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Abstract

The blind maximum-likelihood (ML) detection of a generalasp-time block code (STBC) is
considered a challenging implementation problem. Receamkvhas revealed that for the orthogonal
STBCs (OSTBCs), their special code structures can be aggltd formulate highly effective blind ML-
based algorithms. Attracted by this realization merits thaper investigates the blind ML identifiability
of OSTBCs, with an emphasis on the binary PSK (BPSK) and quatg PSK (QPSK) constellations.
We find a class of OSTBCs, called the non-rotatable OSTBG#, dan be uniquely identified up to a
sign (UIUTS) almost surely under a few mild assumptions.d&@mple, for an independently distributed
Rayleigh channel with any number of receiver antennas, arottable OSTBC can be UIUTS with
probability 1. While this identifiability looks appealing already, we ther examine a subclass of non-
rotatable OSTBCs, called the non-intersecting subspat®) @STBCs. We prove that NIS-OSTBCs are
UIUTS for any nonzero channel. However, NIS-OSTBCs are natlable in the existing literature. To
fill this gap, we devise a code construction procedure thatcoavert any (BPSK or QPSK) OSTBC to
an NIS-OSTBC.
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. INTRODUCTION

In multiple-input-multiple-output (MIMO) systems, blindetection [1], [2] or noncoherent detec-
tion [3]-[5] is an attractive approach when channel staf@rimation (CSl) is not available at the receiver.
In a number of cases, we can safely assume CSI being knowa egdhivet. That is because CSI can be
estimated reliably by transmitting pilot signals, whiclsHi&le loss in the data rate if there is an abundant
power resource at the transmitter (e.g., the downlink chBrand/or if channel fading is slow. However,
for channels having smaller coherence time, accurate-gdsisted CSI acquisition requires more frequent
pilot retransmission. Consequently, the power and bantivaderheads for the pilots would no longer be
negligible. In those cases, an alternative worth consides the blind or noncoherent detection methods,
which either estimate CSI from received data or bypass C8ketection.

A popular noncoherent MIMO scheme is differential unitapase-time modulation [6]-[9], which
requires the channel to be static over two space-time camtkblonly. The differential scheme, however,
incurs an approximatelgdB performance penalty compared to its coherent counter@ar the other
hand, in the signal processing context there has been mteresth in developing blind detection methods
for space-time block codes [1], [2], [10]-[17]. In this diteon we consider ‘quasi-static’ channel
fading, where the channel is assumed to be static over reukjpace-time code blocks but where pilot-
assisted CSI acquisition is still inefficient. Blind deieot methods may achieve near coherent detection
performance, particularly when there is a sufficiently éapta length (or number of blocks in which
guasi-static fading remains valid).

In this paper the emphasis is placed on the blind maximueiiikod (ML) detection of orthogonal
space-time block codes (OSTBCs) [18]-[25]. In the cohespiace-time coding scenario, OSTBCs have
been well known for their maximal spatial diversity and low.Meceiver complexity. Recent research
has revealed that OSTBCs are attractive in the noncoherenaso, as well. Essentially, given a generic
MIMO or space-time block coding (STBC) scheme, implemantine blind ML receiver is a highly
nonlinear optimization problem. As a problem common to gaheultimodal nonlinear optimization, it
is hard to guarantee, in every problem instance, that amaptr near-optimal blind ML solution be

obtained. The OSTBC scheme is an exception where one ca@euhie special code structures to design

In the signal processing context, ‘blind detection’ is usedo describe detection without CSI. In the informationdiye
context, ‘noncoherent detection’ is frequently employ@tie developments in the two contexts are, in many ways, rdiffe
Very roughly speaking, in signal processing the focus igrofvtn the blind receiver realization aspects, while in imfation

theory the subjects of interest are the noncoherent chaapelcity and code designs.



more effective blind ML algorithms, either optimally or sydgimally. In [2] (also the textbook [26]),
Stoicaet. al proposed a cyclic minimization method for blind ML OSTBC elgton. This cyclic ML
receiver exploits the low coherent receiver complexity] ansimple to implement compared to the same
method applied to some other MIMO/STBC schemes; e.qg., apatiltiplexing [10]. As an additional
merit, cyclic ML can be generalized to handle unknown Gaussoise covariance [13]. However, cyclic
ML requires initialization of either the channel estimatéhe symbol decisions. By simulation experience,
the cyclic ML performance can be unsatisfactory given a wadi initialization. In [2], a blind closed-
form method jointly estimating the channel and symbols wasp@sed to initialize cyclic ML. That
blind closed-form method is also based on the special ctarsiics of OSTBCs. Interestingly, the
closed-form method is functionally equivalent to the blsubspace OSTBC channel estimator in [16];
see the discussion in [14, pp. 741, Footnote 2]. (We shouidt paut though that the work in [16] is
original from a blind subspace viewpoint.) Empirical seslshowed that the closed-form and cyclic ML
methods exhibit near coherent ML performance for large tatgth, say for50 space-time code blocks
or more [2], [16]. To yield near optimal performance with di@madata length, it has been suggested [2],
[13] that a semiblind cyclic ML receiver be used, in which s fpilot STBCs are required.

A more recent endeavor [14] reveals that even in the regima@ll to moderate data length, blind
ML OSTBC detection can be implemented in an exactly optimah@ar-optimal fashion. By focusing
on binary PSK (BPSK) or quaternary PSK (QPSK) constellatidnis shown that the blind ML problem
can be simplified to a Boolean quadratic program (BQP). Thermeulation is done by exploiting the
orthogonal and linear dispersion characteristics of OS3.Blhe BQP is still a computationally hard
optimization problem, and [14] illustrates how the blind NBQP can be handled effectively by using
either the optimal sphere decoding algorithms [27], [28]tlee quasi-optimal semidefinite relaxation
(SDR) algorithm [29]. The performance and complexity congmms of the two methods are described
in details in [29]. Sphere decoding and SDR are computdtionaore expensive than the closed-form
and cyclic ML receivers mentioned above: For example, thraptexity of SDR is approximately cubic
in the data length, while the complexity of the closed-formthod is only linear in the data length.
However, simulation results [14] have indicated that sph#ecoding and SDR ML implementations
provide considerably better bit error performance tharctbsed-form and cyclic ML methods, especially
in the regime of small to moderate data length (Sdyto 20 space-time code blocks).

This paper is a sequel of [14]. We turn our attention from dlieceiver realization to the blind ML
OSTBC identifiability, with an emphasis on the BPSK and QP%ikstellations. Our analysis shows
that OSTBCs can provide very favorable identifiability citiochs, though not all OSTBCs have such



benefits. First, we identify a class of codes called nbtatable OSTBCs. Rotatable OSTBCs can never
be uniquely identified up to a sign (UIUTS). An example of tatde OSTBCs is the famous Alamouti
code [30], which, in some earlier studies [1], [16], [31],shbeen found to suffer from some code
ambiguity effects. Second, the classrafn-rotatableOSTBCs is considered. We show that for a broad
class of Gaussian channel fading, non-rotatable OSTBCbed&HUITS with probabilityl. For example,
for an independent and identically distributed (i.i.d.)yRé&gh channel, a non-rotatable OSTBC can be
UIUTS with probabilityl even when the number of receiver antennas is one. Thesdimlgility benefits
are under a mild assumption on data, which usually holds dayel data length. We show that there
exists a subclass of non-rotatable OSTBCs, calledsthetly non-rotatableOSTBCs, that achieves the
probability 1 identifiability condition without requiring the data assption. Finally, we examine a further
subclass of strictly non-rotatable codes, calledrtbe-intersecting subspa¢slS) OSTBCs. From a blind
identifiability standpoint NIS-OSTBCs are ‘perfect’ in thdney are UIUTS for any nonzero channel.
However, we also prove that NIS-OSTBCs may incur reductomata rate. To our best knowledge,
none of the OSTBCs given in the existing literature [18]4RB5NIS. To fill this gap we devise a code
construction procedure that can convert any (BPSK or QPSKJTHEL to an NIS-OSTBC. From our
NIS-OSTBC idea, we further propose a modified OSTBC schemeatlso enjoys ‘perfect’ identifiability

and can have a smaller rate loss than the direct applicafidH®OSTBCs.

TABLE |

SUMMARY OF BLIND ML OSTBC IDENTIFIABILITY .

Code class || Identifiability | Characteristics |  Details
rotatable Not uniquely identifiable up to a sigh Section IlI-A
(UIUTS)
non-rotatable UIUTS with prob.1 for many Sections I1I-B
Gaussian fading channels, under to II-C
a mild assumption on data
strictly UIUTS with prob.1 for many M, < T, Sections I1I-B
non-rotatable Gaussian fading channels subclass of non-rotatable codes to llI-C
non-intersecting 2M; <T;
subspace UIUTS for any nonzero channel | subclass of strictly non-rotatable codes; Section IV
(NIS) full rate may not be possible

In Table | we summarize the blind ML identifiability of the vaws classes of OSTBCs; their details
are presented in Sections Il and IV. The organization of ffaper is as follows. Background review for
blind ML OSTBC detection is given in Section Il. Section lliudies the rotatable, non-rotatable, and
strictly non-rotatable OSTBCs. Their characteristics atahtifiability are also examined in that section.

In Section IV we present the NIS-OSTBCs, their properties] how to construct them.



Il. BACKGROUND

We review some key concepts essential to the ensuing develup The first subsection considers
OSTBCs and their structures. The second subsection desdiiind ML OSTBC detection. The respective
blind identifiability problem statement is discussed in thad subsection. In that subsection we also

provide an OSTBC identifiability condition obtained eadilgm some existing results.

A. Orthogonal Space-Time Block Codes

In orthogonal space-time block coding, the transmittedecottrix can generally be formulated as

K
C(s) = Y siXy € CMT, 1)
k=1
where
M, number of transmitter antennas;
T time length of the code;
X, € CMxT  pasis matrices of the code;
s € RE vector containingk real information symbols;

Sk kth element ofs.

Eqg. (1) represents not only OSTBCs with real symbol coretielts, but also those with complex symbol

constellations. In the latter case, an OSTBC can be expess§l9]

K/2

C(s) = ) spAx + jspir/2Br (2)
k=1

for some real-valued basis matricas,, B, € RM*T, wherej = v/—1. In Equation (2),s, + jsy+x /2
forms a complex symbol fok = 1,..., K/2 and the number of complex symbols per blockiig2. By
letting {X1,..., Xk} ={A1,...,Ag/2,jB1,...,jBg/2}, the complex code in (2) can be reformulated
as (1). In this paper we assume BPSK and QPSK constellationghich case we have ¢ {+1}%.

The basis matrices are specially designed to satisfy [18], [21]

H I, k=1/¢
X X = 3)
X XH kA2
such that every codeword is row orthogonal; i.e.,
C(s)C"(s) = [|s|31 = K1 4)

for anys € {+1}%. Here|.|» denotes th&-norm.



In the coherent detection scenario, the code propertied)in(8), and (4) result in the well-known
advantages of simple ML detection structures and the maxirspatial diversity [18], [19]. Orthogonal

space-time block coding also provides benefits in the nograstt scenario, as we will review next.

Remark 1. In principle, any matrix function satisfying (1) and (3) igid to be an OSTBC. OSTBCs
are usually obtained by applying the theory gégneralized orthogonal desig&0ODs) [18]-[25], in
which there are additional restrictions on the code strestuln real GODs, the entries @ (s) are
constrained to be drawn frof0, +s4,...,+tsx}. Hence, the basis matrices must satisfy the integer

structureX;, € {0, £1}:<7 for all k. As for complex GODs, let

up = Sk + ISk K2 (5)

for notational convenience. The entries o0fC(s) in this case are drawn from
{0, £ur, £uf, ..., fug s, £uy »}, thereby X; € {0, £1}M>T for k = 1,...,K/2, and
Xy € {0,453 xT for k = K/2 +1,..., K. For example, the complex Alamouti code

ce =" " (6)
uy Ui
is a GOD. The analysis in this paper is established from (&) @), and GODs will not be assumed
unless specified. Hence our analysis is applicable to all BIZT including non-GOD codes (e.g., the

‘sporadic’ codes [18]).

B. Blind ML Detection

We consider a standard scenario [13] where a sequence of OSiEBransmitted over a frequency-flat,

guasi-static channel. The received signal model is given by
Y, =HC(s,) +V,, p=1,...,P, @)

where

Y € CM-xT  received code matrix aith code block;

H ¢ CM-*M: MIMO channel matrix;

M, number of receiver antennas;

P frame length or number of code blocks in which the channeliemstatic;
sp € {£1}%  block of information bits transmitted at theh code block;

V, € CM-xT  additive white Gaussian noise (AWGN) matrix.



Let
S=|si,...,sp ] € {F1}*F. (8)

In the blind or noncoherent scenario, a usual assumptiohasH is a deterministic unknown. The

respective blind ML detector is shown to be [10], [13]

P
{H,S}—arg min > [[Y, ~HC(E)IE (9)
Se{il}“*"’p:1
where the unknowiH andS are estimated jointly. Herg.|| » stands for the Frobenius norm. @(.) is
a generic linear STBC function, then solving (9) is chalieggdue to the biconvexity of the objective
function and thet1 constraints orS. When C(.) is an OSTBC, one can however exploit the linear
dispersion and orthogonal structures to simplify the psscef solving Problem (9), either optimally
or suboptimally. As discussed in the introduction, the epntly available algorithms for handling (9)
include the closed-form method [2], [16] (also [14]), theclhy ML method [2], [13], SDR and sphere
decoding [14]. Some performance and complexity compasisainthe various algorithms have been

presented in the prequel of this work [14].

C. Blind Identifiability Problem Statement

The implementation simplicity of blind ML OSTBC detectionotivates us to investigate the blind
identifiability aspects. For ease of exposition of the idfedtility problem, suppose that the true channel
H and data matrixS is a solution of the blind ML problem in (9). This solution isique only when
we cannot find another solution, denoted {I}I,S}, such that the following channel-code ambiguity
equations are satisfied

HC(s,) = HC(,), p=1,...,P. (10)

An obvious situation leading to (10) is whef,S} = {—H, —S}. In practice this sign ambiguity
problem can be easily resolved by a number of ways; e.g.gudirannel coding [10], or setting one
element ofS to be a pilot. Throughout this paper we are interested in @xamother possible ambiguities,
and in finding OSTBCs that can avoid those situations.

Before proceeding to present our main results in the enssgagjons, we describe a blind OSTBC
identifiability condition obtained by applying a result diseTalwaret al. [10]. The result was developed
for proving sufficient blind identifiability conditions ohe spatial multiplexing scheme, and its essence

is summarized as a lemma stated as follows:



Lemma 1 (Talwar-Viberg-Paulraj) Let F € RM*K and S = [ sy,...,sp | € {+1}X*P, Suppose
that F has full column rank, and that the columns®fcontain at leas2X 1 distinct bit vectoré. The
equations

Fs, = F§,, p=1,...,P (11)

are satisfied for somgF, S} € CM*K x {+1}5*F only when
IIDS = S, FDII” = F, (12)
whereIl € {0, 1}%*X is a permutation matrix and € REX*X is diagonal withdiag(D) € {+1}%.

Now, suppose that the channel-code ambiguity equationsdh4dre satisfied. By applying a standard

vectorization property [32], Eg. (10) can be reexpressed as
(Ir®H)Xs, = (Ir ®H)XS,, p=1,...,P, (13)
wherel, is then x n identity matrix,® is the Kronecker product,
X = [ vec(Xy),...,vec(Xg) | € CMTXE (14)

and vec(.) is the vectorization. Let us define an operator, denoted bgrlioe, so thatA =
[ Re{A}” Im{A}7T |T. Eq. (13) can be rewritten as

Fs, = F§,, p=1,...,P, (15)

whereF = (I; @ H)X € R2MT*K andF = (Ir ® H)X € R*2M-TXK |t can be shown thaF is of
full column rank for every nonzer#l; see for example [16]. Applying Lemma 1 to (15), we obtain the

following identifiability condition:

Lemma 2 Suppose that the columns ®fcontain at leas2” ! distinct bit vectors. Given every nonzero

H ¢ CM-*M: and an arbitrary OSTBQC(.), the equations
HC(s,) = HC(3,), p=1,...,P (16)
are satisfied for soméH, S} € CM-*M: » {£1}K%F only when
DS = S, (17)

wherell € {0, 1}%*K is a permutation matrix an® € RX*X is diagonal withdiag(D) € {+1}¥.

2Here, two vectorsa and b are said to be distinct if # +b. A vector a is said to be a bit vector of dimension if
ae {£1}".



Lemma 2 shows that OSTBCs are uniquely identifiable up to ptations and sign changes in the
rows of S, under a mild assumption df. In the next sections we will illustrate a number of even more

interesting results, in which we find OSTBCs that can be ugligidentifiable up to a sign only.

IIl. NON-ROTATABILITY AND BLIND IDENTIFIABILITY

This section shows that there is a class of OSTBCs, callataiole OTSBCs, that fails to provide
unique blind identification up to a sign. This problem matdsus to consider non-rotatable OSTBCs and
their characteristics. In particular, it is proven that frotatable OSTBCs can achieve unique identification
up to a sign, with probability. In the first subsection, we describe rotatable OSTBCs . |Timemrotatable

OSTBCs and their identifiability conditions are studiedhe second and third subsections, respectively.

A. The Code Rotation Problem

The following is the definition of rotatable OSTBCs:

Definition 1 An OSTBCC(.) is said to be rotatable if there exists a matx € CM:*M: sych that for
anys € {+1}¥,
QC(s) = C(s) (18)

for somes € {£1}X, § # +s. Otherwise,C(.) is said to be non-rotatable. Such@, if exists, is called

a code rotation matrix.
A code rotation matrix is unitary: if (18) is true then
QQ" = £QC()C(s) Q" (19)
:%C©C@H:L (20)

where we have used the row orthogonaliys)C(s)” = ||s||21 in the above equations. Moreover,G¥
is a code rotation matrix therQ is also a code rotation matrix. The problem with rotatableTBSs

is that for each code rotation matrQ, the channel-code ambiguity equations
HC(sp) = HQ"QC(s,) = (HQ)C(3,) (21)

are satisfied for somé, € {£1}¥ \ {£s,}, p = 1,...,P. Thus, rotatable codes always result in

ambiguity. Indeed, the well-known Alamouti code is rotd¢abs illustrated in the following example:



Example 1 Consider the real-valued Alamouti code [18] whéie =T = K = 2:

C(s) = . (22)
S9 S1
Its basis matrices are given by
1 0 0 -1
X; = , Xo= . (23)
0 1 1 0

Let Q = X,. SinceQX; = Xy andQX; = —X4, we have
QC([s152]")=C([ —s251]") (24)

Hence, this code is rotatable. Similarly, it can be verifiedt tthe complex-valued Alamouti code

up —ud
cs)=| (25)
uy Ui
whereu; = s; + js3 andus = sy + js4, IS rotatable. O

The following theorem shows a sufficient and necessary tiondof rotatable OSTBCs.

Theorem 1 The following statements are equivalent:

i) C(.) is a rotatable OSTBC.

i) There existQ € CM*M: satisfying
QX = dpX;,, k=1,...,K, (26)

wheredy, € {£1}, andi, € {1,..., K} is an index withi; # k and iy, # i, for k # ¢.

i) There existQ € CM*M: gatisfying
QC(s) = C(IIDs), (27)

where IT ¢ {0,1}%*X is a permutation matrix withdiag(IT) = 0, and D is diagonal with

diag(D) € {£1}¥.

It is straightforward that Statements ii) and iii) are e@bént, and that if Statement ii) or iii) is true
then Statement i) is true. But it is not as obvious that Statgn) implies Statements ii) and iii). The
proof of this part is given in Appendix A. Theorem 1 indicatbat a rotatable OSTBC always exhibits

permutation ambiguities.
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Let us consider some implication of Theorem 1. The equital@atable code condition in (26) implies
Q= deikaH forallk=1,..., K (due toX; X =TI). Hence, we have the following necessary code

rotation condition:

Corollary 1 A code rotation matriXQ, if exists, must be one of the following candidates
(XX, XX, £ XX} (28)

Corollary 1 is useful in facilitating the numerical inspect of code rotatability: We only need to
check theK — 1 possibilities ofQ in (28) instead of the considerably larger possibilitieg18).
The following example illustrates two non-rotatable OSEBC

Example 2 Consider the following complex maximal-rate code with = 3, T'= 4, and K /2 = 3 [19]:

up —uy; —uj 0

C(s) = |uy ui 0 —uj (29)
uz 0 uy Uy

whereuy, = sy, + jsj4 k2. Its basis matrices are

1 0 0 O 0 -1 0 O
Xi=1010 0/, Xe2=1[1 0 0 0], (30)
0 010 0O 0 01
00 -1 O 7 0 0 0
Xz=100 0 -1|,X4=1{0 —j 0 0], (31)
1 0 O 0 0 0 —3 0
0 7 0 O 00 45 0
Xs=17 00 0|, X6=1[0 0 0 j (32)
000 —j i 00 0
If C(.) is rotatable, then from (26) the condition
QX = X; (33)

must be satisfied for som@ andi # 1. By observing the basis matrices, we see that there does not
exist Q satisfying (33) for alli ## 4: The 4th column ofX; is all zero, while thetth column ofX; for

i # 4 is not. It is impossible find & such that theith column of QX is a nonzero vector. Now the
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problem remained is the caseiof 4. Eq. (33) is satisfied foi = 4, but by inspection we found that the
resultantQ = X, X!’ does not satisfy (26) for akt. We conclude that the code in (29) is non-rotatable.

In a similar way, we found that the following x 4 real full-rate OSTBC [18]

C(s) = S3 81 S4 —S83 (34)

iS non-rotatable. O

Remark 2. It is commonly thought that for an STBC with complex constidins, blind detection is

always subject to a phase rotation in the detected symbaBmple 2 shows an interesting example
where the complex code in (29) is subject only to a sign chaagesuming the QPSK constellation).
This is attributed to the salient characteristic that th&ies of the code matrix contain the complex

symbols and their conjugates, thereby giving the code same 6f immunity to phase rotations.

B. Non-Rotatable and Strictly Non-Rotatable Codes

While the development above shows that rotatable OSTBCalamys susceptible to code ambiguities,
an interesting question is whether the ambiguities can bé&ead by using non-rotatable OSTBCs. We

notice from Definition 1 that for a non-rotatable code, théoes not exist a unitar@ such that
QC(s) =C(s"), s e {1} {&5'} (35)

can be satisfied foeverys’ € {+1}¥. The non-rotatable code definition, however, does not rule o
the possibility that (35) can be satisfied feomes’ € {+1}%. Suppose tha€(.) is non-rotatable but

satisfies (35) for two particular distinct bit vectar'ss”. Then, one can verify that the equations

QC(sy) = C(5,), 8y € {17\ {£sy} (36)
forp = 1,..., P may not be satisfied for evefyc {£1}**F but is satisfied wheB = £[s’,s’,...,s']
or whenS = +[ s”s”,...,s” ]. Nevertheless, one would argue intuitively that whenncreases, such

a situation is unlikely to happen. This is in fact true, andillastrate this we consider the following

assumption:
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A1) The columns ofS € {£1}X*F contains at leas2® ! distinct bit vectors’

To satisfy A1) it is necessary thaP > 25~1. For sufficiently largeP there is a high probability that
A1) holds [10], given the standard assumption that each eleofeitc {+1}%*" is i.i.d. and uniform

distributed. The following property shows thatAfl) is true then code rotation ambiguity is impossible:

Property 1 If C(.) is non-rotatable andAl) is satisfied, then there does not exisQasuch that

QC(s;) = C(5,), 8 € {£1}\ {s,} (37)
forall p=1,...,P.

Proof: Suppose that (37) is satisfied for al= 1, ..., P, and without loss of generality assume that

S contains exactlp®~! distinct bit vectors. Then we haetsy, ..., +sp} = {+1}¥, and subsequently
QC(s) = C(3), §e {£1}7\ {&s} (38)

can be satisfied for everyc {£+1}%. By Definition 1 such an OSTBC is rotatable. [ |

A simulation example verifying Property 1 is as follows.

Example 3 We simulated a noise free situation
Y, =HC(s,), p=1,...,P

whereH ¢ CM-*M: s zero-mean i.i.d. circular Gaussian distributed, &d {+1}**" is i.i.d. and
uniform distributed. The code function used is (29), whidcs lbeen shown to be non-rotatable. The
number of receiver antennas A4, = 1. We applied a blind SDR-ML detector [14] to obtain an ML
decisionS from the observatiofY, }f’:l. From Property 1, we expect that the error probabiity S £
+S ] should decrease witl particularly for P > 251, Fig. 1 plots the error probability versug.
The results in the figure confirm our expectation. It is alderigsting to see that the error probability
in Fig. 1 approaches zero fdP > 3, which is far less thar?®~! = 32. This implies thatA1) is a
conservative sufficient condition for avoiding code raiatambiguities.

This simulation example also reveals that for an i.i.d. Garschannel, non-rotatable OSTBCs with
large P can achieve unique identifiability with a probability that almostl. This aspect is further

analyzed in the next subsection. d

3As an asideA 1) usually serves as one of the sufficient blind identifiabitipnditions for some MIMO/STBC schemes such

as spatial multiplexing [10] and Khatri-Rao space-timeiegd11].
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o

Fig. 1. Error probability in the absence of noisd,. = 1; number of simulation trials200, 000.

On the other hand, there exists a subclass of non-rotataBBQOs that exhibits better immunity to

the code rotation ambiguities. Its definition is as follows:

Definition 2 An OSTBCC(.) is said to be strictly non-rotatable if there does not exighatrix Q €
CMixM: gych that

QC(s) = C(s) (39)
for anys,s € {£1}X, 5 # +s.

It is clear from the definition that a strictly non-rotatadESTBC does not suffer from the rotation
ambiguity problem in (36), even faP = 1. Let R(A) denote the range space Af The following code

property is a direct consequence of matrix analysis re$s®k

Property 2 An OSTBCC(.) is strictly non-rotatable if and only if
R(C'(s)) # R(CT () (40)
for anys,s € {£1}X, s # +5.

From Property 2 we infer that

Property 3 All strictly non-rotatable OSTBCs have; < T.

Strictly non-rotatable codes exist, at least for the reakca

Theorem 2 If M, is odd andC(.) is real valued, therC(.) is strictly non-rotatable.

The proof of the above theorem is shown in Appendix B. Tablshbws the rotatability of various
real-valued OSTBCs. The results were obtained by numeiitglection. To check non-rotatability,

the fast numerical inspection idea in Corollary 1 was usesl.fék checking strict non-rotatability, an



14

exhaustive inspection procedure following Definition 2 wesed. Table Il illustrates that real-valued
OSTBCs are indeed strictly non-rotatable for otlf. In Table Ill we show the rotatability of various
complex-valued OSTBCs. As a minor remark, the strict ndatatility of the complex OSTBC with
(T, My, K/2) = (15,5,10) is marked ‘not known’ in Table Ill, because the number of jjusses
involved (i.e., (25-1)2 = 4!9 combinations) is computationally too ovewhelming. It igeiesting to
see that in contrast to the real case, a complex-valued OSABCodd M, is not necessarily strictly

non-rotatable.

TABLE I

ROTATABILITY OF VARIOUS REAL -VALUED OSTBCs. MOST CODES CAN BE FOUND IN18].

(T, My, K) || non-rotatable? strictly

real OSTBC T non-rotatable?
(2,2,2) no no
(4,3,4) yes yes
(4,4,4) no no
(8,5,8) yes yes
(8,6,8) yes no
(8,7,8) yes yes
(8,8,8) yes no

TABLE Il

ROTATABILITY OF VARIOUS COMPLEX-VALUED OSTBCGCs.

(T, M, K/2) origin, & non- strictly non-

complex OSTBC| remarks rotatable?| rotatable?
(2,2,2) Alamouti no no
(4,3,3) 20, Eg. (3.1)]; GOD yes no
(4,4,3) 20, Eqg. (3.1)]; GOD yes no
(4,4,3) [18, Eq. (40)]; sporadid yes no

(15,5,10) [21, Eq. (100)]; GOD yes not known
(8,5,4) 22, Eq. (8)]; GOD yes yes
(8,6,4) 22, Eq. (8)]; GOD yes yes
(8,7,4) 22, Eq. (8)]; GOD yes no
(8,8,4) 22, Eq. (8)]; GOD yes no

Remark 3. Tables Il and Il show that many existing OSTBCs are rotaaphrticularly when\/; is
even. This leads to a natural question of how to obtain a ntatable or strictly non-rotatable OSTBC,

fixing an M;. This aspect will be further addressed in Section IV.

C. Identifiability Conditions

Using non-rotatable or strictly non-rotatable OSTBCs isaassary condition for unique identifiability

up to a sign, as shown in the last subsections. Now, an initegeguestion is what are the sufficient
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identifiability conditions for these two code classes. Gdeisa standard MIMO assumption given as

follows:

A2) The channel matriH is complex circular Gaussian distributed, possibly witmzero mean and

with correlated entries.

Note thatA2) encompasses the popular i.i.d. Rayleigh channel modeéguiivalently, the i.i.d. zero-

mean Gaussian channel model). kgtdenotes theth row of H; i.e.,
H' =[hy,... hy | (41)

A blind identifiability condition is as follows:

Theorem 3 Suppose thaC(.) is non-rotatable. UnderA2), S is uniquely identifiable up to a sign
(UIUTS) with probability1 if

1) one of the covariance matricesv(h;),...,cov(hy, ) is positive definite, and

2) A1) holds.

In addition, the same condition holds without requiriAd) if the code is strictly non-rotatable.

The proof of this theorem is given in Appendix C. A direct ceqgence of Theorem 3 is as follows:

Corollary 2 For i.i.d. Rayleigh channels, non-rotatable OSTBCs are T8Jwith probabilityl if Al)

holds. The same condition holds without requiri&d) if the code is strictly non-rotatable.

Theorem 3 gives the important implication that for many @ndGaussian channel fading models,
it is almost impossible for strictly non-rotatable OSTB@seancounter ambiguity given evely > 1
andS € {£1}£*P_ As for non-rotatable OSTBCs, the same identifiability dtod usually holds for a
sufficiently large data lengtl®, where there is a high chance th&t) holds (c.f., the discussion after
Al)). We should also point out that Theorem 3 places no regriain the number of receiver antennas
M,.. Hence, the probability blind identifiability result holds even in multiple-inpsingle-output (MISO)
systems. In fact, the simulation in Example 3 serves as antesy to this attractive identifiability result.

As a side product of proving Theorem 3, we found in Appendihétt

Lemma 3 For any full column rankH, non-rotatable OSTBCs are always UIUTSAf) holds. The

same condition holds without requiringl) if the code is strictly non-rotatable.



16

Lemma 3 is not as profound as Theorem 3, but it is interestewabse not all MIMO/STBC scheme
can be UIUTS given a full column rank channel; e.g., spatialtiplexing [10]. (It should be noted,

though, that spatial multiplexing can be uniquely ideniigaup to a permutation.)

IV. NON-INTERSECTING SUBSPACES PERFECTIDENTIFIABILITY, AND CODE CONSTRUCTION

This section considers construction of OSTBCs with gooddlidentifiability. This development is
motivated by the fact that many existing OSTBCs are rotatad$ noticed in the previous section. We
examine a subclass of strictly non-rotatable OSTBCs, iz non-intersecting subspace (NIS). This class
of OSTBCs exhibits ‘perfect’ blind identifiability, in theesse that the codes are uniquely identifiable up
to a sign foreverynonzero channel and data matrix. The disadvantage of NIBBQS, though, is data
rate reduction (under some standard assumption). All thepects are described in the first subsection.
In the second subsection, we propose a simple code cornstryrbcedure that can convert the existing
OSTBCs to NIS-OSTBCs. In the third subsection, we descrilsegrgple way of reducing the rate loss
problem in NIS-OSTBC.

A. Non-Intersecting Subspace OSTBCs

The class of NIS-OSTBCs is defined as follows:
Definition 3 An OSTBC is said to be a non-intersecting subspace (NIS) OSTB
R(C'(s)) NR(CT(5)) = {0} (42)
for everys,s ¢ {+1}X, s # +£s.

The NIS concepts were introduced in the honcoherent spaeeebding literature [34] for achieving the
maximumnoncoherent spatial diversityg], [5] in an i.i.d. Rayleigh channel. However, up to thisifo
there is no study regarding the existence and constructicfi® OSTBCs. An NIS-OSTBC is strictly
non-rotatable [compare (42) and Property 2], but the vigsaves not true. Moreover, NIS-OSTBCs have

an additional constraint on the code length:

Property 4 All NIS-OSTBCs haveM; < T.

Property 4 can be proven using standard matrix results [38], In contrast, strictly non-rotatable codes
require M; < T only (Property 3). We found that many existing OSTBCs do radis§/ Property 4, let
alone being NIS.
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The following theorem shows that NIS-OSTBCs are ‘perfethi a blind identifiability standpoint:

Theorem 4 Given every nonzero channel chandgle CM-*M: and data matrixS € {+1}%*F, S is
UIUTS if and only ifC(.) is an NIS-OSTBC.

Proof: One can easily show that to be UIUTS for agiye {+£1}**¥ and nonzerdd € CM-xM:,
it is sufficient and necessary that the following statemetds1 For every pair of distinct bit vectosss,

the condition

h’'C(s) = hT'C(s) (43)
cannot be satisfied by ary, h € CM \ {0}. By noting that

R(CT(s)) NR(C"(3))
={y|y=c"(eh=C"Eh, hhec'} (44)

and by comparing (44) and (43), we have the conclusion tleatdmdition in (43) is equivalent to have
R(CT(s)) N R(CT(8)) = {0} for anys # +s. |
There is a price for employing the NIS-OSTBCs, however.

Lemma 4 Suppose thaC(.) is based on real or complex GODs (see Remark 1, Section I-Ahé
descriptions regarding GODs). IE(.) is also an NIS-OSTBC, then it does not achieve the full rage; i
K < T for real GODs andK /2 < T for complex GODs.

The proof of Lemma 4 is given in Appendix D. Lemma 4 has moredatp on the real case, because

full-rate real GODs exist for any/; while full-rate complex GODs exist only fak/; = 2 [18], [21].

B. A Simple NIS Code Construction

We use the hints provided by Property 4 and Lemma 4 to come tip the following OSTBC

construction:

Construction I:

Given an OSTBC functiorC,(s) = Y5, ;X € CM<T whereK is even.

Step 1.SetCy(s) = Yr ' si X

Step 2. Output C,e(s) = [ Ci(pn) Co(v) | € CM>2T as the new OSTBC, wherp =

[81,...,8}(_1 ]T andv = [ SK,...,S82K—1 ]T.
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Note that that most OSTBCs have a ev€nln the above construction we concatenate two OSTBCs,
thereby forming a longer code that satisfies Property 4. bl@e we dropl bit so as not to enable full

rate; cf., Lemmad4. Surprisingly, by doing so it is sufficiémtobtain an NIS-OSTBC:

Theorem 5 Given any OSTBC functio®, : RX — CM*T where K is even, the code generated by
Construction | is an NIS-OSTBC.

The proof of this theorem is described in Appendix E. It isemeting to look at some examples
of NIS-OSTBCs from Construction |. Fak/; = 2, we convert the real-valued Alamouti code to the
following NIS-OSTBC

S 0 s9 —s
Cis)=| " S (45)
0 S1 S3 S9

For the complex counterpart, let us define
Uk = Sk + Jse (46)
for notational simplicity. The following NIS-OSTBC is estiéshed from the complex Alamouti code:

U —S9 U —uf
C(S) _ 1,3 2 4,6 5,7 ' (47)
52 uf,g Us,7 UZ,G
It is interesting to note that the new OSTBC contains both BRfid QPSK symbols, because
Construction | drops the imaginary part of one complex syimbor M; = 3, we obtain the following

real NIS-OSTBC from (34)
s —s2 —s3 0 s4 —s5 —8sg —s7
C(s) = [sy s 0 —s3 s5 sS4 st —Sg| - (48)
S3 0 S1 S92 S¢ —S7 S4 S5

Similarly, from (29) we construct a complexx 8 NIS-OSTBC

ug —usys —s3 0 ugg —uzj —ugqy 0
C(S): U5 u>{74 0 —83 U710 uag 0 —ugu . (49)
53 0 UT,4 U§,5 us,11 0 Ué,g Uﬂ?‘,w

A simulation example verifying the theoretical results ssfallows.

Example 4 We consider the QPSK Alamouti code, and its NIS counterpafdv). In the simulation
the number of receiver antennashis. = 1, and the channel is i.i.d. zero-mean Gaussian distrib(tled.

sign ambiguity effect is eliminated by assuming that onehaf bit symbols is known at the receiver.
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Fig. 2(a) shows the bit error performance of the originalmdati code and the NIS Alamouti code
when the blind SDR-ML receiver [14] is used. As a referencealg® plotted the performance of the
corresponding coherent and differential [8], [9] Alamosthemes. In the figure, we see that the original
Alamouti code fails to provide consistent performance witspect to the SNRs. This is because the
Alamouti code is rotatable. In contrast, the performancéhefNIS Alamouti code is promising: First,
we observe that for all the values 6ftested, the bit error probability asymptotically decaythat same
rate as that of the coherent ML. This gives an implicatiort tha NIS code achieves the full noncoherent
spatial diversity, from a viewpoint of noncoherent spaoeetcode performance analysis [5]. Second, the
bit error rate improves a® increases. FoP = 16, the NIS Alamouti code attains a performance that is
1dB better (in terms of the SNR) than the differential Alamaaheme.

SDR-ML is only one of the effective alternatives to blind eletion. In Fig. 2(b), the performance of
another blind receiver, namely the cyclic ML in [2], is illngted. One can observe that the cyclic ML

receiver also provides excellent performance for suffityelarge P.

Y
107" 107'¢
2 2
3 3
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Qo Qo
< <
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5 107 5 10?
Iin] i
G &
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2 — g — N
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Fig. 2. Bit error rate of the NIS Alamouti code, with the blineceiver being (a) the SDR-ML method; and (b) the cyclic ML.

Let us use this example to discuss the rate and power issudiSe®OSTBCs. In the original QPSK
Alamouti code, the average bit rateAi&T = 4/2 = 2 bits per channel use. For the NIS counterpart, it is
K/T = 7/4 = 1.75 bits per channel use. Moreover, the average code powen giv&{||C(s)||%}/T =
M;K/T, is 2M; for the original Alamouti code and.75M/; for the NIS Alamouti code. [We should

recall that our formulation has the bit energy being cortstana fixed M, but not the average code
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power; c.f., Egs. (1) and (4).] If the simulation is repeabgdcomparing the two codes with the same

average code power, the NIS Alamouti code will yield an e8NR gain by abou@.5dB. 0

C. A Modified OSTBC Scheme

The NIS-OSTBCs generated by Construction | have a data fat2fo—1)/(27") bits per channel use
(bpcu). This rate is relatively lower than that of their amigj counterpart; that isi/T" bpcu. To reduce
the rate loss, we propose the following modified transmissicheme:

Modified OSTBC Transmission Scheme

Given an OSTBCC,(s) = Y1, 51X, € CM>T where K is even, and a frame length > 2.

Step 1.SetCy(s) = Yr ' si Xy

Step 2.Forp = 1, transmitCy (s;) wheres; € {+1}5-1,

Step 3.Forp =2,..., P, transmitC,(s,) wheres, € {£1}.

The difference between the original and modified transmissichemes lies in the first transmitted
code block only, where the modified scheme transmits$-tit-reduced OSTBCC,(.) in place of
C,(.) in the original case. Since the first two code blodks(s;) and C,(s2) can be seen as one
NIS-OSTBC, perfect identification oH (up to a sign) is guaranteed and it follows that the rest
of the code blocksC,(s3),...,C,(sp) are also perfectly identifiable. Alternatively, the codanfie
[Ci(s1),Cos(s2),-..,Cs(sp)] can regarded as a supercode that has the NIS property ethdrdm
[Ci(s1), Cy(s2)]- The rate of the modified scheme (&K P — 1)/(27'P) bpcu. Hence, for largé’, the
rate of the modified scheme approaches that of the original.

The performance of the modified OSTBC scheme is illustratedilmulations as follows:

Example 5 This example compares the performance of the original andifrad OSTBC transmission
schemes. The simulation settings here are identical toith&xample 4, and the SDR-ML detector
was employed. Fig. 3(a) plots the performance in the QPSKnAl#ti case. We see that the modified
scheme has its bit error probability being consistent arwhyiag at the same rate as that of the coherent
ML (thereby having the full noncoherent spatial diversitfpwever, increasing’ is not very helpful in
improving the performance, unlike the promising NIS-Alartic¢ode in Example 4. In fact, the modified
scheme fails to provide performance better than the difteakeAlamouti scheme.

In Fig. 3(b) we consider the BPSK OSTBEx 4 code [in (34)]. This code is strictly non-rotatable,
meaning that it is already UIUTS with probability From a blind identifiability standpoint it seems to

be sufficient to use the original scheme, but we were stillocisrabout the performance difference of the
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Fig. 3. Bit error rate of the the original and modified OSTB@a&mes. The SDR-ML detector was used.

original and modified schemes. Remarkably, we see from tieefithat the modified scheme in this case
can achieve near coherent ML performance, unlike the pusvAlamouti case. In the original scheme,
the bit error probability decays at a rate lower than thathef coherent ML. The modified scheme does
not have this problem, and its performance improves quitik with respect toP. It also yields better
performance than the differential scheme for> 8, by aboutl.5dB when P = 16.

This example demonstrates an interesting issue: Achieparfect blind identifiability is desirable,
but it does not always lead to excellent, near coherent Mifopmance. How to design OSTBCs for
achieving good noncoherent error performance appearsao b#eresting future direction, but is beyond

reach of this paper. a

V. CONCLUSION AND DISCUSSION

In this paper, the blind ML identifiability of OSTBCs with BIRSor QPSK constellations has been
studied. Our analysis leads to the conclusion that orthalgspace-time block coding provides very
appealing blind identifiability, in the sense that thereseXdSTBCs that can be uniquely identified up
to a sign (UIUTS) almost surely for many Gaussian fading cleds) or UIUTS deterministically for
all nonzero channels. These characteristics imply that @védnarsh channel environments such as rank
deficient channel matrix and one receiver antenna, blindogdnal space-time block coding can still
operate properly. We have not only identified blindly-idkable OSTBCs from the existing OSTBCs, a
procedure has also been proposed to construct OSTBCs withlent blind identifiability.
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This paper considers the case of BPSK and QPSK consteBabioly. Extensions to higher-order PSK
and QAM constellations would be a future direction worthdsing. In addition, it would be interesting to
investigate how the present results are related to theifddnility of non-standard OSTBC transmission
schemes in [16] and [36], [37], where unequal symbol poweard anequal symbol constellations are

respectively used to fix the non-identifiability issue inatable OSTBCs.

APPENDIX
A. Proof of Theorem 1

The nontrivial part of Theorem 1 lies in showing that@f(.) is rotatable, then Statement iii) of
Theorem 1 holds. Suppose thait= [ sy,...,sp | € {£1}5*F is a matrix where its columns contain
all combinations of vectors ifi+1}%. For a rotatableC(.) with a (unitary) code rotation matriQ, the

following condition holds according to the definition:
QC(s,) =C(,), p=1,...,P (50)
for somes, € {£1}X\ {£s,} , p=1,..., P; or equivalently
C(s,) = QfC(,), p=1,...,P. (51)

From the above equation, it is straightforward to verifyttiia # +1. By using derivations similar to

Egs. (13)-(15), Eq. (51) can be reexpressed as
7Sp:mép, p=1,...,P. (52)

where the overline means that = [ Re{A}? Im{A}T |7, and thatX = [ vec(Xy),...,vec(Xx) ].
By applying the properyB’ A = Re{Bf A} (which is easy to verify) and by using (3), we have that

XX = ML (53)
Premultiplying (52) byTT, we obtain
s,=T5,, p=1,... P (54)

wherel™ = M%TT(IT ® QH)Xx. Since we have assumed that the columnS ebntain all combinations
of vectors in{£1}*, there exis2“~1! distinct bit vectors in the columns &. By applying Lemma 1
to (54), we obtainl' = DII? ands, = MIDs,, whereII € {0,1}**X is a permutation matrix, and

D € RE*XK js diagonal withdiag(D) € {+1}¥. Substituting this result into (50), we conclude that

QC(s) = C(IIDs) (55)
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for s € {1}, It can be proven that (55) holds ferc RX as well, by using the linearity of(.). The
matrix IT must have zero main diagonals. To see this, suppose thdt th¢th element ofl I equalsl.

By letting e, be a vector whoséth element isl and whose remaining elements &ewe have that
QX = QC(e) = C(IIDey) = djp X, (56)

whered,, € {£1} is the kth diagonal ofD. SinceX; X =1, Eq. (56) is a contradiction t6) # =+I.

B. Proof of Theorem 2

The proof is by contradiction. A real OSTBC(s) = Zszl sk X}, has its basis matriceX;, being all
real. Suppose thal/; is odd, and thaC(.) is not strictly non-rotatable such that

QC(s) = C(s) (57)

is satisfied for som& € RM>xM: g 5 ¢ {+1}K, s # +5. The row orthogonality ofC(.) [Eq. (4)]
implies thatQ must be unitary. Post-multiplying (57) b§” (s)/K, we get

Q= #C(5)C (s). (58)

From the OSTBC properties in (1) and (3), Eq. (58) can be deosed to

Q=al+B, (59)
where
1 K 1 K K
_ 3 _ s T
o = ? Zsksk, B = E Z Z SkSngXZ . (60)
k=1 k=1/0=1/4#k

SinceXkXET is skew symmetric fok # ¢ [cf., Eq. (3)], B is also skew symmetric.

Let A1 (A),..., A\,(A) denote the eigenvalues & € C"*". SinceQ is unitary, it must be true that
IA:(Q)] =1foralli=1,..., M. From (59), we have;(Q) = a+ \;(B) for i = 1,..., M;. Using the
fact that a (real) symmetric matrix with odd dimension mustsingular [38], we know that at least one
of the \{(B), ..., \x,(B) equals zero. Consequently, we have thalQ) = « for some:. But, from

(60) it is easy to check thaty| < 1 for anys # +8, a contradiction td\;(Q)| = 1 for all s.

C. Proof of Theorem 3

Let omax(A) andop,in(A) define the maximum and minimum singular valuesAgfrespectively. We

will require the following lemma:
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Lemma 5 Let E,F € CM*T and suppose thaEEY = FF? =1. Then,

Umax(EFH) <L (61)
Moreover, the condition

omin(EFT) < 1 (62)
holds if R(ET) # R(FT).

Proof of Lemma 5Eq. (61) is straightforward sinag,..(EF?) = |[EF||y < ||E||2||F|l2 = 1, where

||l.|l2 denotes the matriz-norm. To prove (62), we use the results in distance betwabspaces [35].
Let S; and S; be subspaces with equal dimension. The distance bet@Weeand S, are defined by

dist(S1, S2) = ||P1 — P2||2, whereP; and P, denotes respectively the orthogonal projectorsspfnd
S,. The distancelist(S1,S2) equals zero only whe§; = S». Now, it can be shown that [35, p. 76-77]

dist®(R(ET), R(FT)) = 1 — 00 (B*FT) = 1 — o5, (EFT). (63)
Hence, we have?, (EFH) < 1 wheneverR(ET) # R(FT). [ |

To prove Theorem 3, suppose that
HC(s,) = HC(5,), p=1,...,P, (64)

for some{H,S} # +{H, S}. Let

E=—L[C(s)),....Clsp) ], (65)
F=—~=[C(1),...,C(p) ] (66)

so that (64) can be reexpressed as
HE = HF. (67)

The matricesE and F satisfy EEY = FF/ = 1. WhenC(.) is strictly non-rotatable, from Property 2
we obtainR(ET) # R(FT). WhenC(.) is non-rotatable ané\1) holds, from Property 1 we know that
there does not exist @ such thatQE = F, therebyR(E”) # R(FT). Eq. (67) can be rewritten as

HEFY = H. (68)

By taking the Frobenius norm on the two sides of (67) and (68, obtain|H|» = |H||» and
|HEFY || = |H| r, respectively. It follows that

|| = | HEF"|[3. (69)
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Using Lemma 5, an expression for the singular value decoitipo®f EF# is obtained:

EFY = [U, Uy | | Vil (70)
S| | VH
wherer < M; is the number of unit singular values 8F", X, is diagonal containing the singular
values that are less thanU; andV; are respectively the left and right singular matrices assed with
the unit singular values, and, and'V, are respectively the left and right singular matrices assed

with the less-than-1 singular values. Substituting (70t right hand side of (69) yields
IHEF? |7 = |HU, [} + |HU2Z: 7. (71)
On the other hand, using the unitarity otJ; U, |, the left hand side of (69) can be decomposed to
L[ = |[HU, [ + [ HU2 % (72)

It follows that

HU, |7 = [HU2, | 7, (73)
which can be shown to be equivalent to
tr{HU(I — 23 UYH"} = 0. (74)

Sincel — 32 > 0 (where A >~ 0 means thatA is positive definite), to satisfy (74) it is sufficient and
necessary to have

HU, = 0. (75)

Let us consider the probability that (75) holds, which is ieglent to the probability that (64) holds.
Let u; andR; denote the mean and covariancehgf whereH” = [ hy,... hy; ]. The probability of
(75) is bounded by

Pr[HU, = 0] = Pr| N, {Ulh; = 0} ]
< Pr[Ush; = 0], (76)
for anyi = 1,..., M,. Under A2), each random vectotJZh; follows a circular complex Gaussian
distribution with mearUZ p1; and covarianc&Z R, Us. If R; = 0 for somei, then it can be shown that
Pr[UZh; = 0] is of measure zero for those Subsequently, from (76) we hafa[HU, = 0] = 0.

As a side product, we note that (75) can never be satisfiedis of full column rank. This observation

leads to Lemma 3.
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D. Proof of Lemma 4

Lemma 4 is shown by constructing a situation such that
CT(s)h = CT(5)h (77)

for some distinct pair of bit vectors, §) and for somén, h € CM+\ {0}, thereby obtaining the conclusion
R(CT(s)) NR(CT(8)) # {0}.

Assume thatC(.) is a full-rate real GOD. In this case the code matrix can beesgqed as

Cl(s)=[Es,...,Ey

t

s |, (78)

whereE; € RT*T are code constituent matrices that satisfy the followingcstires [21]: )EE; =

E,E! =1, ii) ETE, = —E]E, for i # k; and iii) eachE; is a+1 permutation matrix in the form of
E; = IL,D; (79)

whereII; € {0,1}7*7T is a permutation matrix an®d; ¢ R”*7 is diagonal withdiag(D;) € {+1}7.

Now, fixing s € {1}, choose

5§ =FElE;s. (80)

It is easy to show thaEl'E; is also at1 permutation matrix. Hence, we hasec {+1}7. Moreover, it
must be true tha§ # +s given anys € {+1}7. The reason is as follows: K = +s, thenEZE; must
have one eigenvalue equal #ol. But EZ'E; is a skew-symmetric matrix, the eigenvalues of which are

either pure imaginary or zero [33]. With the above settingge can show that

CT(s)e; = CT(5)es. (81)
For the case of full-rate complex GODs whefé = 2T, let sp = [ s1,...,s7 |1 ands; =

[ s741,...,507 |. The code matrix can be expressed as [19]
C”(s) = [ Eisg + jFisr,...,En,sp + jF 87 | (82)

whereE; ¢ RT™>*T andF; € RT*T, The structures oE, are identical to those in real GODs, whilg
follow the same structures; namely tHBfF? = I, F/F;, = —F]F, for i # k, and eachF; is a +1
permutation matrix. The rest of the proof are then almostsiume as in the real case, and are omitted

for brevity.
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E. Proof of Theorem 5

This theorem is proven by contradiction. Suppose at,,(.) is not an NIS-OSTBC such that for

some distinct pair of bit vector, §), there existh, h € CM: \ {0} such that
h”Cpew(s) = hTCpew(3). (83)
From Construction I, Eq. (83) can be decomposed to two setgjoations
h"Cy () = W' Cy (i), (84)
h’'C,(v) =h'C,(p), (85)

wheres = [ T v7 7 ands = [ @ o7 ]7. Postmultiplying (84) and (85) by;(u) and C,(v)

respectively, we obtain

h" =h"Q;, h” =1n7Q,, (86)
where
Qi = z5C1(B)CY (1), Q2= £Co()CJ/ (v). (87)
Egs. (86) lead to
h"(Q1 - Qo) =0, (88)

implying thatQ; — Q- is singular.

We now show that); — Qs cannot be singular. The matric€}, and Q5 can be expressed as

Q= =I1+Bi, Q= C1+By (89)
where
K-1
ar =Y pfix € {£1,£3,...,£(K - 1)}, (90)
k=1
K
ay =Y vy € {0,42,44,... K}, (91)
k=1

and By = 7 >0 Yo e X Xy and By = 37 30, e X X! are skew-Hermitian [cf.,
Eq. (3)]. Hence,
Q1 — Q2 =11+ (B1 —By), (92)

where
v = — = (93)
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If Q1 — Q- is singular, then at least one of its eigenvalues has t06.d&om (92), the eigenvalues of
Q1 —Qq are given byA;(Q1 —Q2) = v+ X\i(B1—By), i =1,..., M;. SinceB; — B, is skew-Hermitian,
its eigenvalues\;(B; — B,) are either pure imaginary or zero [33]. Hence, to have a &ndgl; — Q-

it is necessary that = 0. Since K is even, it can be represented By = 2m for some integem.
Likewise, s can be represented hy, = 2¢ wherec € {0,+1,...,+m}. The conditiory = 0 implies

that

alzK_lo@:(Qm_l)C:%—i. (94)
K m m

From (90)«; is an odd number, but Eq. (94) indicates thatis not an integer unless= 0 or ¢ = +m.
For ¢ = 0 we havea; = 0, a contradiction. For = +m, we havea; = £(K — 1) andas = £K. Such

a condition can only be satisfied whém” v7 |7 = +[ a7 &7 |7, a contradiction tes # +3.
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