robust formulation where the anchors’ uncertainties are
accommodated by re-estimating ai.

– It can be handled using the previously introduced SDR techniques.
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Details available in [Lui-Ma-So-Chan’09].
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Speeding Up the Computation

• When the number of sensors/edges is large, solving (SNL-SDR) could take a
long time. The bottleneck comes not only from the large number of constraints,
but also the large ((n+ 2)× (n+ 2)) positive semidefinite (PSD) constraint

Z =

[
I X

XT Y

]

� 0.

• Complexity-reduced implementations, at the cost of some SNL performance,
have recently received attention in large-scale sensor network applications.
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Speeding Up the Computation: The Edge-Based SDR

• To circumvent the large PSD constraint, one approach is to first observe that
each edge (i, j) ∈ Ess is responsible for the following constraints in (SNL):

Yii − 2Yij + Yjj = d2ij,
Yii = xT

i xi, Yij = xT
i xj, Yjj = xT

j xj. (†)

• Now, we can treat the constraints in (†) as a group and relax them using our
previous technique; i.e.,

R4×4 ∋ Zij =





I xi xj

xT
i Yii Yij

xT
j Yij Yjj



 � 0.
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• This approach results in the following so-called edge-based SDR of the SNL
problem, which was presented in [Wang-Zheng-Ye-Boyd’08]:

find X ∈ R2×n,Y ∈ Rn×n

s.t. Yii − 2Yij + Yjj = d2ij, (i, j) ∈ Ess,
Yii − 2xT

i aj + aT
j aj = d̄2ij, (i, j) ∈ Esa,

Zij =





I xi xj

xT
i Yii Yij

xT
j Yij Yjj



 � 0, (i, j) ∈ Ess.

(SNL-ESDR)

• Note that (SNL-ESDR) has |Ess| 4 × 4 PSD constraints, instead of one (n +
2) × (n + 2) PSD constraint in (SNL-SDR). The smaller dimension (i.e., 4) of
the PSD constraints in (SNL-ESDR) is computationally easier to handle, thus
allowing a speedup in computation.

• However, it should be noted that (SNL-SDR) is a tighter relaxation than (SNL-
ESDR). Indeed, each Zij is a principal submatrix of Z, and every principal
submatrix of a PSD matrix must also be PSD.
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Speeding Up the Computation: 2-D Single Source Localization

• Consider 2-D single source localization, a special case of SNL.

• The model reduces to

di = ‖x− ai‖+ ηi, i = 1, . . . ,m,

where x ∈ R2 (resp. ai ∈ R2) is the source
coordinate (resp. anchor i coordinate);
ηi ∼ N (0, σ2

i ) is noise.

• Uncertain anchor locations are assumed:

ai = āi + εi, i = 1, . . . ,m,

āi ∈ R2 is the presumed coordinate
of anchor i; εi ∼ N (0, λ2iI) is the
uncertainty.
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• Consider the ML source localization formulation (same as in SNL):

min
x∈R2, ai∈R2,
for i=1,...,m

m∑

i=1

(
(‖x− ai‖ − di)

2

σ2
i

+
‖ai − āi‖2

λ2i

)

.

• Interestingly, the ML problem admits a more compact SDR.

• Indeed, as shown in [Fu-Chan-Ma-So’12], the ML problem can be reformulated
as a complex-valued constant-modulus quadratic program (CMQP):

min
z∈Cm

zHCz + 2Re{cHz}

s.t. |zi|2 = 1, i = 1, . . . ,m.

– It is very similar to the ML MIMO detection problem described in Part I.

– The CMQP, as well as the ML MIMO problem, are very well structured.

– For such nice problems, don’t use CVX— we can exploit their problem
structures to derive fast SDR solvers, e.g., [Ma-Ching-Ding’04], [Wai-Ma-
So’11].
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How to Rewrite the ML Problem as a CMQP?

• We take the insight from [Oğuz-Ekim-Gomes-Xavier-Oliverira’10]. Recall

min
x∈R2, ai∈R2,
for i=1,...,m

m∑

i=1

(
(‖x− ai‖ − di)

2

σ2
i

+
‖ai − āi‖2

λ2i

)

.

• Let y = x1 + jx2, bi = ai,1 + jai,2, and b̄i = āi,1 + jāi,2. We have

min
y∈C, bi∈C
for i=1,...,m

m∑

i=1

(
(|y − bi| − di)

2

σ2
i

+
|bi − b̄i|2

λ2i

)

.

• By introducing additional phase shift variables zi ∈ C, the above problem can
be equivalently written as

min
y∈C, bi∈C, zi∈C

for i=1,...,m

m∑

i=1

(|y − bi − zidi|2
σ2
i

+
|bi − b̄i|2

λ2i

)

s.t. |zi|2 = 1, i = 1, . . . ,m.
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• Let D = Diag(d1, . . . , dm), b = [b1, . . . , bm]T , b̄ = [b̄1, . . . , b̄m]T , z =
[z1, . . . , zm]T , Σ = Diag(σ1, . . . , σm), and Λ = Diag(λ1, . . . , λm). Then,
the ML source localization problem becomes

min
y∈C, b∈Cm

z∈Cm

‖Σ−1(y1− b−Dz)‖2 + ‖Λ−1(b− b̄)‖2

s.t. |zi|2 = 1, i = 1, . . . ,m.

(†)

• Fixing z, the minimization of (†) w.r.t. b & y admits a closed form solution.

• By marginalizing (†) w.r.t. b & y, the ML problem can be expressed as the
CMQP

min
z∈Cm

zHCz + 2Re{cHz}

s.t. |zi|2 = 1, i = 1, . . . ,m,

where C = DGD − DG(G + Λ
−2)−1GD, c = DG(G + Λ

−2)−1
Λ

−2b̄,
G = Σ

−1P⊥
Σ

−1 and P⊥ = I − (Σ−1
1)(Σ−1

1)†.
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Beyond SDR: What Else?

• The hard problems discussed in this tutorial so far, namely, nonconvex QCQPs,
can all be reformulated as rank-constrained SDPs; i.e., optimization problems of
the form

min
X∈Sn

Tr(CX)

s.t. Tr(AiX) Di bi, i = 1, . . . ,m,
X � 0, rank(X) ≤ r,

(RCSDP)

where C,A1, . . . ,Am ∈ Sn, b1, . . . , bm ∈ R, and r ≥ 1 are given.

• The SDR methodology entails removing the hard rank constraint in (RCSDP).
The resulting problem is then an SDP, which is polynomial-time solvable.

• However, we can no longer guarantee that the SDP solution has the desired
rank.
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Beyond SDR: What Else?

• To recover some of the effects of the rank constraint, one natural idea is to use
regularizers. Specifically, consider the problem

min
X∈Sn

Tr(CX) + µf(X)

s.t. Tr(AiX) Di bi, i = 1, . . . ,m,
X � 0,

(RP)

where

– f : Sn+ → R is a function that favors low-rank matrices (i.e., f(X) tends to
take smaller values when X is of low rank), and

– µ > 0 is a parameter controlling the effect of the regularizer f .

• Question: Which regularizer to use?
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Choosing a Regularizer

• Ideally, we want f(X) = rank(X), but the resulting problem is just as hard as
(RCSDP).

– The function X 7→ rank(X) is not only nonconvex but also discontinuous.

– This motivates us to look for tractable surrogates of the rank function.

• In view of the recent work on low-rank matrix completion/recovery, one may
consider using the trace norm; i.e., f(X) = Tr(X).

– The resulting regularized problem (RP) becomes an SDP, which is polynomial-
time solvable.

– Perhaps somewhat surprisingly, such a choice does not always yield good
low-rank solutions empirically, especially for the SNL problem.

– In fact, existing theoretical recovery results concerning the trace norm do not
apply to most of the problems discussed in this tutorial.
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Choosing a Regularizer

• To better induce low-rank solutions, let us consider the regularizer fp : Sn+ → R+

defined by

fp(X) = Tr(Xp) =
n∑

i=1

λpi (X),

where p ∈ (0, 1) is fixed and λi(X) is the ith largest eigenvalue of X.

• The function fp is known as the Schatten p-quasi-norm of X.

• Since fp(X) → rank(X) as p ց 0 and fp is continuous for all p ∈ (0, 1), the
Schatten quasi-norm can be viewed as a continuous surrogate of rank(X).
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Schatten Quasi-Norm Regularized SDP

• By fixing a p ∈ (0, 1), we obtain the following Schatten p-quasi-norm regularized
SDP:

min
X∈Sn

Tr(CX) + µfp(X)

s.t. Tr(AiX) = bi, i = 1, . . . ,m,
X � 0.

(SRPp)

(For concreteness, we replace ‘Di’ by ’=’ for all i.)

• The function fp is concave on Sn+, but we are minimizing in (SRPp)...

• In fact, for each p ∈ (0, 1), (SRPp) is NP-hard [Ge-Jiang-Ye’11], so it seems
that we are back to square one.
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Schatten Quasi-Norm Regularized SDP

• However, not all is lost, as we have the following result from [Ji-Sze-Zhou-So-
Ye’13]:

Let p ∈ (0, 1) be fixed. Then, a point satisfying the first-order optimality
conditions of (SRPp) can be found in polynomial time.

– Since fp is not everywhere differentiable, some care is needed when deriving
the first-order optimality conditions.

• The above result is established in two steps:

– Design an interior-point algorithm for (SRPp).

– Show that the algorithm returns a first-order point in polynomial time.

• Question: Since the point returned by the algorithm only satisfies the first-order
optimality conditions of (SRPp), is it any good?
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Application: Regularizing the SDR of the SNL Problem

• Consider the following Schatten quasi-norm regularized SDR of the SNL problem:

min fp(Z)
s.t. Yii − 2Yij + Yjj = d2ij, (i, j) ∈ Ess,

Yii − 2xT
i aj + aT

j aj = d̄2ij, (i, j) ∈ Esa,

Z =

[
I X

XT Y

]

� 0.

(SNL-SRPp)

• The aforementioned interior-point algorithm can be applied to this problem.
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Conclusion
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Conclusion

• This tutorial has provided an overview of SDR, from practical deployments,
applications, theoretical results to latest advances.

• We hope you would be convinced that SDR holds great potential in its wide
scope of applicability, and in its powerful approximation accuracies.

• Many researchers have found their SDR applications. We hope you would find
yours too in the future.

• We did not cover details of one application— MIMO detection, which is not
only important but also elegant— owing to time limitation. We nevertheless
append the MIMO detection topic as a “bonus material” in this tutorial slides,
and hope you will find them useful.

Thank you!
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Bonus Material: MIMO Detection
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Introduction

• MIMO detection is an important topic with a wide scope of applicability.

• The goal is to achieve good symbol error probability performance, preferably
near-optimal, in a computationally efficient manner.

• Note that SDR is not the only efficient high-performance MIMO detection
approach. The sphere decoding approach and the lattice reduction aided (LRA)
approach are also powerful.

• Our focus:

– computational or implementation aspects of SDR;

– alternative interpretations of SDR; connections to other MIMO detectors;

– SDR for various types of constellations (we went thro’ {±1} so far);

– benchmarking SDR and representative MIMO detectors, through extensive
simulation results .
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Problem Statement

• Consider a generic complex-valued MC ×NC MIMO model

yC = HCsC + vC,

where

HC ∈ CMC×NC the MIMO channel;
sC ∈ SNC the tx symbol vector, with S ⊂ C being the constellation set;
vC ∈ CMC complex AWGN.

• We will focus on the ML detection problem

ŝC,ML = arg min
sC∈SNC

‖yC −HCsC‖2.

• Constellations:

– QPSK: S = { s = a+ jb | a, b ∈ {±1} }
– M -ary PSK (MPSK): S = { s = ej2πk/M | k = 0, 1, . . . ,M − 1 }
– 4q-ary QAM: S = { s = a+ jb | a, b ∈ {±1,±3, . . . ,±(2q−1 − 1)} }
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Scope of Applicability

• The simple MIMO model yC = HCsC + vC is popularly used in the point-to-
point spatial multiplexing scenario.

Spatial
Multiplexer

. . . . . 
.

. . . . . 
.

MIMO
Detector

Symbols
s
C

Detected
Symbols

MIMO channel
H

C

• Actually, this MIMO model is general enough to cover a wide variety of digital
communication scenarios.

• As such, MIMO detection methods developed for the generic MIMO model can
be universally applied to many different scenarios.
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Example: CDMA Multiuser Detection

User 1

User 2 User 

Base station

………………

• Consider a multiuser CDMA scenario. rx signal model over one symbol interval:

y =
K∑

i=1

ciαisi + v,

where y ∈ CN is the rx code vector; ci ∈ CN spreading code sequence vector of
user i; si tx symbol of user i; αi ∈ C rx amplitude/phase coefficient of user i.

• can be rewritten as yC = HCsC + vC (obviously).
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Example: Space-Time Block Coding

• Consider a point-to-point space-time block code (STBC) scenario:

Y = HCC(sC) + V ,

where HC ∈ CMr×Mt the MIMO channel; C(sC) ∈ CMt×T is an STBC;
Y ∈ CMr×T is the rx space-time code block, T being the time length.

• Assume a linear dispersion STBC:

C(sC) =
L∑

l=1

AlRe{sC,l}+BlIm{sC,l}.

• The rx model can be converted to the generic MIMO form:

vec(Y ) = (I ⊗HC)X
︸ ︷︷ ︸

“another HC”

s̃+ vec(V ),

where X = [ vec(A1), . . . , vec(AL), vec(B1), . . . , vec(BL) ] ∈ CMtT×2L, s̃ =
[ Re{sC}T , Im{sC}T ]T ∈ R2L.
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Example: Space-Time Frequency Coding

• Scenario: point-to-point MIMO OFDM in the presence of frequency selective
multipath channels.

Space-

Frequency

Block Code 

Encoder
Tx 

subcarrier

Rx 1

…
…

Space-

Frequency

Block Code 

Decoder

1
……Tx 1 2 1

……
2

1
……

2

subcarrier

Rx1
……

2

…
…

• Goal: precode across space and frequency, to harvest space and multipath
diversity, esp., full space-multipath diversity.
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• Let us have a case study on the algebraic space-frequency code (SFC) scheme
[Su-Safar-Liu’05].

Subcarrier 

Transmit Antenna

.   .   .

...

Tx 1

Tx 2

Transmit Antenna

...

Tx 

Subcarrier 

• Operations:

– Subcarriers are partitioned into groups;
– In each group, symbols are precoded;
– Precoded symbols (x above) are appropriately interleaved in space and

frequency.
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• Assume one rx antenna, for ease of illustration.

• The rx signal model in each group can be represented by

y = DHx+ v,

x = Θs,

where
x ∈ CΓMt the precoded symbol vector;
Θ ∈ CΓMt×ΓMt the precoder matrix;
s ∈ SΓMt the tx symbol vector;
DH ∈ CΓMt×ΓMt a diagonal matrix whose diagonals contain channel freq.

responses (dependent on the SFC interleaving pattern).

• A properly designed Θ can lead to full space-multipath diversity d = MtL,
where Mt is the no. of tx antennas & L is the no. of multipaths. To do so, one
should choose Γ ≥ L.

• The rx model can again be written as the generic form yC = HCsC+vC. Note
that the problem size in this example, ΓMt, may be large.
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Efficient High-Performance Approaches other than SDR

• Sphere decoders [Mow’92], [Viterbo-Biglieri’93], [Damen-El-Gamal-
Caire’03]:

– An exact ML solver based on branch and bound, or tree search;

– Empirical experience with its runtime performance: very fast for high SNRs
and small to moderate problem sizes NC; can be (very) slow otherwise;

– Exponential complexity w.r.t. the problem size [Jaldén-Ottersten’05].

• Lattice reduction aided (LRA) detectors [Yao-Wornell’02], [Wübben-
Seethaler-Jaldén-Matz’11]:

– Use lattice reduction to improve the channel “conditioning”;

– Interface well with linear and decision feedback detectors;

– Exhibit good diversity or diversity multiplexing tradeoff performance
[Taherzadeh-Mobasher-Khandani’07], [Jaldén-Elia’10].
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Inhomogeneous QCQPs and SDR

• Consider a general inhomogeneous QCQP

min
x∈Rn

xTCx+ 2cTx

s.t. xTAix+ 2aT
i x Di bi, i = 1, . . . ,m.

• An inhomogeneous QCQP can be reformulated as a homogenous QCQP

min
x∈Rn,t∈R

[
xT t

]
[
C c

cT 0

] [
x

t

]

s.t. t2 = 1,

[
xT t

]
[
Ai ai

aT
i 0

] [
x

t

]

Di bi, i = 1, . . . ,m

and then handled by SDR.
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An Alternative Way to Derive SDR for Inhomogeneous QCQPs

• Recap of inhomogeneous QCQP:

min
x∈Rn

xTCx+ 2cTx

s.t. xTAix+ 2aT
i x Di bi, i = 1, . . . ,m.

• By letting X = xxT , and then by replacing it with

X � xxT ,

we can derive an SDR

min
X∈Sn,x∈Rn

Tr(CX) + 2cTx

s.t. Tr(AiX) + 2aT
i x Di bi, i = 1, . . . ,m,

X � xxT .

• This inhomogeneous SDR is equivalent to the SDR from the homogenized QCQP

formulation (last page), by Schur complement X � xxT ⇐⇒
[
X x

xT 1

]

� 0.
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SDR MIMO Detection for QPSK Constellations

• Let N = 2NC, M = 2MC,

y =

[
Re{yC}
Im{yC}

]

, s =

[
Re{sC}
Im{sC}

]

, v =

[
Re{vC}
Im{vC}

]

,H =

[
Re{HC} −Im{HC}
Im{HC} Re{HC}

]

.

The complex-valued model yC = HCsC + vC can be turned to a real one

y = Hs+ v.

where s ∈ {±1}N for QPSK constellations.

• ML detection problem:

min
s∈RN

‖y −Hs‖2

s.t. s2i = 1, i = 1, . . . , N.

• SDR:
min

S∈SN ,s∈RN
Tr(HTHS)− 2sTHTy + ‖y‖2

s.t. Sii = 1, i = 1, . . . , N,

S � ssT .
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Bit error rate performance under (MC, NC) = (10, 10), QPSK constellations. The SNR is

defined as
E{‖HCsC‖2}

E{‖vC‖2} . ‘ZF’— zero forcing; ‘MMSE-DF’— min. mean square error with decision

feedback; ‘LRA’— lattice reduction aided; the Schnorr-Euchner sphere decoder is used.
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Bit error rate performance under (MC, NC) = (20, 20), QPSK constellations.
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Bit error rate performance under (MC, NC) = (40, 40), QPSK constellations. It is too expensive

to run sphere decoding in this example.
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Complexity comparison of various MIMO detectors. SNR= 12dB.
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Computational Efficiency of SDR MIMO Detection

• The bulk of complexity lies in solving the SDP.

• A common, arguably dominant, way to solve SDPs is to use the interior point
methods (IPMs)— their solution precision is good, & their complexities are
provably polynomial-time in the problem size.

• For the SDP in QPSK SDR MIMO detection, an IPM can output a solution
with a worst-case complexity of

O((N + 1)3.5 log(ǫ−1)) ≃ O(N3.5),

where ǫ > 0 is the desired solution accuracy.

• A few practical hints:

– You don’t need a very small ǫ in MIMO detection, since you will round the
solution anyway.

– While a general purpose software, such as CVX, can be used to solve the
SDP conveniently, you’d better off write your own IPM for maximizing the
computational efficiency.
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Interior-Point Algorithm for SDR MIMO Detection
The SDR problem in homogenous form:

min
X∈Sn

Tr(CX)

s.t. X � 0, Xii = 1, i = 1, . . . , n,

where C =

[

HTH −HTy

−yTH ‖y‖2

]

, X =

[

S s

sT 1

]

. By exploiting its simple equality constraint

structure, a specialized (and fast) IPM can be derived [Helmberg-et al.’96].

given ǫ > 0, and strictly feasible X, y, and Z.

repeat

1. update the barrier parameter µ := tr(ZX)/2n.
2. compute

∆y := [(Z−1 ◦ X)]−1(µdiag(Z−1) − 1),

∆Z := Diag(∆y)

∆X := µZ−1 − X − Z
−1∆ZX, ∆X := (∆X + ∆X

T )/2

3. find step-sizes αp ∈ (0, 1] and αd ∈ (0, 1] such that X+αp∆X ≻ 0 and Z+αd∆Z ≻ 0.

4. X := X + αp∆X, y := y + αd∆y, and Z := Z + αd∆Z.

until tr(ZX) ≤ ǫ.
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Cheap SDR by Row-by-Row Coordinate Descent

• While IPMs have good solution fidelity, they are generally not low complexity
options (check out the IPM pseudo code last page).

• Low complexity SDR implementation has received much interest.

• A possible alternative is row-by-row (RBR) coordinate descent [Wen-Goldfarb-
Ma-Scheinberg’09], [Wai-Ma-So’11].

• Ready-to-use codes available at http://www.ee.cuhk.edu.hk/~wkma/mimo/.

• To describe RBR, consider a barrier SDR problem

min
X∈Sn

Tr(CX)− σ log det(X)

s.t. Xii = 1, i = 1, . . . , n,
(B-SDR)

where σ > 0 is the barrier parameter.

• In (B-SDR), the log barrier function is used to enforce X � 0 (more precisely,
X ≻ 0), thereby avoiding to deal with the constraint X � 0 explicitly.
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• Let f(X) = Tr(CX) − σ log det(X), xi be the ith row of X, & X−i be the
collection of all elements of X except for xi.

• Idea of RBR: do a block coordinate descent on (B-SDR):

given a starting point X̂;
repeat
for i = 1, . . . , n
x̂i := arg min

xi, Xii=1
f(xi, X̂−i);

end;
until a stopping criterion is satisfied.

• The iterates are known to converge to the optimal solution of (B-SDR).

• Each per-row update is simple; e.g., the 1st row update can be equiv. written as

min
ξ1∈Rn−1

2cT1 ξ1 − σ log(1− ξT1 X̂
†
2:n,2:nξ1), (§)

where ξ1 = [x1]2:n, c1 = C1,2:n. The soln. to (§) is ξ⋆1 = κX̂2:n,2:nc1 for some
κ, a simple closed form (matrix multiplication, no inverse)!
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≤ δ, where f (k) is the objective value at iteration k.
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Complexity of RBR. A tenfold runtime saving relative to IPM is observed.
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Other Relaxations for QPSK ML MIMO Detection

• Generally speaking, relaxation methods work by relaxing the original problem to
a tractable problem.

• In that regard, relaxations other than SDR can be considered.

• Unconstrained relaxation (UR):

min
s∈RN

‖y −Hs‖2.

The result is ZF.

• On-Sphere Relaxation (OSR):

min
‖s‖2=N

‖y −Hs‖2.

The solution is ŝOSR = (HTH + γI)−1HTy for some γ; has an MMSE flavor.

• Box Relaxation (BR):
min

s2i≤1, i=1,...,N
‖y −Hs‖2.
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Comparison of the Various Relaxations

• In order to compare, let

f⋆ML = min
s∈{±1}N

‖y −Hs‖2,

f⋆SDR = min
S�ssT , Sii=1 ∀i

Tr(HTHS)− 2sTHTy + ‖y‖2,

f⋆BR = min
s2i≤1, i=1,...,N

‖y −Hs‖2,

f⋆OSR = min
‖s‖2=N

‖y −Hs‖2, f⋆UR = min
s∈RN

‖y −Hs‖2.

• It is shown that [Ma-Davidson-Wong-Luo-Ching’02], [Poljak-Rendl-
Wolkowicz’95]

max{f⋆UR, f⋆OSR, f⋆BR} ≤ f⋆SDR ≤ f⋆ML.

• The result means that SDR provides a relaxation no worse than the other three
methods. Or, the other methods may be seen as further relaxations of SDR.
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Regularization in LS

• Consider the least squares (LS) problem (for generic applications):

min
s∈RN

‖y −Hs‖2.

• Sometimes, in order to make the problem better conditioned, we may turn to a
regularized LS:

min
s∈RN

‖y −Hs‖2 + sTTs,

for some regularizer T ∈ SN (common choice: T = ρI, ρ > 0).

• SDR can be interpreted as a regularized LS.
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A Regularized LS Perspective on SDR

• Consider a Lagrangian dual of ML, as an approx.:

f⋆ML ≥ g⋆ML = max
λ∈RN

min
s∈RN

‖y −Hs‖2 +
N∑

i=1

λi(s
2
i − 1)

= max
λ∈RN

−λT
1+ min

s∈RN
‖y −Hs‖2 + sTD(λ)s

︸ ︷︷ ︸
regularized LS

, (D)

where g⋆ML is the dual optimal value, D(·) is a diagonal operator.

• (D) intends to find a ‘best’ regularization in a {±1} LS context.

• SDR is equivalent to (D):
f⋆SDR = g⋆ML.

Also, the dual of SDR is (D) (the trick: strong duality of convex problems).
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• Recap of SDR in dual form

f⋆SDR = max
λ∈RN

− λT
1+ min

s∈RN
‖y −Hs‖2 + sTD(λ)s.

• Consider OSR and BR. By strong Lagrangian duality, they can be expressed as

f⋆OSR = max
λ=γ1, γ∈R

− λT
1+ min

s∈RN
‖y −Hs‖2 + sTD(λ)s,

f⋆BR = max
λ�0

− λT
1+ min

s∈RN
‖y −Hs‖2 + sTD(λ)s.

• Apart from showing a regularized LS interpretation of OSR and BR, the above
eqs. reveal that the feasible set of λ in SDR subsumes that in OSR and BR.

• Hence, we can conclude the previous result that

f⋆SDR ≥ f⋆OSR, f⋆SDR ≥ f⋆BR.
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SDR MIMO Detection for MPSK Constellations

• The ML problem in the MPSK case:

min
sC∈CNC

‖yC −HCsC‖2

s.t. sC,i ∈ {1, ej2π/M , . . . , ej2π(M−1)/M}, i = 1, . . . , NC.

• Intuition: relax the constellations constraints to |sC,i|2 = 1, & then apply SDR.

• Following this intuition, we can formulate a complex-valued SDR [Ma-Ding-
Ching’04]:

min
SC∈HNC , sC∈CNC

Tr(HC
HHCSC)− 2Re{sCHHC

HyC}+ ‖yC‖2

s.t. [SC]ii = 1, i = 1, . . . , NC,

SC � sCsC
H.
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Symbol error rate performance under (MC, NC) = (20, 20), 8-PSK constellations. Note that

LRA methods are not applicable to MPSK constellations.
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SDR MIMO Detection for Higher-Order QAM

• Assume 16-QAM constellations, for ease of illustration.

• The ML problem (under the equivalent real-valued model):

min
s∈{±1,±3}N

‖y −Hs‖2.

• A number of attempts have been made for SDR of 16-QAM ML
detection [Wiesel-Eldar-Shamai’05], [Sidiropoulos-Luo’06], [Yang-Zhao-
Zhou-Wu’07], [Mobasher-Taherzah-Sotirov-Khandani’07], [Mao-Wang-
Wang’07].

• We consider

– polynomial inspired SDR (PI-SDR) [Wiesel-Eldar-Shamai’05];
– bound constrained SDR (BC-SDR) [Sidiropoulos-Luo’06];
– virtually antipodal SDR (VA-SDR) [Mao-Wang-Wang’07].
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Bound Constrained SDR (BC-SDR) [Sidiropoulos-Luo’06]:

• The 16-QAM ML problem is equivalent to

min
S∈SN ,s∈RN

Tr(HTHS)− 2sTHTy + ‖y‖2

s.t. S = ssT ,
Sii ∈ {1, 9}, i = 1, . . . , N. (⇔ s2i ∈ {1, 9})

• Relaxing S = ssT to S � ssT is not enough to yield a convex relaxation.

• BC-SDR also relaxes {1, 9} to [1, 9], leading to

min
S∈SN ,s∈RN

Tr(HTHS)− 2sTHTy + ‖y‖2

s.t. S � ssT ,
1 ≤ Sii ≤ 9, i = 1, . . . , N.

(BC-SDR)

• BC-SDR is simple to implement, and a specialized IPM is available [Ma-Su-
Jaldén-Chi’08].
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Polynomial Inspired SDR (PI-SDR) [Wiesel-Eldar-Shamai’05]:

• PI-SDR uses the fact that

u ∈ {1, 9} ⇐⇒ (u− 1)(u− 9) = 0 ⇐⇒ u2 − 10u+ 9 = 0

to reformulate the ML problem as

min
S,s,U ,u

Tr(HTHS)− 2sTHTy + ‖y‖2

s.t. S = ssT , U = uuT ,
d(S) = u, d(U)− 10u+ 91 = 0. (⇔ u2i − 10ui + 9 = 0, ∀i)

where d : RN×N → RN is the diagonal operator.

• PI-SDR is the SDR of the polynomial ML formulation:

min Tr(HTHS)− 2sTHTy + ‖y‖2
s.t. S � ssT , U � uuT ,

d(S) = u, d(U)− 10u+ 91 = 0.
(PI-SDR)
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Virtually Antipodal SDR (VA-SDR) [Mao-Wang-Wang’07]:

• VA-SDR uses the fact that

s ∈ {±1,±3} ⇐⇒ s = b1 + 2b2, b1, b2 ∈ {±1}.

to rewrite the ML problem in a virtually antipodal form

min
b1,b2∈{±1}N

‖y −H(b1 + 2b2)‖2 = min
b∈{±1}2N

‖y −HWb‖2,

where W = [ I 2I ], b = [ bT1 bT2 ]T .

• By applying the same SDR as in QPSK constellations, VA-SDR is obtained:

min Tr(W THTHWB)− 2bTW THTy + ‖y‖2
s.t. B � bbT , Bii = 1, i = 1, . . . , 2N.

(VA-SDR)
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• Rather unexpectedly, the three SDRs are equivalent [Ma-Su-Jaldén-Chang-
Chi’09].

• Consider a unified SDR expression

min
(S,s)∈F

Tr(HTHS)− 2sTHTy + ‖y‖2,

where F depends on the SDR employed:

FBC−SDR = { (S, s) | S � ss
T ,1 � d(S) � 91 },

FPI−SDR = { (S, s) | (U,u,S, s) ∈ WPI−SDR },
WPI−SDR = { (U,u,S, s) | U � uu

T ,S � ss
T , d(S) = u, d(U)− 10u+ 91 = 0 },

FVA−SDR = { (S, s) = (WBW
T ,Wb) | B � bb

T , d(B) = 1 }.

• It is shown by analysis that

FBC−SDR = FPI−SDR = FVA−SDR.

The same equivalence is also proven for 64-QAM PI-SDR, & for any 2q-QAM
VA-SDR.
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Symbol error rate performance of BC-SDR, PI-SDR, and VA-SDR under (MC, NC) = (8, 8),

16-QAM constellations. The three performance plots coincide.
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Symbol error rate performance under (MC, NC) = (8, 8), 16-QAM constellations.
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Symbol error rate performance under (MC, NC) = (16, 16), 16-QAM constellations.
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Symbol error rate performance under (MC, NC) = (40, 40), 16-QAM constellations. Sphere

decoding is too expensive to run in this case.

W.-K. Ma & A. M.-C. So, Semidefinite Relaxation, ICASSP 2014 Tutorial 221



Some Results in Performance Analysis

• Assume QPSK or BPSK constellations. SDR has a high probability of giving a
rank-one solution, for high SNRs [Jaldén-Martin-Ottersten’03].

• Assume BPSK constellations, & i.i.d. complex Gaussian HC. SDR is proven to
achieve the full rx diversity [Jaldén-Ottersten’08].

• Approximation accuracies: [So’09], [So’10] showed that in both the MPSK and
4q-QAM scenarios, the SDR detector can produce a constant factor approximate
solution to the ML detection problem with exponentially high probability if the
SNR is sufficiently low. In other words, in the low SNR region, we have

‖y −Hŝ‖2 ≤ O(1) · ‖y −Hs⋆‖2,

with very high probability, where

– ŝ is the solution produced by SDR (with a suitable randomization procedure),
– s⋆ is the optimal ML solution.
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