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Abstract

The blind maximum-likelihood (ML) detection of a general space-time block code (STBC) is
considered a challenging implementation problem. Recent work has revealed that for the orthogonal
STBCs (OSTBCs), their special code structures can be exploited to formulate highly effective blind ML-
based algorithms. Attracted by this realization merit, this paper investigates the blind ML identifiability
of OSTBCs, with an emphasis on the binary PSK (BPSK) and quaternary PSK (QPSK) constellations.
We find a class of OSTBCs, called the non-rotatable OSTBCs, that can be uniquely identified up to a
sign (UIUTS) almost surely under a few mild assumptions. Forexample, for an independently distributed
Rayleigh channel with any number of receiver antennas, a non-rotatable OSTBC can be UIUTS with
probability 1. While this identifiability looks appealing already, we further examine a subclass of non-
rotatable OSTBCs, called the non-intersecting subspace (NIS) OSTBCs. We prove that NIS-OSTBCs are
UIUTS for any nonzero channel. However, NIS-OSTBCs are not available in the existing literature. To
fill this gap, we devise a code construction procedure that can convert any (BPSK or QPSK) OSTBC to
an NIS-OSTBC.
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I. INTRODUCTION

In multiple-input-multiple-output (MIMO) systems, blinddetection [1], [2] or noncoherent detec-

tion [3]–[5] is an attractive approach when channel state information (CSI) is not available at the receiver.

In a number of cases, we can safely assume CSI being known at the receiver1. That is because CSI can be

estimated reliably by transmitting pilot signals, which has little loss in the data rate if there is an abundant

power resource at the transmitter (e.g., the downlink channel) and/or if channel fading is slow. However,

for channels having smaller coherence time, accurate pilot-assisted CSI acquisition requires more frequent

pilot retransmission. Consequently, the power and bandwidth overheads for the pilots would no longer be

negligible. In those cases, an alternative worth considering is the blind or noncoherent detection methods,

which either estimate CSI from received data or bypass CSI indetection.

A popular noncoherent MIMO scheme is differential unitary space-time modulation [6]–[9], which

requires the channel to be static over two space-time code blocks only. The differential scheme, however,

incurs an approximately3dB performance penalty compared to its coherent counterpart. On the other

hand, in the signal processing context there has been much interest in developing blind detection methods

for space-time block codes [1], [2], [10]–[17]. In this direction we consider ‘quasi-static’ channel

fading, where the channel is assumed to be static over multiple space-time code blocks but where pilot-

assisted CSI acquisition is still inefficient. Blind detection methods may achieve near coherent detection

performance, particularly when there is a sufficiently large data length (or number of blocks in which

quasi-static fading remains valid).

In this paper the emphasis is placed on the blind maximum-likelihood (ML) detection of orthogonal

space-time block codes (OSTBCs) [18]–[25]. In the coherentspace-time coding scenario, OSTBCs have

been well known for their maximal spatial diversity and low ML receiver complexity. Recent research

has revealed that OSTBCs are attractive in the noncoherent scenario, as well. Essentially, given a generic

MIMO or space-time block coding (STBC) scheme, implementing the blind ML receiver is a highly

nonlinear optimization problem. As a problem common to general multimodal nonlinear optimization, it

is hard to guarantee, in every problem instance, that an optimal or near-optimal blind ML solution be

obtained. The OSTBC scheme is an exception where one can utilize the special code structures to design

1In the signal processing context, ‘blind detection’ is usedto to describe detection without CSI. In the information theory

context, ‘noncoherent detection’ is frequently employed.The developments in the two contexts are, in many ways, different.

Very roughly speaking, in signal processing the focus is often on the blind receiver realization aspects, while in information

theory the subjects of interest are the noncoherent channelcapacity and code designs.
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more effective blind ML algorithms, either optimally or suboptimally. In [2] (also the textbook [26]),

Stoicaet. al proposed a cyclic minimization method for blind ML OSTBC detection. This cyclic ML

receiver exploits the low coherent receiver complexity, and is simple to implement compared to the same

method applied to some other MIMO/STBC schemes; e.g., spatial multiplexing [10]. As an additional

merit, cyclic ML can be generalized to handle unknown Gaussian noise covariance [13]. However, cyclic

ML requires initialization of either the channel estimate or the symbol decisions. By simulation experience,

the cyclic ML performance can be unsatisfactory given a mediocre initialization. In [2], a blind closed-

form method jointly estimating the channel and symbols was proposed to initialize cyclic ML. That

blind closed-form method is also based on the special characteristics of OSTBCs. Interestingly, the

closed-form method is functionally equivalent to the blindsubspace OSTBC channel estimator in [16];

see the discussion in [14, pp. 741, Footnote 2]. (We should point out though that the work in [16] is

original from a blind subspace viewpoint.) Empirical studies showed that the closed-form and cyclic ML

methods exhibit near coherent ML performance for large datalength, say for50 space-time code blocks

or more [2], [16]. To yield near optimal performance with smaller data length, it has been suggested [2],

[13] that a semiblind cyclic ML receiver be used, in which a few pilot STBCs are required.

A more recent endeavor [14] reveals that even in the regime ofsmall to moderate data length, blind

ML OSTBC detection can be implemented in an exactly optimal or near-optimal fashion. By focusing

on binary PSK (BPSK) or quaternary PSK (QPSK) constellations, it is shown that the blind ML problem

can be simplified to a Boolean quadratic program (BQP). The reformulation is done by exploiting the

orthogonal and linear dispersion characteristics of OSTBCs. The BQP is still a computationally hard

optimization problem, and [14] illustrates how the blind MLBQP can be handled effectively by using

either the optimal sphere decoding algorithms [27], [28] orthe quasi-optimal semidefinite relaxation

(SDR) algorithm [29]. The performance and complexity comparisons of the two methods are described

in details in [29]. Sphere decoding and SDR are computationally more expensive than the closed-form

and cyclic ML receivers mentioned above: For example, the complexity of SDR is approximately cubic

in the data length, while the complexity of the closed-form method is only linear in the data length.

However, simulation results [14] have indicated that sphere decoding and SDR ML implementations

provide considerably better bit error performance than theclosed-form and cyclic ML methods, especially

in the regime of small to moderate data length (say,10 to 20 space-time code blocks).

This paper is a sequel of [14]. We turn our attention from blind receiver realization to the blind ML

OSTBC identifiability, with an emphasis on the BPSK and QPSK constellations. Our analysis shows

that OSTBCs can provide very favorable identifiability conditions, though not all OSTBCs have such
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benefits. First, we identify a class of codes called therotatableOSTBCs. Rotatable OSTBCs can never

be uniquely identified up to a sign (UIUTS). An example of rotatable OSTBCs is the famous Alamouti

code [30], which, in some earlier studies [1], [16], [31], has been found to suffer from some code

ambiguity effects. Second, the class ofnon-rotatableOSTBCs is considered. We show that for a broad

class of Gaussian channel fading, non-rotatable OSTBCs canbe UIUITS with probability1. For example,

for an independent and identically distributed (i.i.d.) Rayleigh channel, a non-rotatable OSTBC can be

UIUTS with probability1 even when the number of receiver antennas is one. These identifiability benefits

are under a mild assumption on data, which usually holds for large data length. We show that there

exists a subclass of non-rotatable OSTBCs, called thestrictly non-rotatableOSTBCs, that achieves the

probability1 identifiability condition without requiring the data assumption. Finally, we examine a further

subclass of strictly non-rotatable codes, called thenon-intersecting subspace(NIS) OSTBCs. From a blind

identifiability standpoint NIS-OSTBCs are ‘perfect’ in that they are UIUTS for any nonzero channel.

However, we also prove that NIS-OSTBCs may incur reduction in data rate. To our best knowledge,

none of the OSTBCs given in the existing literature [18]–[25] is NIS. To fill this gap we devise a code

construction procedure that can convert any (BPSK or QPSK) OSTBC to an NIS-OSTBC. From our

NIS-OSTBC idea, we further propose a modified OSTBC scheme that also enjoys ‘perfect’ identifiability

and can have a smaller rate loss than the direct application of NIS-OSTBCs.

TABLE I

SUMMARY OF BLIND ML OSTBC IDENTIFIABILITY .

Code class Identifiability Characteristics Details

rotatable Not uniquely identifiable up to a sign Section III-A
(UIUTS)

non-rotatable UIUTS with prob.1 for many Sections III-B
Gaussian fading channels, under to III-C

a mild assumption on data
strictly UIUTS with prob.1 for many Mt < T ; Sections III-B

non-rotatable Gaussian fading channels subclass of non-rotatable codes to III-C
non-intersecting 2Mt ≤ T ;

subspace UIUTS for any nonzero channel subclass of strictly non-rotatable codes; Section IV
(NIS) full rate may not be possible

In Table I we summarize the blind ML identifiability of the various classes of OSTBCs; their details

are presented in Sections III and IV. The organization of this paper is as follows. Background review for

blind ML OSTBC detection is given in Section II. Section III studies the rotatable, non-rotatable, and

strictly non-rotatable OSTBCs. Their characteristics andidentifiability are also examined in that section.

In Section IV we present the NIS-OSTBCs, their properties, and how to construct them.
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II. BACKGROUND

We review some key concepts essential to the ensuing development. The first subsection considers

OSTBCs and their structures. The second subsection describes blind ML OSTBC detection. The respective

blind identifiability problem statement is discussed in thethird subsection. In that subsection we also

provide an OSTBC identifiability condition obtained easilyfrom some existing results.

A. Orthogonal Space-Time Block Codes

In orthogonal space-time block coding, the transmitted code matrix can generally be formulated as

C(s) =

K
∑

k=1

skXk ∈ C
Mt×T , (1)

where

Mt number of transmitter antennas;

T time length of the code;

Xk ∈ C
Mt×T basis matrices of the code;

s ∈ R
K vector containingK real information symbols;

sk kth element ofs.

Eq. (1) represents not only OSTBCs with real symbol constellations, but also those with complex symbol

constellations. In the latter case, an OSTBC can be expressed as [19]

C(s) =

K/2
∑

k=1

skAk + jsk+K/2Bk (2)

for some real-valued basis matricesAk,Bk ∈ R
Mt×T , wherej =

√
−1. In Equation (2),sk + jsk+K/2

forms a complex symbol fork = 1, . . . ,K/2 and the number of complex symbols per block isK/2. By

letting {X1, . . . ,XK} = {A1, . . . ,AK/2, jB1, . . . , jBK/2}, the complex code in (2) can be reformulated

as (1). In this paper we assume BPSK and QPSK constellations,in which case we haves ∈ {±1}K .

The basis matrices are specially designed to satisfy [18], [19], [21]

XkX
H
ℓ =







I, k = ℓ

−XℓX
H
k , k 6= ℓ

(3)

such that every codeword is row orthogonal; i.e.,

C(s)CH(s) = ‖s‖2
2I = KI (4)

for any s ∈ {±1}K . Here‖.‖2 denotes the2-norm.
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In the coherent detection scenario, the code properties in (1), (3), and (4) result in the well-known

advantages of simple ML detection structures and the maximum spatial diversity [18], [19]. Orthogonal

space-time block coding also provides benefits in the noncoherent scenario, as we will review next.

Remark 1. In principle, any matrix function satisfying (1) and (3) is said to be an OSTBC. OSTBCs

are usually obtained by applying the theory ofgeneralized orthogonal designs(GODs) [18]–[25], in

which there are additional restrictions on the code structures. In real GODs, the entries ofC(s) are

constrained to be drawn from{0,±s1, . . . ,±sK}. Hence, the basis matrices must satisfy the integer

structureXk ∈ {0,±1}Mt×T for all k. As for complex GODs, let

uk = sk + jsk+K/2 (5)

for notational convenience. The entries ofC(s) in this case are drawn from

{0,±u1,±u∗
1, . . . ,±uK/2,±u∗

K/2
}, thereby Xk ∈ {0,±1}Mt×T for k = 1, . . . ,K/2, and

Xk ∈ {0,±j}Mt×T for k = K/2 + 1, . . . ,K. For example, the complex Alamouti code

C(s) =





u1 −u∗
2

u2 u∗
1



 (6)

is a GOD. The analysis in this paper is established from (1) and (3), and GODs will not be assumed

unless specified. Hence our analysis is applicable to all OSTBCs, including non-GOD codes (e.g., the

‘sporadic’ codes [18]).

B. Blind ML Detection

We consider a standard scenario [13] where a sequence of OSTBCs is transmitted over a frequency-flat,

quasi-static channel. The received signal model is given by

Yp = HC(sp) + Vp, p = 1, . . . , P, (7)

where

Y ∈ C
Mr×T received code matrix atpth code block;

H ∈ C
Mr×Mt MIMO channel matrix;

Mr number of receiver antennas;

P frame length or number of code blocks in which the channel remains static;

sp ∈ {±1}K block of information bits transmitted at thepth code block;

Vp ∈ C
Mr×T additive white Gaussian noise (AWGN) matrix.
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Let

S = [ s1, . . . , sP ] ∈ {±1}K×P . (8)

In the blind or noncoherent scenario, a usual assumption is that H is a deterministic unknown. The

respective blind ML detector is shown to be [10], [13]

{Ĥ, Ŝ} = arg min
H̃∈CMr×Mt ,

S̃∈{±1}K×P

P
∑

p=1

‖Yp − H̃C(s̃p)‖2
F (9)

where the unknownH andS are estimated jointly. Here‖.‖F stands for the Frobenius norm. IfC(.) is

a generic linear STBC function, then solving (9) is challenging due to the biconvexity of the objective

function and the±1 constraints onS. When C(.) is an OSTBC, one can however exploit the linear

dispersion and orthogonal structures to simplify the process of solving Problem (9), either optimally

or suboptimally. As discussed in the introduction, the presently available algorithms for handling (9)

include the closed-form method [2], [16] (also [14]), the cyclic ML method [2], [13], SDR and sphere

decoding [14]. Some performance and complexity comparisons of the various algorithms have been

presented in the prequel of this work [14].

C. Blind Identifiability Problem Statement

The implementation simplicity of blind ML OSTBC detection motivates us to investigate the blind

identifiability aspects. For ease of exposition of the identifiability problem, suppose that the true channel

H and data matrixS is a solution of the blind ML problem in (9). This solution is unique only when

we cannot find another solution, denoted by{H̃, S̃}, such that the following channel-code ambiguity

equations are satisfied

HC(sp) = H̃C(s̃p), p = 1, . . . , P. (10)

An obvious situation leading to (10) is when{H̃, S̃} = {−H,−S}. In practice this sign ambiguity

problem can be easily resolved by a number of ways; e.g., using channel coding [10], or setting one

element ofS to be a pilot. Throughout this paper we are interested in examining other possible ambiguities,

and in finding OSTBCs that can avoid those situations.

Before proceeding to present our main results in the ensuingsections, we describe a blind OSTBC

identifiability condition obtained by applying a result dueto Talwaret al. [10]. The result was developed

for proving sufficient blind identifiability conditions of the spatial multiplexing scheme, and its essence

is summarized as a lemma stated as follows:
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Lemma 1 (Talwar-Viberg-Paulraj) Let F ∈ R
M×K and S = [ s1, . . . , sP ] ∈ {±1}K×P . Suppose

that F has full column rank, and that the columns ofS contain at least2K−1 distinct bit vectors2. The

equations

Fsp = F̃s̃p, p = 1, . . . , P (11)

are satisfied for some{F̃, S̃} ∈ C
M×K × {±1}K×P only when

ΠDS = S̃, FDΠT = F̃, (12)

whereΠ ∈ {0, 1}K×K is a permutation matrix andD ∈ R
K×K is diagonal withdiag(D) ∈ {±1}K .

Now, suppose that the channel-code ambiguity equations in (10) are satisfied. By applying a standard

vectorization property [32], Eq. (10) can be reexpressed as

(IT ⊗ H)X sp = (IT ⊗ H̃)X s̃p, p = 1, . . . , P, (13)

whereIn is then × n identity matrix,⊗ is the Kronecker product,

X = [ vec(X1), . . . , vec(XK) ] ∈ C
MtT×K , (14)

and vec(.) is the vectorization. Let us define an operator, denoted by overline, so thatA =

[ Re{A}T Im{A}T ]T . Eq. (13) can be rewritten as

Fsp = F̃s̃p, p = 1, . . . , P, (15)

whereF = (IT ⊗ H)X ∈ R
2MrT×K and F̃ = (IT ⊗ H̃)X ∈ R

2MrT×K . It can be shown thatF is of

full column rank for every nonzeroH; see for example [16]. Applying Lemma 1 to (15), we obtain the

following identifiability condition:

Lemma 2 Suppose that the columns ofS contain at least2K−1 distinct bit vectors. Given every nonzero

H ∈ C
Mr×Mt and an arbitrary OSTBCC(.), the equations

HC(sp) = H̃C̃(s̃p), p = 1, . . . , P (16)

are satisfied for some{H̃, S̃} ∈ C
Mr×Mt × {±1}K×P only when

ΠDS = S̃, (17)

whereΠ ∈ {0, 1}K×K is a permutation matrix andD ∈ R
K×K is diagonal withdiag(D) ∈ {±1}K .

2Here, two vectorsa and b are said to be distinct ifa 6= ±b. A vector a is said to be a bit vector of dimensionn if

a ∈ {±1}n.
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Lemma 2 shows that OSTBCs are uniquely identifiable up to permutations and sign changes in the

rows ofS, under a mild assumption onS. In the next sections we will illustrate a number of even more

interesting results, in which we find OSTBCs that can be uniquely identifiable up to a sign only.

III. N ON-ROTATABILITY AND BLIND IDENTIFIABILITY

This section shows that there is a class of OSTBCs, called rotatable OTSBCs, that fails to provide

unique blind identification up to a sign. This problem motivates us to consider non-rotatable OSTBCs and

their characteristics. In particular, it is proven that non-rotatable OSTBCs can achieve unique identification

up to a sign, with probability1. In the first subsection, we describe rotatable OSTBCs . Then, non-rotatable

OSTBCs and their identifiability conditions are studied in the second and third subsections, respectively.

A. The Code Rotation Problem

The following is the definition of rotatable OSTBCs:

Definition 1 An OSTBCC(.) is said to be rotatable if there exists a matrixQ ∈ C
Mt×Mt such that for

any s ∈ {±1}K ,

QC(s) = C(s̃) (18)

for somẽs ∈ {±1}K , s̃ 6= ±s. Otherwise,C(.) is said to be non-rotatable. Such aQ, if exists, is called

a code rotation matrix.

A code rotation matrix is unitary: if (18) is true then

QQH =
1

K
QC(s)C(s)HQH (19)

=
1

K
C(s̃)C(s̃)H = I, (20)

where we have used the row orthogonalityC(s)C(s)H = ‖s‖2
2I in the above equations. Moreover, ifQ

is a code rotation matrix then−Q is also a code rotation matrix. The problem with rotatable OSTBCs

is that for each code rotation matrixQ, the channel-code ambiguity equations

HC(sp) = HQHQC(sp) = (HQH)C(s̃p) (21)

are satisfied for somẽsp ∈ {±1}K \ {±sp}, p = 1, . . . , P . Thus, rotatable codes always result in

ambiguity. Indeed, the well-known Alamouti code is rotatable as illustrated in the following example:
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Example 1 Consider the real-valued Alamouti code [18] whereMt = T = K = 2:

C(s) =





s1 −s2

s2 s1



 . (22)

Its basis matrices are given by

X1 =





1 0

0 1



 , X2 =





0 −1

1 0



 . (23)

Let Q = X2. SinceQX1 = X2 andQX2 = −X1, we have

QC([ s1 s2 ]T ) = C([ − s2 s1 ]T ) (24)

Hence, this code is rotatable. Similarly, it can be verified that the complex-valued Alamouti code

C(s) =





u1 −u∗
2

u2 u∗
1



 (25)

whereu1 = s1 + js3 andu2 = s2 + js4, is rotatable. �

The following theorem shows a sufficient and necessary condition of rotatable OSTBCs.

Theorem 1 The following statements are equivalent:

i) C(.) is a rotatable OSTBC.

ii) There existQ ∈ C
Mt×Mt satisfying

QXk = dkXik
, k = 1, . . . ,K, (26)

wheredk ∈ {±1}, and ik ∈ {1, . . . ,K} is an index withik 6= k and ik 6= iℓ for k 6= ℓ.

iii) There existQ ∈ C
Mt×Mt satisfying

QC(s) = C(ΠDs), (27)

where Π ∈ {0, 1}K×K is a permutation matrix withdiag(Π) = 0, and D is diagonal with

diag(D) ∈ {±1}K .

It is straightforward that Statements ii) and iii) are equivalent, and that if Statement ii) or iii) is true

then Statement i) is true. But it is not as obvious that Statement i) implies Statements ii) and iii). The

proof of this part is given in Appendix A. Theorem 1 indicatesthat a rotatable OSTBC always exhibits

permutation ambiguities.
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Let us consider some implication of Theorem 1. The equivalent rotatable code condition in (26) implies

Q = dkXik
XH

k for all k = 1, . . . ,K (due toXkX
H
k = I). Hence, we have the following necessary code

rotation condition:

Corollary 1 A code rotation matrixQ, if exists, must be one of the following candidates

{

±X2X
H
1 ,±X3X

H
1 , . . . ,±XKXH

1

}

. (28)

Corollary 1 is useful in facilitating the numerical inspection of code rotatability: We only need to

check theK − 1 possibilities ofQ in (28) instead of the considerably larger possibilities in(18).

The following example illustrates two non-rotatable OSTBCs:

Example 2 Consider the following complex maximal-rate code withMt = 3, T = 4, andK/2 = 3 [19]:

C(s) =











u1 −u∗
2 −u∗

3 0

u2 u∗
1 0 −u∗

3

u3 0 u∗
1 u∗

2











(29)

whereuk = sk + jsk+K/2. Its basis matrices are

X1 =











1 0 0 0

0 1 0 0

0 0 1 0











,X2 =











0 −1 0 0

1 0 0 0

0 0 0 1











, (30)

X3 =











0 0 −1 0

0 0 0 −1

1 0 0 0











,X4 =











j 0 0 0

0 −j 0 0

0 0 −j 0











, (31)

X5 =











0 j 0 0

j 0 0 0

0 0 0 −j











,X6 =











0 0 j 0

0 0 0 j

j 0 0 0











(32)

If C(.) is rotatable, then from (26) the condition

QX1 = Xi (33)

must be satisfied for someQ and i 6= 1. By observing the basis matrices, we see that there does not

exist Q satisfying (33) for alli 6= 4: The 4th column ofX1 is all zero, while the4th column ofXi for

i 6= 4 is not. It is impossible find aQ such that the4th column ofQX1 is a nonzero vector. Now the
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problem remained is the case ofi = 4. Eq. (33) is satisfied fori = 4, but by inspection we found that the

resultantQ = X4X
H
1 does not satisfy (26) for allk. We conclude that the code in (29) is non-rotatable.

In a similar way, we found that the following3 × 4 real full-rate OSTBC [18]

C(s) =











s1 −s2 −s3 −s4

s2 s1 s4 −s3

s3 −s4 s1 s2











(34)

is non-rotatable. �

Remark 2. It is commonly thought that for an STBC with complex constellations, blind detection is

always subject to a phase rotation in the detected symbols. Example 2 shows an interesting example

where the complex code in (29) is subject only to a sign change(assuming the QPSK constellation).

This is attributed to the salient characteristic that the entries of the code matrix contain the complex

symbols and their conjugates, thereby giving the code some form of immunity to phase rotations.

B. Non-Rotatable and Strictly Non-Rotatable Codes

While the development above shows that rotatable OSTBCs arealways susceptible to code ambiguities,

an interesting question is whether the ambiguities can be avoided by using non-rotatable OSTBCs. We

notice from Definition 1 that for a non-rotatable code, theredoes not exist a unitaryQ such that

QC(s′) = C(s′′), s′′ ∈ {±1}K \ {±s′} (35)

can be satisfied foreverys′ ∈ {±1}K . The non-rotatable code definition, however, does not rule out

the possibility that (35) can be satisfied forsomes′ ∈ {±1}K . Suppose thatC(.) is non-rotatable but

satisfies (35) for two particular distinct bit vectorss′, s′′. Then, one can verify that the equations

QC(sp) = C(s̃p), s̃p ∈ {±1}K \ {±sp} (36)

for p = 1, . . . , P may not be satisfied for everyS ∈ {±1}K×P , but is satisfied whenS = ±[ s′, s′, . . . , s′ ]

or whenS = ±[ s′′, s′′, . . . , s′′ ]. Nevertheless, one would argue intuitively that whenP increases, such

a situation is unlikely to happen. This is in fact true, and toillustrate this we consider the following

assumption:
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A1) The columns ofS ∈ {±1}K×P contains at least2K−1 distinct bit vectors.3

To satisfyA1) it is necessary thatP ≥ 2K−1. For sufficiently largeP there is a high probability that

A1) holds [10], given the standard assumption that each elementof S ∈ {±1}K×P is i.i.d. and uniform

distributed. The following property shows that ifA1) is true then code rotation ambiguity is impossible:

Property 1 If C(.) is non-rotatable andA1) is satisfied, then there does not exist aQ such that

QC(sp) = C(s̃p), s̃p ∈ {±1}K \ {±sp} (37)

for all p = 1, . . . , P .

Proof: Suppose that (37) is satisfied for allp = 1, . . . , P , and without loss of generality assume that

S contains exactly2K−1 distinct bit vectors. Then we have{±s1, . . . ,±sP } = {±1}K , and subsequently

QC(s) = C(s̃), s̃ ∈ {±1}K \ {±s} (38)

can be satisfied for everys ∈ {±1}K . By Definition 1 such an OSTBC is rotatable.

A simulation example verifying Property 1 is as follows.

Example 3 We simulated a noise free situation

Yp = HC(sp), p = 1, . . . , P

whereH ∈ C
Mr×Mt is zero-mean i.i.d. circular Gaussian distributed, andS ∈ {±1}K×P is i.i.d. and

uniform distributed. The code function used is (29), which has been shown to be non-rotatable. The

number of receiver antennas isMr = 1. We applied a blind SDR-ML detector [14] to obtain an ML

decisionŜ from the observation{Yp}P
p=1. From Property 1, we expect that the error probabilityPr[ Ŝ 6=

±S ] should decrease withP particularly for P ≫ 2K−1. Fig. 1 plots the error probability versusP .

The results in the figure confirm our expectation. It is also interesting to see that the error probability

in Fig. 1 approaches zero forP > 3, which is far less than2K−1 = 32. This implies thatA1) is a

conservative sufficient condition for avoiding code rotation ambiguities.

This simulation example also reveals that for an i.i.d. Gaussian channel, non-rotatable OSTBCs with

large P can achieve unique identifiability with a probability that is almost1. This aspect is further

analyzed in the next subsection. �

3As an aside,A1) usually serves as one of the sufficient blind identifiabilityconditions for some MIMO/STBC schemes such

as spatial multiplexing [10] and Khatri-Rao space-time coding [11].
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Fig. 1. Error probability in the absence of noise.Mr = 1; number of simulation trials=100, 000.

On the other hand, there exists a subclass of non-rotatable OSTBCs that exhibits better immunity to

the code rotation ambiguities. Its definition is as follows:

Definition 2 An OSTBCC(.) is said to be strictly non-rotatable if there does not exist amatrix Q ∈
C

Mt×Mt such that

QC(s) = C(s̃) (39)

for any s, s̃ ∈ {±1}K , s̃ 6= ±s.

It is clear from the definition that a strictly non-rotatableOSTBC does not suffer from the rotation

ambiguity problem in (36), even forP = 1. Let R(A) denote the range space ofA. The following code

property is a direct consequence of matrix analysis results[33]:

Property 2 An OSTBCC(.) is strictly non-rotatable if and only if

R(CT (s)) 6= R(CT (s̃)) (40)

for any s, s̃ ∈ {±1}K , s 6= ±s̃.

From Property 2 we infer that

Property 3 All strictly non-rotatable OSTBCs haveMt < T .

Strictly non-rotatable codes exist, at least for the real case:

Theorem 2 If Mt is odd andC(.) is real valued, thenC(.) is strictly non-rotatable.

The proof of the above theorem is shown in Appendix B. Table IIshows the rotatability of various

real-valued OSTBCs. The results were obtained by numericalinspection. To check non-rotatability,

the fast numerical inspection idea in Corollary 1 was used. As for checking strict non-rotatability, an
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exhaustive inspection procedure following Definition 2 wasused. Table II illustrates that real-valued

OSTBCs are indeed strictly non-rotatable for oddMt. In Table III we show the rotatability of various

complex-valued OSTBCs. As a minor remark, the strict non-rotatability of the complex OSTBC with

(T,Mt,K/2) = (15, 5, 10) is marked ‘not known’ in Table III, because the number of possibilities

involved (i.e., (2K−1)2 = 419 combinations) is computationally too ovewhelming. It is interesting to

see that in contrast to the real case, a complex-valued OSTBCwith odd Mt is not necessarily strictly

non-rotatable.

TABLE II

ROTATABILITY OF VARIOUS REAL -VALUED OSTBCS. MOST CODES CAN BE FOUND IN[18].

(T, Mt, K) non-rotatable? strictly
real OSTBC non-rotatable?

(2, 2, 2) no no
(4, 3, 4) yes yes
(4, 4, 4) no no
(8, 5, 8) yes yes
(8, 6, 8) yes no
(8, 7, 8) yes yes
(8, 8, 8) yes no

TABLE III

ROTATABILITY OF VARIOUS COMPLEX-VALUED OSTBCS.

(T, Mt, K/2) origin, & non- strictly non-
complex OSTBC remarks rotatable? rotatable?

(2, 2, 2) Alamouti no no
(4, 3, 3) [20, Eq. (3.1)]; GOD yes no
(4, 4, 3) [20, Eq. (3.1)]; GOD yes no
(4, 4, 3) [18, Eq. (40)]; sporadic yes no

(15, 5, 10) [21, Eq. (100)]; GOD yes not known
(8, 5, 4) [22, Eq. (8)]; GOD yes yes
(8, 6, 4) [22, Eq. (8)]; GOD yes yes
(8, 7, 4) [22, Eq. (8)]; GOD yes no
(8, 8, 4) [22, Eq. (8)]; GOD yes no

Remark 3. Tables II and III show that many existing OSTBCs are rotatable, particularly whenMt is

even. This leads to a natural question of how to obtain a non-rotatable or strictly non-rotatable OSTBC,

fixing an Mt. This aspect will be further addressed in Section IV.

C. Identifiability Conditions

Using non-rotatable or strictly non-rotatable OSTBCs is a necessary condition for unique identifiability

up to a sign, as shown in the last subsections. Now, an interesting question is what are the sufficient
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identifiability conditions for these two code classes. Consider a standard MIMO assumption given as

follows:

A2) The channel matrixH is complex circular Gaussian distributed, possibly with nonzero mean and

with correlated entries.

Note thatA2) encompasses the popular i.i.d. Rayleigh channel model (or,equivalently, the i.i.d. zero-

mean Gaussian channel model). Lethi denotes theith row of H; i.e.,

HT = [ h1, . . . ,hMr
]. (41)

A blind identifiability condition is as follows:

Theorem 3 Suppose thatC(.) is non-rotatable. UnderA2), S is uniquely identifiable up to a sign

(UIUTS) with probability1 if

1) one of the covariance matricescov(h1), . . . , cov(hMr
) is positive definite, and

2) A1) holds.

In addition, the same condition holds without requiringA1) if the code is strictly non-rotatable.

The proof of this theorem is given in Appendix C. A direct consequence of Theorem 3 is as follows:

Corollary 2 For i.i.d. Rayleigh channels, non-rotatable OSTBCs are UIUTS with probability1 if A1)

holds. The same condition holds without requiringA1) if the code is strictly non-rotatable.

Theorem 3 gives the important implication that for many random Gaussian channel fading models,

it is almost impossible for strictly non-rotatable OSTBCs to encounter ambiguity given everyP ≥ 1

andS ∈ {±1}K×P . As for non-rotatable OSTBCs, the same identifiability condition usually holds for a

sufficiently large data lengthP , where there is a high chance thatA1) holds (c.f., the discussion after

A1)). We should also point out that Theorem 3 places no restriction on the number of receiver antennas

Mr. Hence, the probability1 blind identifiability result holds even in multiple-input-single-output (MISO)

systems. In fact, the simulation in Example 3 serves as a testimony to this attractive identifiability result.

As a side product of proving Theorem 3, we found in Appendix C that

Lemma 3 For any full column rankH, non-rotatable OSTBCs are always UIUTS ifA1) holds. The

same condition holds without requiringA1) if the code is strictly non-rotatable.
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Lemma 3 is not as profound as Theorem 3, but it is interesting because not all MIMO/STBC scheme

can be UIUTS given a full column rank channel; e.g., spatial multiplexing [10]. (It should be noted,

though, that spatial multiplexing can be uniquely identifiable up to a permutation.)

IV. N ON-INTERSECTINGSUBSPACES, PERFECT IDENTIFIABILITY , AND CODE CONSTRUCTION

This section considers construction of OSTBCs with good blind identifiability. This development is

motivated by the fact that many existing OSTBCs are rotatable, as noticed in the previous section. We

examine a subclass of strictly non-rotatable OSTBCs, viz. the non-intersecting subspace (NIS). This class

of OSTBCs exhibits ‘perfect’ blind identifiability, in the sense that the codes are uniquely identifiable up

to a sign foreverynonzero channel and data matrix. The disadvantage of NIS-OSTBCs, though, is data

rate reduction (under some standard assumption). All theseaspects are described in the first subsection.

In the second subsection, we propose a simple code construction procedure that can convert the existing

OSTBCs to NIS-OSTBCs. In the third subsection, we describe asimple way of reducing the rate loss

problem in NIS-OSTBC.

A. Non-Intersecting Subspace OSTBCs

The class of NIS-OSTBCs is defined as follows:

Definition 3 An OSTBC is said to be a non-intersecting subspace (NIS) OSTBC if

R(CT (s)) ∩R(CT (s̃)) = {0} (42)

for everys, s̃ ∈ {±1}K , s 6= ±s̃.

The NIS concepts were introduced in the noncoherent space-time coding literature [34] for achieving the

maximumnoncoherent spatial diversity[3], [5] in an i.i.d. Rayleigh channel. However, up to this point

there is no study regarding the existence and construction of NIS-OSTBCs. An NIS-OSTBC is strictly

non-rotatable [compare (42) and Property 2], but the vice versa is not true. Moreover, NIS-OSTBCs have

an additional constraint on the code length:

Property 4 All NIS-OSTBCs have2Mt ≤ T .

Property 4 can be proven using standard matrix results [33],[35]. In contrast, strictly non-rotatable codes

requireMt < T only (Property 3). We found that many existing OSTBCs do not satisfy Property 4, let

alone being NIS.
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The following theorem shows that NIS-OSTBCs are ‘perfect’ from a blind identifiability standpoint:

Theorem 4 Given every nonzero channel channelH ∈ C
Mr×Mt and data matrixS ∈ {±1}K×P , S is

UIUTS if and only ifC(.) is an NIS-OSTBC.

Proof: One can easily show that to be UIUTS for anyS ∈ {±1}K×P and nonzeroH ∈ C
Mr×Mt,

it is sufficient and necessary that the following statement holds: For every pair of distinct bit vectorss, s̃,

the condition

hTC(s) = h̃TC(s̃) (43)

cannot be satisfied by anyh, h̃ ∈ C
Mt \ {0}. By noting that

R(CT (s)) ∩R(CT (s̃))

=
{

y

∣

∣

∣
y = CT (s)h = CT (s̃)h̃, h, h̃ ∈ C

Mt

}

(44)

and by comparing (44) and (43), we have the conclusion that the condition in (43) is equivalent to have

R(CT (s)) ∩R(CT (s̃)) = {0} for any s 6= ±s̃.

There is a price for employing the NIS-OSTBCs, however.

Lemma 4 Suppose thatC(.) is based on real or complex GODs (see Remark 1, Section II-A for the

descriptions regarding GODs). IfC(.) is also an NIS-OSTBC, then it does not achieve the full rate; i.e.,

K < T for real GODs andK/2 < T for complex GODs.

The proof of Lemma 4 is given in Appendix D. Lemma 4 has more impacts on the real case, because

full-rate real GODs exist for anyMt while full-rate complex GODs exist only forMt = 2 [18], [21].

B. A Simple NIS Code Construction

We use the hints provided by Property 4 and Lemma 4 to come up with the following OSTBC

construction:

Construction I:

Given an OSTBC functionCo(s) =
∑K

k=1
skXk ∈ C

Mt×T , whereK is even.

Step 1.SetC1(s) =
∑K−1

k=1
skXk.

Step 2. Output Cnew(s) = [ C1(µ) Co(ν) ] ∈ C
Mt×2T as the new OSTBC, whereµ =

[ s1, . . . , sK−1 ]T andν = [ sK , . . . , s2K−1 ]T .
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Note that that most OSTBCs have a evenK. In the above construction we concatenate two OSTBCs,

thereby forming a longer code that satisfies Property 4. Moreover, we drop1 bit so as not to enable full

rate; cf., Lemma4. Surprisingly, by doing so it is sufficientto obtain an NIS-OSTBC:

Theorem 5 Given any OSTBC functionCo : R
K → C

Mt×T whereK is even, the code generated by

Construction I is an NIS-OSTBC.

The proof of this theorem is described in Appendix E. It is interesting to look at some examples

of NIS-OSTBCs from Construction I. ForMt = 2, we convert the real-valued Alamouti code to the

following NIS-OSTBC

C(s) =





s1 0 s2 −s3

0 s1 s3 s2



 . (45)

For the complex counterpart, let us define

uk,ℓ = sk + jsℓ (46)

for notational simplicity. The following NIS-OSTBC is established from the complex Alamouti code:

C(s) =





u1,3 −s2 u4,6 −u∗
5,7

s2 u∗
1,3 u5,7 u∗

4,6



 . (47)

It is interesting to note that the new OSTBC contains both BPSK and QPSK symbols, because

Construction I drops the imaginary part of one complex symbol. For Mt = 3, we obtain the following

real NIS-OSTBC from (34)

C(s) =











s1 −s2 −s3 0 s4 −s5 −s6 −s7

s2 s1 0 −s3 s5 s4 s7 −s6

s3 0 s1 s2 s6 −s7 s4 s5











. (48)

Similarly, from (29) we construct a complex3 × 8 NIS-OSTBC

C(s) =











u1,4 −u∗
2,5 −s3 0 u6,9 −u∗

7,10 −u∗
8,11 0

u2,5 u∗
1,4 0 −s3 u7,10 u∗

6,9 0 −u∗
8,11

s3 0 u∗
1,4 u∗

2,5 u8,11 0 u∗
6,9 u∗

7,10











. (49)

A simulation example verifying the theoretical results is as follows.

Example 4 We consider the QPSK Alamouti code, and its NIS counterpart in (47). In the simulation

the number of receiver antennas isMr = 1, and the channel is i.i.d. zero-mean Gaussian distributed.The

sign ambiguity effect is eliminated by assuming that one of the bit symbols is known at the receiver.
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Fig. 2(a) shows the bit error performance of the original Alamouti code and the NIS Alamouti code

when the blind SDR-ML receiver [14] is used. As a reference wealso plotted the performance of the

corresponding coherent and differential [8], [9] Alamoutischemes. In the figure, we see that the original

Alamouti code fails to provide consistent performance withrespect to the SNRs. This is because the

Alamouti code is rotatable. In contrast, the performance ofthe NIS Alamouti code is promising: First,

we observe that for all the values ofP tested, the bit error probability asymptotically decays atthe same

rate as that of the coherent ML. This gives an implication that the NIS code achieves the full noncoherent

spatial diversity, from a viewpoint of noncoherent space-time code performance analysis [5]. Second, the

bit error rate improves asP increases. ForP = 16, the NIS Alamouti code attains a performance that is

1dB better (in terms of the SNR) than the differential Alamouti scheme.

SDR-ML is only one of the effective alternatives to blind detection. In Fig. 2(b), the performance of

another blind receiver, namely the cyclic ML in [2], is illustrated. One can observe that the cyclic ML

receiver also provides excellent performance for sufficiently large P .
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Fig. 2. Bit error rate of the NIS Alamouti code, with the blindreceiver being (a) the SDR-ML method; and (b) the cyclic ML.

Let us use this example to discuss the rate and power issues ofNIS-OSTBCs. In the original QPSK

Alamouti code, the average bit rate isK/T = 4/2 = 2 bits per channel use. For the NIS counterpart, it is

K/T = 7/4 = 1.75 bits per channel use. Moreover, the average code power, given by E{‖C(s)‖2
F }/T =

MtK/T , is 2Mt for the original Alamouti code and1.75Mt for the NIS Alamouti code. [We should

recall that our formulation has the bit energy being constant for a fixed Mt, but not the average code
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power; c.f., Eqs. (1) and (4).] If the simulation is repeatedby comparing the two codes with the same

average code power, the NIS Alamouti code will yield an extraSNR gain by about0.5dB. �

C. A Modified OSTBC Scheme

The NIS-OSTBCs generated by Construction I have a data rate of (2K−1)/(2T ) bits per channel use

(bpcu). This rate is relatively lower than that of their original counterpart; that is,K/T bpcu. To reduce

the rate loss, we propose the following modified transmission scheme:

Modified OSTBC Transmission Scheme

Given an OSTBCCo(s) =
∑K

k=1
skXk ∈ C

Mt×T whereK is even, and a frame lengthP ≥ 2.

Step 1.SetC1(s) =
∑K−1

k=1
skXk.

Step 2.For p = 1, transmitC1(s1) wheres1 ∈ {±1}K−1.

Step 3.For p = 2, . . . , P , transmitCo(sp) wheresp ∈ {±1}K .

The difference between the original and modified transmission schemes lies in the first transmitted

code block only, where the modified scheme transmits a1-bit-reduced OSTBCC1(.) in place of

Co(.) in the original case. Since the first two code blocksC1(s1) and Co(s2) can be seen as one

NIS-OSTBC, perfect identification ofH (up to a sign) is guaranteed and it follows that the rest

of the code blocksCo(s3), . . . ,Co(sP ) are also perfectly identifiable. Alternatively, the code frame

[C1(s1),Co(s2), . . . ,Co(sP )] can regarded as a supercode that has the NIS property inherited from

[C1(s1),Co(s2)]. The rate of the modified scheme is(2KP − 1)/(2TP ) bpcu. Hence, for largeP , the

rate of the modified scheme approaches that of the original.

The performance of the modified OSTBC scheme is illustrated by simulations as follows:

Example 5 This example compares the performance of the original and modified OSTBC transmission

schemes. The simulation settings here are identical to thatin Example 4, and the SDR-ML detector

was employed. Fig. 3(a) plots the performance in the QPSK Alamouti case. We see that the modified

scheme has its bit error probability being consistent and decaying at the same rate as that of the coherent

ML (thereby having the full noncoherent spatial diversity). However, increasingP is not very helpful in

improving the performance, unlike the promising NIS-Alamouti code in Example 4. In fact, the modified

scheme fails to provide performance better than the differential Alamouti scheme.

In Fig. 3(b) we consider the BPSK OSTBC3 × 4 code [in (34)]. This code is strictly non-rotatable,

meaning that it is already UIUTS with probability1. From a blind identifiability standpoint it seems to

be sufficient to use the original scheme, but we were still curious about the performance difference of the
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(a) QPSK Alamouti
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Fig. 3. Bit error rate of the the original and modified OSTBC schemes. The SDR-ML detector was used.

original and modified schemes. Remarkably, we see from the figure that the modified scheme in this case

can achieve near coherent ML performance, unlike the previous Alamouti case. In the original scheme,

the bit error probability decays at a rate lower than that of the coherent ML. The modified scheme does

not have this problem, and its performance improves quite well with respect toP . It also yields better

performance than the differential scheme forP ≥ 8, by about1.5dB whenP = 16.

This example demonstrates an interesting issue: Achievingperfect blind identifiability is desirable,

but it does not always lead to excellent, near coherent ML performance. How to design OSTBCs for

achieving good noncoherent error performance appears to bean interesting future direction, but is beyond

reach of this paper. �

V. CONCLUSION AND DISCUSSION

In this paper, the blind ML identifiability of OSTBCs with BPSK or QPSK constellations has been

studied. Our analysis leads to the conclusion that orthogonal space-time block coding provides very

appealing blind identifiability, in the sense that there exist OSTBCs that can be uniquely identified up

to a sign (UIUTS) almost surely for many Gaussian fading channels, or UIUTS deterministically for

all nonzero channels. These characteristics imply that even in harsh channel environments such as rank

deficient channel matrix and one receiver antenna, blind orthogonal space-time block coding can still

operate properly. We have not only identified blindly-identifiable OSTBCs from the existing OSTBCs, a

procedure has also been proposed to construct OSTBCs with excellent blind identifiability.
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This paper considers the case of BPSK and QPSK constellations only. Extensions to higher-order PSK

and QAM constellations would be a future direction worth studying. In addition, it would be interesting to

investigate how the present results are related to the identifiability of non-standard OSTBC transmission

schemes in [16] and [36], [37], where unequal symbol powers and unequal symbol constellations are

respectively used to fix the non-identifiability issue in rotatable OSTBCs.

APPENDIX

A. Proof of Theorem 1

The nontrivial part of Theorem 1 lies in showing that ifC(.) is rotatable, then Statement iii) of

Theorem 1 holds. Suppose thatS = [ s1, . . . , sP ] ∈ {±1}K×P is a matrix where its columns contain

all combinations of vectors in{±1}K . For a rotatableC(.) with a (unitary) code rotation matrixQ, the

following condition holds according to the definition:

QC(sp) = C(s̃p), p = 1, . . . , P (50)

for somes̃p ∈ {±1}K \ {±sp} , p = 1, . . . , P ; or equivalently

C(sp) = QHC(s̃p), p = 1, . . . , P. (51)

From the above equation, it is straightforward to verify that Q 6= ±I. By using derivations similar to

Eqs. (13)-(15), Eq. (51) can be reexpressed as

X sp = (IT ⊗QH)X s̃p, p = 1, . . . , P. (52)

where the overline means thatA = [ Re{A}T Im{A}T ]T , and thatX = [ vec(X1), . . . , vec(XK) ].

By applying the propertyB
T
A = Re{BHA} (which is easy to verify) and by using (3), we have that

X
T
X = MtI. (53)

Premultiplying (52) byX
T

, we obtain

sp = Γs̃p, p = 1, . . . , P, (54)

whereΓ = 1

Mt

X
T
(IT ⊗ QH)X . Since we have assumed that the columns ofS contain all combinations

of vectors in{±1}K , there exist2K−1 distinct bit vectors in the columns ofS. By applying Lemma 1

to (54), we obtainΓ = DΠT and s̃p = ΠDsp, whereΠ ∈ {0, 1}K×K is a permutation matrix, and

D ∈ R
K×K is diagonal withdiag(D) ∈ {±1}K . Substituting this result into (50), we conclude that

QC(s) = C(ΠDs) (55)
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for s ∈ {±1}K . It can be proven that (55) holds fors ∈ R
K as well, by using the linearity ofC(.). The

matrix Π must have zero main diagonals. To see this, suppose that the(k, k)th element ofΠ equals1.

By letting ek be a vector whosekth element is1 and whose remaining elements are0, we have that

QXk = QC(ek) = C(ΠDek) = dkXk, (56)

wheredk ∈ {±1} is thekth diagonal ofD. SinceXkX
H
k = I, Eq. (56) is a contradiction toQ 6= ±I.

B. Proof of Theorem 2

The proof is by contradiction. A real OSTBCC(s) =
∑K

k=1
skXk has its basis matricesXk being all

real. Suppose thatMt is odd, and thatC(.) is not strictly non-rotatable such that

QC(s) = C(s̃) (57)

is satisfied for someQ ∈ R
Mt×Mt , s, s̃ ∈ {±1}K , s 6= ±s̃. The row orthogonality ofC(.) [Eq. (4)]

implies thatQ must be unitary. Post-multiplying (57) byCT (s)/K, we get

Q = 1

K C(s̃)CT (s). (58)

From the OSTBC properties in (1) and (3), Eq. (58) can be decomposed to

Q = αI + B, (59)

where

α =
1

K

K
∑

k=1

sks̃k, B =
1

K

K
∑

k=1

K
∑

ℓ=1,ℓ 6=k

sks̃ℓXkX
T
ℓ . (60)

SinceXkX
T
ℓ is skew symmetric fork 6= ℓ [cf., Eq. (3)], B is also skew symmetric.

Let λ1(A), . . . , λn(A) denote the eigenvalues ofA ∈ C
n×n. SinceQ is unitary, it must be true that

|λi(Q)| = 1 for all i = 1, . . . ,Mt. From (59), we haveλi(Q) = α + λi(B) for i = 1, . . . ,Mt. Using the

fact that a (real) symmetric matrix with odd dimension must be singular [38], we know that at least one

of the λ1(B), . . . , λMt
(B) equals zero. Consequently, we have thatλi(Q) = α for somei. But, from

(60) it is easy to check that|α| < 1 for any s 6= ±s̃, a contradiction to|λi(Q)| = 1 for all i.

C. Proof of Theorem 3

Let σmax(A) andσmin(A) define the maximum and minimum singular values ofA, respectively. We

will require the following lemma:
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Lemma 5 Let E,F ∈ C
M×T , and suppose thatEEH = FFH = I. Then,

σmax(EFH) ≤ 1. (61)

Moreover, the condition

σmin(EFH) < 1 (62)

holds ifR(ET ) 6= R(FT ).

Proof of Lemma 5:Eq. (61) is straightforward sinceσmax(EFH) = ‖EFH‖2 ≤ ‖E‖2‖F‖2 = 1, where

‖.‖2 denotes the matrix2-norm. To prove (62), we use the results in distance between subspaces [35].

Let S1 and S2 be subspaces with equal dimension. The distance betweenS1 and S2 are defined by

dist(S1,S2) = ‖P1 −P2‖2, whereP1 andP2 denotes respectively the orthogonal projectors ofS1 and

S2. The distancedist(S1,S2) equals zero only whenS1 = S2. Now, it can be shown that [35, p. 76–77]

dist2(R(ET ),R(FT )) = 1 − σ2
min(E

∗FT ) = 1 − σ2
min(EFH). (63)

Hence, we haveσ2
min

(EFH) < 1 wheneverR(ET ) 6= R(FT ). �

To prove Theorem 3, suppose that

HC(sp) = H̃C(s̃p), p = 1, . . . , P, (64)

for some{H̃, S̃} 6= ±{H,S}. Let

E = 1√
KP

[ C(s1), . . . ,C(sP ) ], (65)

F = 1√
KP

[ C(s̃1), . . . ,C(s̃P ) ] (66)

so that (64) can be reexpressed as

HE = H̃F. (67)

The matricesE andF satisfyEEH = FFH = I. WhenC(.) is strictly non-rotatable, from Property 2

we obtainR(ET ) 6= R(FT ). WhenC(.) is non-rotatable andA1) holds, from Property 1 we know that

there does not exist aQ such thatQE = F, therebyR(ET ) 6= R(FT ). Eq. (67) can be rewritten as

HEFH = H̃. (68)

By taking the Frobenius norm on the two sides of (67) and (68),we obtain ‖H‖F = ‖H̃‖F and

‖HEFH‖F = ‖H̃‖F , respectively. It follows that

‖H‖2
F = ‖HEFH‖2

F . (69)
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Using Lemma 5, an expression for the singular value decomposition of EFH is obtained:

EFH = [ U1 U2 ]





Ir

Σ2









VH
1

VH
2



 , (70)

wherer < Mt is the number of unit singular values ofEFH , Σ2 is diagonal containing the singular

values that are less than1, U1 andV1 are respectively the left and right singular matrices associated with

the unit singular values, andU2 andV2 are respectively the left and right singular matrices associated

with the less-than-1 singular values. Substituting (70) tothe right hand side of (69) yields

‖HEFH‖2
F = ‖HU1‖2

F + ‖HU2Σ2‖2
F . (71)

On the other hand, using the unitarity of[ U1 U2 ], the left hand side of (69) can be decomposed to

‖H‖2
F = ‖HU1‖2

F + ‖HU2‖2
F . (72)

It follows that

‖HU2‖2
F = ‖HU2Σ2‖2

F , (73)

which can be shown to be equivalent to

tr{HU2(I − Σ2
2)U

H
2 HH} = 0. (74)

SinceI − Σ2
2 ≻ 0 (whereA ≻ 0 means thatA is positive definite), to satisfy (74) it is sufficient and

necessary to have

HU2 = 0. (75)

Let us consider the probability that (75) holds, which is equivalent to the probability that (64) holds.

Let µi andRi denote the mean and covariance ofhi, whereHT = [ h1, . . . ,hMr
]. The probability of

(75) is bounded by

Pr[HU2 = 0] = Pr
[

∩Mr

i=1
{UT

2 hi = 0}
]

≤ Pr[UT
2 hi = 0], (76)

for any i = 1, . . . ,Mr. Under A2), each random vectorUT
2 hi follows a circular complex Gaussian

distribution with meanUT
2 µi and covarianceUT

2 RiU
∗
2. If Ri ≻ 0 for somei, then it can be shown that

Pr[UT
2 hi = 0] is of measure zero for thosei. Subsequently, from (76) we havePr[HU2 = 0] = 0.

As a side product, we note that (75) can never be satisfied ifH is of full column rank. This observation

leads to Lemma 3.
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D. Proof of Lemma 4

Lemma 4 is shown by constructing a situation such that

CT (s)h = CT (s̃)h̃ (77)

for some distinct pair of bit vectors(s, s̃) and for someh, h̃ ∈ C
Mt\{0}, thereby obtaining the conclusion

R(CT (s)) ∩R(CT (s̃)) 6= {0}.

Assume thatC(.) is a full-rate real GOD. In this case the code matrix can be expressed as

CT (s) = [ E1s, . . . ,EMt
s ], (78)

whereEi ∈ R
T×T are code constituent matrices that satisfy the following structures [21]: i)ET

i Ei =

EiE
T
i = I; ii) ET

i Ek = −ET
k Ei for i 6= k; and iii) eachEi is a±1 permutation matrix in the form of

Ei = ΠiDi (79)

whereΠi ∈ {0, 1}T×T is a permutation matrix andDi ∈ R
T×T is diagonal withdiag(Di) ∈ {±1}T .

Now, fixing s ∈ {±1}K , choose

s̃ = ET
2 E1s. (80)

It is easy to show thatET
2 E1 is also a±1 permutation matrix. Hence, we haves̃ ∈ {±1}T . Moreover, it

must be true that̃s 6= ±s given anys ∈ {±1}T . The reason is as follows: If̃s = ±s, thenET
2 E1 must

have one eigenvalue equal to±1. But ET
2 E1 is a skew-symmetric matrix, the eigenvalues of which are

either pure imaginary or zero [33]. With the above settings,one can show that

CT (s)e1 = CT (s̃)e2. (81)

For the case of full-rate complex GODs whereK = 2T , let sR = [ s1, . . . , sT ]T and sI =

[ sT+1, . . . , s2T ]T . The code matrix can be expressed as [19]

CT (s) = [ E1sR + jF1sI , . . . ,EMt
sR + jFMt

sI ] (82)

whereEi ∈ R
T×T andFi ∈ R

T×T . The structures ofEi are identical to those in real GODs, whileFi

follow the same structures; namely thatFiF
T
i = I, FT

i Fk = −FT
k Fi for i 6= k, and eachFi is a ±1

permutation matrix. The rest of the proof are then almost thesame as in the real case, and are omitted

for brevity.
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E. Proof of Theorem 5

This theorem is proven by contradiction. Suppose thatCnew(.) is not an NIS-OSTBC such that for

some distinct pair of bit vectors(s, s̃), there existh, h̃ ∈ C
Mt \ {0} such that

hTCnew(s) = h̃TCnew(s̃). (83)

From Construction I, Eq. (83) can be decomposed to two sets ofequations

hTC1(µ) = h̃TC1(µ̃), (84)

hT Co(ν) = h̃TCo(ν̃), (85)

where s = [ µ
T

ν
T ]T and s̃ = [ µ̃

T
ν̃

T ]T . Postmultiplying (84) and (85) byC1(µ) and Co(ν)

respectively, we obtain

hT = h̃T Q1, hT = h̃TQ2, (86)

where

Q1 = 1

K−1
C1(µ̃)CH

1 (µ), Q2 = 1

K Co(ν̃)CH
o (ν). (87)

Eqs. (86) lead to

h̃T (Q1 − Q2) = 0, (88)

implying thatQ1 − Q2 is singular.

We now show thatQ1 − Q2 cannot be singular. The matricesQ1 andQ2 can be expressed as

Q1 =
α1

K − 1
I + B1, Q2 =

α2

K
I + B2 (89)

where

α1 =
K−1
∑

k=1

µkµ̃k ∈ {±1,±3, . . . ,±(K − 1)}, (90)

α2 =
K

∑

k=1

νkν̃k ∈ {0,±2,±4, . . . ,K}, (91)

and B1 = 1

K−1

∑

k

∑

ℓ 6=k µ̃kµℓXkX
H
ℓ and B2 = 1

K

∑

k

∑

ℓ 6=k ν̃kνℓXkX
H
ℓ are skew-Hermitian [cf.,

Eq. (3)]. Hence,

Q1 − Q2 = γI + (B1 −B2), (92)

where

γ =
α1

K − 1
− α2

K
. (93)
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If Q1 − Q2 is singular, then at least one of its eigenvalues has to be0. From (92), the eigenvalues of

Q1−Q2 are given byλi(Q1−Q2) = γ+λi(B1−B2), i = 1, . . . ,Mt. SinceB1−B2 is skew-Hermitian,

its eigenvaluesλi(B1 −B2) are either pure imaginary or zero [33]. Hence, to have a singular Q1 −Q2

it is necessary thatγ = 0. SinceK is even, it can be represented byK = 2m for some integerm.

Likewise,α2 can be represented byα2 = 2c wherec ∈ {0,±1, . . . ,±m}. The conditionγ = 0 implies

that

α1 =
K − 1

K
α2 =

(2m − 1)c

m
= 2c − c

m
. (94)

From (90)α1 is an odd number, but Eq. (94) indicates thatα1 is not an integer unlessc = 0 or c = ±m.

For c = 0 we haveα1 = 0, a contradiction. Forc = ±m, we haveα1 = ±(K − 1) andα2 = ±K. Such

a condition can only be satisfied when[ µ
T

ν
T ]T = ±[ µ̃

T
ν̃

T ]T , a contradiction tos 6= ±s̃.
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