Convex Geometry for Blind Source Separation

Wing-Kin (Ken) Ma

Department of Electronic Engineering, The Chinese University of Hong Kong

November 23, 2012

Convex Geometry for Non-Negative Blind Source Separation

Blind source separation (BSS): Problem statement

Signal model: a real-valued, N-input, M-output linear mixing model:

$$x_i[n] = \sum_{j=1}^{N} a_{ij} s_j[n], \quad n = 1, \dots, L,$$

where $x_i[n]$ is the *i*th observed signal, i = 1, ..., M; $s_j[n]$ is the *j*th source signal, j = 1, ..., N.

Problem: recover the source signals the observed signals, without information of the mixing matrix $\mathbf{A} = \{a_{ij}\}$.

Blind speech and audio separation: A classical BSS application

Speech and audio separation in a microphone array.

- The problem is to separate multiple speakers' voices using an array of microphones.
- The challenge is that the location and propagation characteristics of each speaker are not known. This results in a blind problem.

Applications in biomedical imaging

Dynamic contrast-enhanced MRI. Courtesy to [Wang et al. 2003].

• Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) uses various molecular weight contrast agents to assess tumor vascular perfusion and permeability.

Courtesy to [Wang et al. 2003].

• DCE-MRI images are often linear mixtures of more than one distinct vasculature sources, since many malignant tumors show heterogeneous areas of permeability.

- Dynamic fluorescent imaging (DFI) exploits highly specific and bio-compatible fluorescent contrast agents to interrogate small animals for drug development and disease research.
- DFI images are linear mixtures of the anatomical maps of different organs.

Brain

Blood vessels

Anatomical map

Separated anatomical maps, using a convex geometry-based method.

BSS techniques

- Blind source separation is *not* completely blind.
- All BSS approaches make specific assumptions on the characteristics of $\{s_i[n]\}_n$ and/or **A**, and utilize them to achieve blind separation.
- The suitability of the assumptions (& the approach as a result) depends much on the applications under consideration.

Example: Independent component analysis (ICA), a well-known BSS framework, typically assumes that each $s_i[n]$ is random non-Gaussian & is mutually independent.

Mutual independence is a good assumption in speech & audio applications, but not so in hyperspectral imaging.

Non-negative blind source separation (nBSS)

- In some applications source signals are non-negative; e.g., imaging.
- nBSS approaches exploit the signal non-negativity characteristic (plus some additional assumptions).

• Applications:

- biomedical imaging,
- hyperspectral imaging,
- analytical chemistry,
- and most recently, speech separation [Fu-Ma'12].

• nBSS frameworks:

- ICA with non-negativity incorporated; e.g., [Plumbley 2003],
- non-negative matrix factorization (NMF) [Lee-Seung 1999],
- convex geometry.

Convex Geometry

- Interestingly, different disciplines came up with similar intuitive thinking of convex geometry over different times.
 - chemometrics [Perczel et. al'89],
 - hyperspectral remote sensing [Craig'94],
 - nuclear magnetic resonance spectroscopy [Naanaa-Nuzillard'05],
 - SP theory and methods [Chan-Ma-Chi-Wang'08] (we got our first motivation from DCE-MRI, though).
- Our study uses convex analysis and optimization to establish rigorous signal processing frameworks for convex geometry-based nBSS.

CAMNS:

Convex analysis of mixtures of non-negative sources

- CAMNS [Chan-Ma-Chi-Wang'08] is an nBSS approach based on convex geometry.
- Unlike ICA which is a statistical framework, convex geometry is deterministic.
- In addition to utilizing source non-negativity, CAMNS employs a special assumption called **local dominance**.
- What is local dominance? Intuitively, signals with many 'zeros' are likely to satisfy local dominance (math. def. available soon).

• Practically, we found it a good assumption for sparse or high-contrast images.

Intuition behind CAMNS

• Recall the linear mixture model

$$x_i[n] = \sum_{j=1}^N a_{ij} s_j[n],$$

$$i = 1, \dots, M$$
, $n = 1, \dots, L$.

• Define

$$oldsymbol{x}_i = egin{bmatrix} x_i[1] \ dots \ x_i[L] \end{bmatrix}, \quad oldsymbol{s}_i = egin{bmatrix} s_i[1] \ dots \ s_i[L] \end{bmatrix}.$$

We can write

$$\boldsymbol{x}_i = \sum_{j=1}^N a_{ij} \boldsymbol{s}_j.$$

A vector space illustration of $x_i = \sum_{j=1}^N a_{ij}s_j$. How can we extract $\{s_1, \ldots, s_N\}$ from $\{x_1, \ldots, x_M\}$ without knowing $\{a_{ij}\}$?

Based on some assumptions (e.g., signal non-negativity & local dominance) & by convex analysis, we use $\{x_1, \ldots, x_M\}$ to construct a polyhedral set.

We show that the 'corners' (formally speaking, extreme points) of this polyhedral set are exactly $\{s_1, \ldots, s_N\}$.

Using LP, we can locate the 'corners' of the polyhedral set effectively. As a result perfect separation can be achieved.

A quick review of some convex analysis concepts

The affine hull of a given set of vectors $\{s_1, \ldots, s_N\} \subset \mathbb{R}^L$ is defined as:

aff
$$\{\boldsymbol{s}_1, \ldots, \boldsymbol{s}_N\} = \left\{ \left| \boldsymbol{x} = \sum_{i=1}^N \theta_i \boldsymbol{s}_i \right| \boldsymbol{\theta} \in \mathbb{R}^N, \sum_{i=1}^N \theta_i = 1 \right\}.$$

An affine hull $\inf\{s_1, \ldots, s_N\} = \{ x = \sum_{i=1}^N \theta_i s_i \mid \theta \in \mathbb{R}^N, \sum_{i=1}^N \theta_i = 1 \}$ can always be expressed as

$$\operatorname{aff} \{ \boldsymbol{s}_1, \dots, \boldsymbol{s}_N \} = \{ \ \boldsymbol{x} = \mathbf{C} \boldsymbol{lpha} + \mathbf{d} \ | \ \boldsymbol{lpha} \in \mathbb{R}^P \ \},$$

for some (non-unique) $\mathbf{d} \in \mathbb{R}^L$ and $\mathbf{C} \in \mathbb{R}^{L \times P}$, where $P \leq N - 1$ is the affine dimension.

The **convex hull** of a given set of vectors $\{s_1, \ldots, s_N\} \subset \mathbb{R}^L$ is defined as

$$\operatorname{conv}\{oldsymbol{s}_1,\ldots,oldsymbol{s}_N\}=\left\{ \left|oldsymbol{x}=\sum_{i=1}^N heta_ioldsymbol{s}_i\ \middle|\ oldsymbol{ heta}\in\mathbb{R}^N_+,\sum_{i=1}^N heta_i=1\
ight\}$$

• A point $x \in \operatorname{conv}\{s_1, \ldots, s_N\}$ is an **extreme point** of $\operatorname{conv}\{s_1, \ldots, s_N\}$ if x is not any nontrivial convex combination of $\{s_1, \ldots, s_N\}$.

The assumptions in CAMNS

Recall the model $x_i = \sum_{j=1}^M a_{ij} s_j$. Our assumptions:

- (A1) Source non-negativity: For each j, $s_j \in \mathbb{R}^L_+$.
- (A2) Local dominance: For each $i \in \{1, ..., N\}$, there exists an (unknown) index ℓ_i such that $s_i[\ell_i] > 0$ and $s_j[\ell_i] = 0$, $\forall j \neq i$.

(Reasonable assumption for sparse or high-contrast signals).

(A3) Unit row sum: For all i = 1, ..., M, $\sum_{j=1}^{N} a_{ij} = 1$. (Already satisfied in MRI, can be relaxed).

(A4) $M \ge N$ and **A** is of full column rank. (Standard BSS assumption)

How to enforce (A3), if it does not hold

The unit row sum assumption (A3) may be relaxed.

- Suppose that $x_i^T \mathbf{1} \neq 0$ (where **1** is an all-one vector) for all *i*.
- Consider a normalized version of x_i :

$$ar{x}_i = rac{oldsymbol{x}_i}{oldsymbol{x}_i^T oldsymbol{1}} = \sum_{j=1}^N igg(rac{a_{ij} oldsymbol{s}_j^T oldsymbol{1}}{oldsymbol{x}_i^T oldsymbol{1}} igg) igg(rac{oldsymbol{s}_j}{oldsymbol{s}_j^T oldsymbol{1}} igg) igg).$$

• It can be shown that (\bar{a}_{ij}) satisfies (A3).

CAMNS

Since $\sum_{j=1}^{N} a_{ij} = 1$ [(A3)], we have for each observation

$$oldsymbol{x}_i = \sum_{j=1}^N a_{ij}oldsymbol{s}_j \in \mathrm{aff}\{oldsymbol{s}_1,\ldots,oldsymbol{s}_N\}$$

This implies

$$\operatorname{aff}\{\boldsymbol{s}_1,\ldots,\boldsymbol{s}_N\}\supseteq\operatorname{aff}\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_M\}.$$

In fact, we can show that

Lemma. Under (A3) and (A4), aff $\{s_1, ..., s_N\} = aff \{x_1, ..., x_M\}$.

• Consider the representation

$$egin{aligned} & ext{aff}\{m{s}_1,\ldots,m{s}_N\} = ext{aff}\{m{x}_1,\ldots,m{x}_N\} \ & = \left\{ \left.m{x} = \mathbf{C}m{lpha} + \mathbf{d} \
ight| \ m{lpha} \in \mathbb{R}^{N-1} \
ight\} riangleq \mathcal{A}(\mathbf{C},\mathbf{d}) \end{aligned}$$

for some $(\mathbf{C}, \mathbf{d}) \in \mathbb{R}^{L \times (N-1)} \times \mathbb{R}^L$ with $\operatorname{rank}(\mathbf{C}) = N - 1$.

• Let us consider determining the source affine set parameters (\mathbf{C}, \mathbf{d}) from $\{ \boldsymbol{x}_1, \dots, \boldsymbol{x}_M \}.$

• Consider the representation

$$\operatorname{aff} \{ \boldsymbol{s}_1, \dots, \boldsymbol{s}_N \} = \operatorname{aff} \{ \boldsymbol{x}_1, \dots, \boldsymbol{x}_N \}$$
$$= \left\{ \left| \boldsymbol{x} = \mathbf{C} \boldsymbol{\alpha} + \mathbf{d} \right| | \boldsymbol{\alpha} \in \mathbb{R}^{N-1} \right\} \triangleq \mathcal{A}(\mathbf{C}, \mathbf{d})$$

for some $(\mathbf{C}, \mathbf{d}) \in \mathbb{R}^{L \times (N-1)} \times \mathbb{R}^L$ with $\operatorname{rank}(\mathbf{C}) = N - 1$.

- Let us consider determining the source affine set parameters (\mathbf{C}, \mathbf{d}) from $\{\boldsymbol{x}_1, \dots, \boldsymbol{x}_M\}.$
- By solving an affine set fitting problem, we show that

$$\mathbf{d} = \frac{1}{M} \sum_{i=1}^{M} \boldsymbol{x}_{i}, \qquad \mathbf{C} = [\boldsymbol{q}_{1}(\mathbf{U}\mathbf{U}^{T}), \boldsymbol{q}_{2}(\mathbf{U}\mathbf{U}^{T}), \dots, \boldsymbol{q}_{N-1}(\mathbf{U}\mathbf{U}^{T})]$$

where $\mathbf{U} = [\mathbf{x}_1 - \mathbf{d}, \dots, \mathbf{x}_M - \mathbf{d}] \in \mathbb{R}^{L \times M}$, and $\mathbf{q}_i(\mathbf{R})$ denotes the eigenvector associated with the *i*th principal eigenvalue of \mathbf{R} .

• As a coincidence, affine set fitting is reminiscent of principal component analysis.

Be reminded that $s_i \in \mathbb{R}^L_+$. Hence, it is true that

$$s_i \in \operatorname{aff} \{s_1, \ldots, s_N\} \cap \mathbb{R}^L_+ = \mathcal{A}(\mathbf{C}, \mathbf{d}) \cap \mathbb{R}^L_+ \triangleq \mathcal{S}$$

The following lemma arises from local dominance (A2):

Lemma. Under (A1) and (A2),

 $\mathcal{S} = \operatorname{conv}\{s_1,\ldots,s_N\}$

Moreover, the set of all its extreme points is $\{s_1, \ldots, s_N\}$.

Summarizing the above results, a new nBSS criterion is as follows:

Theorem. (CAMNS criterion) Under (A1)-(A4), the polyhedral set

$$\mathcal{S} = ig\{ oldsymbol{x} \in \mathbb{R}^L ig\mid oldsymbol{x} = \mathbf{C}oldsymbol{lpha} + \mathbf{d} \succeq oldsymbol{0}, \ oldsymbol{lpha} \in \mathbb{R}^{N-1} ig\}$$

where (\mathbf{C}, \mathbf{d}) is obtained from the observation set $\{x_1, ..., x_M\}$ by affine set fitting, has N extreme points given by the true source vectors $s_1, ..., s_N$.

Practical realization of CAMNS

- CAMNS boils down to finding all the extreme points of an observationconstructed polyhedral set.
- In the optimization context this is known as vertex enumeration.
- In CAMNS, there is one important problem structure that we can take full advantage of; that is,

Property implied by (A2): s_1, \ldots, s_N are linear independent.

• By exploiting this property, we can locate all the extreme points by solving a sequence of LPs ($\approx 2N$ LPs at worst).

Consider the following linear program (LP)

$$p^{\star} = \min_{\boldsymbol{s}} \mathbf{r}^{T} \boldsymbol{s}$$
s.t. $\boldsymbol{s} \in \mathcal{S}$
(†)

for an arbitrary $\mathbf{r} \in \mathbb{R}^{L}$. From basic LP theory, the solution of (†) is either an extreme point of S (or one of the s_i 's), or any point on a face of S.

Consider the following linear program (LP)

$$p^{\star} = \min_{\boldsymbol{s}} \mathbf{r}^{T} \boldsymbol{s}$$
s.t. $\boldsymbol{s} \in \mathcal{S}$
(†)

for an arbitrary $\mathbf{r} \in \mathbb{R}^{L}$. From basic LP theory, the solution of (†) is either an extreme point of S (or one of the s_i 's), or any point on a face of S.

• **Question:** how to decide r?

Consider the following linear program (LP)

$$p^{\star} = \min_{s} \mathbf{r}^{T} s$$
s.t. $s \in S$
(†)

for an arbitrary $\mathbf{r} \in \mathbb{R}^{L}$. From basic LP theory, the solution of (†) is either an extreme point of S (or one of the s_i 's), or any point on a face of S.

- Question: how to decide r?
 - Ans: randomly! If $\mathbf{r} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_L)$, then, with probability one, the solution of (†) is an extreme point.
 - A systematic way to find all extreme points can also be constructed.

Simulation example 1: Dual energy X-Ray

Original sources

Observations

Separated sources by **CAMNS**

Separated sources by **nICA** (a benchmarked nBSS method)

Separated sources by **NMF** (yet another benchmarked nBSS method)

Simulation example 2: Human faces

Original sources

Observations

Separated sources by **CAMNS**

Separated sources by **nICA**

Separated sources by **NMF**

Simulation example 3: Ghosting

Original sources

Observations

Separated sources by **CAMNS**

Separated sources by **nICA**

Separated sources by **NMF**

Simulation example 4: Five of my students

Original sources

Observations

Separated sources by **CAMNS**

Simulation example 5: Monte Carlo performance for N = 3

Average sum squared errors of the sources with respect to SNRs.

Convex Geometry for Hyperspectral Unmixing in Remote Sensing

Hyperspectral Imaging: A Key Area in Geoscience and Remote Sensing

Courtesy to [Keshava et al. '02].

 Hyperspectral sensors record EM scattering patterns of distinct materials over > 200 spectral bands, from visible to near-infrared wavelength at a resolution of 10nm. • The high spectral degrees of freedom enable us to identify the unknown materials, as revealed by their spectral signatures, and their compositions in the scene — this is fundamentally connected to source separation.

Applications of Hyperspectral Imaging

- Hyperspectral imaging has found numerous applications in remote sensing, such as
 - mineral identification,
 - agriculture,
 - environment monitoring,
 - terrain classification, land-cover mapping,
 - object detection, change detection, ...
- It is also a crucial technique for planetary exploration (like Mars) and astrophysics.
- It also has non-remote sensing applications, such as food inspection, forensics, medical imaging and chemometrics.
- A key problem in hyperspectral imaging is blind hyperspectral unmixing (also called unsupervised hyperspectral unmixing), which is essentially nBSS.

Hyperspectral Linear Mixing Model

• Signal model:

$$\mathbf{x}[n] = \mathbf{As}[n] = \sum_{i=1}^{N} s_i[n] \mathbf{a}_i, \qquad n = 1, \dots, L$$

 $\begin{aligned} \mathbf{x}[n] &= [x_1[n], \dots, x_M[n]]^T \in \mathbb{R}^M & \text{observed pixel vector;} \\ \mathbf{A} &= [\ \mathbf{a}_1, \dots, \mathbf{a}_N \] \in \mathbb{R}^{M \times N} & \text{endmember signature} \end{aligned}$ $\mathbf{s}[n] = [s_1[n], \dots, s_N[n]]^T \in \mathbb{R}^N$ abundance vector; M, N, &L

endmember signature matrix; # of spectral bands, endmembers, & pixels.

Hyperspectral Linear Mixing Model

• Signal model:

$$\mathbf{x}[n] = \mathbf{As}[n] = \sum_{i=1}^{N} s_i[n] \mathbf{a}_i, \qquad n = 1, \dots, L$$

- Assumptions:
 - $s_i[n] \ge 0$ for all i, n (non-negativity), $\sum_{i=1}^N s_i[n] = 1$ for all n (sum-to-one).
 - $\operatorname{rank}(\mathbf{A}) = N.$

Convex Geometry Observation

• Recall the signal model

$$\mathbf{x}[n] = \sum_{i=1}^{N} s_i[n] \mathbf{a}_i,$$

and that
$$s_i[n] \ge 0$$
, $\sum_{i=1}^N s_i[n] = 1$.

• Apparently, we have

 $\mathbf{x}[n] \in \operatorname{conv}\{\mathbf{a}_1,\ldots,\mathbf{a}_N\}.$

- Observation: each hyperspectral pixel $\mathbf{x}[n]$ lies in the convex hull of the ground-truth endmembers $\{\mathbf{a}_1, \ldots, \mathbf{a}_N\}$.
- Intuitively, if we can find the 'corners', then we are done!

Simplex Geometry Preserved Via Affine Transformation

• By affine set fitting, we can perform dimension reduction. The dimension-reduced pixels $\tilde{\mathbf{x}}[n]$ adhere to a similar model

$$\tilde{\mathbf{x}}[n] = \sum_{i=1}^{N} s_i[n] \boldsymbol{\alpha}_i$$

where $\alpha_1, \ldots, \alpha_N$ are dimension-reduced endmembers.

Craig's Minimum Volume Simplex Belief

Craig's belief [Craig'94]: the true endmembers may be located by finding a data enclosing simplex whose volume is the smallest.

- Craig's belief provided significant insights to blind hyperspectral unmixing.
- But is Craig's belief fundamentally sound? Can it be efficiently implemented?

Winter's Maximum Volume Simplex Belief

Winter's belief [Winter'99]: the true endmembers may be located by finding a collection of pixel vectors whose simplex volume is the largest.

- Winter's belief led to N-FINDR, a class of widely used blind unmixing algorithms.
- Again, is Winter's belief fundamentally sound? Is N-FINDR the only way to go?

- We employ convex analysis and optimization to treat Craig's belief.
- We formulate Craig's belief as

(†)

$$\begin{array}{l} \min_{\beta_{1},\ldots,\beta_{N}\in\mathbb{R}^{N-1}} \operatorname{vol}(\beta_{1},\ldots,\beta_{N}) \\ \beta_{1},\ldots,\beta_{N}\in\mathbb{R}^{N-1}} \\ \text{s.t. } \tilde{\mathbf{x}}[n]\in\operatorname{conv}\{\beta_{1},\ldots,\beta_{N}\}, \\ i=1,\ldots,L, \end{array}$$

where $\operatorname{vol}(\boldsymbol{\beta}_1, \ldots, \boldsymbol{\beta}_N) = |\det(\tilde{\boldsymbol{\beta}}_1, \ldots, \tilde{\boldsymbol{\beta}}_N)| / (N-1)!$, $\tilde{\boldsymbol{\beta}}_i = [\boldsymbol{\beta}_i^T, 1]^T$, is the simplex volume.

- We employ convex analysis and optimization to treat Craig's belief.
- We formulate Craig's belief as

(†)

$$\min_{\beta_1, \dots, \beta_N \in \mathbb{R}^{N-1}} \operatorname{vol}(\beta_1, \dots, \beta_N)$$

$$\text{ s.t. } \tilde{\mathbf{x}}[n] \in \operatorname{conv}\{\beta_1, \dots, \beta_N\},$$

$$i = 1, \dots, L,$$

where $\operatorname{vol}(\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_N) = |\det(\tilde{\boldsymbol{\beta}}_1, \dots, \tilde{\boldsymbol{\beta}}_N)| / (N-1)!$, $\tilde{\boldsymbol{\beta}}_i = [\boldsymbol{\beta}_i^T, 1]^T$, is the simplex volume.

 eta_1 X

- **Question 1:** Is Craig's belief fundamentally sound?
 - Yes. We prove that local dominance (or pure pixels) is a sufficient condition for problem (†) to perfectly identify the true endmembers.

- We employ convex analysis and optimization to treat Craig's belief.
- We formulate Craig's belief as

(†)

$$\min_{\beta_1, \dots, \beta_N \in \mathbb{R}^{N-1}} \operatorname{vol}(\beta_1, \dots, \beta_N)$$

$$\text{ s.t. } \tilde{\mathbf{x}}[n] \in \operatorname{conv}\{\beta_1, \dots, \beta_N\},$$

$$i = 1, \dots, L,$$

$$\boldsymbol{x}_{\beta_2}$$

where $\operatorname{vol}(\boldsymbol{\beta}_1, \ldots, \boldsymbol{\beta}_N) = |\det(\tilde{\boldsymbol{\beta}}_1, \ldots, \tilde{\boldsymbol{\beta}}_N)| / (N-1)!$, $\tilde{\boldsymbol{\beta}}_i = [\boldsymbol{\beta}_i^T, 1]^T$, is the simplex volume.

- Question 2: Can Craig's belief be efficiently implemented?
 - Problem (†) is nonconvex.
 - We derive a pragmatic algorithm using alternating LP optimization.

 β_1 × β_3

- We employ convex analysis and optimization to treat Craig's belief.
- We formulate Craig's belief as

(†)

$$\min_{\beta_1,\ldots,\beta_N \in \mathbb{R}^{N-1}} \operatorname{vol}(\beta_1,\ldots,\beta_N)$$

$$s.t. \ \tilde{\mathbf{x}}[n] \in \operatorname{conv}\{\beta_1,\ldots,\beta_N\},$$

$$i = 1,\ldots,L,$$

$$\sum_{\beta_2} \beta_2$$

where $\operatorname{vol}(\boldsymbol{\beta}_1, \ldots, \boldsymbol{\beta}_N) = |\det(\tilde{\boldsymbol{\beta}}_1, \ldots, \tilde{\boldsymbol{\beta}}_N)| / (N-1)!$, $\tilde{\boldsymbol{\beta}}_i = [\boldsymbol{\beta}_i^T, 1]^T$, is the simplex volume.

 β_1 X

- Question 2: Can Craig's belief be efficiently implemented?
 - Problem (†) is nonconvex.
 - We derive a pragmatic algorithm using alternating LP optimization.
 - * A similar idea, MVSA [Li-Bioucas'08], was proposed about the same time.

An Opt. Approach to Winter's Belief [Chan-Ma-Ambikapathi-Chi'11]

,

• We formulate Winter's belief as

(‡)

$$\max_{\boldsymbol{\beta}_{1},\ldots,\boldsymbol{\beta}_{N}\in\mathbb{R}^{N-1}} \operatorname{vol}(\boldsymbol{\beta}_{1},\ldots,\boldsymbol{\beta}_{N})$$

$$\operatorname{s.t.} \boldsymbol{\beta}_{i}\in\operatorname{conv}\{\tilde{\mathbf{x}}[1],\ldots,\tilde{\mathbf{x}}[L]\}$$

$$i=1,\ldots,N.$$

An Opt. Approach to Winter's Belief [Chan-Ma-Ambikapathi-Chi'11]

• We formulate Winter's belief as

(‡)

$$\max_{\boldsymbol{\beta}_{1},\ldots,\boldsymbol{\beta}_{N}\in\mathbb{R}^{N-1}} \operatorname{vol}(\boldsymbol{\beta}_{1},\ldots,\boldsymbol{\beta}_{N})$$

$$\operatorname{s.t.} \boldsymbol{\beta}_{i}\in\operatorname{conv}\{\tilde{\mathbf{x}}[1],\ldots,\tilde{\mathbf{x}}[L]\},$$

$$i=1,\ldots,N.$$

- **Question 1:** Is Winter's belief fundamentally sound?
 - Yes. But we prove that local dominance is a sufficient and necessary condition for problem (‡) to perfectly identify the true endmembers.
 - This implies that Winter is fundamentally weaker than Craig.

An Opt. Approach to Winter's Belief [Chan-Ma-Ambikapathi-Chi'11]

• We formulate Winter's belief as

(‡)

$$\max_{\beta_1,\ldots,\beta_N \in \mathbb{R}^{N-1}} \operatorname{vol}(\beta_1,\ldots,\beta_N)$$

$$\operatorname{s.t.} \beta_i \in \operatorname{conv}\{\tilde{\mathbf{x}}[1],\ldots,\tilde{\mathbf{x}}[L]\},$$

$$i = 1,\ldots,N.$$

• Question 2: Is N-FINDR the only way for Winter's belief?

- Not really.

- N-FINDR may be viewed as an alternating opt. algorithm for (\ddagger) .
- VCA [Nascimento-Bioucas'06] was previously not seen as Winter-based. We show that VCA may be interpreted as a greedy opt. algorithm for (‡).
- Our top-down study unifies such existing algorithms under one umbrella, and gives new theoretical insight and implication to them.

Robust Generalizations

(a) Robust Craig geometry.

- Hyperspectral data may be corrupted by measurement noise.
- Our top-down optimization approach enables us to develop robust generalizations of Craig's and Winter's formulations [Chan-Ambikapathi-Ma-Chi'11], [Chan-Ma-Ambikapathi-Chi'11].

Real Data Experiment

(a) Cuprite AVIRIS data at band 10.

	RMVES	MVES	VCA
Andradite#1	9.36	25.61	-
Andradite#2	24.52	-	18.49
Alunite#1	15.92	21.85	17.74
Alunite#2	-	17.72	-
Buddingtonite	23.54	22.98	27.25
Chalcedony	27.74	38.25	31.9
Desert Varnish#1	20.99	18.64	12.12
Desert Varnish#2	-	43.04	-
Dumortierite	20.77	29.32	31.95 (32.01)
Goethite	17.71	19.05	-
Kaolinite#1	27.25	26.50	-
Kaolinite#2	-	21.09	32.49
Montmorillonite#1	22.99	-	18.06
Montmorillonite#2	24.34	26.00	-
Muscovite	39.63	44.19	32.7
Nontronite#1	22.95	28.83	24.66
Nontronite#2	-	-	21.51
Paragonite	-	-	35.91
Pyrope	-	-	25.59
Smectite	22.53	-	-
Average ϕ	22.87	27.11	25.73

(b) Spectral angle performance.

• Robust minimum volume simplex analysis (MVES) can perform better than our previous MVES algorithm.