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The Equivalence of Semidefinite Relaxation

MIMO Detectors for Higher-Order QAM
Wing-Kin Ma, Chao-Cheng Su, Joakim Jaldén, Tsung-Hui Chang, and Chong-Yung Chi

Abstract

In multi-input-multi-output (MIMO) detection, semidefinite relaxation (SDR) has been shown to be
an efficient high-performance approach. For BPSK and QPSK, it has been found that SDR can provide
near-optimal bit error probability performance. This has stimulated a number of recent research endeavors
that aim to apply SDR to the high-order QAM cases. These independently developed SDRs are different
in concept, structure and complexity, and presently no serious analysis has been given to compare these
methods. This paper analyzes the relationship of three suchSDR methods, namely the polynomial-inspired
SDR (PI-SDR) by Wieselet al., the bound-constrained SDR (BC-SDR) by Sidiropoulos and Luo, and
the virtually-antipodal SDR (VA-SDR) by Maoet al. Rather unexpectedly, we prove that the three SDRs
are equivalent in the following sense: The three SDRs yield the same optimal objective values, and
their optimal solutions have strong correspondences. Specifically, we establish this solution equivalence
between BC-SDR and VA-SDR for any4q-QAM constellations, and that between BC-SDR and PI-SDR
for 16-QAM and 64-QAM. Moreover, the equivalence result holds for any channel, problem size, and
SNR. Our theoretical findings are confirmed by simulations, where the three SDRs offer identical symbol
error probabilities. Additional simulation results are also provided to demonstrate the effectiveness of
SDR compared to some other MIMO detectors, in terms of complexity and symbol error performance.
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I. INTRODUCTION

Multiple-input-multiple-output (MIMO) detection using semidefinite relaxation (SDR) [1]–[14] has

recently received increasing attention. Being a symbol-constellation dependent technique, SDR has been

shown to provide considerably better symbol error performance than some suboptimal MIMO detectors

such as the linear and decision-feedback receivers. SDR is not an optimal approach from a maximum-

likelihood (ML) perspective, but it guarantees a polynomial-time complexity in the problem dimension.

In comparison, the currently best known methods for optimalML MIMO detection, namely sphere

decoding [15], [16], do not have such a guarantee [17].1

SDR was first proposed for the BPSK constellation [1], [2], and the same idea can easily be carried

forward to the QPSK constellation (or 4-QAM) [6], [7]. For BPSK and QPSK, simulation results have

indicated that SDR can provide near-optimal bit error performance. This intriguing finding has stimulated

a number of works. Theoretically, it is shown recently [13] that SDR can achieve the full receive diversity

in the BPSK case. An equally interesting but totally different analysis is given in [14], where the SDR

approximation gap is examined using random matrix theory. Apart from theoretical analysis, there has

been interest in various aspects such as fast implementations [19], [20] and soft-in-soft-out MIMO

detection [7], [21].

But what attracts more attention in SDR is possibly its extension to more general symbol constellations,

especially the higher-order QAM. SDR for higher-order PSK has been considered in [3]. For higher-

order QAM which is the focus of this paper, the first endeavor is by Wieselet al. [9], who proposed

a polynomial-inspired SDR (PI-SDR) method for 16-QAM. In that work the authors also showed that

PI-SDR is a bidual of the optimal ML MIMO detector (or achieves an optimal Lagrangian dual lower

bound of the ML metric). The drawback of PI-SDR is that its extension to larger QAM sizes would

be increasingly complex to handle. Later, Sidiropoulos andLuo proposed a bound-constrained SDR

(BC-SDR) method [9] for any QAM constellation. BC-SDR aims at simplicity and appears to be less

sophisticated than PI-SDR. For instance, the BC-SDR problem structure is virtually the same for any QAM

size. The simple, special structures of BC-SDR make fast implementations [22] particularly favorable.

More recently, Maoet al. [10] developed a virtually-antipodal SDR (VA-SDR) method for any4q-QAM

(whereq ≥ 1). As its name implies, VA-SDR has a strong connection to the SDR used in BPSK/QPSK.

VA-SDR is structurally less complex than PI-SDR, but involves more optimization variables than BC-

1As a short aside, the complexity limitation of optimal sphere decoding has recently motivated interest in some suboptimal

but reduced-complexity variants; e.g., the Fano decoder [16] and the fixed-complexity sphere decoder [18].
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SDR.

It is worthwhile to mention two more recent developments. Mobasheret al. formulated a class of SDR

problems that is applicable to any kind of symbol constellations [12]. As a price for their generality,

Mobasher’s formulations are considerably more complex than the other SDRs. This translates into a

higher computational requirement. Yanget al. [11] proposed a tightened version of BC-SDR for the 16-

QAM case. Interestingly, they showed that their tightened BC-SDR can provide a better approximation

than the 16-QAM PI-SDR.

While a number of SDR methods have been proposed for higher-order QAM, their comparisons have

not been seriously considered at present. This paper focuses on analyzing the relationship of the PI-SDR,

BC-SDR, and VA-SDR methods. We obtain a result that is intuitively not so obvious:PI-SDR, BC-SDR,

and VA-SDR are actually equivalent, despite the fact that they exhibit rather different structures and

complexities.Specifically, our analysis reveals that

1) for 16-QAM and 64-QAM, there exists an equivalence between the feasible sets of PI-SDR and

BC-SDR; and that

2) for any4q-QAM, there exists an equivalence between the feasible setsof VA-SDR and BC-SDR.

This feasible set equivalence directly translates into equivalence of the solution sets of the three SDRs.

Hence, the three SDRs are expected to provide the same symbolerror probability. This is further illustrated

by simulations. Moreover, the equivalence result is quite general in the sense that it holds for any channel,

problem size, and SNR.

This paper is organized as follows. In order to give insightsinto the three SDRs, we use the relatively

simple case of 16-QAM to provide the problem statement in Section II, and to review the three SDR

methods in Section III. This is followed by Section IV, wherewe provide numerical comparisons of

the three SDRs. In particular, the complexity and performance of the three SDRs will be shown and

compared. Then, in Section V we prove the 16-QAM SDR equivalence, with an emphasis on illustrating

the main ideas (which would be difficult to see for the more complex cases of larger QAM sizes). As a

step further, Section VI proves the SDR equivalence for larger QAM sizes. Some simulation results are

provided in Section VII for demonstrating the SDR performance.

II. PROBLEM STATEMENT

The MIMO detection problem may be most easily described by considering the standard scenario of

spatial multiplexing (or V-BLAST) over a frequency-flat channel [23], [24]. In that scenario, we have

the transmitter and receiver equipped with̃N andM̃ antennas respectively, and each transmitter antenna
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sends an independent data symbol at each symbol interval. The received spatial signal can be modeled

by the following formula:

ỹ = H̃s̃ + ν̃. (1)

Here, H̃ ∈ C
M̃×Ñ is the MIMO channel,̃y ∈ C

M̃ is the received signal vector,̃ν is a noise vector

assumed to be zero-mean circular white Gaussian, ands̃ ∈ SÑ is the transmitted symbol vector where

S ⊂ C denotes the symbol constellation set. For the 16-QAM constellation, S is given by

S = { s = sR + jsI | sR, sI ∈ {±1,±3} }.

It should be emphasized that detection techniques for (1), or simply MIMO detection, is a very

meaningful topic with relevance not only to spatial multiplexing but also to many other scenarios. In

CDMA multiuser detection [25], for instance, the respective detection problem can be formulated in the

same form as (1) (with̃N becoming the number of users). Likewise, in the decoding of some space-time

block codes [26] and space-frequency block codes [27], we are confronted with a detection problem in

which the model can eventually be formulated as (1). For a detailed description of these, we refer the

reader to [15], [16] which provide an excellent coverage of how the simple model in (1) can be relevant

to many different detection problems in communications.

It is convenient to reformulate the complex-valued model in(1) to a real-valued one. Let

y =





ℜ{ỹ}
ℑ{ỹ}



 , s =





ℜ{s̃}
ℑ{s̃}



 , H =





ℜ{H̃} −ℑ{H̃}
ℑ{H̃} ℜ{H̃}



 ,

M = 2M̃ , andN = 2Ñ . Eq. (1) is equivalent to

y = Hs + ν (2)

wheres ∈ {±1,±3}N andν is defined in the same way asy. The ML detection problem for the MIMO

model in (2) is shown to be an optimization problem

min
s∈{±1,±3}N

‖y − Hs‖2, (3)

in which the globally optimal solution serves as the ML decision. Note that‖·‖ in (3) stands for the vector

2-norm. ML detection is known to provide superior detection performance, but the major challenge lies

in solving (3) which is a computationally hard problem. Presently, the best known optimal solver for (3)

is sphere decoding [15], [16]. While sphere decoding has been empirically found to be computationally

very fast for small to moderate problem sizes (say, forN ≤ 20 for 16-QAM), it has been revealed [17]

that the sphere decoding complexity would be prohibitive for largeN and/or low SNRs.
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III. R EVIEW OF THREE 16-QAM SDR DETECTORS

SDR is a suboptimal approach to ML, using a class of polynomial-time solvable convex optimization

problems known as semidefinite programs. In this section, wereview three SDR methods for the 16-QAM

constellation, namely PI-SDR [8], BC-SDR [9], and VA-SDR [10]. (Their extensions beyond 16-QAM

will be considered later in the paper.)

A. Polynomial Inspired SDR

PI-SDR was the first application of the SDR principle [28] to 16-QAM ML detection, to the best of

our knowledge. To present its idea, consider a reformulation of the ML problem in (3)

min
S∈SN ,s∈RN

tr(HT HS) − 2sT HTy + ‖y‖2

s.t. S = ssT , Sii ∈ {1, 9}, i = 1, . . . , N
(4)

whereS is a slack variable,SN is the set ofN × N real symmetric matrices,Sij denotes the(i, j)th

element ofS, andtr(·) is the trace operator. PI-SDR was inspired by the fact that

u ∈ {1, 9} ⇐⇒ (u − 1)(u − 9) = 0 ⇐⇒ u2 − 10u + 9 = 0.

By turning the constraintsSii ∈ {1, 9} to a polynomial form, Problem (4) is further reformulated as

min
S,s,U,u

tr(HTHS) − 2sT HTy + ‖y‖2

s.t. S = ssT , U = uuT

d(S) = u, d(U) − 10u + 91N = 0

(5)

whered : R
N×N → R

N is the diagonal operator (i.e.,d(S) = [ S11, . . . , SNN ]T ), and1N is the N -

dimensional all-one vector. The reformulated ML problem in(5) is still hard, where the difficulty lies in

the nonconvex constraintsS = ssT andU = uuT which restrictS andU to be of rank 1.

In PI-SDR, we relax the polynomial ML formulation in (5) to

min tr(HTHS) − 2sT HTy + ‖y‖2

s.t. S � ssT , U � uuT

d(S) = u, d(U) − 10u + 91N = 0

(6)

whereA � B means thatA−B is positive semidefinite (PSD). The idea is to replace the hard constraint

S = ssT by a convex constraintS � ssT , and similarly toU = uuT . There are two basic advantages

with such a relaxation. First, Problem (6), or the PI-SDR problem is a semidefinite program (SDP) which

is convex and does not suffer from local minima. Second, as anSDP the PI-SDR problem can be solved

by available interior-point methods [29], [30] in a polynomial-time fashion.
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Once we solve the PI-SDR problem in (6), we can make a symbol decision by simple rounding of the

PI-SDR solution associated withs. A better alternative to this simple rounding is the Gaussian randomized

rounding; see [2], [8], [9] for the details.

B. Bound constrained SDR

BC-SDR is possibly the simplest among the various 16-QAM SDRmethods. It relaxes the ML problem

in (4) to an SDP

min tr(HTHS) − 2sT HTy + ‖y‖2

s.t. S � ssT , 1 ≤ Sii ≤ 9, i = 1, . . . , N,
(7)

where the original constraintS = ssT is replaced by the PSD constraintS � ssT (as in PI-SDR), and

the discrete set{1, 9} is relaxed to an interval[1, 9].

The BC-SDR problem in (7) exhibits particularly simple SDP problem structure. This has enabled us

to develop a specialized interior-point algorithm for (7) that runs many times faster than some general-

purpose interior-point software [22]. The complexity of BC-SDR is shown to beO(N3.5) [22].

C. Virtually Antipodal SDR

VA-SDR was proposed by Maoet al. [10]2. The idea stems from the fact that

s ∈ {±1,±3} ⇐⇒ s = b1 + 2b2, b1, b2 ∈ {±1}.

Hence, the 16-QAM ML problem can be re-expressed in a virtually antipodal form

min
b1,b2∈{±1}N

‖y − H(b1 + 2b2)‖2 = min
b∈{±1}2N

‖y − HWb‖2, (8)

where we denote

W = [ I 2I ], b = [ bT
1 bT

2 ]T .

By applying the same SDR as in BPSK/QPSK constellations, VA-SDR is obtained:

min tr(WT HTHWB) − 2bT WTHTy + ‖y‖2

s.t. B � bbT , Bii = 1, i = 1, . . . , 2N.
(9)

In terms of problem structure, VA-SDR is exactly the same as the SDR for BPSK/QPSK. Hence, VA-SDR

can be implemented by directly applying interior-point algorithms designed for BPSK/QPSK SDR [20],

[29].

2In fact, an earlier work by Steingrimssonet al. [7] was close to finding VA-SDR. In that paper, a symbol is considered as

a linear transformation of antipodal bits, which is exactlyhow VA-SDR works. But we should emphasize that it was Maoet

al. [10] who first described the use of VA-SDR for higher-order QAM and put the method to the test.
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IV. N UMERICAL COMPARISONS OF THETHREE 16-QAM SDRS

In order to shed some light into the performance and complexity of the three 16-QAM SDR methods,

let us use simulations to compare the three methods before proceeding to the theoretical analysis in the

next section. The simulation setting follows that of a standard MIMO system, where the channel matrix

H̃ is i.i.d. complex circular Gaussian distributed with zero mean and unit variance. The MIMO system

size is(M̃ , Ñ) = (8, 8). For PI-SDR and BC-SDR, we employ thesimple roundingprocedure; i.e., ifs⋆

is the PI-SDR/BC-SDR solution associated withs, then

ŝ = dec(s⋆)

is the detected symbol vector wheredec(·) is the elementwise decision function for the discrete set

{±1,±3}. For VA-SDR, there are two possible ways of doing simple rounding. Letb⋆ = [ (b⋆
1)

T (b⋆
2)

T ]T ,

b⋆
1,b

⋆
2 ∈ R

N , be the VA-SDR solution associated withb. We can detects either by

ŝ = sgn(b⋆
1) + 2sgn(b⋆

2) (10)

wheresgn(·) denotes the elementwise sign function, or by

ŝ = dec(b⋆
1 + 2b⋆

2) = dec(Wb⋆). (11)

We call (10) and (11)simple rounding Iandsimple rounding II, respectively.

The simulated symbol error performance of the three SDRs is given in Fig. 1(a). In the figure the

SNR is defined as the received signal-to-noise ratio per QAM symbol; i.e.,E{‖h̃is̃i‖2}/E{‖ν̃‖2}. One

can see that for VA-SDR, simple rounding II gives better performance than simple rounding I. But, more

importantly, the performance of PI-SDR, BC-SDR, and VA-SDR(with simple rounding II) is identical.

To get further insights, we evaluated the respective optimal objective function values achieved by the

three SDRs. The result, shown in Fig. 1(b) indicates that they all look identical. In Fig. 1(c) the optimal

objective values of the three SDRs are plotted with respect to the problem sizeÑ , where the same

phenomenon is seen. From these observation it is reasonableto suspect that there are strong connections

between the three SDRs.

Now let us compare the complexities of the three SDRs. For fairness of comparison, the three SDRs

were implemented by the same SDP solver, namely the general-purpose SDP software SeDuMi [30].

The complexities, in term of average running time, are plotted in Fig. 2. We can see that BC-SDR yields

the lowest complexity, while VA-SDR and PI-SDR have similarcomputational times with PI-SDR being

slightly more expensive. Thus, based on Figs. 1 and 2, we see that the application of BC-SDR in place of
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VA-SDR or PI-SDR leads to an order of magnitude reduction in computational time with no performance

degradation.
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Fig. 1. Performance comparison of PI-SDR, BC-SDR, and VA-SDR in an8×8 16-QAM system. (a) Symbol error rates versus

SNRs; (b) optimal objective values versus SNRs; (c) optimalobjective values versus problem sizes.

V. EQUIVALENCE OF THE THREE 16-QAM SDR DETECTORS

In this section we prove the equivalence of PI-SDR, BC-SDR, and VA-SDR in the 16-QAM case. In

the first subsection, the main result will be described. Then, the analysis leading to the equivalence result

will be shown in detail in the second and third subsections.
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Fig. 2. Comparison of complexities of PI-SDR, BC-SDR, and VA-SDR in a 16-QAM system.

A. Main Result and Implications

The three SDRs can be represented by a unified expression

min
(S,s)∈F

f(S, s) (12)

where

f(S, s) = tr(HTHS) − 2sT HTy + ‖y‖2

is the objective function, andF is the feasible set, the definition of which depends on the SDRmethod

employed. For BC-SDR, the feasible set is defined as

FBC−SDR = { (S, s) | S � ssT ,1N � d(S) � 91N } (13)

(We adopt the standard notation that ‘�’ and ‘�’ mean elementwise inequalities, when applied on vectors).

For PI-SDR, the feasible set is characterized as

FPI−SDR = { (S, s) | (U,u,S, s) ∈ WPI−SDR } (14)

WPI−SDR = { (U,u,S, s) | U � uuT ,S � ssT , d(S) = u, d(U) − 10u + 91N = 0 }, (15)

and for VA-SDR,

FVA−SDR = { (S, s) = (WBWT ,Wb) | (B,b) ∈ BVA−SDR } (16)

BVA−SDR = { (B,b) | B � bbT , d(B) = 12N }. (17)

Essentially, the equivalence of the three SDRs lies in the feasible set:
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Theorem 1 The feasible sets of the three 16-QAM SDRs are identical; that is,

FPI−SDR = FBC−SDR = FVA−SDR.

The proof will be described in the next two subsections. FromTheorem 1 we make the important

conclusion that

Corollary 1 For 16-QAM MIMO detection, the relaxation problems of PI-SDR, BC-SDR, and VA-SDR

[given in (6), (7), and (9), respectively] are equivalent. In particular,

1) if (Ũ, ũ, S̃, s̃) is an optimal solution of PI-SDR, then(S̃, s̃) is an optimal solution of BC-SDR;

2) if (B̆, b̆) is an optimal solution of VA-SDR, then(WB̆WT ,Wb̆) is an optimal solution of BC-SDR;

3) if (S⋆, s⋆) is an optimal solution of BC-SDR, then there exists(U⋆,u⋆) such that(U⋆,u⋆,S⋆, s⋆)

is an optimal solution of PI-SDR; and

4) if (S⋆, s⋆) is an optimal solution of BC-SDR, then there exists(B⋆,b⋆) such that(WB⋆WT ,Wb⋆) =

(S⋆, s⋆) and (B⋆,b⋆) is an optimal solution of VA-SDR.

Some further discussions are as follows.

1) From Corollary 1 we see that an optimal BC-SDR solution canbe directly obtained from an optimal

PI-SDR or VA-SDR solution. In fact, our proof also reveals that an optimal PI-SDR or VA-SDR

solution can also be constructed from an optimal BC-SDR solution in a direct, closed-form manner.

For the construction details readers are referred to the proof in the following subsections.

2) The three SDRs can be proven to be equivalent for larger QAMsizes. For the equivalence of VA-

SDR and BC-SDR, the proof can be generalized using a similar principle. But, for the equivalence

of PI-SDR and BC-SDR, the proof is much harder and tedious even for 64-QAM. This will be

elaborated upon in the next section.

The proof of Theorem 1 consists of two parts: proving thatFBC−SDR = FPI−SDR, andFBC−SDR =

FVA−SDR.

B. First Part of the Proof of Theorem 1:FBC−SDR = FPI−SDR

We first show that if(U,u,S, s) ∈ WPI−SDR, then(S, s) is feasible toFBC−SDR. Given(U,u,S, s) ∈
WPI−SDR, the PI-SDR feasibility conditionU � uuT implies thatUii ≥ u2

i for all i = 1, . . . , N . Hence,

0 = Uii − 10ui + 9 ≥ u2
i − 10ui + 9 = (ui − 1)(ui − 9)

for all i. The inequality above is the same as(Sii − 1)(Sii − 9) ≤ 0, or 1 ≤ Sii ≤ 9. This shows that

(S, s) ∈ FBC−SDR.
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Next, we show that for any(S, s) ∈ FBC−SDR, we can explicitly construct a(U,u) such that

(U,u,S, s) ∈ WPI−SDR. Consider the following construction from(S, s) ∈ FBC−SDR:

u = d(S)

U = uuT + D(w) (18)

whereD : R
N → R

N×N is the operator that outputs a diagonal matrix with its main diagonals being the

input, andw is given by

wi = −(Sii − 1)(Sii − 9) = −(ui − 1)(ui − 9), (19)

for i = 1, . . . , N . Since1 ≤ Sii ≤ 9, we havewi ≥ 0. It follows thatU−uuT = D(w) � 0. Moreover,

from (18)-(19), one can see that

Uii − 10ui + 9 = wi + u2
i − 10ui + 9 = 0

for all i. This proves that(U,u,S, s) is feasible toWPI−SDR.

The proof above indicates that whenever a point is feasible to FPI−SDR it is also feasible toFBC−SDR,

and vice versa. We therefore conclude thatFBC−SDR = FPI−SDR.

C. Second Part of the Proof of Theorem 1:FVA−SDR = FBC−SDR

Let X ∈ S
N+1 andY ∈ S

2N+1 be two PSD matrices taking the form

X =





S s

sT 1



 � 0, Y =





B b

bT 1



 � 0

where(S, s) ∈ S
N ×R

N , (B,b) ∈ S
2N ×R

2N . By Schur complement, the two matrices satisfyS � ssT

andB � bbT . We assume(S, s) = (WBWT ,Wb), and this condition can be expressed in a matrix

form

X = TTYT (20)

where

T =





WT 0

0 1



 .

SinceY � 0, Y can always be represented in a square-root factorization form

Y = RTR
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for some square root factorR = [ r1, . . . , r2N+1 ] ∈ R
(2N+1)×(2N+1), with ‖r2N+1‖ = 1 (owing to

‖ri‖2 = Yii andY2N+1,2N+1 = 1). Similarly, X can be characterized as

X = ZTZ

for some square root factorZ = [ z1, . . . , zN+1 ] ∈ R
(2N+1)×(N+1), ‖zN+1‖ = 1. We see that (20) holds

if

Z = RT. (21)

Let us partition

R =
[

U V r2N+1

]

(22)

where U,V ∈ R
(2N+1)×N . Substituting (22) into (21), we see thatZ = [ U + 2V | r2N+1 ], or

equivalently

zi = ui + 2vi, i = 1, . . . , N, (23)

zN+1 = r2N+1, (24)

whereui is the ith column ofU, andvi is defined in a similar way.

Now, suppose(B,b) ∈ BVA−SDR. Sincedi(B) = 1 for all i (wheredi(·) means thatdi(A) = Aii), we

have‖ui‖ = Yii = di(B) = 1 and‖vi‖ = Yi+N,i+N = di+N (B) = 1 for i = 1, . . . , N . With (23)-(24)

satisfied, it holds true that

‖zi‖ ≤ ‖ui‖ + 2‖vi‖ = 3,

‖zi‖ ≥ 2‖vi‖ − ‖ui‖ = 1,

for i = 1, . . . , N . This translates into anS that satisfiesdi(S) = Xii = ‖zi‖2 ∈ [1, 9]. And this further

implies that(S, s) ∈ FBC−SDR. On the other hand, suppose(S, s) ∈ FBC−SDR. There is no problem for

(24) to be satisfied, and we find(ui,vi) satisfying (23) by resorting to the following lemma:

Lemma 1 Let z ∈ R
n, n ≥ 2 be a given vector satisfying

β − α ≤ ‖z‖ ≤ β + α

for someα, β > 0. Then there exist two unit 2-norm vectorsu and v such that

z = αu + βv.

The proof of Lemma 1 is given in Appendix A. Essentially, the proof shows how to construct(u,v) from

z in a closed-form manner. Applying Lemma 1 to (23) (withα = 1 andβ = 2), for eachi we obtain
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(ui,vi) that satisfies (23) for any‖zi‖ ∈ [1, 3] (or di(S) ∈ [1, 9]) and then achieves‖ui‖ = ‖vi‖ = 1

at the same time. This means that the resultantR [cf., Eq. (22)] has unit 2-norm columns, and as a

consequencedi(B) = Yii = ‖zi‖2 = 1. Hence, we have(B,b) ∈ BVA−SDR.

We have shown by construction thatFVA−SDR = FBC−SDR.

VI. GENERALIZATIONS TO LARGER QAM SIZES

Now our attention turns to more challenging cases of larger QAM sizes. In what follows, we will

prove that i) for any4q-QAM (where q ≥ 1), VA-SDR is equivalent to BC-SDR; and that ii) for the

64-QAM, PI-SDR is equivalent to BC-SDR. Details regarding i) and ii) will be described in the first and

second subsections, respectively. Numerical results for verifying the equivalence will then be provided

in the third subsection.

A. Equivalence of VA-SDR and BC-SDR for4q-QAM

For 4q-QAM, the ML problem to be addressed is

min ‖y − Hs‖2

s.t. si ∈ {±1,±3,±5, . . . ,±(2q − 1)}, i = 1, . . . , N.

Its virtually antipodal formulation takes the form

min
b∈{±1}qN

‖y − HWb‖2

where

W = [ I 2I 4I 8I . . . 2q−1I ] ∈ R
N×qN

and

b = [ bT
1 bT

2 . . .bT
q ]T ∈ R

qN

with bi ∈ R
N for all i. Again, both the VA-SDR and BC-SDR problems in this case can be represented

by the expression

min
(S,s)∈F

f(S, s)

where the feasible setF for BC-SDR is defined as

FBC−SDR = { (S, s) | S � ssT ,1N � d(S) � (2q − 1)21N } (25)
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and the feasible set for VA-SDR is

FVA−SDR = { (S, s) = (WBWT ,Wb) | (B,b) ∈ BVA−SDR } (26)

BVA−SDR = { (B,b) | B � bbT , d(B) = 1qN }. (27)

It is shown that the equivalence of BC-SDR and VA-SDR is promised even for higher-order QAM.

Theorem 2 Consider a4q-QAM constellation, whereq ≥ 1. It holds true that

FVA−SDR = FBC−SDR.

The proof of Theorem 2 is given in Appendix B. It is a generalization of its 16-QAM counterpart in

Section V-C. Like the 16-QAM case, the proof reveals the possibility that an optimal BC-SDR solution

can be used to construct an optimal VA-SDR solution in an analytical fashion, or vice versa.

B. Equivalence of PI-SDR and BC-SDR for64-QAM

The original work of PI-SDR [8] concentrates only on the 16-QAM constellation, but it is clear from

that work that the idea can be extended to the 64-QAM constellation. To see this, we start with the

following 64-QAM ML formulation

min ‖y − Hs‖2

s.t. s2
i ∈ {r1, r2, r3, r4}, i = 1, . . . , N

where{r1, r2, r3, r4} = {1, 32, 52, 72}. The idea is to consider the polynomial characterization

u ∈ {r1, r2, r3, r4} ⇐⇒
4

∏

i=1

(u − ri) =

5
∑

ℓ=1

pℓu
ℓ−1 = 0

where{pi} is the set of polynomial coefficients associated with the roots {ri}. Like the development in

16-QAM PI-SDR, we reformulate the ML problem as

min
U,u,S,s

f(S, s)

s.t. U =





U11 U12

UT
12 U22



 ,u =





u1

u2



 ,

S = ssT ,U = uuT ,

d(S) = u1, d(U11) = u2,

p11N + p2u1 + p3d(U11) + p4d(U12) + p5d(U22) = 0.

(28)
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The formation in (28) is valid because its constraints essentially restrictui = s2
i , di(U11) = u2

i , di(U12) =

u3
i , anddi(U22) = u4

i . From (28), we obtain the 64-QAM PI-SDR:

min
U,u,S,s

f(S, s)

s.t. U =





U11 U12

UT
12 U22



 ,u =





u1

u2





S � ssT ,U � uuT

d(S) = u1, d(U11) = u2

p11N + p2u1 + p3d(U11) + p4d(U12) + p5d(U22) = 0.

(29)

For BC-SDR, the relaxation is given by

min f(S, s)

s.t. S � ssT , r11N � d(S) � r41N .
(30)

The main result here is presented as follows:

Theorem 3 Consider a general situation where the roots{ri} are allowed to be arbitrary (not necessarily

the roots in 64-QAM), and assume0 < r1 < . . . < r4 < ∞. The PI-SDR problem in(29) and the BC-SDR

problem in (30) are equivalent in yielding the same feasible set corresponding to (S, s) (and thus the

same optimal solutions), under the following sufficient andnecessary condition

√
r4 − r1 ≤ min{

√
r3 − r1 +

√
r2 − r1,

√
r4 − r2 +

√
r4 − r3}. (31)

It can be verified that the 64-QAM roots ({r1, r2, r3, r4} = {1, 32, 52, 72}) satisfy (31). We therefore

conclude that

Corollary 2 For the 64-QAM constellation, the PI-SDR problem in(29) and the BC-SDR problem in

(30) are equivalent in yielding the same feasible set corresponding to (S, s).

Proof of Theorem 3:The proof is far from trivial compared to its 16-QAM counterpart. Consider the

following lemma shown in Appendix C:
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Lemma 2 The PI-SDR problem in(29) is equivalent to the following alternate PI-SDR problem

min
V1,...,VN ,S,s

f(S, s)

s.t. S � ssT , d(S) = [ v11, . . . , vN,1 ]T

Vi =











1 vi1 vi2

vi1 vi2 vi3

vi2 vi3 vi4











� 0, i = 1, . . . , N

p1 +
∑4

ℓ=1 pℓ+1vi,ℓ = 0, i = 1, . . . , N

(32)

in the sense that the feasible sets corresponding to(S, s) are identical for the two problems.

The proof of Lemma 2 follows the same approach as the equivalence proof for the 16-QAM PI-SDR

and BC-SDR (in Section V-B). However, by Lemma 2 alone, we areunable to see the equivalence of

the 64-QAM PI-SDR and BC-SDR immediately.

To gain further insights, let us re-express the alternate PI-SDR formulation in (32) as

min f(S, s)

s.t. S � ssT , Sii ∈ D, i = 1, . . . , N

where we define

D = { S ∈ R | S = [V]12,V ∈ V } (33)

V =

{

V ∈ S
3

∣

∣

∣

∣

V � 0,V = Hank((1,v)), p1 +

4
∑

ℓ=1

pℓ+1vℓ = 0,v ∈ R
4

}

(34)

with the operatorHank : R
2n−1 → R

n×n standing for

Hank(a1, . . . , a2n−1) =

















a1 a2 . . . an

a2
. . .

...
...

. . . a2n−2

an . . . a2n−2 a2n−1

















.

Our interest now turns to analyzing the setD, which has to be done by analyzingV. Consider the

following lemma proven in Appendix D:

Lemma 3 The setV in (34) is equivalent to

V =

{

V ∈ S
3

∣

∣

∣

∣

V =

4
∑

ℓ=1

θℓaℓa
T
ℓ ,V � 0,

4
∑

ℓ=1

θℓ = 1

}

(35)

whereaℓ = [ 1, rℓ, r2
ℓ ]T .
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Lemma 3 provides an interesting implication. To describe it, let

conv{a1a
T
1 , . . . ,a4a

T
4 } =

{

V

∣

∣

∣

∣

V =

4
∑

ℓ=1

θℓaℓa
T
ℓ ,θ � 0,

4
∑

ℓ=1

θℓ = 1

}

be the convex hull of{a1a
T
1 , . . . ,a4a

T
4 }. It can be verified from (35) thatV ⊇ conv{a1a

T
1 , . . . ,a4a

T
4 },

thoughV ⊆ conv{a1a
T
1 , . . . ,a4a

T
4 } is generally not true3. Consequently, we have

D ⊇ { S = [V]12 | V ∈ conv{a1a
T
1 , . . . ,a4a

T
4 } }

=

{

S =

4
∑

ℓ=1

θℓ[aℓa
T
ℓ ]12

∣

∣

∣

∣

θ � 0,

4
∑

ℓ=1

θℓ = 1

}

=

{

S =
4

∑

ℓ=1

θℓrℓ

∣

∣

∣

∣

θ � 0,
4

∑

ℓ=1

θℓ = 1

}

= [r1, r4].

This implies that the 64-QAM PI-SDR is no tighter than the 64-QAM BC-SDR.But we also show in

Appendix E that

Lemma 4 Let 0 < r1 < . . . < r4 < ∞. We haveD = [r1, r4] if and only if

√
r4 − r1 ≤ min{

√
r3 − r1 +

√
r2 − r1,

√
r4 − r2 +

√
r4 − r3}.

As a result, PI-SDR can be equivalent to BC-SDR under the condition in Lemma 4, thereby completing

the proof of Theorem 3.

C. Numerical Verification of the Equivalence

Simulations were performed to verify the SDR equivalence for the 64-QAM and 256-QAM cases.

The simulation settings are the same as those of the 16-QAM simulation example in Section IV, and

the MIMO size is(M̃, Ñ ) = (4, 4). Simple rounding is employed for the SDR methods. The results are

plotted in Fig. 3. We see that the symbol error rates (SERs) ofthe PI-SDR, BC-SDR, and VA-SDR with

simple rounding II are generally identical, which corroborates our theoretical results. It is also noticed

that the performance of 64-QAM PI-SDR slightly deviates from that of 64-QAM BC-SDR and VA-SDR

at SNR= 45dB. We found that this was due to some numerical problems encountered by the interior-point

SDP solver (which is SeDuMi [30] here). In fact, the polynomial coefficients in 64-QAM PI-SDR have

values ranging fromp5 = 1 to p1 = 1×32×52×72 = 11, 025. Such a large dynamic range could be the

cause of the numerical inaccuracy. Moreover, Fig. 3 illustrates that VA-SDR with simple rounding I is not

3By numerical test, it was found that there exists aV ∈ V such that some of the constituentθℓ can be negative.
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working in 64-QAM and 256-QAM (see Section IV for the definition of simple roundings I and II). This

problem, which has also been noticed by Maoet al. [10], may partially be answered by the equivalence

proof for BC-SDR and VA-SDR; cf., Section V-C and Appendix B.In essence, the derivations there

revealed that the VA-SDR solution with respect to(B,b) may be non-unique, even though its BC-SDR

counterpart [in form of(S, s)] is unique. In particular, a key component, namely Lemma 1 isnot a unique

decomposition.
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Fig. 3. Comparison of symbol error rates of PI-SDR, BC-SDR, and VA-SDR in a 4 × 4 system with either 64-QAM or

256-QAM.

VII. SOME FURTHER SIMULATION RESULTS

We provide two more sets of simulation results to demonstrate the SDR performance compared to

some benchmark MIMO detection methods.

A. Performance Behaviors in a Generic MIMO Setting

In this simulation example, a comparison is made between SDRand some other MIMO detectors for

the 64-QAM case. Again, the simulation setting follows thatof the generic MIMO in Section IV. The

detectors tested include the zero-forcing (ZF) detector, the optimal sphere decoder, and the lattice reduction

aided ZF (LRA-ZF) detector [31], [32]. Note that the LRA-ZF detector has been shown to achieve the

full receive diversity [33]. We tested the BC-SDR method only, as the other two SDR methods will

provide identical results anyway. The BC-SDR detector was implemented by a specialized interior-point

SDP solver developed by the authors [22]. For its solution rounding, we employ the Gaussian randomized

rounding described in [8]. The number of randomizations used is 100.
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Let us examine the complexities of BC-SDR and sphere decoding. The test was conducted on MAT-

LAB, using a desktop computer with dual2.66GHz CPUs. The BC-SDR was written in C mostly, with

minor operations using MATLAB. The sphere decoder was also written in C, and the algorithm employed

is that of Schnorr-Eucher [15] (which is practically found to be a fast sphere decoder implementation).

The result, shown in Table I indicates that sphere decoding yields a better computational advantage than

BC-SDR for Ñ = 5, a small problem size. However, as the problem size increases to Ñ = 20, the

complexity of sphere decoding becomes unaffordable as compared to BC-SDR. As an aside, the sphere

decoding complexity behaviors illustrated here confirm theanalysis in [17].

TABLE I

AVERAGE COMPUTATIONAL TIME COMPARISON OFBC-SDRAND SPHERE DECODING. Ñ = M̃ , 64-QAM CONSTELLATION.

SNR Time spent (in sec.)

Ñ = 5 Ñ = 10 Ñ = 20

13dB BC-SDR 0.0050 0.0070 0.0172

sphere decoder 0.0031 0.0359 54.4323

15dB BC-SDR 0.0088 0.0070 0.0172

sphere decoder 0.0031 0.0297 29.0336

In Fig. 4 we compare the symbol error rates of the various MIMOdetectors. Fig. 4(a) shows the case

of M̃ = Ñ = 8, where we see that LRA-ZF detector gives better performancethan BC-SDR except for

some low SNR values. We increase the problem size toM̃ = Ñ = 16 in Fig. 4(b). For this problem size

it is computationally too hard to run the optimal sphere decoder. The figure illustrates that for SNRs less

than 27dB, BC-SDR outperforms LRA-ZF. Let us further increase the problem size tõM = Ñ = 40.

As illustrated in Fig. 4(c), now BC-SDR exhibits further improved performance compared to LRA-ZF.

The comparisons above suggest that SDR has significant performance advantages for large problem

sizes and/or for low to moderate SNRs.

B. Application to Multiuser MIMO CDMA Systems

We consider a simulation example where SDR and some other MIMO detectors were compared under

a uplink multiuser MIMO CDMA scenario [34]. In this scenario, the involvement of multiple users can

result in a large problem size. The problem is described as follows. The base station hasNr receive

antennas, while there areK active users, each of which is equipped withNt transmit antennas and
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(c) (M̃, Ñ) = (40, 40)

Fig. 4. Comparison of the various detectors in 64-QAM systems.

employs spatial multiplexing to transmitNt parallel streams of data. Each user uses a set ofNt distinct,

preassigned spreading code sequences (with lengthNc) to send its respectiveNt streams of data. The set

of spreading code sequences is also different from one user to another. Under such a setting, the received

space-time signal matrix over one symbol interval can be modeled as [34]

Y =

K
∑

k=1

HkD(sk)C
T
k + V, (36)

wheresk ∈ C
Nt is the symbol vector transmitted by userk, Hk = [ hk,1, . . . ,hk,Nt

] ∈ C
Nr×Nt is the

MIMO channel corresponding to userk, Ck = [ ck,1, . . . , ck,Nt
] is the collection of the spreading code

sequences of userk, with ck,i ∈ C
Nc being the spreading code sequence for transmit antennai of user
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k, andV is noise. By vectorizationy = vec(Y), it can be shown that the multiuser MIMO model in

(36) can be rewritten to a standard form

y = Hs + v

wheres = [ sT
1 , . . . , sT

K ] ∈ C
KNt is the collection of all symbols to be detected,H = [ H1, . . . ,HK ] ∈

CNcNr×KNt, Hk = [ ck,1 ⊗ hk,1, . . . , ck,Nt
⊗ hk,Nt

] ∈ CNcNr×Nt (⊗ denotes the Kronecker product),

andv = vec(V).

In the simulation, each channel vectorhk,i is assumed to be i.i.d. complex circular Gaussian. Moreover,

we assume random spreading, where the entries of eachck,i have unit magnitude and follow an i.i.d.

uniform phase distribution. Fig. 5 displays the simulated result, for64-QAM, K = 20, Nc = 20, Nt = 2

andNr = 2. It is worthwhile to notice that this setting results in a40-by-40 64-QAM system. One can

see from Fig. 5 that BC-SDR outperforms the other detectors in the test.
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Fig. 5. Comparison of the various detectors in a 64-QAM multiuser MIMO CDMA system, withK = 20, Nc = 20, Nt = 2

andNr = 2.

VIII. C ONCLUSION AND DISCUSSION

This paper analyzes the relationships of three SDR-based MIMO detection methods for high-order

QAM, namely PI-SDR, BC-SDR, and VA-SDR. We have proven that the three SDRs are actually

equivalent, despite their different appearances and complexities. The essence of the equivalence is that

an optimal solution of one SDR can always be constructed fromthat of another SDR. The proof covers

general BC-SDR, VA-SDR with any4q-QAM (q ≥ 1), and PI-SDR with16-QAM and 64-QAM.
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Since the three SDRs are now known to be equivalent, the comparison should turn to their computational

costs. Our simulation results have shown that BC-SDR is the cheapest computationally, and in parallel

a fast specialized interior-point algorithm has been developed to support the implementation of BC-

SDR [22]. Hence, it appears that BC-SDR should be the method of choice among the three methods.

While this is our present conclusion, our opinion is that each of the three SDRs is interesting in its own

right by the different ways they utilize QAM structures. Moreover, the exposition of the PI-SDR and

VA-SDR ideas might help inspire future works for devising better SDR methods.

This work also provides several interesting further implications. First, from the analysis one may see

that the SDR equivalence result established here does not depend on the objective function. This has

enabled us to apply the SDR equivalence result to a rather different problem, namely the blind ML

detection of orthogonal space-time block codes [35], [36].In that parallel investigation, the problem

takes on a different objective structure (a Rayleigh quotient function); and the SDR equivalence has

proven to be useful in telling which SDR is the most favorableto employ (i.e., BC-SDR).

Second, we should mention the 16-QAM tightened BC-SDR method by Yang et al. [11]. Yang et

al. showed that their tightened BC-SDR method can perform better than the 16-QAM PI-SDR. Using

the equivalence result here, we can further infer that the tightened BC-SDR can perform better than the

16-QAM VA-SDR as well.

APPENDIX

A. Proof of Lemma 1

The proof is constructive. Let

u = θ
z

‖z‖ +
√

1 − θ2z⊥ (37)

wherez⊥ is a unit 2-norm vector orthogonal toz, and |θ| ≤ 1. It can be verified that theu in (37)

satisfies‖u‖ = 1. Moreover, let

v =
1

β
(z − αu) (38)

which is purposely constructed to satisfyz = αu + βv. One can show from (38) that the unit norm

condition‖v‖ = 1 is achieved when we choose

θ =
‖z‖2 − (β2 − α2)

2α‖z‖ . (39)

Now the remaining problem is the condition under which|θ| ≤ 1. It can be verified from (39) that if

β − α ≤ ‖z‖ ≤ β + α then |θ| ≤ 1 is guaranteed.
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B. Proof of Theorem 2

The idea is similar to the proof in the 16-QAM case, describedin Section V-C. We consider two PSD

matrices

X =





S s

sT 1



 � 0, Y =





B b

bT 1



 � 0

that satisfy(S,b) = (WBWT ,Wb). That condition is shown to be achievable if

Z = R





WT 0

0 1



 (40)

whereZ ∈ R
(qN+1)×(N+1) andR ∈ R

(qN+1)×(qN+1) are square root factors ofX andY, respectively

(or ZTZ = X, RTR = Y). The objective is to show that if(S, s) ∈ FBC−SDR, then we can construct a

(B,b) ∈ BVA−SDR satisfying (40); and vice versa.

For general4q-QAM whereW is expanded to[ I 2I . . . 2q−1I ], Eq. (40) can be rewritten as

zi =

q−1
∑

j=0

2jri+jN , i = 1, . . . , N, (41)

zN+1 = rqN+1. (42)

To achieve (42) is easy, and the nontrivial part lies in (41).First, suppose(B,b) ∈ BVA−SDR. Then the

resultantR satisfies‖ri‖ = 1. The vectorszi satisfying (41) would then have bounds

‖zi‖ ≤
q−1
∑

j=0

2j‖ri+jN‖ =

q−1
∑

j=0

2j = 2q − 1,

‖zi‖ ≥ 2q−1‖ri+(q−1)N‖ −

∥

∥

∥

∥

∥

∥

q−2
∑

j=0

2jri+jN

∥

∥

∥

∥

∥

∥

≥ 2q−1 −
q−2
∑

j=0

2j = 2q−1 − (2q−1 − 1) = 1.

This means that the correspondingS hasdi(S) = ‖zi‖2 ∈ [1, (2q − 1)2]. Hence,(S, s) ∈ FBC−SDR.

Second, suppose(S, s) ∈ BBC−SDR. Let us choose, for eachi = 1, . . . , N ,

ri = ri+N = · · · = ri+(q−2)N , ui,

ri+(q−1)N , vi,

for someui,vi ∈ R
qN+1. The condition in (41) becomes

zi =

q−2
∑

j=0

2jui + 2q−1vi = (2q−1 − 1)ui + 2q−1vi. (43)
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Using Lemma 1, we can construct a(ui,vi) that satisfies (43) for any‖zi‖ =
√

di(S) ∈ [1, 2q −1] while

achieving‖ui‖ = ‖vi‖ = 1. The resultantB will therefore satisfydi(B) = Yii = 1 for all i, meaning

that (B,b) ∈ BVA−SDR.

The proof of Theorem 2 is complete.

C. Proof of Lemma 2

Suppose that(U,u,S, s) is feasible to the original 64-QAM PI-SDR problem in (29). Set

Vi =











1 0

0 eT
i

0 eT
i+N















1 uT

u U









1 0 0

0 ei ei+N



 (44)

for i = 1, . . . , N , whereei ∈ R
2N is a unit vector with the nonzero element at theith element. It follows

from U � uuT and (44) thatVi � 0 for all i. Moreover, (44) equals

Vi =











1 u1i u2i

u1i [U11]ii [U12]ii

u2i [U12]ii [U22]ii











. (45)

Sinceu2i = [U11]ii, everyVi in (45) satisfies the Hankel structure in the alternate PI-SDR problem in

(32). It also follows from (45) that the equality constraints arising from the polynomials are satisfied.

Hence,(V1, . . . ,VN ,S, s) is feasible to the alternate PI-SDR problem in (32).

On the other hand, suppose that(V1, . . . ,VN ,S, s) is feasible to the alternate PI-SDR. Set

u1 = [ v11, . . . , vN,1 ]T , (46a)

U11 = C2 − D(u1 ⊙ u1) + u1u
T
1 , (46b)

u2 = d(U11) = [ v12, . . . , vN,2 ]T , (46c)

U12 = C3 − D(u1 ⊙ u2) + u1u
T
2 , (46d)

U22 = C4 − D(u2 ⊙ u2) + u2u
T
2 , (46e)

where⊙ is the Hadamard product, and

Ci = D(v1,i, . . . , vN,i).

It can be shown that (46) satisfies the equality constraints of the polynomials. Let us examine if

U � uuT . We see that

U − uuT =





C2 − D(u1 ⊙ u1) C3 − D(u1 ⊙ u2)

C3 − D(u1 ⊙ u2) C4 − D(u2 ⊙ u2)



 .
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It can be shown using basic matrix results that the speciallystructured matrix above is PSD if and only

if




vi,2 − u2
1,i vi,3 − u1,iu2,i

vi,3 − u1,iu2,i vi,4 − u2
2,i



 (47)

are PSD for alli = 1, . . . , N . By usingu1,i = vi,1 andu2,i = vi,2 and Schur complement, it is shown that

(47) are indeed PSD. We therefore conclude that(V1, . . . ,VN ,S, s) is feasible to the alternate PI-SDR

problem.

D. Proof of Lemma 3

Consider a problem setting as follows: Let{r1, . . . , rL} be a given set of roots, and assume that the

roots are distinct. Consider the following two sets

V1 =

{

V = Hank(v)

∣

∣

∣

∣

v ∈ R
L+1, v1 = 1,pT v = 0,V � 0

}

wherep = [ p1, . . . , pL+1 ]T contains the polynomial coefficients corresponding to{r1, . . . , rL}, i.e.,
∑L+1

ℓ=1 pℓr
ℓ−1 = 0 for all r ∈ {r1, . . . , rL}; and

V2 =

{

V =
L

∑

ℓ=1

θℓaℓa
T
ℓ

∣

∣

∣

∣

L
∑

ℓ=1

θℓ = 1,V � 0

}

whereaℓ = [ 1, rℓ, r2
ℓ , . . . , r

L/2
ℓ ]T ∈ R

L/2+1, andL is assumed to be even. Our objective is to prove

thatV1 = V2. Clearly, Lemma 3 is a special case of the above problem whereL = 4.

By definition, everyV ∈ V1 can be parameterized by somev ∈ R
L+1 such thatv1 = 1 andpTv = 0.

Let

bℓ = [ 1, rℓ, r
2
ℓ , . . . , r

L
ℓ ]T ∈ R

L+1

for ℓ = 1, . . . , L. Since everybℓ contains one of the true roots, it satisfiespTbℓ = 0. Hence, we have

the following condition to satisfy

pT [ b1 . . .bL v ] = 0. (48)

The submatrix[ b1 . . . bL ] ∈ R
(L+1)×L is linearly independent, being Vandemonde with distinct roots.

Subsequently, (48) can be satisfied only when

v =

L
∑

ℓ=1

θℓbℓ.

for some coefficientsθ ∈ R
L. Since 1 = v1 =

∑L
ℓ=1 θℓ[bℓ]1 =

∑L
ℓ=1 θℓ, the coefficients satisfy

∑L
ℓ=1 θℓ = 1. Moreover, by noticing that

Hank(bℓ) = aℓa
T
ℓ , (49)
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we have

V = Hank(v) =

L
∑

ℓ=1

θℓaℓa
T
ℓ .

Hence, anyV ∈ V1 lies in V2.

Likewise, it can be verified that everyV ∈ V2 lies inV1: For everyV ∈ V2 which can be characterized

asV =
∑L

ℓ=1 θℓaℓa
T
ℓ ,

∑L
ℓ=1 θℓ = 1, set

v =

L
∑

ℓ=1

θℓbℓ.

It follows from (49) thatHank(v) = V. Moreover, thisv satisfiesv1 =
∑L

ℓ=1 θℓ[bℓ]1 = 1, andpTv =
∑L

ℓ=1 θℓp
Tbℓ = 0.

E. Proof of Lemma 4

By Lemma 3, the setD can be expressed as

D =

{

S =
4

∑

ℓ=1

θℓrℓ

∣

∣

∣

∣

4
∑

ℓ=1

θℓaℓa
T
ℓ � 0,

4
∑

ℓ=1

θℓ = 1

}

.

This set is a closed convex set, and therefore must be in form of an interval[L,U ]. The proof is divided

into three parts: solvingL, solvingU , and integrating the results.

1) Solving the lower bound:We find the lower boundL by solving the problem

L = min
θ

4
∑

ℓ=1

θℓrℓ

s.t.
4

∑

ℓ=1

θℓaℓa
T
ℓ � 0,

4
∑

ℓ=1

θ = 1.

(50)

Let xi = θi+1, i = 1, 2, 3. Using θ1 = 1 − ∑3
i=1 xi, Problem (50) can be re-expressed as

L = min
x

r1 +
3

∑

i=1

xi(ri+1 − r1)

s.t. a1a
T
1 +

3
∑

i=1

xi(ai+1a
T
i+1 − a1a

T
1 ) � 0.

(51)

By strong duality, solving (51) is the same as solving its dual which can be shown to be

L = max
Z∈S3

r1 − tr(a1a
T
1 Z)

s.t. Z � 0,

tr[(a1a
T
1 − ai+1a

T
i+1)Z] = r1 − ri+1, i = 1, 2, 3.

(52)

From the objective in (52), it is clear thatL = r1 if and only if Z is feasible and satisfies

tr(a1a
T
1 Z) = 0. (53)
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Let us consider the construction of a PSDZ satisfying (53). Eq. (53) implies thatZ has rank no greater

than2. Thus any such PSDZ can be represented by

Z = RRT

whereR ∈ R
3×2 is such thatRTa1 = 0. Such anR can be parameterized as

R = [ Wα1, Wα2 ],

for someα1,α2 ∈ R
2, where

W =











1 1

−1/r1 −2/r1

0 1/r2
1











.

(One can easily check thataT
1 W = 0, therebyRT a1 = 0.) Therefore, any PSDZ satisfying (53) can

be expressed as

Z = WGWT (54)

where

G =





a b

b c



 =
[

α1 α2

]





αT
1

αT
2



 � 0

can be any2 × 2 PSD matrix.

By substituting the matrix form in (54) into the equality constraints in (52), we obtain

aT
i+1WGWT ai+1 = ri+1 − r1, i = 1, 2, 3. (55)

We seek to find the sufficient and necessary conditions for satisfying (55). By noticing that

WTai+1 =





1 −1/r1 0

1 −2/r1 1/r2
1















1

ri+1

r2
i+1











=





1 − ri+1/r1

(1 − ri+1/r1)
2



 ,

Eq. (55) can be decomposed to

r1 − a(ri+1/r1 − 1) + 2b(ri+1/r1 − 1)2 − c(ri+1/r1 − 1)3 = 0, (56)

for i = 1, 2, 3. Let us define a polynomial function

f(u) = r1 − au + 2bu2 − cu3.

Since the function satisfiesf(ri+1/r1 − 1) = 0 for i = 1, 2, 3 [cf., Eq. (56)], it permits a factored form

f(u) = r1

3
∏

j=1

(1 − u/uj),
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where

uj = rj+1/r1 − 1 > 0.

By expanding the factored form off(u) to the polynomial form, we determine (rather tediously) that

a =
r1

u1u2u3
(u1u2 + u2u3 + u1u3) > 0,

b =
r1

2u1u2u3
(u1 + u2 + u3) > 0, c =

r1

u1u2u3
> 0.

The remaining part lies in ensuring that the resultantG is PSD. We already havea > 0 and c > 0, so

the last condition isb2 − ac ≤ 0 by Schur complement. With some cumbersome derivations, we show

that

b2 − ac =

(

r1

2u1u2u3

)2

[u3 − (
√

u1 −
√

u2)
2][u3 − (

√
u1 +

√
u2)

2].

In order to achieveb2 − ac ≤ 0, we need

(
√

u1 −
√

u2)
2 ≤ u3 ≤ (

√
u1 +

√
u2)

2. (57)

Summarizing, we haveL = r1 if and only if (57) holds.

2) Solving the upper bound:The method of the proof is exactly the same as the previous, and hence

the detailed derivations are omitted for brevity. Essentially, we consider solving the upper bound

U = max
θ

∑4
i=1 θiri

s.t.
∑4

i=1 θiaia
T
i � 0,

∑4
i=1 θi = 1

by solving its dual

U = min
Z∈S3

r4 + tr(a4a
T
4 Z)

s.t. Z � 0,

tr[(a4a
T
4 − aia

T
i )Z] = ri − r4, i = 1, 2, 3.

(58)

From (58) it is shown thatU = r4 if and only if

(
√

v2 −
√

v3)
2 ≤ v1 ≤ (

√
v2 +

√
v3)

2. (59)

wherevi = 1 − ri/r4 > 0 for i = 1, 2, 3.
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3) Combining the conditions:The final task is to combine the conditions in (57) and (59). Wecan

express (57) as
√

r3 − r1 −
√

r2 − r1 ≤
√

r4 − r1 ≤
√

r3 − r1 +
√

r2 − r1.

The lower bound is redundant because for anyr4 > . . . > r1 > 0,

√
r4 − r1 ≥

√
r3 − r1 ≥

√
r3 − r1 −

√
r2 − r1.

Moreover, (59) can be expressed as

√
r4 − r2 −

√
r4 − r3 ≤

√
r4 − r1 ≤

√
r4 − r2 +

√
r4 − r3,

and again the lower bound can be shown to be automatically satisfied. We therefore obtain the sufficient

and necessary condition in Lemma 4, completing the proof.
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