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1. INTRODUCTION
Blind hyperspectral unmixing (HU), also known as unsuper-
vised HU, is one of the most prominent research topics in sig-
nal processing for hyperspectral remote sensing [1, 2]. Blind
HU aims at identifying materials present in a captured scene,
as well as their compositions, by using high spectral resolu-
tion of hyperspectral images. It is a blind source separation
(BSS) problem from a signal processing (SP) viewpoint. Re-
search on this topic started in the 1990’s in geoscience and
remote sensing [3–7], enabled by technological advances in
hyperspectral sensing at the time. In recent years, blind HU
has attracted much interest from other fields such as SP, ma-
chine learning and optimization, and the subsequent cross-
disciplinary research activities have made blind HU a vibrant
topic. The resulting impact is not just on remote sensing—
blind HU has provided a unique problem scenario that in-
spired researchers from different fields to devise novel blind
SP methods. In fact, one may say that blind HU has estab-
lished a new branch of BSS approaches not seen in classical
BSS studies. In particular, the convex geometry concepts—
discovered by early remote sensing researchers through em-
pirical observations [3–7] and refined by later research—are
elegant and very different from statistical independence-based
BSS approaches established in the SP field. Moreover, lat-
est research on blind HU is rapidly adopting advanced tech-
niques, such as those in sparse SP and optimization. The
present development of blind HU seems to be converging to
a point where the lines between remote sensing-originated
ideas and advanced SP and optimization concepts are no
longer clear, and insights from both sides would be used to
establish better methods.

This article uses an SP researcher’s perspective to review
blind HU. We will consider several key developments, which
include pure pixel search, convex geometry, dictionary-based
sparse regression and non-negative matrix factorization.We
will not cover Bayesian techniques [8], although readers
should note that they also represent key developments in blind
HU. Our emphasis will be on insights, where we will show-
case how each approach fundamentally works, and highlight
significant results from a viewpoint of SP theory and meth-
ods. Some forefront advances will also be discussed. Note
that this article does not aim at survey; please see a recent
overview paper [2] which provides a comprehensive coverage
of numerous blind HU methods and many other aspects.

Our notations are standard in SP. In addition, given a ma-

trix X, xi andxi denote itsith column andith row, respec-
tively (resp.); “≥” represents elementwise inequality;1 is an
all-one vector of appropriate length;A† is the pseudo inverse
of A; P⊥

A = I − A(ATA)†AT is the orthogonal comple-
ment projector ofA; σmin(A) andσmax(A) denote the mini-
mum and maximum singular values ofA, resp.;‖·‖p denotes
theℓp norm;‖ · ‖F denotes the Frobenius norm.

2. SIGNAL MODEL
Modeling hyperspectral signals is a difficult problem. It de-
pends on numerous factors; some crucial ones include: the
types of materials encountered in the acquired scene, the ways
the materials are physically mixed and constitute the scene
topologically, the way light interacts with the materials,gets
reflected and measured by the hyperspectral instrument, and
the measurement environment. Over decades, the geoscience
and remote sensing community has devoted tremendous ef-
forts to various modeling aspects, from which we have now
significantly improved our understanding of the true problem
nature. Nevertheless, modeling can be an overwhelmingly
complex process if one wants to treat every aspect very pre-
cisely. In particular, while radiative transfer theory (RTT) is
well known to be able to provide accurate characterizationsof
photons’ interactions with the materials (see [2] and the refer-
ences therein), the resulting models are generally too difficult
to use for signal analysis and processing. There is a compro-
mise to make between model accuracy and tractability.

We focus on a relatively simplistic but very representa-
tive model, namely, thelinear mixing model(LMM). The
LMM lies at the center of interest of many important devel-
opments in blind HU. Despite the fact that the LMM is not
always true, especially under certain scenarios that exhibit
strong nonlinearity, it is generally recognized as an accept-
able model for many real-world scenarios. The LMM is de-
scribed as follows. We assume a macroscopic mixing scale in
which the incident light interacts with only one material be-
fore reflecting off. Letym[n] denote the hyperspectral cam-
era’s measurement at spectral bandm and at pixeln. Letting
y[n] = [ y1[n], y2[n], . . . , yM [n] ]T ∈ R

M whereM is the
number of spectral bands, the LMM is given by

y[n] =

N
∑

i=1

aisi[n] + ν[n] = As[n] + ν[n], (1)

for n = 1, . . . , L, where eachai ∈ R
M , i = 1, . . . , N , is



called anendmember signature vector, which contains the
spectral components of a specific material (indexed byi) in
the scene;N is the number of endmembers, or materials, in
the scene;A = [ a1, . . . ,aN ] ∈ R

M×N is theendmember
matrix; si[n] describes the contribution of materiali at pixel
n; s[n] = [ s1[n], . . . , sN [n] ] ∈ R

N is called theabundance
vectorat pixeln; L is the number of pixels;ν[n] ∈ R

M is
noise. Fig. 1 illustrates the mixing process.

x=

a1 a2 a3

s1[n]

s2[n]

s3[n]

y[n]

M

Fig. 1. Linear mixing model.

There are several important aspects concerning the LMM
formulation. First, since hyperspectral cameras have wide
spectral ranges and fine spectral resolution,M is often
large— typically more than200. Such large spectral degrees
of freedom allow us to distinguish an endmember signature
from another, as well as mixtures of endmember signatures,
provided that the materials are sufficiently different fromone
another. Hence, it is reasonable to assume that{a1, . . . ,aN}
is linearly independent, and we will assume that this condi-
tion holds throughout the paper. Second, the mixing process
in (1) is a consequence of limited spatial resolution of hyper-
spectral cameras. Specifically, one pixel may not be spatially
fine enough to contain one material only. For example, each
pixel is about 4 m× 4 m to 20 m× 20 m for airborne vis-
ible/infrared imaging spectrometer (AVIRIS), depending on
the altitude of the flight. Third, while the noise vectorν[n]
is commonly used to represent background and instrument
noise, one may also use it to incorporate errors arising from
modeling inaccuracies. From such perspective, (1) can serve
as a reasonable approximate model when nonlinear effects are
not too strong. Fourth, by nature, the abundance vectorss[n]
should satisfy

si[n] ≥ 0, i = 1, . . . , N, and
N
∑

i=1

si[n] = 1, (2)

for everyn = 1, 2, . . . , L. The second constraint above, com-
monly referred to as theabundance sum constraintor the
sum-to-one constraint, means that abundances give the frac-
tional proportions, or percentages, of the different materials
in a pixel. For convenience, we will write

s[n] ∈ S = { s ∈ R
N | s ≥ 0, sT1 = 1 } (3)

whereS denotes the feasible set of abundance vectors. Note
thatS is a unit simplex.

The LMM introduced above is considered standard. That
said, there are some hidden complications. Here we briefly
mention them; interested readers can find further clarifica-
tions in [2]. First, in the model (1),y[n]’s are actually pro-
cessed measurements. Raw measurements from the hyper-
spectral camera usually undergo a series of processing steps,
such as radiometric calibration, geometric correction andat-
mospheric compensation [9], before arriving at the simple
LMM. Second, for simplicity we have associated an endmem-
ber with a material, presumably pure. However, an endmem-
ber could also be a composition of several materials; viz., a
material made of several materials. The definition of an end-
member can be subjective, and is dependent on applications.
Third, we have assumed that the sum-to-one constraint in (3)
holds. In practice, the sum-to-one constraint may be violated
under the so-called endmember variability (EV) effects. Be-
sides modeling issues, it is worth noting that recently there
has been growing interest in considering specific but more
treatable nonlinear mixture models for HU; the same applies
to EV. In these scenarios, insights learned from LMM-based
HU remain vital and provide building blocks for non-LMM
HU problems there. We refer readers to [10, 11] in this spe-
cial issue for a coverage of nonlinear HU and EV, resp.

3. PROBLEM STATEMENT
We are concerned with the HU problem, under the model
setting in (1)-(3). Specifically, HU aims at recoverings[n]
fromy[n], thereby retrieving every material’s abundance map
{si[n]}

L
n=1 from the hyperspectral measurements. Assuming

full knowledge of the endmember matrixA, we can carry
out unmixing by solving constrained linear least squares (LS)
problems:

ŝ[n] = arg min
s[n]∈S

‖y[n]−As[n]‖22, (4)

for n = 1, . . . , L. Fundamentally, the above problem is
considered an “easy” problem—it is a convex optimization
problem, and a simple way to obtain a solution is to call
some general-purpose convex optimization software, such as
the widely usedCVX [12]. Alternatively, one can design
dedicated algorithms for problem (4) to have more efficient
implementations; this is a more popular option in the field
[13–15]. What makes HU fundamentally challenging is not
problem (4) (or other variants), but the fact that we often do
not have full knowledge ofA—for if we do, it means that we
know exactly all the materials in the scene, which is unlikely
in reality.

Blind HU amounts to recovering{s[n]}Ln=1 from
{y[n]}Ln=1 without knowledge ofA. The problem can also
be stated as that of identifyingA from {y[n]}Ln=1 without
knowledge of{s[n]}Ln=1. At this point, readers who are fa-
miliar with BSS may have realized that the problem formula-



tion of blind HU is the same as that of BSS: The endmember
matrix A and abundance vectorss[n] are the mixing matrix
and true source vectors in BSS, resp. While this observa-
tion is true, and in fact has been noticed for a while [16],
classical BSS methods established in the SP field usually do
not fall in any of the mainstream blind HU approaches. The
key reason is that under the unit simplex constraint (3), the
sources{s[n]}Ln=1 do not satisfy the statistical independence
assumption, which is a very essential assumption in many
BSS methods, particularly the well-known independent com-
ponent analysis (ICA). The violation of source independence
makes many existing BSS methods an inappropriate choice
for blind HU from the outset.

Before delving into blind HU, we should point out that we
will generally assumeN , the number of endmembers, to be
known. As in BSS and sensor array processing in the SP field,
where the same aspect has been extensively studied under the
name ofmodel order selection(see, e.g., [17]), the problem
of identifying the number of endmembers can be seen as a
separate problem; see [2, Section III] for a coverage. One
may also build on an existing blind HU approach to provide
joint blind HU and endmember number identification.

4. PURE PIXELS PURSUIT
Our review begins with a very simple class of methods that
hinges on a special model assumption calledpure pixels.

4.1. The Definition of Pure Pixels
We say that endmemberi (or materiali) has a pure pixel if for
some index denoted byℓi, we have

s[ℓi] = ei, (5)

whereei ∈ R
N is a unit vector with the nonzero element at

the ith entry (that is,[ei]j = 0 for all j 6= i, and[ei]i = 1).
Moreover, we say thatthe pure pixel assumption holds if every
endmember has a pure pixel.

Physically, the existence of pure pixels means that while
hyperspectral pixels are generally mixtures of several mate-
rials, there are certain pixels that are constituted by one ma-
terial only. This can be seen from the model (1). Assuming
pure pixels and no noise, the observed vector at pixelℓi is

y[ℓi] = ai, (6)

for i = 1, . . . , N , which are the endmembers. In practice,
there are scenarios where the pure pixel assumption holds.
For example, imagine a scene that consists of water and soil.
If there exist some local pixel regions that contain either water
or soil only, then those regions contain pure pixels. Note that
since more than one pure pixel may exist for a particular end-
member,ℓi may not be unique. However, we should also note
that the pure pixel assumption does not always hold, e.g., in
a scene consisting of highly mixed minerals, or if the spatial
resolution of the hyperspectral camera is too low.

Pure pixels provide a unique opportunity for blind HU. In
essence, if we know the pure pixel indicesℓ1, . . . , ℓN , then
[ y[ℓ1], . . . ,y[ℓN ] ] = [ a1, . . . ,aN ] is the endmember ma-
trix itself—and the problem is solved—in the noiseless case.
However, the pure pixel indices are not knowna priori, and
the problem is to find them.

4.2. Successive Projections Algorithm
We introduce a simple algorithm for finding the pure pixels of
all endmembers. The prerequisite required to understand the
algorithm is just basic knowledge of linear algebra.

Again, consider the noiseless case and assume that the
pure pixel assumption holds. We notice that for anyn,

‖y[n]‖2 =

∥

∥

∥

∥

∥

N
∑

i=1

si[n]ai

∥

∥

∥

∥

∥

2

≤

N
∑

i=1

‖si[n]ai‖2 (7a)

=

N
∑

i=1

si[n]‖ai‖2 (7b)

≤ max
i=1,...,N

‖ai‖2, (7c)

where (7a) is due to the LMM and the triangle inequality, and
(7b) and (7c) to the unit simplex constraint (3). It can be
seen that equality in (7) holds whens[n] = ej , wherej =
argmaxi=1,...,N ‖ai‖2; which holds atn = ℓj , that is,y[n]
is a pure pixel corresponding to thejth endmember (cf. (6)).
Also, equality in (7) cannot be attained by non-pure pixels,
by the equality condition of the triangle inequality and the
linear independence of{a1, . . . ,aN}. Assuming without loss
of generality (w.l.o.g.) thatj = 1, we can identify the first
endmember signature by

â1 = y[ℓ̂1], ℓ̂1 = arg max
n=1,...,L

‖y[n]‖22. (8)

Note thatâ1 is a perfect estimate ofa1 under the aforemen-
tioned settings.

The next question is to identify pure pixels corresponding
to other endmembers. Suppose that we have previously iden-
tified k− 1 endmember signatures, denoted byâ1, . . . , âk−1,
and that the identification is perfect, viz.,âi = ai for i =
1, . . . , k − 1. The idea to identify the next endmember is to
perform nulling—a standard SP trick that has appeared many
times (e.g., [17]), but proves very useful in various fields.Let
Â1:k−1 = [ â1, . . . , âk−1 ], and construct its orthogonal com-
plement projectorP⊥

Â1:k−1
. SinceP⊥

Â1:k−1
ai = 0 holds for

anyi < k, we have that

‖P⊥
Â1:k−1

y[n]‖2 =

∥

∥

∥

∥

∥

N
∑

i=k

si[n]P
⊥
Â1:k−1

ai

∥

∥

∥

∥

∥

2

(9a)

≤ max
i=k,...,N

∥

∥

∥
P⊥

Â1:k−1
ai

∥

∥

∥

2
, (9b)

where (9b) is obtained in the same way as (7). And like (7), it
can be shown that equality in (9) holds only for a pure pixel



corresponding to a previously unidentified endmember, which
we can assume w.l.o.g. to be that atn = ℓk. Thekth endmem-
ber signature can therefore be identified via

âk = y[ℓ̂k], ℓ̂k = arg max
n=1,...,L

‖P⊥
Â1:k−1

y[n]‖22. (10)

Hence, by induction, we can identify all the endmembers.
The algorithm presented above is called thesuccessive

projections algorithm(SPA). Algorithm 1 gives the pseudo-
code of SPA, which is very simple. From the above algebraic
development, we conclude thatin the noiseless case and un-
der the pure pixel assumption, SPA perfectly identifies all the
endmember signatures{a1, . . . ,aN}.

We should provide a brief historical note on SPA, since
it has been repeatedly rediscovered. To our best knowledge,
SPA first appeared in chemometrics in 2001 by Araújoet
al. [18]. Later, a very similar algorithm, called the automatic
target generation process (ATGP), was proposed by Ren and
Chang in 2003 in remote sensing [19]. Curiously, the de-
velopment we just displayed, which shows why SPA works
from an algebraic SP viewpoint and pins down its endmem-
ber identifiability, was not seen until recently; see [20, Ap-
pendix F]. There are other ways to derive SPA, which will
be described later. It is worth pointing out that SPA has been
used successfully for rather different purposes. In numerical
linear algebra, SPA is closely related to the so-called modified
Gram-Schmidt algorithm with column pivoting, used for ex-
ample to solve linear LS problems [21]. In machine learning,
SPA has been used for document classification where the pure
pixel assumption is referred to as theseparabilityassumption
and requires that, for each topic, there exists at least one word
used only by that topic; see [22] and the references therein.

Algorithm 1 SPA

input {y[n]}Ln=1, N .
1: P⊥ = I

2: for k = 1, . . . , N do
3: ℓ̂k = argmaxn=1,...,L ‖P⊥y[n]‖22
4: âk = y[ℓ̂k]
5: P⊥ := (I − (P⊥âk)(P

⊥âk)
T /‖P⊥âk‖

2
2)P

⊥

6: end for
output Â = [ â1, . . . , âN ].

The above SPA development is based on the noiseless ar-
gument. An interesting question is therefore on sensitivity
against noise. A provable performance bound characteriz-
ing noise sensitivity has been proposed very recently in [23],
and is briefly described here. Let us denoteσ = σmin(A),
which is positive since{a1, . . . ,aN} is linearly indepen-
dent, andK = max1≤i≤N ||ai||2. Let us also denote the
noise levelǫ = max1≤n≤L ||ν[n]||2. Then,under the pure
pixel assumption and assuming that the noise level satisfies

ǫ ≤ O
(

σ3

NK2

)

, SPA identifies all the endmember signatures

{a1, . . . ,aN} up to errorO
(

ǫK
2

σ2

)

; more precisely, we have

max
1≤i≤N

min
1≤j≤N

||ai − âj||2 ≤ O

(

ǫ
K2

σ2

)

. (11)

The above analysis result provides significant practical im-
plications. We see in (11) that the noise robustness of SPA
depends on the ratioKσ . It can be shown that [23]

max1≤i≤N ||ai||2
min1≤i≤N ||ai||2

≤
K

σ
≤

σmax(A)

σmin(A)
.

Thus, the noise robustness of SPA depends on i) how different
the magnitudes of the endmember signatures are, and ii) how
well the true endmember signatures are spectrally distributed.
In particular, the latter implies that challenging scenarios lie
in highly similar endmembers.

Let us further point out two notable facts. First, one
can generalize SPA by replacing theℓ2 norm in (9)-(10) by
any continuously differentiable and locally strongly convex
function whose minimizer is zero, e.g., anyℓp norm with
1 < p < +∞. The corresponding algorithm not only works
in the noiseless case, it is also shown to possess a similar er-
ror bound as in (11) [23]. According to the analysis, the vari-
ant using theℓ2 norm has the best robustness against noise
among all locally strongly convex functions; see also [24] for
numerical evidence. Second, it is possible to improve the
error bound above toO

(

ǫKσ
)

by using the following post-
processing strategy [22]: Let{â1, . . . , âN} be theN end-
members extracted by SPA. Then, fori = 1, . . . , N ,

1. Project the original data{y[n]}Ln=1 onto the orthogonal
complement of{âk}

N
k=1,k 6=i,

2. Replacêai with the column of{y[n]}Ln=1 whoseℓ2 norm
of the projection is maximum.

This iterative refinement strategy is identical to a previously
proposed blind HU algorithm (but without a robustness anal-
ysis); it will be further discussed in Section 5.3.

4.3. Other Algorithms and Discussion
There are many other pure pixels search algorithms; see [2,
Section VI.A] for a review. A representative algorithm in
this family is vertex component analysis (VCA), proposed in
2003 [25, 26]. VCA is similar to SPA—it also employs suc-
cessive nulling, but differs in the way it picks pure pixels.
Specifically, in VCA, the right-hand sides (RHSs) of (8) and
(10) are replaced by

ℓ̂k = max
n=1,...,L

|wT
k y[n]|, (12)

for k = 1, . . . , N , wherewk is a randomly generated vec-
tor lying on the orthogonal complement subspace ofÂ1:k−1.
Specifically, it is given bywk = P⊥

Â1:k−1
ξ/‖P⊥

Â1:k−1
ξ‖2,

whereξ is an independent and identically distributed (i.i.d.)
zero-mean Gaussian vector. Following the same derivations



described above for SPA, one can show that VCA also per-
fectly identifies all the endmember signatures in the noiseless
case and under the pure pixel assumption; this result holds
with probability one. Also, we must mention pixel purity in-
dex (PPI) by Boardmanet al. in 1995 [6], which is one of the
earliest blind HU algorithms. PPI does not have successive
nulling. It is analogous to running (12) only fork = 1, but for
many independent random trials. The number of trials needs
to be large enough so to increase the chance of successfully
hitting all endmembers’ pure pixels. For numerical compar-
isons of SPA, VCA and PPI, please see [23] (also [20]).

Some additional comments are in order.
1. To simplify the presentation, we have intentionally
skipped a conventional pre-processing procedure, namely,
dimension reduction (DR). In practice, VCA and PPI would
apply DR to the observed data{y[n]}Ln=1, prior to pure pix-
els search. While we have seen that DR is not required in
SPA (as well as VCA and PPI), applying DR plays a cru-
cial role in suppressing noise, which in turn helps improve
pure pixel identification performance. Readers are referred
to [2, Section III] for the state-of-the-art DR methods in HU.
2. SPA can be extended in at least two ways. First, it can
be modified to accommodate outliers, which are anoma-
lous pixels that exhibit markedly different behaviors from
the nominal model, and can cause substantial performance
degradation. The idea is to consider outliers as endmembers,
identify them together with true endmembers, and discard
them from the obtained estimates [23]. Second, one can ex-
tend the method for joint blind HU and endmember number
identification. We note that if we keep running the SPA step
in (10) recursively, then, at stagek = N + 1, the projection
residuals‖P⊥

Â1:k−1
y[n]‖22 become zeros. Thus, the projec-

tion residuals may serve as an indicator of the number of
endmembers. Similar ideas have been considered in [24,27].

5. CONVEX GEOMETRY
We have previously shown how blind HU may be easily han-
dled under the pure pixel assumption. The pure pixel concept
actually came from the study ofconvex geometry(CG) of hy-
perspectral signals, where remote sensing researchers exam-
ined the special geometric structure of hyperspectral signals
and looked for automatic methods for endmember determina-
tion, that is, blind HU. In fact, a vast majority of blind HU de-
velopments, if not all, are directly or intuitively relatedto con-
cepts introduced in early CG studies, such as simplex volume
minimization by Craig [4], simplex volume maximization by
Winter [7], and the previously reviewed pure pixel search by
Boardmanet al. [6]. We give a historical review in the box
“who discovered convex geometry for blind unmixing?”

5.1. Preliminaries
We introduce several mathematical notations and facts in
convex analysis, whose physical relevance to blind HU will

become clear soon. The affine hull of a set of vectors
{a1, . . . ,aN} ⊂ R

M is defined as

aff{a1, . . . ,aN} =

{

y =

N
∑

i=1

θiai

∣

∣

∣

∣

θ ∈ R
N ,

N
∑

i=1

θi = 1

}

.

(13)
An affine hull can always be represented by

aff{a1, . . . ,aN} = {y = Cx+ d | x ∈ R
P } (14)

for someC ∈ R
M×P , d ∈ R

M , whererank(C) = P and
P ≤ N − 1 is the affine dimension of the affine hull. The
affine dimension isP = N − 1 if {a1, . . . ,aN} is affinely
independent.

The convex hull of a set of vectors{a1, . . . ,aN} ⊂ R
M

is defined as

conv{a1, . . . ,aN} =

{

y =

N
∑

i=1

θiai

∣

∣

∣

∣

θ ≥ 0,

N
∑

i=1

θi = 1

}

.

(15)
The setconv{a1, . . . ,aN} is called an(N − 1)-simplex, or
simply a simplex, if{a1, . . . ,aN} is affinely independent.
The vertices of a simplex area1, . . . ,aN . Given a full-
dimensional simplex, i.e., an(N − 1)-simplex lying inRN−1

(orM = N − 1), its volume can be determined by

vol(a1, . . . ,aN ) = c

∣

∣

∣

∣

det

([

a1 . . . aN

1 . . . 1

])∣

∣

∣

∣

(16a)

= c |det([a1 − aN , . . . ,aN−1 − aN ])| , (16b)

wherec = 1/(N − 1)!. For the mathematical details of the
above concepts, readers are referred to the literature [35].

5.2. Convex Geometry in Hyperspectral Signals
There is a strong connection between convex analysis and hy-
perspectral signals. To see it, consider the signal model (1)-
(3) in the noiseless case. By comparing the model and the
definition of convex hull in (15), we observe that

y[n] ∈ conv{a1, . . . ,aN}, for all n = 1, . . . , L,

that is, each measured hyperspectral pixely[n] is a convex
combination of the endmember signaturesa1, . . . ,aN . Also,
the setconv{a1, . . . ,aN} is a simplex, since{a1, . . . ,aN}
is linearly independent (and thus affinely independent). The
left-hand side of Fig. 2 gives a vector space illustration for
the case ofN = 3. As can be seen,conv{a1, . . . ,aN} is
a triangle; note thatconv{a1, . . . ,aN} is a tetrahedron for
N = 4, and so forth. Also, everyy[n] is enclosed by the
triangle, and the corners of the triangle, or more formally,
the vertices ofconv{a1, . . . ,aN}, are the true endmember
signaturesa1, . . . ,aN . This observation is simple, but gives
a very powerful implication—if we can find all the vertices
of conv{a1, . . . ,aN} from the observation{y[n]}Ln=1, then
blind HU is solved.



Who Discovered Convex Geometry for Blind Unmixing?

In geoscience and remote sensing, the work by Craig in the early 1990’s [3, 4] is widely recognized to be most seminal
in introducing the notion of CG for hyperspectral signal analysis and unmixing. Craig’s original work not only described
simplex volume minimization, which turns out to become a keyCG concept for blind HU, it also inspired other pioneers,
such as Boardman who made notable early contributions to CG-based blind HU [5] and introduced pure pixel search [6]; and
Winter who proposed the simplex volume maximization concept [7] which results in the popularized N-FINDR algorithm
class. What is remarkable in these early studies is that theydiscovered such beautiful blind SP concepts through sharp
empirical observations and strong intuitions, rather thanthrough rigorous SP or mathematics.
CG is also an idea that has been discovered several times in different areas. The introduction of CG can be traced back to
as early as 1964 by Imbrie [28]. Imbrie’s work belongs to another branch of geoscience studies wherein CG is used for
analysis of compositional data in Earth science, such as mineral assemblages, grain-size distribution data, and geochemical
and petrological data; see [29] for an overview. In fact, Imbrie’s Q-mode analysis and the subsequent QMODEL by Klovan
and Miesch [30] are conceptually identical to vertex or purepixel search, although the methodology is different. Likewise,
Full et. alalready considered the same simplex volume minimization principle as Craig’s in the 1980’s [31]. CG has also been
independently discovered in other fields such as chemometrics [32] and SP [33, 34]. In all the discoveries or rediscoveries
mentioned above, the driving force that led researchers on different backgrounds to devise the same idea seems to be withthe
geometric elegance of CG and its powerful implications on solving blind unmixing problems.
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Fig. 2. Convex geometry of hyperspectral signals.

Intuitively speaking, CG-based blind HU amounts to find-
ing a set of vectors, say{â1, . . . , âN}, such that the corre-
sponding simplexconv{â1, . . . , âN} gives a best fitting to
the true endmembers’ simplexconv{a1, . . . ,aN}. The pre-
viously reviewed pure pixel search algorithms are among one
class of such CG solutions; the idea is that pure pixels, if
they exist, are also vertices ofconv{a1, . . . ,aN}. Hence,
pure pixel search is also vertex search in CG, under the pure
pixel assumption. Now, we are interested in a different ap-
proach where simplex volume is used as the metric to find the
best fitting simplex. Moreover, the pure pixel assumption will
not be assumed during the development. We should neverthe-
less mention a subtle point that the pure pixel assumption will
come back when we discuss endmember identifiability.

Before proceeding to the main developments, it is essen-
tial for us to introduce a concept related to the affine natureof
y[n]. Sincey[n] ∈ conv{a1, . . . ,aN}, it also holds true that
y[n] ∈ aff{a1, . . . ,aN}; cf. (13). By the equivalent affine

hull representation in (14), we can write

y[n] = Cx[n] + d, (17)

for someC ∈ R
M×(N−1), rank(C) = N − 1, d ∈ R

M ,
x[n] ∈ R

N−1, n = 1, . . . , L. Suppose that(C,d) is known,
and consider the inverse of (17) with respect to (w.r.t.)x[n]

x[n] = C†(y[n]− d). (18)

From the signal model (1)-(3), it is easy to show that

x[n] =
N
∑

i=1

bisi[n] = Bs[n], (19)

wherebi = C†(ai − d) ∈ R
N−1, i = 1, . . . , N , and

B = [ b1, . . . , bN ] ∈ R
(N−1)×N . We see that (19)

takes exactly the same form as the original model (1), but
its vector dimension isN − 1 which is less thanM . Also,



conv{b1, . . . , bN} is a full-dimensional simplex [36]. There-
fore, (19) is a dimension-reduced equivalent model for hyper-
spectral signals, where the CG structure is preserved. We will
employ the equivalent model (19) in our subsequent CG de-
velopments. The transformation for the equivalent model is
illustrated in Fig. 2.

We should discuss how the affine set variable(C,d) is
obtained in practice. Since there is no prior knowledge on
{a1, . . . ,aN}, we must estimate(C,d) from the observation
{y[n]}Ln=1. This can be done by solving an affine set fitting
(ASF) problem

min
C,d,{x[n]}L

n=1
rank(C)=N−1

L
∑

n=1

‖y[n]−Cx[n]− d‖22 (20)

where the rationale is to find an affine set that gives the best
fitting w.r.t. the measured pixelsy[n], given knowledge ofN ;
see [36] for details. The ASF solution is as follows. Letµy =
1
L

∑L
n=1 y[n] andΦy = 1

L

∑L
n=1(y[n]−µy)(y[n]−µy)

T be
the sample mean and sample covariance ofy[n], resp. Also,
let qi be theith principal eigenvector ofΦy. The solution to
(20) is given byC = [ q1, . . . , qN−1 ], d = µy. There is an
interesting coincidence here—the ASF solution is exactly the
same as that of principal component analysis (PCA), which is
a commonly used DR preprocessing procedure. While ASF
and PCA turn out to be equivalent, one should note that they
were derived from different principles: ASF is determinis-
tic and concerned with CG-preserving transformation, while
PCA is statistical and does not exploit CG.

5.3. Simplex Volume Maximization
This subsection focuses on the simplex volume maximization
approach. This approach considers the following problem:

max
B

vol(B)

s.t. bi ∈ conv{x[1], . . . ,x[L]}, i = 1, . . . , N.
(21)

We will call problem (21)VolMax for convenience. A pic-
ture is illustrated in Fig. 3(a) to help us explain what prob-
lem (21) aims at. We intend to find a best fitting simplex,
conv{b1, . . . , bN}, by maximizing its volume while keeping
it inside conv{x[1], . . . ,x[L]}. One can imagine that if the
pure pixel assumption holds, thenconv{x[1], . . . ,x[L]} is
also the true endmembers’ simplex and the maximum volume
simplex should perfectly match the latter—this is Winter’sin-
tuition when he first introduced VolMax [7].

We are interested in simple optimization schemes for pro-
cessing VolMax. Two such schemes are described as follows.

Successive Volume Maximization (SVMAX)[20] (also
[37]): To facilitate our description, let

F =

[

b1 . . . bN
1 . . . 1

]

, fi =

[

bi
1

]

, x̄[n] =

[

x[n]
1

]

.

It can be shown that [20,37]

| det(F )|2 =
N
∏

k=1

∥

∥

∥
P⊥

F1:(k−1)
fk

∥

∥

∥

2

2
, (22)

whereF1:i ∈ R
N×i denotes a submatrix ofF , obtained by

picking the firsti columns ofF . We see from the simplex vol-
ume formula in (16a) that maximizingvol(B) is the same as
maximizing (22). In SVMAX, the principle is to exploit the
successive structure of (22) to recursively generate an approx-
imate solution to problem (21). Specifically, we carry out the
following heuristic: fork = 1, . . . , N , determine an estimate

b̂k = argmax
bk

∥

∥

∥
P⊥

F̂1:(k−1)
fk

∥

∥

∥

2

2

s.t. bk ∈ conv{x[1], . . . ,x[L]},

(23)

whereF̂1:(k−1) is defined in the same way asF1:(k−1), with

bi replaced byb̂i for all i. Essentially, we estimate one
endmember̂bk based on the previous endmember estimates
b̂1, . . . , b̂k−1 and partial maximization of (22). Let us com-
plete the SVMAX algorithm by giving the solution to (23):

b̂k = x[ℓ̂k], ℓ̂k = arg max
n=1,...,L

∥

∥

∥
P⊥

F̂1:(k−1)
x̄[n]

∥

∥

∥

2

2
; (24)

see [20]. Intriguingly, we have seen this algorithm before—
SPA in the previous section. To explain, first note thatx̄[n]
can be expressed as̄x[n] = Fs[n], an LMM form. If we ap-
ply SPA to{x̄[n]}Ln=1 to retrieveF , then the resulting SPA
is exactly the same as SVMAX. Hence, we conclude thatSV-
MAX is also a pure pixel search algorithm, and SPA has a
“dual” identity in VolMax.

Successive N-FINDR (SC-N-FINDR): We consider an
alternative scheme based on alternating optimization (AO).
The idea is to optimize problem (21) w.r.t. onebi at a time,
while fixing other variables{bj}j 6=i. To be specific, given a
starting pointB̂ = [ b̂1, . . . , b̂N ], we update eacĥbk via

b̂k := argmax
bk

vol([ B̂−k, bk ])

s.t. bk ∈ conv{x[1], . . . ,x[L]}
(25)

for k = 1, . . . , N , whereB̂−k denotes a submatrix of̂B in
which thekth column is removed. Also, we repeat the AO
cycle in (25) until some stopping rule (e.g., almost no volume
increase) is satisfied. The updates in (25) have a closed form

b̂k = x[ℓ̂k], ℓ̂k = arg max
n=1,...,L

∥

∥

∥
P⊥

F̂−k
x̄[n]

∥

∥

∥

2

2
, (26)

where (26) is obtained by using (22) to turn (25) to (23) (with
a proper index reordering), and then applying (24). We call
the resulting algorithm SC-N-FINDR since it is very simi-
lar to the SC-N-FINDR proposed in [38]. The pseudo-code
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Fig. 3. (a) Simplex volume maximization. (b) Simplex volume minimization.

of SC-N-FINDR is given in Algorithm 2. Note that for ini-
tialization, we can use another algorithm, e.g., SVMAX, or
do so randomly. There are several interesting connections
here. First,SC-N-FINDR performs pure pixel search.Fol-
lowing [20, Property 1], it can be shown that in the noiseless
case and under the pure pixel assumption, SC-N-FINDR may
perfectly identify all the endmembers’ pure pixels within one
AO cycle. Second, sincēx[n] = Fs[n], we see from (26) that
SC-N-FINDR is performing nulling—this time for all other
endmember estimateŝF−k; cf. the nulling in SPA in (9a).
Thus,SC-N-FINDR is also a nulling-based algorithm.Third,
we notice that each AO cycle in SC-N-FINDR is essentially
the same as the SPA postprocessing strategy we briefly dis-
cussed in Section 4.2, which is provably robust against noise.

Algorithm 2 SC-N-FINDR

input {x[n]}Ln=1, N , B̂ (a starting point)
1: repeat
2: for k = 1, . . . , N do
3: F̂ := [ B̂T

1
T ]T

4: ℓ̂k := argmaxn=1,...,L ‖P⊥
F̂−k

x̄[n]‖22

5: b̂k := x[ℓ̂k]
6: end for
7: until a stopping rule is satisfied

output B̂ = [ b̂1, . . . , b̂N ].

VolMax-based solutions, such as the SVMAX and SC-N-
FINDR algorithms above, are usually simple and efficient to
implement. Some further discussions are in order.

1. Historically, Winter mainly used VolMax to devise the
N-FINDR concept [7] for pure pixel search. There, the in-
tuition is to update one endmember estimate at a time to
iteratively increase the volume. N-FINDR is now a pop-
ularized algorithm class in blind HU, where we can find
many N-FINDR implementation variants in the literature;
see [2, 20, 38] for a coverage. The SC-N-FINDR we just
showed is just among one of them, although we have re-

vealed that SC-N-FINDR has several good characteristics.
2. VolMax is a provably sound criterion from an endmem-
ber identifiability viewpoint. Specifically, the optimal so-
lution of problem (21) is uniquely the true endmembers’
signatures in the noiseless case and under the pure pixel
assumption [20]. Also, in this setup, the optimal solution
can be easily retrieved by either SC-N-FINDR or SVMAX.
However, we should note a fundamental caveat—that SC-
N-FINDR and SVMAX arenot globally optimal solvers of
problem (21), say, in the presence of noise and/or without
pure pixels. In fact, problem (21) is NP-hard in general [37].

5.4. Simplex Volume Minimization
We turn our attention to the simplex volume minimization
approach, or simplyVolMin, which was first pursued by
Craig [4] and Boardman [5] in the blind HU context. VolMin
is different from VolMax. It performs simplex fitting by find-
ing a simplex that encloses all the measured pixels, while
yielding the minimum volume. This is illustrated in Fig. 3(b).
Mathematically, VolMin can be formulated as

min
B

vol(B)

s.t. x[n] ∈ conv{b1, . . . , bN}, n = 1, . . . , L.
(27)

VolMin is generally recognized as a more powerful ap-
proach than VolMax. Let us illustrate this numerically, be-
fore describing VolMin optimization schemes. We simulated
a noiseless, three endmember case, where the endmembers
were taken from a spectral library [39] and the abundances
synthetically generated. Fig. 4(a) shows a scenario where the
pure pixel assumption holds. We see that both VolMax (via
SVMAX or SC-N-FINDR) and VolMin perfectly identify the
true endmembers. Fig. 4(b) shows another scenario where
pure pixels are missing. VolMax is seen to fail, while VolMin
can still give accurate endmember estimates. Readers are re-
ferred to [2, 20, 36, 40–43] for more numerical comparisons
and real-data experiments. Simply speaking, VolMin is nu-
merically found to be robust against lack of pure pixels.
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Fig. 4. Numerical comparison of VolMax, VolMin and sparse regression solutions.

Let us now discuss how VolMin is optimized. VolMin
does not have simple closed-form schemes as in VolMax, and
requires numerical optimization. In fact, the VolMin problem
in (27) is more difficult to handle; a major obstacle is with the
the simplex constraints in (27), which are nonconvex. This is-
sue can be overcome by transforming the simplex to a polyhe-
dron (see, e.g., [35, pp.32-33]). To help understand the idea,
an illustration is given in Fig. 5. We see that a simplex can
be equivalently represented by an intersection of halfspaces,
i.e., a polyhedron. More precisely, the following equivalence
holds for an affinely independent{b1, . . . , bN} [36]

x[n] ∈ conv{b1, . . . , bN}

⇐⇒Hx[n]− g ≥ 0, (Hx[n]− g)T1 ≤ 1,
(28)

where the RHS is a polyhedron, and

H = [ b1 − bN , . . . , bN−1 − bN ]−1, g = HbN . (29)

By the change of variables in (29), and noting (28) and (16b),
we can recast problem (27) as

max
H,g

|det(H)|

s.t. Hx[n]− g ≥ 0, (Hx[n]− g)T1 ≤ 1, n ∈ L
(30)

whereL = {1, . . . , L}. The equivalent VolMin problem in
(30) is arguably easier to handle than the original in (27).
Specifically, the constraints in problem (30), which forms a
data-enclosing polyhedron, are linear (and convex). However,
there is still one obstacle—the objective function|det(H)|
is nonconvex. Current state-of-the-arts methods for VolMin
tackle this issue by successive convex approximation. Specif-
ically, one can apply iterative linear approximation to theob-
jective function [40, 44]. Another alternative is to perform
row-by-row AO w.r.t. (H , g) [36]. These two schemes both
operate by solving a sequence of convex optimization prob-
lems; see [36,40,44] for the details and comparison.

We complete this subsection by the following comments.

b1

b2
b3

h1

h2

−(h1 + h2)

⇐⇒

Fig. 5. Transformation of a simplex to a polyhedron.

1. As mentioned above, numerical evidence suggests that
VolMin may be able to identify the true endmembers accu-
rately in the absence of pure pixels. By analysis, it is known
that in the noiseless case, the optimal solution of VolMin is
uniquely the true endmembers’ signaturesif the pure pixel
assumption holds [36]. A proof for the no pure pixel case is
currently unavailable, and is an open fundamental question.
2. While VolMin is deterministic and geometric-based, it
has a dual identity in stochastic maximum-likelihood (ML)
estimation. Specifically, consider the noiseless case, andas-
sume that every abundance vectors[n] is i.i.d. uniformly
distributed on the support of unit simplexS. Then, it can
be shown that the corresponding ML estimator is the same
as the equivalent VolMin problem in (30) [42]. Note that
the authors in [42] also consider a generalization where the
abundance prior distribution is non-uniform.

5.5. Further Discussion

The CG framework presented above is based on exploitation
of the simplexconv{a1, . . . ,aN}. There is an alternative
CG formulation where the simplexconv{0,a1, . . . ,aN} is
utilized [40–42]; the concepts are identical, though the re-
sulting algorithms exhibit minor differences. Readers should
also note other CG interpretations, e.g., [45]. For tutorial pur-
poses, we have focused on the noiseless case only. In the pres-
ence of spectrally i.i.d. noise, the ASF preprocessing stage (or
equivalently PCA) can be shown to be noise-resistant. How-
ever, for non-i.i.d. noise, HySime [46] may provide better



DR performance. Moreover, both VolMax and VolMin can
be modified to improve robustness against noise; e.g., soft
constraints [41], chance constraints [43], and robust max-min
volume [20]. CG is known to be sensitive to outliers. A robust
ASF can be used to identify and discard outliers, before they
get into the data [47]. Soft constraints also help “de-sensitize”
VolMin w.r.t. the outliers [41].

6. DICTIONARY-BASED SEMIBLIND HU
This section describes a relatively new development, where
HU is performed by using spectral libraries and techniques
arising in compressive sensing (CS). This approach also hasa
linkage to sensor array processing in SP, as we will discuss.

6.1. Sparse Regression
When performing blind HU, we generally assume no infor-
mation on the spectral shapes of the true endmember signa-
tures. The latter is not totally true. In geoscience and remote
sensing, a tremendous amount of efforts has been spent on
measuring and recording spectral samples of many different
materials, which has resulted in spectral libraries for various
research purposes. For example, the U.S. Geological Survey
(USGS) library, which has taken over20 years to assemble,
contains more than1300 spectral samples covering materials
such as minerals, rocks, liquids, artificial materials, vegeta-
tions and even microorganisms [39]. Such valuable knowl-
edge base can be turned to blind HU purposes, or more pre-
cisely, semiblind HU.

A slight abuse of notations is required to explain the semi-
blind formulation. We redefineA = [ a1, . . . ,aK ] ∈ R

M×K

as a dictionary ofK hyperspectral samples, where eachai

corresponds to one material (eachai is also assumed to have
been appropriately processed, e.g., atmospherically compen-
sated). We assume that the dictionaryA is known, obtained
from an available spectral library, and that the true endmem-
bers in each measured pixely[n] are covered by the dictio-
nary. The measured pixels in the noiseless case (again, for
tutorial purposes) can then be represented by

y[n] =
∑

i∈Sn

aisi[n], (31)

whereSn ⊆ {1, . . . ,K} is an index subset that indicates the
materials present in the measured pixely[n], andsi[n] >
0, i ∈ Sn are the corresponding abundances. In this represen-
tation, note that the sum-to-one constraint

∑

i∈Sn
si[n] = 1

may not hold; the measurement conditions of library samples
and the actual scene are often different and this can introduce
scaling inconsistencies between the library samples and true
endmembers. By also lettingsi[n] = 0 for all i /∈ Sn, (31)
can be written as

y[n] = As[n], (32)

wheres[n] = [ s1[n], . . . , sK [n] ]T ∈ R
K is now asparse

abundance vector. The problem now is to recovers[n] from

y[n]. This is not trivial because we often haveK > M and
the corresponding system in (32) is underdetermined. How-
ever, we know beforehand thats[n] have only a few non-zero
components, since the number of materials present in one
pixel is often very small, typically within5. Hence, a nat-
ural formulation for the semiblind HU problem is tofind the
sparsests[n] for the representation in(32). This inference
problem turns out to be identical to that investigated in CS,
where the objective is to recover a sparse representation ofa
signal on a given frame from compressive measurements [48].
This connection allows us to capitalize on the wealth of theo-
retical and algorithmic results available in the CS area.

The sparse regression (SR) problem we describe above
can be formulated as

min
s[n]

‖s[n]‖0

s.t. y[n] = As[n],
(33)

for eachn = 1, . . . , L, where‖s[n]‖0 denotes the number of
nonzero elements ins[n]. The above SR problem possesses
provably good endmember identifiability. Specifically, prob-
lem (33) is known to have a unique solution if the true sparse
abundance vectors[n] satisfies

‖s[n]‖0 <
1
2 · spark(A) (34)

wherespark(A) is the smallest number of linearly dependent
columns ofA [49]. Since everys[n] is highly sparse by na-
ture, (34) should hold in practice. The consequent implication
is meaningful—the SR problem (33) can perfectly identify all
the true endmembers in general.

While the SR approach sounds promising, there are chal-
lenges. Since problem (33) is NP-hard in general, it is natural
to seek approximate solutions. Let us consider the popular-
izedℓ1 relaxation solution to problem (33):

min
s[n]

‖s[n]‖1

s.t. y[n] = As[n],
(35)

which is convex and has efficient solvers. The CS litera-
ture has a series of analysis results telling when problem (35)
gives the same solution as problem (33), or simply suffi-
cient conditions for exact recovery. Those sufficient condi-
tions usually depends on the conditioning ofA. For example,
one sufficient exact recovery condition for problem (35) is
‖s[n]‖0 <

1
2 (1 + µ−1(A)), where

µ(A) = max
1≤i,j≤K

i6=j

|aT
i aj|

‖ai‖2‖aj‖2
(36)

is called the mutual coherence ofA [49]. Unfortunately, spec-
tral libraries in practice are strongly correlated, yieldingµ(A)
almost being one [50]. A similar issue also occurs in other
sufficient conditions, namely in the restricted isometry prop-
erty (RIP) [48]. Thus, one may not obtain a desirable SR
solution from a straightℓ1 relaxation application.



However, all is not lost. Recall that everys[n] is, by na-
ture, non-negative. Let us consider anon-negativeℓ1 relax-
ation problem, which is problem (35) plus the non-negative
constraints[n] ≥ 0. As it turns out, exploiting non-negativity
helps a lot. There is a large amount of experimental evidence
that indicates that non-negativeℓ1 relaxation can yield useful
unmixing results [2, 50, 51]. Also, non-negativeℓ1 relaxation
is theoretically proven to be able to give rather sparse solu-
tions for certain classes ofA [52]. Although the above noted
theoretical result does not give a direct answer to exact recov-
ery under highly correlated libraries, it gives good insight on
the capability of non-negativeℓ1 relaxation.

We can also combat the spectral library mutual coherence
issue by using the multiple-measurement vector (MMV) for-
mulation [53], which exploits the fact that in a given data
set all the spectral vectors are generated by the same subset
of library signatures, corresponding to the endmember sig-
natures. LetS = [ s[1], . . . , s[L] ] ∈ R

K×L andY =
[ y[1], . . . ,y[L] ] ∈ R

M×L, so that we can writeY = AS.
Also, define‖S‖row−0 to be the number of nonzero rows in
S; i.e., ‖S‖row−0 = |rowsupp(S)|, rowsupp(S) = {1 ≤
i ≤ K | si 6= 0}. We consider a collaborative SR (CSR)
problem [54]

min
S

‖S‖row−0

s.t. Y = AS
(37)

where the rationale is to use the whole set of measured pixels,
rather than one, to strengthen SR performance. It is inter-
esting to note that‖S‖row−0 also represents the number of
endmembers. Like the previous SR problem, we can apply a
convex relaxation to CSR by replacing‖S‖row−0 in (37) by
‖S‖2,1, where‖S‖p,q = (

∑K
i=1 ‖s

i‖qp)
1/q. In theory, there is

no extra benefit in using the CSR or MMV formulation in the
worst-case sense (think about a special and rather unrealistic
case wheres[1] = . . . = s[L]) [53]. However, an average
analysis in [55] gives an implication that increasing the num-
ber of measurements (or pixels here) can significantly reduce
the probability of recovery failure. In practice, this has been
found to be so. Also, the non-negativity constraintS ≥ 0 can
be incorporated in problem (37) to improve performance.

A practical SR or CSR solution should also cater for the
presence of noise. For CSR, the following alternative convex
relaxation formulation may be used to provide HU [54]

min
S≥0

‖Y −AS‖2F + λ‖S‖2,1 (38)

for some constantλ > 0. The rationale is to seek an LS data
fitting, rather than exact, with a sparse promoting regularizer
λ‖S‖2,1. It is important to note that while problem (38) is
convex, it is a large-scale optimization problem. An efficient
solver for problem (38) is provided in [54], where a divide-
and-conquer optimization strategy, namely, the alternating di-
rection method of multipliers (ADMM), was implemented.

At this point readers may be wondering: How do we com-
pare SR and CG-based solutions? Simply speaking, CG relies

on exploitation of simplex structures, while SR does not. To
illustrate, consider the previous numerical example in Fig. 4.
In Fig. 4(c), we generated a heavily mixed (and noiseless) sce-
nario where data do not possess simplex structures expected
in CG. It is seen that even VolMin fails in this scenario. How-
ever, CSR, which was run under the USGS library with498
spectral signatures, is seen to be able to identify the true end-
members perfectly. Note that the true endmember signatures
were taken from the same library, which makes the setting
slightly ideal. It would not be too surprising that if the library
fails to cover all true endmember signatures (e.g., a new ma-
terial), then SR solutions would fail. For further numerical
results and real-data experiments, see [2,50,54,56,57].

6.2. Sensor Array Processing Meets Semiblind HU
MMV is a powerful concept which has been applied to es-
timation problems in statistical SP and sensor array process-
ing [58]. Curiously, a classical concept originated from sen-
sor array processing, namely, subspace methods, also finds its
way to MMV research [59]—this provides yet another oppor-
tunity for semiblind HU [56].

The idea is simple for readers who are familiar with sub-
space methods or sensor array processing; or, see classical
literatures such as [17]. Consider the block modelY = AS

(again, assuming no noise). LetS = rowsupp(S) be the set
of indices of active materials in the measured dataY , and
AS be a submatrix ofA whose columns are{ai}i∈S . Note
thatAS is the true endmember matrix. Let us assume that
{si}i∈S , the set of true abundance maps, is linearly indepen-
dent; in practice this refers to situations where the abundance
maps are sufficient different. Then, one can easily deduce
thatR(Y ) = R(AS), whereR denotes the range space of
its argument. The above expression implies that

P⊥
Y ak = 0 ⇐⇒ k ∈ S (39)

for all 1 ≤ k ≤ K, as far as{ak} ∪ {ai}i∈S\{k} is linearly
independent for any1 ≤ k ≤ K. Since the latter holds for
|S|+1 < spark(A), we have the following endmember iden-
tifiability condition for (39):

‖S‖row−0 < spark(A)− 1. (40)

Remarkably, with the mild assumption of linear independence
of {si}i∈S , we can achieve such provably good endmember
identifiability by the simple subspace projection in (39).

In practice, the identification in (39) can be imple-
mented by the classical multiple signal classification (MU-
SIC) method [17]; see [56] for implementation details.

6.3. Further Discussion
There are a few more points to note.

1. As a side advantage, the SR approach does not require
knowledge of the number of endmembersN . Note that this
does not apply to the subspace approach, which often re-
quires knowledge ofN to construct subspace projections.



2. Hyperspectral signals are very often piecewise smooth
w.r.t. their three dimensional domain (one spectral dimen-
sion plus two spatial dimensions). Therefore, one can ex-
ploit such spatial/spectral contextual information for im-
proving SR performance by applying piecewise smooth reg-
ularization, such as total variations (TV) [57], on top of an
SR formulation, e.g., problem (38).
3. An interesting, but also elusive question is whether a
given dictionary can truly cover the true endmembers. From
an end user’s viewpoint, it depends on the scene and whether
one can preselect a reliable library for that scene specifi-
cally. Moreover, there are concurrent studies that consider
learning the dictionary from the data, thereby circumvent-
ing these issues [51,60,61]. Dictionary learning is an active
research topic. It is also related to NMF, to be described in
the next section. In addition, there has been interest in using
the measured dataY itself as the dictionary for MMV [62].
This self-dictionary MMV (SD-MMV) approach is related
to pure pixel search. For example, SPA and VCA can both
be derived from SD-MMV [63].

7. NON-NEGATIVE MATRIX FACTORIZATION
This section turns attention back to blind HU, where we re-
view a class of algorithms known as non-negative matrix fac-
torization (NMF).

NMF was originally proposed as a linear DR tool for an-
alyzing environmental data [64] and for data mining appli-
cations [65]. It is posed as a low-rank matrix approximation
problem where, given a data matrixY ∈ R

M×L, the task is to
find a pair of non-negativematricesA ∈ R

M×N ,S ∈ R
N×L,

with N < min{M,L}, that solves

min
A≥0,S≥0

‖Y −AS‖2F . (41)

In blind HU, the connection is that the NMF factors obtained,
A and S, can serve as estimates of the endmembers and
abundances, resp. (note that endmember spectral signatures
are non-negative by nature). However, there are two prob-
lems here. First, problem (41) is NP-hard in general [66].
For this reason, optimization schemes we see in the current
NMF-based blind HU developments are rather pragmatic. We
should however mention that lately, there are new theory-
guided NMF developments in optimization [67, 68]. Second,
NMF may not guarantee solution uniqueness. This is a seri-
ous issue to the blind HU application, since it means that an
NMF solution may not necessarily be the true endmembers
and abundances, even in the noiseless case.

In blind HU, NMF is modified to fit the problem better.
Roughly speaking, we may unify many NMF-based blind HU
developments under one formulation

min
A≥0,S∈SL

‖Y −AS‖2F + λ · g(A) + µ · h(S) (42)

whereSL = {S | s[n] ≥ 0,1Ts[n] = 1, 1 ≤ n ≤ L}, g and
h are regularizers, which vary from one work to another, and

λ, µ > 0 are some constants. In particular, the addition ofg
andh is to make problem (42) more well-posed through ex-
ploitation of the problem natures. Also, for the same reason,
we incorporate the unit simplex constraints onS.

In the literature one can find a plethora of NMF-based
blind HU algorithms—each work may use differentg, h,
modified constraints for simpler implementations (e.g., no
constraints onA), and a different optimization algorithm.
Our intention here is not to give an extensive coverage of
all these developments. Instead, we are interested in several
representative NMF-based blind HU formulations, where we
will see connections between NMF, CG and SR. A summary
of those formulations is shown in Table 1.

Although we see many choices with the regularizersg and
h, the philosophies behind the choices follow a few core prin-
ciples. For the endmember regularizerg, the principle can be
traced back to VolMin in CG. A classical example is mini-
mum volume constrained NMF (MVC-NMF) [69]

min
A≥0,S∈SL

‖Y −AS‖2F + λ · (vol(B))2 (43)

wherevol(B) is the simplex volume corresponding toA, in
which bi = C†(ai − d) for all i; cf. Section 5. MVC-
NMF is essentially a variation of the VolMin formulation
(see problem (27)) in the noisy case, with endmember non-
negativity incorporated. As mentioned before,vol(B) is non-
convex. Iterated constrained endmember (ICE) [70] and spar-
sity promoting ICE (SPICE) [73] avoid this issue by replac-
ing (vol(B))2 with a convex surrogate, namely,g(A) =
∑N−1

i=1

∑N
j=i+1 ‖ai − aj‖

2
2, which is the sum of differences

between vertices. A similar idea is also adopted in collabora-
tive NMF (CoNMF) [74]; see Table 1.

As for the abundance regularizerh, the design principle
usually follows that of sparsity. A good showcasing example,
curiously, lies in dictionary learning (DL) [60]:

min
A≥0,S≥0

‖Y −AS‖2F + µ · ‖S‖1,1; (44)

note that‖S‖1,1 =
∑L

n=1

∑N
i=1 |si[n]|. The original idea of

problem (44) is to learn the dictionaryA by joint dictionary
and sparse signal optimization, cf. Section 6 and particularly
problem (38). However, problem (44) can also be seen as
an NMF with sparse promoting regularization. Following the
same spirit,L1/2-NMF [71] uses a nonconvex, but stronger
sparse promoting regularizer based on theℓ1/2 quasi-norm.
Apart from sparsity, exploitation of spatial contextual infor-
mation via TV regularization may also be used [72].

The aforementioned connection between DL and NMF
provides an additional insight. In DL, the dictionary size is
often set to be large, and should be larger than the true num-
ber of endmembers; the number of endmembers is instead
determined by the row sparsity ofS, i.e., ‖S‖row−0. From
an NMF-based blind HU perspective, this means that we can



Table 1. A summary of some NMF formulations.
algorithm g(A) h(S) opt. schemes and remarks
MVC-NMF [69] vol2(C†(A− d1T )) 0 AO + one-step projected gradient

ICE [70]
N−1∑

i=1

N∑

j=i+1

‖ai − aj‖
2
2 0 AO; unconstrainedA

DL [60] 0 ‖S‖1,1
AO + one-step projected gradient forA;
S ≥ 0

L1/2-NMF [71] 0 ‖S‖
1/2
1/2,1/2

AO + multiplicative update

APS [72] 0

L∑

n=1

∑

j∈N (n)

‖s[n]− s[j]‖1

whereN (n) is the neighborhood
pixel index set of pixeln.

AO + one-step projected subgradient

SPICE [73]
N−1∑

i=1

N∑

j=i+1

‖ai − aj‖
2
2

N∑

i=1

γi‖s
i‖1

AO; unconstrainedA;
iteratively reweightedγi via
γi := 1/‖[S(k−1)]i,1:L‖1, 1 ≤ i ≤ N

CoNMF [74]
N∑

i=1

‖ai − µy‖
2
2

N∑

i=1

‖si‖p2 , 0 < p ≤ 1
AO + one-step majorization minimization;
unconstrainedA

use row sparsity to provide joint endmember number, end-
member and abundance estimation. More formally, consider
a blind version of the MMV problem (38)

min
A≥0,S∈SL

‖Y −AS‖2F + λ · g(A) + µ · ‖S‖row−0 (45)

where the number of columns ofA, given byN , is now
chosen to be a number greater than the true number of end-
members (say, by overestimating the latter), and we use
‖S‖row−0 to represent the endmember number. SPICE is ar-
guably the first algorithm that explores such opportunity [73].
In SPICE, the abundance regularizer can be expressed as
h(S) =

∑N
i=1 γi‖s

i‖1 for some weights{γi} that are it-
eratively updated; this regularizer is a convex surrogate of
‖S‖row−0. CoNMF also aims at row sparsity, using a non-
convex surrogateh(S) =

∑K
i=1 ‖s

i‖p2, 0 < p ≤ 1 [74].
We should also discuss optimization in NMF-based blind

HU. Most NMF-based blind HU algorithms follow a two-
block AO strategy, although their implementation details ex-
hibit many differences. Two-block AO optimizes problem
(42) w.r.t. eitherA or S alternatingly. Specifically, it gen-
erates a sequence of iterates{(A(k),S(k))}k via

A(k) = arg min
A≥0

‖Y −AS(k−1)‖2F + λ · g(A) (46a)

S(k) = arg min
S∈SL

‖Y −A(k)S‖2F + µ · h(S) (46b)

Note that ifg andh are convex, then problems (46a)-(46b)
are convex and hence can usually be solved efficiently. More-
over, every limit point of{(A(k),S(k))}k is a stationary point
of problem (42) under some fairly mild assumptions [75,76].
For practical reasons, most algorithms use cheap but inexact
updates for (46a) and (46b), e.g., multiplicative update [71],
one-step projected gradient or subgradient update [60,69,72],
and one-step majorization minimization [74]. Convergence
to a stationary point of these inexact AO methods has still to

be thoroughly analyzed. However, by numerical experience,
many NMF-based blind HU algorithms work well under ap-
propriate settings (e.g., using reasonable initializations which
can be obtained for example with VCA or N-FINDR).

To summarize, NMF is a versatile approach that has con-
nections to both CG and SR. It leads to a fundamentally hard
optimization problem, although practical solutions basedon
two-block AO usually offer good performance by experience.
Also, before we finish, we should highlight that the more ex-
citing developments of NMF-based blind HU lie in exten-
sions to scenarios such as nonlinear HU [77], endmember
variability [78] and multispectral and hyperspectral datafu-
sion [79]. Such extensions may not be easily achieved in other
approaches.

8. CONCLUSION
This article provided a tutorial review on blind HU techniques
using a fundamental SP perspective. Four major blind HU ap-
proaches, namely, pure pixel search, convex geometry, sparse
regression and NMF, have been studied. Before we finish,
we should briefly compare their advantages and drawbacks.
Pure pixel search and VolMax are very simple, but require the
pure pixel assumption; VolMin is resistant to lack of pure pix-
els, but still has limitations when data are too heavily mixed;
sparse regression holds great potential in unmixing heavily
mixed data, but one should be aware of its reliance on dic-
tionaries; NMF is a very flexible formulation for blind HU,
but leads us to a hard optimization problem to solve. Also,
real hyperspectral data can be quite elusive at times, where
we may be faced with issues such as outliers, modeling er-
rors, and uncertainty in the number of endmembers. Their
subsequent effects on the aforementioned approaches could
be substantial. On the other hand, the need for meeting these
challenges also makes HU continue to be a vibrant and active
field of research.
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