ACCEPTED BY IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCHESIG, AUG. 2009 1

The Equivalence of Semidefinite Relaxation
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Abstract

In multi-input-multi-output (MIMO) detection, semidefigi relaxation (SDR) has been shown to be
an efficient high-performance approach. For BPSK and QPSkad been found that SDR can provide
near-optimal bit error probability performance. This htisiglated a number of recent research endeavors
that aim to apply SDR to the high-order QAM cases. These iadéently developed SDRs are different
in concept, structure and complexity, and presently naasranalysis has been given to compare these
methods. This paper analyzes the relationship of three SDéhmethods, namely the polynomial-inspired
SDR (PI-SDR) by Wieseet al, the bound-constrained SDR (BC-SDR) by Sidiropoulos and, laind
the virtually-antipodal SDR (VA-SDR) by Maet al. Rather unexpectedly, we prove that the three SDRs
are equivalent in the following sense: The three SDRs yibll game optimal objective values, and
their optimal solutions have strong correspondences.ifsgaly, we establish this solution equivalence
between BC-SDR and VA-SDR for anly-QAM constellations, and that between BC-SDR and PI-SDR
for 16-QAM and 64-QAM. Moreover, the equivalence resultdsofor any channel, problem size, and
SNR. Our theoretical findings are confirmed by simulatiortsere the three SDRs offer identical symbol
error probabilities. Additional simulation results ares@lprovided to demonstrate the effectiveness of
SDR compared to some other MIMO detectors, in terms of coxitgleand symbol error performance.
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. INTRODUCTION

Multiple-input-multiple-output (MIMO) detection usingemidefinite relaxation (SDR) [1]-[14] has
recently received increasing attention. Being a symbaktallation dependent technique, SDR has been
shown to provide considerably better symbol error perferceathan some suboptimal MIMO detectors
such as the linear and decision-feedback receivers. SDRRtiamoptimal approach from a maximum-
likelihood (ML) perspective, but it guarantees a polyndrtiime complexity in the problem dimension.
In comparison, the currently best known methods for optitddl MIMO detection, namely sphere
decoding [15], [16], do not have such a guarantee {17].

SDR was first proposed for the BPSK constellation [1], [2]d dhe same idea can easily be carried
forward to the QPSK constellation (or 4-QAM) [6], [7]. For BR and QPSK, simulation results have
indicated that SDR can provide near-optimal bit error penfance. This intriguing finding has stimulated
a number of works. Theoretically, it is shown recently [1#8t SDR can achieve the full receive diversity
in the BPSK case. An equally interesting but totally differanalysis is given in [14], where the SDR
approximation gap is examined using random matrix theoparAfrom theoretical analysis, there has
been interest in various aspects such as fast implememafi®], [20] and soft-in-soft-out MIMO
detection [7], [21].

But what attracts more attention in SDR is possibly its esi@mto more general symbol constellations,
especially the higher-order QAM. SDR for higher-order PS#& been considered in [3]. For higher-
order QAM which is the focus of this paper, the first endeagoby Wieselet al. [9], who proposed
a polynomial-inspired SDR (PI-SDR) method for 16-QAM. Irattwork the authors also showed that
PI-SDR is a bidual of the optimal ML MIMO detector (or achievan optimal Lagrangian dual lower
bound of the ML metric). The drawback of PI-SDR is that itsegdion to larger QAM sizes would
be increasingly complex to handle. Later, Sidiropoulos &nd proposed a bound-constrained SDR
(BC-SDR) method [9] for any QAM constellation. BC-SDR aintssamplicity and appears to be less
sophisticated than PI-SDR. For instance, the BC-SDR pnokleucture is virtually the same for any QAM
size. The simple, special structures of BC-SDR make fasteémentations [22] particularly favorable.
More recently, Macet al. [10] developed a virtually-antipodal SDR (VA-SDR) methait finy47-QAM
(whereq > 1). As its name implies, VA-SDR has a strong connection to tb&® $ised in BPSK/QPSK.

VA-SDR is structurally less complex than PI-SDR, but in@dvmore optimization variables than BC-

1As a short aside, the complexity limitation of optimal sphelecoding has recently motivated interest in some subaptim

but reduced-complexity variants; e.g., the Fano decod@rdid the fixed-complexity sphere decoder [18].
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SDR.

It is worthwhile to mention two more recent developments bisigheret al. formulated a class of SDR
problems that is applicable to any kind of symbol consteltet [12]. As a price for their generality,
Mobasher’s formulations are considerably more complex tthe other SDRs. This translates into a
higher computational requirement. Yaegal. [11] proposed a tightened version of BC-SDR for the 16-
QAM case. Interestingly, they showed that their tighten€2i &R can provide a better approximation
than the 16-QAM PI-SDR.

While a number of SDR methods have been proposed for higlder&®AM, their comparisons have
not been seriously considered at present. This paper fearsanalyzing the relationship of the PI-SDR,
BC-SDR, and VA-SDR methods. We obtain a result that is iivieliy not so obviousPI-SDR, BC-SDR,
and VA-SDR are actually equivalent, despite the fact thay texhibit rather different structures and
complexities Specifically, our analysis reveals that

1) for 16-QAM and 64-QAM, there exists an equivalence betwte feasible sets of PI-SDR and

BC-SDR; and that
2) for any4?-QAM, there exists an equivalence between the feasiblecgef®-SDR and BC-SDR.

This feasible set equivalence directly translates intovedgnce of the solution sets of the three SDRs.
Hence, the three SDRs are expected to provide the same sgmbioprobability. This is further illustrated
by simulations. Moreover, the equivalence result is quéeegal in the sense that it holds for any channel,
problem size, and SNR.

This paper is organized as follows. In order to give insights the three SDRs, we use the relatively
simple case of 16-QAM to provide the problem statement inti®edl, and to review the three SDR
methods in Section Ill. This is followed by Section IV, where provide numerical comparisons of
the three SDRs. In particular, the complexity and perforoeaof the three SDRs will be shown and
compared. Then, in Section V we prove the 16-QAM SDR equn@dewith an emphasis on illustrating
the main ideas (which would be difficult to see for the more plax cases of larger QAM sizes). As a
step further, Section VI proves the SDR equivalence fordaf@AM sizes. Some simulation results are

provided in Section VII for demonstrating the SDR performan

Il. PROBLEM STATEMENT

The MIMO detection problem may be most easily described sitering the standard scenario of
spatial multiplexing (or V-BLAST) over a frequency-flat civeel [23], [24]. In that scenario, we have

the transmitter and receiver equipped withand A/ antennas respectively, and each transmitter antenna
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sends an independent data symbol at each symbol intervalréideived spatial signal can be modeled
by the following formula:

Here, I € CM*N js the MIMO channely € CM s the received signal vecto, is a noise vector
assumed to be zero-mean circular white Gaussiansand” is the transmitted symbol vector where

S C C denotes the symbol constellation set. For the 16-QAM cdlatitn, S is given by
S={s=sr+jsr| sr,sre{£l,£3} }.

It should be emphasized that detection techniques for ()simply MIMO detection, is a very
meaningful topic with relevance not only to spatial mukixhg but also to many other scenarios. In
CDMA multiuser detection [25], for instance, the respegtiletection problem can be formulated in the
same form as (1) (witiV becoming the number of users). Likewise, in the decodingofesspace-time
block codes [26] and space-frequency block codes [27], wecanfronted with a detection problem in
which the model can eventually be formulated as (1). For ailéet description of these, we refer the
reader to [15], [16] which provide an excellent coverage @ivlthe simple model in (1) can be relevant
to many different detection problems in communications.

It is convenient to reformulate the complex-valued mode{lipto a real-valued one. Let

R{y} R{s} R{H} -3{H}

Sy s} S{H} R{H}
M = 2M, andN = 2N. Eq. (1) is equivalent to
y=Hs+v (2)

wheres € {+1,4+3}" andv is defined in the same way gs The ML detection problem for the MIMO

model in (2) is shown to be an optimization problem

i — Hs|? 3
L ly — Hs|", ®3)

in which the globally optimal solution serves as the ML dexisNote that|-|| in (3) stands for the vector
2-norm. ML detection is known to provide superior detecti@ifprmance, but the major challenge lies
in solving (3) which is a computationally hard problem. Ry, the best known optimal solver for (3)
is sphere decoding [15], [16]. While sphere decoding has leeepirically found to be computationally
very fast for small to moderate problem sizes (say,/fox 20 for 16-QAM), it has been revealed [17]

that the sphere decoding complexity would be prohibitivelfmge N and/or low SNRs.
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I1l. REVIEW OF THREE 16-QAM SDR DETECTORS

SDR is a suboptimal approach to ML, using a class of polynbtimee solvable convex optimization
problems known as semidefinite programs. In this sectiorrewiew three SDR methods for the 16-QAM
constellation, namely PI-SDR [8], BC-SDR [9], and VA-SDRO[1(Their extensions beyond 16-QAM

will be considered later in the paper.)

A. Polynomial Inspired SDR

PI-SDR was the first application of the SDR principle [28] ®QAM ML detection, to the best of

our knowledge. To present its idea, consider a reformuiatiothe ML problem in (3)

min tr(HTHS) — 2s"H 'y + |y||?
SeSN seRN (4)
s.t. S=ss’, S;€{1,9}, i=1,...,N
whereS is a slack variableSY is the set of N x N real symmetric matricesS;; denotes thei, j)th

element ofS, andtr(-) is the trace operator. PI-SDR was inspired by the fact that
we{l,9) <= (u—1(u—9)=0+<=u?>—10u+9=0.

By turning the constraints;; € {1,9} to a polynomial form, Problem (4) is further reformulated as

guin - tr(HTHS) — 2T HTy + [y|?
st. S=ss’, U=uu’ (5)
d(S)=u, d(U)—10u+91y =0
whered : R¥V*N — RV is the diagonal operator (i.ed(S) = [ Si1,...,Syn |7), and1y is the N-
dimensional all-one vector. The reformulated ML problen(5his still hard, where the difficulty lies in
the nonconvex constrain® = ss” and U = uu’ which restrictS and U to be of rank 1.
In PI-SDR, we relax the polynomial ML formulation in (5) to
min tr(H HS) — 2s"H 'y + |y||?
st. S ssT, U = uu? (6)
d(S)=u, d(U)—10u+91y =0

whereA = B means thatA — B is positive semidefinite (PSD). The idea is to replace thd kanstraint
S = ss’ by a convex constrair® = ss”, and similarly toU = uu’. There are two basic advantages
with such a relaxation. First, Problem (6), or the PI-SDRbtem is a semidefinite program (SDP) which
is convex and does not suffer from local minima. Second, aS[&A the PI-SDR problem can be solved

by available interior-point methods [29], [30] in a polyniaitime fashion.
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Once we solve the PI-SDR problem in (6), we can make a symhm$ida by simple rounding of the
PI-SDR solution associated wigh A better alternative to this simple rounding is the Gausss@ndomized

rounding; see [2], [8], [9] for the details.

B. Bound constrained SDR

BC-SDR is possibly the simplest among the various 16-QAM 3#hods. It relaxes the ML problem

in (4) to an SDP
min tr(HTHS) — 2s"H 'y + |y||? @
st. S=ssl, 1<85;<9, i=1,...,N,
where the original constrairf = ss’ is replaced by the PSD constrai®t> ss” (as in PI-SDR), and
the discrete sefl1,9} is relaxed to an intervdll, 9].
The BC-SDR problem in (7) exhibits particularly simple SD®kidem structure. This has enabled us
to develop a specialized interior-point algorithm for (Fat runs many times faster than some general-

purpose interior-point software [22]. The complexity of DR is shown to be)(N3?) [22].

C. Virtually Antipodal SDR

VA-SDR was proposed by Maet al. [10]°. The idea stems from the fact that
S € {:l:l,:l:3} <~ s=0b+2by, bi,bo € {:l:l}.

Hence, the 16-QAM ML problem can be re-expressed in a vistuaitipodal form

i —H(b; +2by)||* = mi — HWhb||? 8
b2y —H(by 4 2b)|" = min, ly 1%, (8)
where we denote
W=[12I], b=[bl bl

By applying the same SDR as in BPSK/QPSK constellations SUR is obtained:
min tr(WTHTHWB) — 2b"WTH y + ||y|?
st. B=bb!, B;=1 i=1,...,2N.
In terms of problem structure, VA-SDR is exactly the saméhas3DR for BPSK/QPSK. Hence, VA-SDR

(9)

can be implemented by directly applying interior-pointalighms designed for BPSK/QPSK SDR [20],
[29].

2In fact, an earlier work by Steingrimssat al. [7] was close to finding VA-SDR. In that paper, a symbol is ideed as
a linear transformation of antipodal bits, which is exadiyw VA-SDR works. But we should emphasize that it was Mo
al. [10] who first described the use of VA-SDR for higher-order I@/and put the method to the test.
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IV. NUMERICAL COMPARISONS OF THETHREE 16-QAM SDRs

In order to shed some light into the performance and comyleXithe three 16-QAM SDR methods,
let us use simulations to compare the three methods before@ding to the theoretical analysis in the
next section. The simulation setting follows that of a seddMIMO system, where the channel matrix
H is i.i.d. complex circular Gaussian distributed with zeream and unit variance. The MIMO system
size is(M, N) = (8,8). For PI-SDR and BC-SDR, we employ tsénple roundingorocedure; i.e., is*
is the PI-SDR/BC-SDR solution associated withthen

§ = dec(s*)

is the detected symbol vector whedec(-) is the elementwise decision function for the discrete set
{+1,43}. For VA-SDR, there are two possible ways of doing simple tng. Letb* = [ (b})? (b%)7 |7,
b3, b} € RY, be the VA-SDR solution associated with We can detecs either by

§ = sgn(b7) + 2sgn(b3) (10)
wheresgn(-) denotes the elementwise sign function, or by
§ = dec(b] + 2b3) = dec(Wb”*). (11)

We call (10) and (11yimple rounding land simple rounding || respectively.

The simulated symbol error performance of the three SDRsvisngin Fig. 1(a). In the figure the
SNR is defined as the received signal-to-noise ratio per Q4Mb®!; i.e., E{||h;5;|?}/E{||Z||?}. One
can see that for VA-SDR, simple rounding Il gives better perfance than simple rounding |. But, more
importantly, the performance of PI-SDR, BC-SDR, and VA-SP#th simple rounding 1l) is identical.
To get further insights, we evaluated the respective optimbgective function values achieved by the
three SDRs. The result, shown in Fig. 1(b) indicates that #iklook identical. In Fig. 1(c) the optimal
objective values of the three SDRs are plotted with respedhé problem sizeV, where the same
phenomenon is seen. From these observation it is reasotwadlspect that there are strong connections
between the three SDRs.

Now let us compare the complexities of the three SDRs. Fondas of comparison, the three SDRs
were implemented by the same SDP solver, namely the gepenadse SDP software SeDuMi [30].
The complexities, in term of average running time, are ptbih Fig. 2. We can see that BC-SDR vyields
the lowest complexity, while VA-SDR and PI-SDR have simitamputational times with PI-SDR being
slightly more expensive. Thus, based on Figs. 1 and 2, wehsgehte application of BC-SDR in place of
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VA-SDR or PI-SDR leads to an order of magnitude reductionamputational time with no performance

degradation.
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Fig. 1. Performance comparison of PI-SDR, BC-SDR, and VARSDan8 x 8 16-QAM system. (a) Symbol error rates versus

SNRs; (b) optimal objective values versus SNRs; (c) optioigéctive values versus problem sizes.

V. EQUIVALENCE OF THE THREE 16-QAM SDR DETECTORS

In this section we prove the equivalence of PI-SDR, BC-SDR] ¥A-SDR in the 16-QAM case. In
the first subsection, the main result will be described. Tliem analysis leading to the equivalence result

will be shown in detail in the second and third subsections.
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—A- PI-SDR
-©-BC-SDR
—k- VA-SDR

Average Running Time, in second

10 12 14 16 18 20 N 22 24 26 28
Problem Size N

Fig. 2. Comparison of complexities of PI-SDR, BC-SDR, and-$BR in a 16-QAM system.

A. Main Result and Implications

The three SDRs can be represented by a unified expression
i S
uin_ f(Ss) (12)
where

f(S,s) = tr(H"HS) — 2s"H"y + ||y||*

is the objective function, and is the feasible set, the definition of which depends on the &izfhod

employed. For BC-SDR, the feasible set is defined as
Fec-sor ={ (S,8) | S =ss”, 1y = d(S) < 91y } (13)

(We adopt the standard notation that and ‘>’ mean elementwise inequalities, when applied on vectors).

For PI-SDR, the feasible set is characterized as
Fpi—spr ={ (S;s) | (U,u,S,s) € Wpi_spr } (14)
Wei—spr = { (U,u,8,s) | U= uu’,S =ss7,d(S) =u,d(U) —10u+91y =0},  (15)
and for VA-SDR,
Fua—spr = { (S,s) = (WBW' Wb) | (B,b) € Bya_spr } (16)
Bua_spr = { (B,b) | B = bb” d(B) = 1ay }. (17)

Essentially, the equivalence of the three SDRs lies in thsilide set:
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Theorem 1 The feasible sets of the three 16-QAM SDRs are identicat;itha
Fpi—sbr = FBC-SDR = FVA—SDR-

The proof will be described in the next two subsections. Froineorem 1 we make the important

conclusion that

Corollary 1 For 16-QAM MIMO detection, the relaxation problems of PHSIBC-SDR, and VA-SDR
[given in (6), (7), and (9), respectively] are equivalent. In particular,
1) if (U, q,S,s) is an optimal solution of PI-SDR, the($, §) is an optimal solution of BC-SDR;
2) if (B, b) is an optimal solution of VA-SDR, théWWBW?”, Wb) is an optimal solution of BC-SDR;
3) if (S*,s*) is an optimal solution of BC-SDR, then there exids’, u*) such that(U*, u*, S*,s*)
is an optimal solution of PI-SDR; and
4) if (S*,s*) is an optimal solution of BC-SDR, then there ex{&$, b*) such thaf WB*W' Wb*) =
(S*,s*) and (B*, b*) is an optimal solution of VA-SDR.

Some further discussions are as follows.

1) From Corollary 1 we see that an optimal BC-SDR solutionlaudirectly obtained from an optimal
PI-SDR or VA-SDR solution. In fact, our proof also revealsittan optimal PI-SDR or VA-SDR
solution can also be constructed from an optimal BC-SDRt&wlun a direct, closed-form manner.
For the construction details readers are referred to thefpnothe following subsections.

2) The three SDRs can be proven to be equivalent for larger G#és. For the equivalence of VA-
SDR and BC-SDR, the proof can be generalized using a similaciple. But, for the equivalence
of PI-SDR and BC-SDR, the proof is much harder and tedious éoe 64-QAM. This will be
elaborated upon in the next section.

The proof of Theorem 1 consists of two parts: proving that_spr = Fpi_spr, and Fgc_spr =

FVA—SDR-

B. First Part of the Proof of Theorem 1Fgc_spr = Fpi—spR

We first show that if U, u, S,s) € Wp|_spr, then(S, s) is feasible taFgc_spr. Given(U, u,S,s) €

Wei_spr, the PI-SDR feasibility conditio®J > uu? implies thatU;; > uf forall:=1,...,N. Hence,
0=U; —10u; +9 > u? — 10u; + 9 = (u; — 1)(u; — 9)

for all 7. The inequality above is the same @; — 1)(S; —9) <0, or 1 < S;; < 9. This shows that

(S,s) € Fec—spr-
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Next, we show that for anyS,s) € Fgc_spr, We can explicitly construct U, u) such that
(U,u,S,s) € Wpi_spr- Consider the following construction froi8,s) € Fgc_sprg:

u = d(S)

U =uu’ + D(w) (18)
whereD : RY — RV*N s the operator that outputs a diagonal matrix with its maamgdnals being the
input, andw is given by

wi = —(Si —1)(Siu — 9) = —(w; — 1)(u; = 9), (19)
fori=1,...,N. Sincel < S; <9, we havew; > 0. It follows thatU — uu” = D(w) > 0. Moreover,
from (18)-(19), one can see that

U,-Z-—1Oui+9:wi+u?—10ui+9:0

for all i. This proves thatU, u, S, s) is feasible toVp|_spr.
The proof above indicates that whenever a point is feasiblEst_spr it is also feasible taFgc_spr,

and vice versa. We therefore conclude tH&t_spr = Fpi—sDR-

C. Second Part of the Proof of Theorem&ya_spr = FBC_SDR
Let X € S¥*1 andY € S?V*! be two PSD matrices taking the form

S s B b
X = =0 Y =

— 9

st 1 bl 1
where(S,s) € SV xRV, (B,b) € S?¥ x R?V, By Schur complement, the two matrices satiSfy- ss’

andB = bb”. We assumdS,s) = (WBW Wb), and this condition can be expressed in a matrix

form
X =T7YT (20)
where
wT o
T =
0 1

SinceY > 0, Y can always be represented in a square-root factorization fo

Y=R'R

August 11, 2009 DRAFT



ACCEPTED BY IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCHESIG, AUG. 2009 12

for some square root factdR = [ ry,...,ron4y | € RENFUXCNHD “with |lryn 1| = 1 (owing to

|r;||> = Vi and Yon+1,2nv+1 = 1). Similarly, X can be characterized as

X=2"2
for some square root fact@ = [ z;,...,zy 1 | € RENTUXWVHD iz || = 1. We see that (20) holds
if
7 — RT. (21)
Let us partition
R=[U|V|rown | (22)

where U,V e REGN+DXN_gupstituting (22) into (21), we see thdt = [ U + 2V | ran4q |, OF

equivalently
z;=u;+2v;, 1=1,...,N, (23)
ZN+1 = TaN1, (24)

whereu; is theith column ofU, andv; is defined in a similar way.
Now, supposé€B, b) € Bya_spr- Sinced;(B) = 1 for all i (whered;(-) means that/;(A) = A;;), we
haveHuZ-H = Y;Z = dz(B) =1 and ||VZH = YVi+N,i+N = dz—i—N(B) =1 fori = 1,. .. ,N. With (23)-(24)

satisfied, it holds true that
[zl < flwsll + 2([vi| = 3,
lz:l| = 2||vil| — [Jwil| = 1,

for i = 1,..., N. This translates into aB that satisfies/;(S) = X;; = ||z € [1,9]. And this further
implies that(S,s) € Fgc_spr. On the other hand, suppo$®,s) € Fgc_spr- There is no problem for

(24) to be satisfied, and we firdh;, v;) satisfying (23) by resorting to the following lemma:

Lemma 1 Letz € R", n > 2 be a given vector satisfying
B-a<|z| <B+a
for somea, 8 > 0. Then there exist two unit 2-norm vectarsand v such that
z = au + fv.

The proof of Lemma 1 is given in Appendix A. Essentially, theqf shows how to constru¢t, v) from

z in a closed-form manner. Applying Lemma 1 to (23) (with= 1 and g = 2), for eachi we obtain
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(u;,v;) that satisfies (23) for anyz;|| € [1,3] (or d;(S) € [1,9]) and then achievepu;|| = ||v;|| =1
at the same time. This means that the resulfnfcf., Eq. (22)] has unit 2-norm columns, and as a
consequencd;(B) = Y;; = ||z;||?> = 1. Hence, we havéB,b) € Bya_spr.

We have shown by construction thaia_spr = Fec_sDR-

VI. GENERALIZATIONS TO LARGER QAM SIZES

Now our attention turns to more challenging cases of largaMGsizes. In what follows, we will
prove that i) for any4?-QAM (where g > 1), VA-SDR is equivalent to BC-SDR; and that ii) for the
64-QAM, PI-SDR is equivalent to BC-SDR. Details regardingmydai) will be described in the first and
second subsections, respectively. Numerical results doifying the equivalence will then be provided

in the third subsection.

A. Equivalence of VA-SDR and BC-SDR #6rQAM
For 49-QAM, the ML problem to be addressed is
min ||y — Hs|”
st. spe{+l,4£3,45,...,£(29-1)}, i=1,...,N.

Its virtually antipodal formulation takes the form

min [y — HWb|?
be{x1}V

where
W =[I2[4I8I... 29711 ] e RN

and
b=[b{ bj...bl |" e RN

with b; € RY for all i. Again, both the VA-SDR and BC-SDR problems in this case aanepresented

by the expression

i S
o f(8.s)
where the feasible sk for BC-SDR is defined as

Foc—spr =1{ (S,s) | S=ss?, 1y <d(S) < (29— 1)%1y } (25)
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and the feasible set for VA-SDR is
Fua—spr = { (S,s) = (WBW' Wb) | (B,b) € Bya_spr } (26)
Bua—spr = { (B,b) | B~ bb”,d(B) = 1,x }. (27)

It is shown that the equivalence of BC-SDR and VA-SDR is pgedieven for higher-order QAM.

Theorem 2 Consider a47-QAM constellation, wherg > 1. It holds true that

Fva—sprR = FBC—SDR-

The proof of Theorem 2 is given in Appendix B. It is a genetiian of its 16-QAM counterpart in
Section V-C. Like the 16-QAM case, the proof reveals the ibiitg that an optimal BC-SDR solution

can be used to construct an optimal VA-SDR solution in anydital fashion, or vice versa.

B. Equivalence of PI-SDR and BC-SDR fF-QAM

The original work of PI-SDR [8] concentrates only on the 18ND constellation, but it is clear from
that work that the idea can be extended to the 64-QAM coasitatl. To see this, we start with the
following 64-QAM ML formulation

min [y — Hs|/*
st. s?e€{ri,ro,r3,ma}, i=1,...,N

where{ry, 79, 73,74} = {1,32,5%,7%}. The idea is to consider the polynomial characterization

4

5
u € {ry,ro,r3, T4} = H(u ) = pre—1 —0
=1 =1

where{p;} is the set of polynomial coefficients associated with thesde;}. Like the development in

16-QAM PI-SDR, we reformulate the ML problem as

i S,s
Juin f(8S;s)
Uy Uy u;
S.t. U — 7'[] = s

(28)
S =ss’,U=nuu’,

d(S) = ul,d(Ull) = Uy,
P11y + pous + p3d(U11) + pad(Ui2) + psd(Usgs) = 0.
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The formation in (28) is valid because its constraints ets@@nrestrictu; = s?, d;(Uyp) = uf d;(Uyg) =

u3, andd;(Ugy) = u}. From (28), we obtain the 64-QAM PI-SDR:

Jain f(8S;s)
U U u

T e B b
S = SST,U = uu?
d(S) = uj, d(Ull) = U9
P11y + pour + p3d(Uir) + pad(Ur2) + psd(Uzz) = 0.

For BC-SDR, the relaxation is given by
i S;s
min f(S,s) (30)

st. S»=ssl, rly <d(S) < ryly.

The main result here is presented as follows:

Theorem 3 Consider a general situation where the roéts} are allowed to be arbitrary (not necessarily
the roots in 64-QAM), and assurfie< r; < ... < r4 < oco. The PI-SDR problem i(29) and the BC-SDR
problem in(30) are equivalent in yielding the same feasible set correspuntb (S,s) (and thus the

same optimal solutions), under the following sufficient aedessary condition

Vra—ry <min{/r3 —ry + /1o —r1,3/14 — 12 + /T4 — 13} (31)

It can be verified that the 64-QAM root$(, 2, 73,74} = {1,32,52,7%}) satisfy (31). We therefore

conclude that

Corollary 2 For the 64-QAM constellation, the PI-SDR problem(&0) and the BC-SDR problem in

(30) are equivalent in yielding the same feasible set correspuntb (S, s).

Proof of Theorem 3The proof is far from trivial compared to its 16-QAM countarp Consider the

following lemma shown in Appendix C:
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Lemma 2 The PI-SDR problem ii(29) is equivalent to the following alternate PI-SDR problem

v, min o f(S:s)
s.t. S ~ SST, d(S) = [ U11,---,UN,1 ]T

1 v v

Vi: Vi1 V2 U3 EO, Zzl,,N

(32)

Vi2 Vi3 U4
4 .
p1+Y o Pes1vig =0, i=1,...,N

in the sense that the feasible sets correspondin@ts) are identical for the two problems.

The proof of Lemma 2 follows the same approach as the equiealeroof for the 16-QAM PI-SDR
and BC-SDR (in Section V-B). However, by Lemma 2 alone, we warable to see the equivalence of
the 64-QAM PI-SDR and BC-SDR immediately.
To gain further insights, let us re-express the alternat8[PR formulation in (32) as
min f(S,s)
st. S»=ss',8;€D, i=1,....N

where we define

D={SeR|S=[V]2,VeV} (33)

4
V =0,V =Hank((1,v)),p1 + Y _ pes1ve = 0,v € R? } (34)

V:{Ve§
/=1

with the operatoiflank : R?*~! — R™*" standing for

al; az PN (7%
a2
Hank(aq,...,a2,-1) =
a2p—2
|1On .- G2pn—2 a2p—1 |

Our interest now turns to analyzing the €8t which has to be done by analyzing Consider the

following lemma proven in Appendix D:

Lemma 3 The setV in (34) is equivalent to

V:{Ve§

4 4
VZZQ@&(&{,VEO,ZQ@ZI } (35)
=1 (=1

wherea; = [ 1, ry, 72 ]7.
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Lemma 3 provides an interesting implication. To describéeit

4 4
conv{ajal, ...  ajall = { A% ‘ V= Zﬂgagag,é? - O,Zﬂg =1 }
(=1 (=1

be the convex hull ofa;al, ... asal}. It can be verified from (35) that D conv{a;al,..., asal},

thoughV C conv{ajal, ... ajal} is generally not tru& Consequently, we have

DD {S=[V]2 |V €conv{ajal,...,asal} }

4 4
:{S:ZHE[agag]lg 9&0,29@21}
=1 =1
4 4
:{S:Z@m 050,29521}:%,“].
(=1 (=1

This implies that the 64-QAM PI-SDR is no tighter than the@¥M BC-SDR.But we also show in
Appendix E that

Lemma 4 Let0 < r; < ... <71y < oo. We haveD = [rq,r4] if and only if

Vry —r1 <min{\/rg —ri +ro — r1,/rg — ro + Vry — r3}.

As a result, PI-SDR can be equivalent to BC-SDR under the iiondn Lemma 4, thereby completing

the proof of Theorem 3.

C. Numerical Verification of the Equivalence

Simulations were performed to verify the SDR equivalencetfe 64-QAM and 256-QAM cases.
The simulation settings are the same as those of the 16-QAMiIaiion example in Section IV, and
the MIMO size is(M, N) = (4,4). Simple rounding is employed for the SDR methods. The resrk
plotted in Fig. 3. We see that the symbol error rates (SERf)@PI-SDR, BC-SDR, and VA-SDR with
simple rounding Il are generally identical, which corradies our theoretical results. It is also noticed
that the performance of 64-QAM PI-SDR slightly deviategrrthat of 64-QAM BC-SDR and VA-SDR
at SNR= 45dB. We found that this was due to some numerical@mbencountered by the interior-point
SDP solver (which is SeDuMi [30] here). In fact, the polynahtoefficients in 64-QAM PI-SDR have
values ranging fromps = 1 to p; = 1 x 3% x 52 x 72 = 11,025. Such a large dynamic range could be the

cause of the numerical inaccuracy. Moreover, Fig. 3 ilatss that VA-SDR with simple rounding | is not

3By numerical test, it was found that there exist¥ac V such that some of the constitueht can be negative.
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working in 64-QAM and 256-QAM (see Section IV for the defiaitiof simple roundings | and Il). This
problem, which has also been noticed by Mgztaal. [10], may partially be answered by the equivalence
proof for BC-SDR and VA-SDR; cf., Section V-C and Appendix B. essence, the derivations there
revealed that the VA-SDR solution with respect(, b) may be non-unique, even though its BC-SDR
counterpart [in form of S, s)] is unique. In particular, a key component, namely Lemmarioisa unique

decomposition.

—
o\

N
T

Symbol Error Rate
=
o

64-QAM BC-SDR
64-QAM PI-SDR
[| % 64-QAM VA-SDR (Simple rounding I)
—¥—64-QAM VA-SDR (Simple rounding I1)
fg— 256-QAM BC-SDR

-256-QAM VA-SDR (Simple rounding 1)
N --256-QAM VA-SDR (Simple rounding 1)

i i
0 5 10 15 30 35 40 45

[
1S
&

10"

20 25
SNR, in dB

Fig. 3. Comparison of symbol error rates of PI-SDR, BC-SDRJ &A-SDR in a4 x 4 system with either 64-QAM or
256-QAM.

VIlI. SOME FURTHER SIMULATION RESULTS

We provide two more sets of simulation results to demorsttiaé SDR performance compared to

some benchmark MIMO detection methods.

A. Performance Behaviors in a Generic MIMO Setting

In this simulation example, a comparison is made between &ixtRsome other MIMO detectors for
the 64-QAM case. Again, the simulation setting follows tbéthe generic MIMO in Section IV. The
detectors tested include the zero-forcing (ZF) detedterpptimal sphere decoder, and the lattice reduction
aided ZF (LRA-ZF) detector [31], [32]. Note that the LRA-Zetdctor has been shown to achieve the
full receive diversity [33]. We tested the BC-SDR methodyprds the other two SDR methods will
provide identical results anyway. The BC-SDR detector wigslémented by a specialized interior-point
SDP solver developed by the authors [22]. For its solutiemding, we employ the Gaussian randomized

rounding described in [8]. The number of randomizationsduse 00.
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Let us examine the complexities of BC-SDR and sphere degodine test was conducted on MAT-
LAB, using a desktop computer with du2l66GHz CPUs. The BC-SDR was written in C mostly, with
minor operations using MATLAB. The sphere decoder was alstten in C, and the algorithm employed
is that of Schnorr-Eucher [15] (which is practically fouraltie a fast sphere decoder implementation).
The result, shown in Table | indicates that sphere decodiglgy a better computational advantage than
BC-SDR for N = 5, a small problem size. However, as the problem size incsets@& = 20, the
complexity of sphere decoding becomes unaffordable as amdpo BC-SDR. As an aside, the sphere

decoding complexity behaviors illustrated here confirmdhalysis in [17].

TABLE |

AVERAGE COMPUTATIONAL TIME COMPARISON OFBC-SDRAND SPHERE DECODING N = M, 64-QAM CONSTELLATION.

SNR Time spent (in sec.)
N=5|N=1]|~N=20

13dB BC-SDR 0.0050( 0.0070 | 0.0172
sphere decoder 0.0031| 0.0359 | 54.4323

15dB BC-SDR 0.0088| 0.0070 | 0.0172
sphere decoder 0.0031| 0.0297 | 29.0336

In Fig. 4 we compare the symbol error rates of the various MIl&Dectors. Fig. 4(a) shows the case
of M = N = 8, where we see that LRA-ZF detector gives better performén@e BC-SDR except for
some low SNR values. We increase the problem sizéfte- N = 16 in Fig. 4(b). For this problem size
it is computationally too hard to run the optimal sphere diecoThe figure illustrates that for SNRs less
than 27dB, BC-SDR outperforms LRA-ZF. Let us further inaeahe problem size t8/ = N = 40.

As illustrated in Fig. 4(c), now BC-SDR exhibits further inoged performance compared to LRA-ZF.

The comparisons above suggest that SDR has significantrpenice advantages for large problem

sizes and/or for low to moderate SNRs.

B. Application to Multiuser MIMO CDMA Systems

We consider a simulation example where SDR and some otherQvidigtectors were compared under
a uplink multiuser MIMO CDMA scenario [34]. In this scenaribe involvement of multiple users can
result in a large problem size. The problem is described Bewle. The base station has, receive

antennas, while there arE active users, each of which is equipped with transmit antennas and
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Fig. 4. Comparison of the various detectors in 64-QAM system

employs spatial multiplexing to transmN; parallel streams of data. Each user uses a séf; dfistinct,
preassigned spreading code sequences (with leNigtho send its respectivd’; streams of data. The set
of spreading code sequences is also different from one aserdther. Under such a setting, the received

space-time signal matrix over one symbol interval can beetaabas [34]

K
Y =) HD(s;)CL +V, (36)
k=1

wheres;, € C™t is the symbol vector transmitted by userHy, = [ hy1,...,hgy, ] € CN-*MN is the
MIMO channel corresponding to usér Cy, = [ ¢ 1,...,¢x n, ] iS the collection of the spreading code

sequences of usdr, with c,; € CN being the spreading code sequence for transmit anteohaiser
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k, andV is noise. By vectorizationy = vec(Y), it can be shown that the multiuser MIMO model in

(36) can be rewritten to a standard form

y=Hs+wv
wheres = [s7,... sk ] € CENt is the collection of all symbols to be detectdd,= [ Hy,...,Hx | €
CNNXEN Hy = [ epq @ hga,...,cen, @by, | € CNN>Ne (@ denotes the Kronecker product),

andv = vec(V).

In the simulation, each channel veclgy; is assumed to be i.i.d. complex circular Gaussian. Moreover
we assume random spreading, where the entries of egclhave unit magnitude and follow an i.i.d.
uniform phase distribution. Fig. 5 displays the simulatesutt, for64-QAM, K = 20, N. = 20, N; =2
and N, = 2. It is worthwhile to notice that this setting results ind@by-40 64-QAM system. One can
see from Fig. 5 that BC-SDR outperforms the other detectothe test.

107k

10 ¢

10 ¢

10’4 L ZF
MMSE
e LRA-ZF

—H- BC-SDR (randomized rounding) il
0 10 40

Average Symbol Error Rate of All Users

20 30
SNR, in dB

Fig. 5. Comparison of the various detectors in a 64-QAM roskir MIMO CDMA system, withK = 20, N. = 20, Ny = 2
and N, = 2.

VIIl. CONCLUSION AND DISCUSSION

This paper analyzes the relationships of three SDR-basédMitletection methods for high-order
QAM, namely PI-SDR, BC-SDR, and VA-SDR. We have proven tha three SDRs are actually
equivalent, despite their different appearances and aiitigls. The essence of the equivalence is that
an optimal solution of one SDR can always be constructed fifzath of another SDR. The proof covers

general BC-SDR, VA-SDR with any?-QAM (¢ > 1), and PI-SDR with16-QAM and 64-QAM.
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Since the three SDRs are now known to be equivalent, the aisopashould turn to their computational
costs. Our simulation results have shown that BC-SDR is Heapest computationally, and in parallel
a fast specialized interior-point algorithm has been dgwed to support the implementation of BC-
SDR [22]. Hence, it appears that BC-SDR should be the metliathaice among the three methods.
While this is our present conclusion, our opinion is thatreatthe three SDRs is interesting in its own
right by the different ways they utilize QAM structures. Mower, the exposition of the PI-SDR and
VA-SDR ideas might help inspire future works for devisingtbe SDR methods.

This work also provides several interesting further imgdiicns. First, from the analysis one may see
that the SDR equivalence result established here does pendeon the objective function. This has
enabled us to apply the SDR equivalence result to a rath@&srelitt problem, namely the blind ML
detection of orthogonal space-time block codes [35], [36]that parallel investigation, the problem
takes on a different objective structure (a Rayleigh quétfeinction); and the SDR equivalence has
proven to be useful in telling which SDR is the most favoraiolemploy (i.e., BC-SDR).

Second, we should mention the 16-QAM tightened BC-SDR ntkthyp Yanget al. [11]. Yang et
al. showed that their tightened BC-SDR method can perform b#ten the 16-QAM PI-SDR. Using
the equivalence result here, we can further infer that tjleténed BC-SDR can perform better than the

16-QAM VA-SDR as well.

APPENDIX
A. Proof of Lemma 1

The proof is constructive. Let

u= eﬁ +/1- 0%z, (37)
Z

wherez, is a unit 2-norm vector orthogonal tg and || < 1. It can be verified that tha in (37)

satisfieg|u|| = 1. Moreover, let

v = %(z —au) (38)

which is purposely constructed to satisiy= au + gv. One can show from (38) that the unit norm

condition||v|| = 1 is achieved when we choose

y_ a2 = (7 —o?)
2all2]

(39)

Now the remaining problem is the condition under whjéh< 1. It can be verified from (39) that if

B—a<|z| <B+athen|f| <1 is guaranteed.
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B. Proof of Theorem 2
The idea is similar to the proof in the 16-QAM case, descrilme8ection V-C. We consider two PSD
matrices

S s B b
X = =0 Y =

Y [

s 1 bl 1
that satisfy(S,b) = (WBW? Whb). That condition is shown to be achievable if
w7 o
Z=R (40)
0o 1

whereZ € REUNTDX(N+1) andR e REN+Dx(@N+1) gre square root factors & and'Y, respectively
(or Z"Z = X, RTR = Y). The objective is to show that {§S,s) € Fgc_spr, then we can construct a
(B,b) € Bya_spr satisfying (40); and vice versa.

For generak’-QAM where W is expanded td I 2I...297'T |, Eq. (40) can be rewritten as
qg—1
Z,’ZZQJI‘H_]'N, izl,...,N, (41)
j=0

ZN+4+1 = TgN+1- (42)

To achieve (42) is easy, and the nontrivial part lies in (#i)st, suppos€B,b) € Bya_spr. Then the

resultantR satisfies||r;|| = 1. The vectors; satisfying (41) would then have bounds

q—1 q—1
lzll <> P eignll =D 270 =20 -1,
j=0 J=0
q—2
Iz ]| > 297 s gonyn | = || D 27rign
j=0

q—2
>207 1 =y "ol =07t (207 - ) =1L
j=0

This means that the correspondiBghasd;(S) = ||z|? € [1, (27 — 1)?]. Hence,(S,s) € Fac_spr-
Second, supposES, s) € Bgc_spr- Let us choose, for each=1,..., N,

A
ri:ri+N:"':ri—‘,-(q—Q)N:uiv

A
Fit(g—1)N = Vi,

for someu;, v; € R¢NV+1, The condition in (41) becomes
q—2
Z; = Zqui + 2q_1VZ' = (2q—1 — 1)11, + 2q_1Vi. (43)
j=0
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Using Lemma 1, we can constructa, v;) that satisfies (43) for anyz;|| = \/d:(S) € [1,27— 1] while
achieving||u;|| = ||vi|| = 1. The resultanB will therefore satisfyd;(B) = Y;; = 1 for all 7, meaning
that (B, b) € Bya_spr-

The proof of Theorem 2 is complete.

C. Proof of Lemma 2

Suppose thatU, u, S, s) is feasible to the original 64-QAM PI-SDR problem in (29).tSe

1 0
1 u"| |1 0 o0
Vi=10 e (44)
u U 0 e enN
0 el

i+ N
fori=1,..., N, wheree; € R?V is a unit vector with the nonzero element at ikie element. It follows
from U = uu” and (44) thatV, = 0 for all i. Moreover, (44) equals

1 Ut ug;

Vi=luy [Unli [Uni| - (45)

ugi [Uialii [Uszzu
Sinceusy; = [U11]44, every'V; in (45) satisfies the Hankel structure in the alternate PRSiDoblem in
(32). It also follows from (45) that the equality constrairarising from the polynomials are satisfied.
Hence,(Vy,...,Vy,S,s) is feasible to the alternate PI-SDR problem in (32).

On the other hand, suppose th{af;,..., Vn,S,s) is feasible to the alternate PI-SDR. Set

u; = [ vig,...,0N,1 ]T, (46a)
Uy = Cy — D(u; © uy) +ugud, (46b)
uy = d(Uypp) = [ vig,...,on2 |7, (46c¢)
U = C3 — D(u; © up) + ujuj, (46d)
Ugy = Cy4 — D(up ® uy) + ugul (46e)

where® is the Hadamard product, and
Ci = D(Ul,ia e 7vN,i)-

It can be shown that (46) satisfies the equality constraiftth® polynomials. Let us examine if
U = uu?. We see that
Cy—D(u; ®u;) Csz— D(u; ® ug)
Cs;—D(u; ®uz) Cy4— D(ug ® ug)

U-uul =
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It can be shown using basic matrix results that the specstlyctured matrix above is PSD if and only

if

2
Vi2 — Uy, Vi3 — U1,iU2,
1 (47)
Vig = Ul Vid — U,
are PSD for al = 1,..., N. By usingu; ; = v;; anduy; = v; » and Schur complement, it is shown that

(47) are indeed PSD. We therefore conclude that, ..., Vy,S,s) is feasible to the alternate PI-SDR

problem.

D. Proof of Lemma 3

Consider a problem setting as follows: Lgt,...,r} be a given set of roots, and assume that the

roots are distinct. Consider the following two sets

V) = { V = Hank(v)

veRAL y=1,plv=0,V =0 }

wherep = [ p1,...,pr4+1 |7 contains the polynomial coefficients corresponding{te, ... ,r.}, i.e.,
S pert=t =0 forall v € {ry,...,r.}; and
L L
ng{V:ZHgagag ZQ[ZLVEO}
=1 =1

wherea, = [ 1, g, 72,... ,rZL/Z |7 e RE/?+1 and L is assumed to be even. Our objective is to prove
thatV, = V,. Clearly, Lemma 3 is a special case of the above problem whetel.

By definition, everyV € V; can be parameterized by some= R“*! such thaty; = 1 andp’v = 0.
Let

2 LT L+1
bg:[l,"r’g,"r’z,...,w ] eR +

for ¢ = 1,..., L. Since evenyb, contains one of the true roots, it satisfigb, = 0. Hence, we have
the following condition to satisfy
pl[bi...byv]=0. (48)

The submatrix b; ... by, | € R(D*L s linearly independent, being Vandemonde with distincttso

Subsequently, (48) can be satisfied only when

L
vV = Z ngg.
(=1

for some coefficient® € R%. Sincel = v = S, 6bi = Y1, 6y, the coefficients satisfy

6, = 1. Moreover, by noticing that

Hank(by) = aya; (49)
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we have
L
V = Hank(v) = E frasal .
=1

Hence, anyV € ) lies in Vs.
Likewise, it can be verified that evey € V;, lies inV;: For everyV € Vs, which can be characterized

asV =3, feasal’, S 6 =1, set
L
vV = Z O/by.
—1

It follows from (49) thatHank(v) = V. Moreover, thisv satisfiesv; = Zle 0¢[bg]1 = 1, andp’v =
25:1 Qngbg = O.

E. Proof of Lemma 4

By Lemma 3, the seD can be expressed as

4 4 4
DZ{SZZQ[W Z@gagagt0,29521}.
(=1 (=1 (=1

This set is a closed convex set, and therefore must be in férn interval[L, U]. The proof is divided

into three parts: solvind., solving U, and integrating the results.

1) Solving the lower boundWe find the lower bound. by solving the problem
4
L= meln ZZ:; Borp

4 4
st. > @l =0, Y 0=1.
/=1 (=1

(50)

Letx; = 60,41, 1=1,2,3. Usingh; =1 — E?:l x;, Problem (50) can be re-expressed as
3
L= m}in 1+ Z[L’i('f’i_ﬁrl —71)
=1, (51)

s.t. ala{ + Z[L’i(ai_i_lazj’_l — alar{) = 0.
i=1
By strong duality, solving (51) is the same as solving itslduaich can be shown to be
L= —t [/
max 71 r(aja; Z)
st. Z >~ 0, (52)

trj(ajal —a;1aly)Z] =r1 —rig1, i =1,2,3.

From the objective in (52), it is clear thdt= ry if and only if Z is feasible and satisfies
tr(ajal Z) = 0. (53)
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Let us consider the construction of a PZxatisfying (53). Eq. (53) implies tha has rank no greater
than2. Thus any such PSIZ can be represented by
Z = RR”
whereR € R3*? is such thaR”a; = 0. Such anR. can be parameterized as
R=[Wa;, Wa, |,

for somea;, as € R?, where

1 1
W = —1/7“1 —2/7”1
0 1/r?

(One can easily check thaf W = 0, therebyR”'a; = 0.) Therefore, any PSIZ satisfying (53) can

be expressed as

Z=WGWT (54)
where
a b af
b ¢ al

can be any2 x 2 PSD matrix.

By substituting the matrix form in (54) into the equality abraints in (52), we obtain
al, \WGW'a; | =741 — 11, i=1,2,3. (55)

We seek to find the sufficient and necessary conditions fasfgatg (55). By noticing that

1
1 —1/7’1 0 1—7"+1/’f'1
WTa,-H = 9 Ti+1| — ' 9|’
1 =2/r1 1/ry ) (I —=7rip1/r1)
Tit1

Eq. (55) can be decomposed to
T — a(T’i+1/T’1 — 1) + 2b(ri+1/r1 — 1)2 — C(T'H_l/?"l — 1)3 =0, (56)
for i = 1,2,3. Let us define a polynomial function
3

f(u) =7 — au+ 2bu® — cu®.

Since the function satisfief(r;1/r1 — 1) = 0 for i = 1,2, 3 [cf., Eqg. (56)], it permits a factored form

3
flw) =r [T = u/uy),
j=1
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where

U j :T'j+1/7‘1 —1>0.

By expanding the factored form of(u) to the polynomial form, we determine (rather tediously)ttha

a= (ugug + ugus + uyusz) > 0,
Uju2u3
1 1
b=———(u; +us+u3z) >0, c= > 0.
2u1u2u;), ujuU2U3

The remaining part lies in ensuring that the result@nts PSD. We already have > 0 andc¢ > 0, so
the last condition i9% — ac < 0 by Schur complement. With some cumbersome derivations,ho& s
that

2
B — ac = (—1) s — (v, — V) s — (Vi + vaa)?)

QU1UQU3

In order to achievé? — ac < 0, we need

(Vuy — Vaug)? < ug < (Vg + vuy)?. (57)

Summarizing, we havé = r; if and only if (57) holds.
2) Solving the upper boundlhe method of the proof is exactly the same as the previoushance
the detailed derivations are omitted for brevity. Essdlgfizve consider solving the upper bound
U= max Z?‘Zl 0;r;
st Y faal =0, YL, 60, =1
by solving its dual
U= %IIEISI% 74+ tr(agal’Z)
st. Z >~ 0, (58)
tr[(asal —a;al)Z] =7, — 14, i =1,2,3.

From (58) it is shown that/ = r,4 if and only if

(Voy = Vv3)? <01 < (Vg +V03)°. (59)

wherev; =1 —r;/ry >0 fori=1,2,3.
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3) Combining the conditionsThe final task is to combine the conditions in (57) and (59). &&a

express (57) as

VT3 =11 —re =11 Sy =11 <3 — i+ /ro — 1.

The lower bound is redundant because for apy- ... > r; > 0,

Vra—r1 > T3 —1r1 > \r3g —11 — /T2 —7T1.

Moreover, (59) can be expressed as

Vra—ro —ra —r3 <\rg —r1 <\ry—ro+ra—r13,

and again the lower bound can be shown to be automaticalbfiedt We therefore obtain the sufficient

and necessary condition in Lemma 4, completing the proof.
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