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Blind source separation (BSS): Problem statement

Signal model: a real-valued, N -input, M -output linear mixing model:

xi[n] =

N∑

j=1

aijsj[n], n = 1, . . . , L,

where
xi[n] is the ith observed signal, i = 1, . . . ,M ;
sj[n] is the jth source signal, j = 1, . . . , N .
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Problem: recover the source signals the observed signals, without information of
the mixing matrix A = {aij}.
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Blind speech and audio separation: A classical BSS application
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Speech and audio separation in a microphone array.

• The problem is to separate multiple speakers’ voices using an array of
microphones.

• The challenge is that the location and propagation characteristics of each speaker
are not known. This results in a blind problem.
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Applications in biomedical imaging

Dynamic contrast-enhanced MRI. Courtesy to [Wang et al. 2003].

• Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) uses
various molecular weight contrast agents to assess tumor vascular perfusion
and permeability.
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Time

Fast flow
Slow flow
Plasma

Time activity cruves (TAC)

Courtesy to [Wang et al. 2003].

• DCE-MRI images are often linear mixtures of more than one distinct vasculature
sources, since many malignant tumors show heterogeneous areas of permeability.
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Another biomedical imaging example

Time

...

Linear mixing model

Dynamic fluorescent imaging data

Kidney Lungs Brain Spine

......

• Dynamic fluorescent imaging (DFI) exploits highly specific and bio-compatible
fluorescent contrast agents to interrogate small animals for drug development
and disease research.

• DFI images are linear mixtures of the anatomical maps of different organs.
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Anatomical map
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Separated anatomical maps, using a convex geometry-based method.
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BSS techniques

• Blind source separation is not completely blind.

• All BSS approaches make specific assumptions on the characteristics of {si[n]}n
and/or A, and utilize them to achieve blind separation.

• The suitability of the assumptions (& the approach as a result) depends much
on the applications under consideration.

Example: Independent component analysis (ICA), a well-known BSS
framework, typically assumes that each si[n] is random non-Gaussian & is
mutually independent.

Mutual independence is a good assumption in speech & audio applications,
but not so in hyperspectral imaging.
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Non-negative blind source separation (nBSS)

• In some applications source signals are non-negative; e.g., imaging.

• nBSS approaches exploit the signal non-negativity characteristic (plus some
additional assumptions).

• Applications:

– biomedical imaging,

– hyperspectral imaging,

– analytical chemistry,

– and most recently, speech separation [Fu-Ma’12].

• nBSS frameworks:

– ICA with non-negativity incorporated; e.g., [Plumbley 2003],

– non-negative matrix factorization (NMF) [Lee-Seung 1999],

– convex geometry.
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Convex Geometry

• Interestingly, different disciplines came up with similar intuitive thinking of
convex geometry over different times.

– chemometrics [Perczel et. al’89],

– hyperspectral remote sensing [Craig’94],

– nuclear magnetic resonance spectroscopy [Naanaa-Nuzillard’05],

– SP theory and methods [Chan-Ma-Chi-Wang’08] (we got our first motivation
from DCE-MRI, though).

• Our study uses convex analysis and optimization to establish rigorous signal
processing frameworks for convex geometry-based nBSS.
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CAMNS:
Convex analysis of mixtures of non-negative sources

• CAMNS [Chan-Ma-Chi-Wang’08] is an nBSS approach based on convex
geometry.

• Unlike ICA which is a statistical framework, convex geometry is deterministic.

• In addition to utilizing source non-negativity, CAMNS employs a special
assumption called local dominance.

• What is local dominance?
Intuitively, signals with many
‘zeros’ are likely to satisfy local
dominance (math. def. available
soon).

• Practically, we found it a good assumption for sparse or high-contrast images.
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Intuition behind CAMNS

• Recall the linear mixture model

xi[n] =

N∑

j=1

aijsj[n],

i = 1, . . . ,M , n = 1, . . . , L.

• Define

xi =



xi[1]

...
xi[L]


 , si =



si[1]

...
si[L]


 .

We can write

xi =

N∑

j=1

aijsj.
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Intuition behind CAMNS (cont’d)

s1

s2

s3

x1 x2

x3

A vector space illustration of xi =
∑N

j=1 aijsj. How can we extract {s1, . . . , sN}
from {x1, . . . ,xM} without knowing {aij}?
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Intuition behind CAMNS (cont’d)

x1 x2

x3

Based on some assumptions (e.g., signal non-negativity & local dominance) & by
convex analysis, we use {x1, . . . ,xM} to construct a polyhedral set.
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Intuition behind CAMNS (cont’d)

s1

s2

s3

We show that the ‘corners’ (formally speaking, extreme points) of this polyhedral
set are exactly {s1, . . . , sN}.

15



Intuition behind CAMNS (cont’d)

Using LP, we can locate the ‘corners’ of the polyhedral set effectively. As a result
perfect separation can be achieved.
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A quick review of some convex analysis concepts

The affine hull of a given set of vectors {s1, . . . , sN} ⊂ RL is defined as:

aff{s1, . . . , sN} =

{
x =

N∑

i=1

θisi

∣∣∣∣ θ ∈ RN ,

N∑

i=1

θi = 1

}
.

s1
s2

aff{s1,s2}
aff{s1,s2,s3}

s1 s2

s3

0 0

N=2 N=3
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An affine hull aff{s1, . . . , sN} = { x =
∑N

i=1 θisi | θ ∈ RN ,
∑N

i=1 θi = 1 } can
always be expressed as

aff{s1, . . . , sN} =
{
x = Cα+ d

∣∣ α ∈ RP
}
,

for some (non-unique) d ∈ RL and C ∈ RL×P , where P ≤ N − 1 is the affine
dimension.

aff{s1,s2,s3}
s1 s2

s3

0 N=3

d

c1 c2
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The convex hull of a given set of vectors {s1, . . . , sN} ⊂ RL is defined as

conv{s1, . . . , sN} =

{
x =

N∑

i=1

θisi

∣∣∣∣ θ ∈ RN
+ ,

N∑

i=1

θi = 1

}

s1
s2

conv{s1,s2} conv{s1,s2,s3}
s1 s2

s3

0 0

N=2 N=3

• A point x ∈ conv{s1, . . . , sN} is an extreme point of conv{s1, . . . , sN} if x
is not any nontrivial convex combination of {s1, . . . , sN}.
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The assumptions in CAMNS

Recall the model xi =
∑M

j=1 aijsj. Our assumptions:

(A1) Source non-negativity: For each j, sj ∈ RL
+.

(A2) Local dominance: For each i ∈ {1, . . . , N}, there exists an (unknown) index `i
such that si[`i] > 0 and sj[`i] = 0, ∀j 6= i.

(Reasonable assumption for sparse or high-contrast signals).

(A3) Unit row sum: For all i = 1, . . . ,M ,
∑N

j=1 aij = 1.

(Already satisfied in MRI, can be relaxed).

(A4) M ≥ N and A is of full column rank. (Standard BSS assumption)
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How to enforce (A3), if it does not hold

The unit row sum assumption (A3) may be relaxed.

• Suppose that xT
i 1 6= 0 (where 1 is an all-one vector) for all i.

• Consider a normalized version of xi:

x̄i =
xi

xT
i 1

=

N∑

j=1

(
aijs

T
j 1

xT
i 1︸ ︷︷ ︸

,āij

)(
sj
sTj 1︸︷︷︸
,s̄j

)
.

• It can be shown that (āij) satisfies (A3).
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CAMNS

Since
∑N

j=1 aij = 1 [(A3)], we have
for each observation

xi =

N∑

j=1

aijsj ∈ aff{s1, . . . , sN}

This implies

aff{s1, . . . , sN} ⊇ aff{x1, . . . ,xM}.

In fact, we can show that

Lemma. Under (A3) and (A4), aff{s1, . . . , sN} = aff{x1, . . . ,xM}.
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• Consider the representation

aff{s1, . . . , sN} = aff{x1, . . . ,xN}
=
{
x = Cα+ d

∣∣ α ∈ RN−1
}
, A(C,d)

for some (C,d) ∈ RL×(N−1) × RL with rank(C) = N − 1.

• Let us consider determining the source affine set parameters (C,d) from
{x1, . . . ,xM}.

aff{s1,s2,s3}
x1 x2

x3

0 N=3

d

c1 c2
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• Consider the representation

aff{s1, . . . , sN} = aff{x1, . . . ,xN}
=
{
x = Cα+ d

∣∣ α ∈ RN−1
}
, A(C,d)

for some (C,d) ∈ RL×(N−1) × RL with rank(C) = N − 1.

• Let us consider determining the source affine set parameters (C,d) from
{x1, . . . ,xM}.

• By solving an affine set fitting problem, we show that

d =
1

M

M∑

i=1

xi, C = [ q1(UUT ), q2(UUT ), . . . , qN−1(UUT ) ]

where U = [ x1−d, . . . ,xM −d ] ∈ RL×M , and qi(R) denotes the eigenvector
associated with the ith principal eigenvalue of R.

• As a coincidence, affine set fitting is reminiscent of principal component analysis.
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Be reminded that si ∈ RL
+. Hence, it is true that

si ∈ aff{s1, . . . , sN} ∩ RL
+ = A(C,d) ∩ RL

+ , S

The following lemma arises from local dominance (A2):

Lemma. Under (A1) and (A2),

S = conv{s1, . . . , sN}

Moreover, the set of all its extreme
points is {s1, . . . , sN}.
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Summarizing the above results, a new nBSS criterion is as follows:

Theorem. (CAMNS criterion) Under (A1)-(A4), the polyhedral set

S =
{
x ∈ RL

∣∣ x = Cα+ d � 0, α ∈ RN−1
}

where (C,d) is obtained from the observation set {x1, ...,xM} by affine set
fitting, has N extreme points given by the true source vectors s1, ..., sN .
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Practical realization of CAMNS

• CAMNS boils down to finding all the extreme points of an observation-
constructed polyhedral set.

• In the optimization context this is known as vertex enumeration.

• In CAMNS, there is one important problem structure that we can take full
advantage of; that is,

Property implied by (A2): s1, . . . , sN are linear independent.

• By exploiting this property, we can locate all the extreme points by solving a
sequence of LPs ( ≈ 2N LPs at worst).
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Consider the following linear program (LP)

p? = min
s

rTs

s.t. s ∈ S
(†)

for an arbitrary r ∈ RL. From basic LP theory, the solution of (†) is either an
extreme point of S (or one of the si’s), or any point on a face of S.

• Question: how to decide r?

– Ans: randomly! If r ∼ N (0, IL), then, with probability one, the solution of
(†) is an extreme point.

– A systematic way to find all extreme points can also be constructed.
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Consider the following linear program (LP)
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s
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(†)

for an arbitrary r ∈ RL. From basic LP theory, the solution of (†) is either an
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Simulation example 1: Dual energy X-Ray

Original sources
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Observations
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Separated sources by CAMNS
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Separated sources by nICA (a benchmarked nBSS method)
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Separated sources by NMF (yet another benchmarked nBSS method)
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Simulation example 2: Human faces

Original sources
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Observations
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Separated sources by CAMNS

38



Separated sources by nICA
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Separated sources by NMF
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Simulation example 3: Ghosting

Original sources
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Observations
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Separated sources by CAMNS
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Separated sources by nICA
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Separated sources by NMF
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Simulation example 4: Five of my students

Original sources
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Observations
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Separated sources by CAMNS
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Simulation example 5: Monte Carlo performance for N = 3
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Convex Geometry for
Hyperspectral Unmixing in

Remote Sensing
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Hyperspectral Imaging: A Key Area in Geoscience and
Remote Sensing

Courtesy to [Keshava et al. ’02].

• Hyperspectral sensors record EM scattering patterns of distinct materials over
> 200 spectral bands, from visible to near-infrared wavelength at a resolution of
10nm.
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• The high spectral degrees of freedom enable us to identify the unknown materials,
as revealed by their spectral signatures, and their compositions in the scene —
this is fundamentally connected to source separation.

Water                 Tree                     Land

 Band 1

 Band 2

Band M

Satellite

Abundance Maps

End Member Signatures

Sun

Water                Tree                     Land

Surface

HU
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Applications of Hyperspectral Imaging

• Hyperspectral imaging has found numerous applications in remote sensing, such
as

– mineral identification,
– agriculture,
– environment monitoring,
– terrain classification, land-cover mapping,
– object detection, change detection, ...

• It is also a crucial technique for planetary exploration (like Mars) and astrophysics.

• It also has non-remote sensing applications, such as food inspection, forensics,
medical imaging and chemometrics.

• A key problem in hyperspectral imaging is blind hyperspectral unmixing (also
called unsupervised hyperspectral unmixing), which is essentially nBSS.
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Hyperspectral Linear Mixing Model

= X...

......

a1 a2 aN

x[n]

s1[n]

s2[n]

sN [n]

M

N

• Signal model:

x[n] = As[n] =

N∑

i=1

si[n]ai, n = 1, . . . , L

x[n] = [x1[n], . . . , xM [n]]T ∈ RM observed pixel vector;
A = [ a1, . . . ,aN ] ∈ RM×N endmember signature matrix;
s[n] = [ s1[n], . . . , sN [n] ]T ∈ RN abundance vector;
M, N, &L # of spectral bands, endmembers, & pixels.
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Hyperspectral Linear Mixing Model

= X...

......

a1 a2 aN

x[n]

s1[n]

s2[n]

sN [n]

M

N

• Signal model:

x[n] = As[n] =

N∑

i=1

si[n]ai, n = 1, . . . , L

• Assumptions:

– si[n] ≥ 0 for all i, n (non-negativity),
∑N

i=1 si[n] = 1 for all n (sum-to-one).

– rank(A) = N .
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Convex Geometry Observation

• Recall the signal model

x[n] =

N∑

i=1

si[n]ai,

and that si[n] ≥ 0,
∑N

i=1 si[n] = 1.

• Apparently, we have

x[n] ∈ conv{a1, . . . ,aN}.

• Observation: each hyperspectral pixel x[n] lies in the convex hull of the
ground-truth endmembers {a1, . . . ,aN}.

• Intuitively, if we can find the ‘corners’, then we are done!
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Simplex Geometry Preserved Via Affine Transformation

• By affine set fitting, we can perform dimension reduction. The dimension-
reduced pixels x̃[n] adhere to a similar model

x̃[n] =

N∑

i=1

si[n]αi

where α1, . . . ,αN are dimension-reduced endmembers.

affine transformation

0

a1

a2

a3

x[n]

RM

{
x = Cα+ d

∣∣ α ∈ RN−1
}

conv{α1,α2,α3}
α1

α2

C = [c1 c2]

α3

RN−1

x̃[n]
x̃[n] = CT (x[n] − d)

d

c1

c2
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Craig’s Minimum Volume Simplex Belief

Craig’s belief [Craig’94]: the true endmembers may be located by finding
a data enclosing simplex whose volume is the smallest.

• Craig’s belief provided significant insights to blind hyperspectral unmixing.

• But is Craig’s belief fundamentally sound? Can it be efficiently implemented?
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Winter’s Maximum Volume Simplex Belief

Winter’s belief [Winter’99]: the true endmembers may be located by
finding a collection of pixel vectors whose simplex volume is the largest.

• Winter’s belief led to N-FINDR, a class of widely used blind unmixing algorithms.

• Again, is Winter’s belief fundamentally sound? Is N-FINDR the only way to go?
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An Opt. Approach to Craig’s Belief [Chan-Chi-Huang-Ma’09]

• We employ convex analysis and optimization to treat Craig’s belief.

• We formulate Craig’s belief as

(†)

min
β1,...,βN∈RN−1

vol(β1, . . . ,βN)

s.t. x̃[n] ∈ conv{β1, . . . ,βN},
i = 1, . . . , L,

β1

β2

β3

where vol(β1, . . . ,βN) = |det(β̃1, . . . , β̃N)|/(N − 1)!, β̃i = [ βT
i , 1 ]T , is the

simplex volume.
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An Opt. Approach to Craig’s Belief [Chan-Chi-Huang-Ma’09]

• We employ convex analysis and optimization to treat Craig’s belief.

• We formulate Craig’s belief as

(†)

min
β1,...,βN∈RN−1

vol(β1, . . . ,βN)

s.t. x̃[n] ∈ conv{β1, . . . ,βN},
i = 1, . . . , L,

β1

β2

β3

where vol(β1, . . . ,βN) = |det(β̃1, . . . , β̃N)|/(N − 1)!, β̃i = [ βT
i , 1 ]T , is the

simplex volume.

• Question 1: Is Craig’s belief fundamentally sound?

– Yes. We prove that local dominance (or pure pixels) is a sufficient condition
for problem (†) to perfectly identify the true endmembers.
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An Opt. Approach to Craig’s Belief [Chan-Chi-Huang-Ma’09]

• We employ convex analysis and optimization to treat Craig’s belief.

• We formulate Craig’s belief as

(†)

min
β1,...,βN∈RN−1

vol(β1, . . . ,βN)

s.t. x̃[n] ∈ conv{β1, . . . ,βN},
i = 1, . . . , L,

β1

β2

β3

where vol(β1, . . . ,βN) = |det(β̃1, . . . , β̃N)|/(N − 1)!, β̃i = [ βT
i , 1 ]T , is the

simplex volume.

• Question 2: Can Craig’s belief be efficiently implemented?

– Problem (†) is nonconvex.

– We derive a pragmatic algorithm using alternating LP optimization.
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An Opt. Approach to Craig’s Belief [Chan-Chi-Huang-Ma’09]

• We employ convex analysis and optimization to treat Craig’s belief.

• We formulate Craig’s belief as

(†)

min
β1,...,βN∈RN−1

vol(β1, . . . ,βN)

s.t. x̃[n] ∈ conv{β1, . . . ,βN},
i = 1, . . . , L,

β1

β2

β3

where vol(β1, . . . ,βN) = |det(β̃1, . . . , β̃N)|/(N − 1)!, β̃i = [ βT
i , 1 ]T , is the

simplex volume.

• Question 2: Can Craig’s belief be efficiently implemented?

– Problem (†) is nonconvex.

– We derive a pragmatic algorithm using alternating LP optimization.

∗ A similar idea, MVSA [Li-Bioucas’08], was proposed about the same time.
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An Opt. Approach to Winter’s Belief
[Chan-Ma-Ambikapathi-Chi’11]

• We formulate Winter’s belief as

(‡)

max
β1,...,βN∈RN−1

vol(β1, . . . ,βN)

s.t. βi ∈ conv{x̃[1], . . . , x̃[L]},
i = 1, . . . , N.

β1

β2

β3
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An Opt. Approach to Winter’s Belief
[Chan-Ma-Ambikapathi-Chi’11]

• We formulate Winter’s belief as

(‡)

max
β1,...,βN∈RN−1

vol(β1, . . . ,βN)

s.t. βi ∈ conv{x̃[1], . . . , x̃[L]},
i = 1, . . . , N.

β1

β2

β3

• Question 1: Is Winter’s belief fundamentally sound?

– Yes. But we prove that local dominance is a sufficient and necessary condition
for problem (‡) to perfectly identify the true endmembers.

– This implies that Winter is fundamentally weaker than Craig.
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An Opt. Approach to Winter’s Belief
[Chan-Ma-Ambikapathi-Chi’11]

• We formulate Winter’s belief as

(‡)

max
β1,...,βN∈RN−1

vol(β1, . . . ,βN)

s.t. βi ∈ conv{x̃[1], . . . , x̃[L]},
i = 1, . . . , N.

β1

β2

β3

• Question 2: Is N-FINDR the only way for Winter’s belief?

– Not really.

– N-FINDR may be viewed as an alternating opt. algorithm for (‡).

– VCA [Nascimento-Bioucas’06] was previously not seen as Winter-based. We
show that VCA may be interpreted as a greedy opt. algorithm for (‡).

– Our top-down study unifies such existing algorithms under one umbrella, and
gives new theoretical insight and implication to them.
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Robust Generalizations

(a) Robust Craig geometry.

conv{x̃[1], . . . , x̃[L]}
α1

α2

α3

β1

β2

β3

r

r

r

x̃[n]

(b) Robust Winter geometry.

• Hyperspectral data may be corrupted by measurement noise.

• Our top-down optimization approach enables us to develop robust generalizations
of Craig’s and Winter’s formulations [Chan-Ambikapathi-Ma-Chi’11], [Chan-Ma-
Ambikapathi-Chi’11].
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Real Data Experiment

0.3

0.4

0.5

0.6

0.7

(a) Cuprite AVIRIS data at band 10.
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Fig. 7. Abundance maps obtained by the RMVES algorithm.

to initializations. The mean-removed spectral angle between the
estimated signature aest and the corresponding library signature
alib[26], [48] defined as

φ = arccos

(
(aest − m(aest))

T (alib − m(alib))

‖aest − m(aest)‖ · ‖alib − m(alib)‖

)
(43)

was used as the performance measure, where m(a) =
(1T

Ma)1M (1/M) for any vector a ∈ RM . The values of φ for
the various minerals identified by the algorithms under test are
given in Table VIII. Again, the least φ value for an endmember
is highlighted as a bold-faced number, and the number in paren-
thesis is the φ value for the repeatedly identified endmember. It
can be seen from Table VIII that, for the materials identified, the
proposed RMVES algorithm performs best (with the minimum
average φ), and furthermore, it mostly yields better endmember
estimates (minimum φ) than its predecessor, i.e., the MVES
algorithm, and the pure-pixel-based VCA algorithm. Note that
few of the mean-removed spectral angles for endmembers
(e.g., Buddingtonite and Kaolinite#1) identified by RMVES
algorithm are marginally higher than that of the ones obtained
by MVES. This could be attributed to some orientation of the
simplex obtained by RMVES, with respect to the simplex of the
true endmembers. In our simulations and real data experiments,
HySiMe [11] was used to estimate the noise covariance matrix.
Better estimation of the noise covariance matrix should further
enhance the performance of the RMVES algorithm.

VIII. CONCLUSION

In this paper, we have presented a robust HU algorithm,
namely, RMVES (as shown in Table II), for effective unmixing
of mixed hyperspectral data corrupted by uniform or nonuni-
form Gaussian noise. The dimension reduction via affine set

TABLE VIII
MEAN-REMOVED SPECTRAL ANGLES φ (IN DEGREES) BETWEEN

LIBRARY SPECTRA AND ENDMEMBERS ESTIMATED BY

RMVES, MVES, AND VCA

fitting procedure has been suitably modified for noisy hyper-
spectral observations. The randomness caused by noise has
been dealt with by incorporating chance constraints in the
unmixing problem formulation with a design parameter η. A
detailed analysis on the role of η has been presented, and
it was concluded that η must be less than 0.5, which, along
with the objective function, results in a nonconvex optimization
problem. In an effort to minimize the effect of nonconvexity of
the objective function, an alternating optimization concept has
been utilized. The partial maximization problems involved are
handled by using available SQP solvers. Finally, Monte Carlo

(b) Spectral angle performance.

• Robust minimum volume simplex analysis (MVES) can perform better than our
previous MVES algorithm.
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