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1. INTRODUCTION trix X, x; andz’ denote itsith column andth row, respec-

Blind hyperspectral unmixing (HU), also known as unsuperdively (resp.); “>" represents elementwise inequalitlyjs an
vised HU, is one of the most prominent research topics in sigall-one vector of appropriate lengti is the pseudo inverse
nal processing for hyperspectral remote sensing [1, 2naBli of A; Py = I — A(A" A)T A" is the orthogonal comple-
HU aims at identifying materials present in a captured scendnent projector ofd; ouin(A) andowax(A) denote the mini-
as well as their compositions, by using high spectral resolumum and maximum singular values 4f resp.;| - ||,, denotes
tion of hyperspectral images. It is a blind source sepanatiothe/, norm;|| - || » denotes the Frobenius norm.

(BSS) problem from a signal processing (SP) viewpoint. Re-

search on this topic started in the 1990’s in geoscience and 2. SIGNAL MODEL

remote sensing [3—7], enabled by technological advances Wodeling hyperspectral signals is a difficult problem. It de
hyperspectral sensing at the time. In recent years, blind Hgends on numerous factors; some crucial ones include: the
has attracted much interest from other fields such as SP, m@/'pes of materials encountered in the acquired scene, m wa
chine learning and optimization, and the subsequent crosghe materials are physically mixed and constitute the scene
disciplinary research activities have made blind HU a wvilbra t0p0|ogica”y' the way ||ght interacts with the materimts
topic. The resulting impact is not just on remote sensing—reflected and measured by the hyperspectral instrument, and
blind HU has provided a unique problem scenario that inthe measurement environment. Over decades, the geoscience
spired researchers from different fields to devise noveldbli gnd remote sensing community has devoted tremendous ef-
SP methods. In fact, one may say that blind HU has estaliprts to various modeling aspects, from which we have now
lished a new branch of BSS approaches not seen in classicgfnificantly improved our understanding of the true prable
BSS studies. In particular, the convex geometry concepts—ature. Nevertheless, modeling can be an overwhelmingly
discovered by early remote sensing researchers through e@bmplex process if one wants to treat every aspect very pre-
pirical observations [3-7] and refined by later researcte—arcjsely. In particular, while radiative transfer theory (RTis
elegantand very different from statistical independelbased \ye|| known to be able to provide accurate characterizatdns
BSS approaches established in the SP field. Moreover, lafhotons' interactions with the materials (see [2] and therre
est research on blind HU is rapidly adopting advanced techences therein), the resulting models are generally toediffi
niques, such as those in sparse SP and optimization. Thg yse for signal analysis and processing. There is a compro-
present development of blind HU seems to be converging tgise to make between model accuracy and tractability.
a point where the lines between remote sensing-originated e focus on a relatively simplistic but very representa-
ideas and advanced SP and optimization concepts are ge model, namely, thdinear mixing mode(LMM). The
longer clear, and insights from both sides would be used tp\MM lies at the center of interest of many important devel-
establish better methods. opments in blind HU. Despite the fact that the LMM is not

This article uses an SP researcher’s perspective to reviedfways true, especially under certain scenarios that éxhib
blind HU. We will consider several key developments, WhiChstrong non]inearity, itis genera”y recognized as an atcep
include pure pixel search, convex geometry, dictionaryeba  gple model for many real-world scenarios. The LMM is de-
sparse regression and non-negative matrix factorizalé®. scribed as follows. We assume a macroscopic mixing scale in
will not cover Bayesian techniques [8], although readersyhich the incident light interacts with only one materiat be
should note that they also represent key developmentsid bli fore reflecting off. Lety,,[n] denote the hyperspectral cam-
HU. Our emphasis will be on insights, where we will show- era’s measurement at spectral bam@nd at pixel:. Letting
case how each approach fundamentally works, and highlighf[n] = [ y1[n],y2[n], ..., yam[n] |7 € RM whereM is the
significant results from a viewpoint of SP theory and methyumber of spectral bands, the LMM is given by
ods. Some forefront advances will also be discussed. Note
that this article does not aim at survey; please see a recent
overview paper [2] which provides a comprehensive coverage
of numerous blind HU methods and many other aspects.

Our notations are standard in SP. In addition, given amafor n = 1,..., L, where eaclu; € R™, i = 1,.... N, is

y[n| = Zaisi[n] +v[n] = As[n] +v(n], (1)



called anendmember signature vectawhich contains the whereS denotes the feasible set of abundance vectors. Note
spectral components of a specific material (indexed)lig  thatS is a unit simplex.
the sceneNV is the number of endmembers, or materials, in  The LMM introduced above is considered standard. That

the sceneA = [a4,...,ay | € RM*V is theendmember said, there are some hidden complications. Here we briefly
matrix; s;[n] describes the contribution of materiaht pixel — mention them; interested readers can find further clarifica-
n; s[n] = [s1[n],...,sn[n] ] € RY is called theabundance tions in [2]. First, in the model (1)y[n]'s are actually pro-
vectorat pixeln; L is the number of pixelsy[n] € R™ is  cessed measurements. Raw measurements from the hyper-
noise. Fig. 1 illustrates the mixing process. spectral camera usually undergo a series of processing, step

such as radiometric calibration, geometric correction atad
mospheric compensation [9], before arriving at the simple
LMM. Second, for simplicity we have associated an endmem-
ber with a material, presumably pure. However, an endmem-
ber could also be a composition of several materials; viz., a
material made of several materials. The definition of an end-
member can be subjective, and is dependent on applications.
Third, we have assumed that the sum-to-one constraint in (3)
holds. In practice, the sum-to-one constraint may be \édlat
under the so-called endmember variability (EV) effects: Be
sides modeling issues, it is worth noting that recently gher
has been growing interest in considering specific but more
treatable nonlinear mixture models for HU; the same applies

There are several important aspects concerning the LMNP. EV- In these scenarios, insights learned from LMM-based
formulation. First, since hyperspectral cameras have widelV rémain vital and provide building blocks for non-LMM
spectral ranges and fine spectral resolutiod, is often U problems there. We refer readers to [10, 11] in this spe-
large— typically more thag00. Such large spectral degrees cial issue for a coverage of nonlinear HU and EV, resp.
of freedom allow us to distinguish an endmember signature
from another, as well as mixtures of endmember signatures, 3. PROBLEM STATEMENT
provided that the materials are sufficiently different frome  We are concerned with the HU problem, under the model
another. Hence, it is reasonable to assumef{that. .. ,ax}  setting in (1)-(3). Specifically, HU aims at recoverisg]
is linearly independent, and we will assume that this condifrom y[n], thereby retrieving every material’s abundance map
tion holds throughout the paper. Second, the mixing procesgs;[n]}%~_, from the hyperspectral measurements. Assuming
in (1) is a consequence of limited spatial resolution of mype full knowledge of the endmember matri, we can carry
spectral cameras. Specifically, one pixel may not be spatial out unmixing by solving constrained linear least squaré) (L
fine enough to contain one material only. For example, eacproblems:
pixel is about 4 mx 4 m to 20 mx 20 m for airborne vis-
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Fig. 1. Linear mixing model.

ible/infrared imaging spectrometer (AVIRIS), depending o 8[n] = arg sl[ffll]iéls ly[n] — As[n]||3, (4)
the altitude of the flight. Third, while the noise vectojn|
is commonly used to represent background and instrumemér » = 1,...,L. Fundamentally, the above problem is

noise, one may also use it to incorporate errors arising frorgonsidered an “easy” problem—it is a convex optimization
modeling inaccuracies. From such perspective, (1) careserproblem, and a simple way to obtain a solution is to call
as a reasonable approximate model when nonlinear effects afome general-purpose convex optimization software, ssich a
not too strong. Fourth, by nature, the abundance vesfels the widely usedCVX [12]. Alternatively, one can design
should satisfy dedicated algorithms for problem (4) to have more efficient
N implementations; this is a more popular option in the field
. 13-15]. What makes HU fundamentally challenging is not
sifn] 20,4=1,...,N, and Z sl =1, (2) Lrobler]n (4) (or other variants), but the cht that V\?e (?ften do
=t not have full knowledge oA—for if we do, it means that we
foreveryn = 1,2,..., L. The second constraint above, com-know exactly all the materials in the scene, which is unjikel
monly referred to as thabundance sum constrainr the  inreality.
sum-to-one constrainmeans that abundances give the frac- Blind HU amounts to recovering{s[n]};_, from
tional proportions, or percentages, of the different mater {y[n]}5_, withoutknowledge ofA. The problem can also

in a pixel. For convenience, we will write be stated as that of identifying from {y[n]}._, without
knowledge of{s[n]}Z_,. At this point, readers who are fa-

sinjeS={secRY|s>0,5s"1=1} (3)  miliar with BSS may have realized that the problem formula-



tion of blind HU is the same as that of BSS: The endmember Pure pixels provide a unique opportunity for blind HU. In
matrix A and abundance vectos$n| are the mixing matrix essence, if we know the pure pixel indic&s. . ., £y, then
and true source vectors in BSS, resp. While this observd-y[¢1],...,y[¢n]] = [ a1,...,an ] is the endmember ma-
tion is true, and in fact has been noticed for a while [16],trix itself—and the problem is solved—in the noiseless case
classical BSS methods established in the SP field usually ddowever, the pure pixel indices are not knowapriori, and

not fall in any of the mainstream blind HU approaches. Thehe problem is to find them.

key reason is that under the unit simplex constraint (3), the

sourceq s[n]}£_, do not satisfy the statistical independences 2. Successive Projections Algorithm

assumption, which is a very essential assumption in manye introduce a simple algorithm for finding the pure pixels of
BSS methods, particularly the well-known independent coma|| endmembers. The prerequisite required to understand th
ponent analysis (ICA). The violation of source indepen@encygorithm is just basic knowledge of linear algebra.

makes many existing BSS methods an inappropriate choice - Again, consider the noiseless case and assume that the

for blind HU from the outset. _ pure pixel assumption holds. We notice that for any
Before delving into blind HU, we should point out that we

will generally assumeV, the number of endmembers, to be

known. As in BSS and sensor array processing in the SP field, lylnllle =
where the same aspect has been extensively studied under the

name ofmodel order selectiofsee, e.g., [17]), the problem

of identifying the number of endmembers can be seen as a

separate problem; see [2, Section Ill] for a coverage. One

may also build on an existing blind HU approach to provide < [ max laillz, (7c)
joint blind HU and endmember number identification.
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where (7a) is due to the LMM and the triangle inequality, and
(7b) and (7c) to the unit simplex constraint (3). It can be
_ 4'_ PURE PIXELS _PURSUIT seen that equality in (7) holds whein] = e;, wherej =
Qur review begm_s with a very S|mple class of methods tha&rg maxi—1. v ||la||2; which holds atr = ¢;, that is,y[n]
hinges on a special model assumption cafiace pixels. is a pure pixel corresponding to thigh endmember (cf. (6)).
Also, equality in (7) cannot be attained by non-pure pixels,

4.1. The Definition of Pure Pixels by the equality condition of the triangle inequality and the
We say that endmembé(or materiak) has a pure pixel if for  linearindependence tiy, . .., ax}. Assuming without loss
some index denoted by, we have of generality (w.l.o.g.) thaj = 1, we can identify the first
endmember signature by
8[@1] = €, (5)
~ o N 2
wheree; € RY is a unit vector with the nonzero element at a1 =ylh), h=arg ngllé?iL Iyl ®

theith entry (thatis|e;]; = O forall j # 7, andlei]; = 1).  Note thata, is a perfect estimate af, under the aforemen-
Moreover, we say thahe pure pixel assumption holds if every ;a4 settings.
endmember has a pure pixel. The next question is to identify pure pixels corresponding

Physically, the existence of pure pixels means that whilg, o er endmembers. Suppose that we have previously iden-
hyperspectral pixels are generally mixtures of severakmat tified k — 1 endmember signatures, denoteddy. . ., @1
rials, there are certain pixels that are constituted by oae m 4.4 that the identification is perféct Vid = a. f’or i _
1 f (2 -

terial only. This can be seen from the model (1). Assuming. . _ | The idea to identify the next endmember is to
pure pixels and no noise, the observed vector at fixisl perform nulling—a standard SP trick that has appeared many

0] = a 6 times (e.g., [17]), but proves very useful in various fieldst
y[ 1] = Qj, ( ) " N N .

A1 =][ay,...,a,_1],andconstructits orthogonal com-
fori = 1,..., N, which are the endmembers. In practice,plement projectorPﬁM - SincePXlikilai = 0 holds for

there are scenarios where the pure pixel assumption holdgnyi < k, we have that
For example, imagine a scene that consists of water and soil.

If there exist some local pixel regions that contain eithatex n 1

or soil only, then those regions contain pure pixels. Noge th 1P, , vl = Z silnlPg, | ai (9a)

since more than one pure pixel may exist for a particular end- i=k 2

member/; may not be unique. However, we should also note < max HPX1 L @i , (9b)
1=K,y e

that the pure pixel assumption does not always hold, e.g., in
a scene consisting of highly mixed minerals, or if the spatiawhere (9b) is obtained in the same way as (7). And like (7), it
resolution of the hyperspectral camera is too low. can be shown that equality in (9) holds only for a pure pixel



corresponding to a previously unidentified endmember,lwhic{al, ...,ay} uptoerrorO (E{f_j) : more precisely, we have

we can assume w.l.0.g. to be thatat /. Thekth endmem-

ber signature can therefore be identified via 2
max min ||ai—dj||2§(’)(e >

. . 1<i<N1<5<N
ar =yli], On=arg max [Py -yl (10)

— 11
= (11)
The above analysis result provides significant practical im
Hence, by induction, we can identify all the endmembers. plications. We see in (11) that the noise robustness of SPA
The algorithm presented above is called tuecessive depends on the ratié. It can be shown that [23]
projections algorithm(SPA). Algorithm 1 gives the pseudo-

code of SPA, which is very simple. From the above algebraic maxi<i<n [|@ills < K < Umax(A)_

development, we conclude thiatthe noiseless case and un- minj<i<n [laillz2 = 0 7 omin(A)

der the pure pixel assumption, SPA perfectly identifieshall t . . .
endmember signaturds, . . ., ax }. Thus, the noise robustness of SPA depends on i) how different

We should provide a brief historical note on SPA, Sincethe magnitudes of the endmember signatures are, and ii) how

it has been repeatedly rediscovered. To our best knowledgWeII th? true endmembgr signatures are speptrally dis*.er!'bu
SPA first appeared in chemometrics in 2001 by Aragjo frip_arhculgr,_the latter implies that challenging sceositie

al. [18]. Later, a very similar algorithm, called the automatic'” hll_%qu ?T"r?rr]:rndr;ﬁ:ngetrst. o notable facts. First. one
target generation process (ATGP), was proposed by Ren and us bol L W \cls. sk,
Chang in 2003 in remote sensing [19]. Curiously, the dean generalize SPA by replacing thenorm in (9)-(10) by

. . . any continuously differentiable and locally strongly cerv
velopment we just displayed, which shows why SPA WOkafur?ction whose B;ninimizer is zero, e.g. gﬂ,y norgmywith

from an algebraic SP viewpoint and pins down its endmemi < » < 450, The corresponding algorithm not only works
ber identifiability, was not seen until recently; see [20,-Ap p o P galg Y

pendix F]. There are other ways to derive SPA, which willn the noiseless case, it is also shown to possess a similar er

be described later. It is worth pointing out that SPA has beeft" bound as in (11) [23]. According to the analysis, the-vari

. . “ant using the/s norm has the best robustness against noise
used successfully for rather different purposes. In nucaéri among all locally strongly convex functions; see also [2#]
linear algebra, SPA is closely related to the so-called frextli 9 y gy '

Gram-Schmidt algorithm with column pivoting, used for eX_numerlcal evidence. Second, it is possible to improve the

K i i .
ample to solve linear LS problems [21]. In machine Iearningerror bound ahove t@) (67) by using the following post

SPA has been used for document classification where the pui:r)éocessmg strategy [22]: Ldias,..., ay} be theN end-

pixel assumption is referred to as theparabilityassumption mlempbr ir-zgxtt@cé?? i%us;;{é;ﬁnit%okta tﬁév (;rtho onal
and requires that, for each topic, there exists at leastoné w  ~* ) 9 Min=1 9

~ N
used only by that topic; see [22] and the references therein. complemerjt O{ak}kzlvk#’
2. Replacé; with the column of{ y[n]}L_, whosefs norm

Algorithm 1 SPA of the projection is maximum.
. 7 This iterative refinement strategy is identical to a preslpu
Input L{y["]}nzl’ N. proposed blind HU algorithm (but without a robustness anal-
LPr=1 ysis); it will be further discussed in Section 5.3.
2. fork=1,...,Ndo
3 lp =argmaxp— L | PLy[n]|3

. 4.3. Other Algorithms and Discussion
: gcl:'_y[@;] PLa(PLanT /| PLa.l2) P There are many other pure pixels search algorithms; see [2,
6; end for = (I = (Pay)(Pay)” /| Paxl2) Sgction_VI:A] for a review. A represgntative algorithm ir_1
output A — a1 an ] this family is vertex component analysis (VCA), proposed in
R 2003 [25, 26]. VCA is similar to SPA—it also employs suc-
cessive nulling, but differs in the way it picks pure pixels.
The above SPA development is based on the noiseless @pecifically, in VCA, the right-hand sides (RHSs) of (8) and
gument. An interesting question is therefore on sensgtivit (10) are replaced by
against noise. A provable performance bound characteriz-

ing noise sensitivity has been proposed very recently i [23 oy = _max lwi y[n]|, (12)
and is briefly described here. Let us denete= oy, (A), S
which is positive since{a,...,ayx} is linearly indepen- for k = 1,..., N, wherewy, is a randomly generated vec-

dent, andK’ = max;<i<n ||a;|[2. Let us also denote the tor lying on the orthogonal complement subspacelef, ;.
noise levele = max;<,<r, |[v[n]||2. Then,under the pure Specifically, it is given byw; = Pﬁ 5/”PX €|l2,
pixel assumption and assuming that the noise level satisfi§gnere¢ is an independent and identically distributed (i.i.d.)
e<O (N"—I;) SPA identifies all the endmember signatureszero-mean Gaussian vector. Following the same derivations



described above for SPA, one can show that VCA also pebecome clear soon. The affine hull of a set of vectors
fectly identifies all the endmember signatures in the ne&el {ai,...,ay} C R is defined as
case and under the pure pixel assumption; this result holds

with probability one. Also, we must mention pixel purity in- a N a

dex (PPI) by Boardmaet al.in 1995 [6], which is one of the aff{as,...,an} = {y - Z bia; | 0 €R ’Z 0; = 1}'
earliest blind HU algorithms. PPI does not have successive = =l (13)
nulling. Itis analogous to running (12) only fér= 1, butfor  ap affine hull can always be represented by

many independent random trials. The number of trials needs

to be large enough so to increase the chance of successfully aff{ai,...,an} = {y = Cx +d |z c R} (14)
hitting all endmembers’ pure pixels. For numerical compar-

isons of SPA, VCA and PP, please see [23] (also [20]).  for someC € RM*”, d ¢ R, whererank(C) = P and

Some additional comments are in order. P < N — 1is the affine dimension of the affine hull. The
1. To simplify the presentation, we have intentionally@ffine dimensionis” = N —11if {ai,...,an} is affinely
skipped a conventional pre-processing procedure, nameliidependent. y
dimension reduction (DR). In practice, VCA and PPl would The convex hull of a set of vectofsy,...,an} C R
apply DR to the observed dafg(n]}L_,, prior to pure pix- 'S defined as

els search. While we have seen that DR is not required in N N

SPA (as well as VCA and PPI), applying DR plays a cru-conv{a, ... ,ay} = {y => 0;a;|60>0> 0; = 1}.

cial role in suppressing noise, which in turn helps improve i=1 i=1

pure pixel identification performance. Readers are referre (15)

to [2, Section I11] for the state-of-the-art DR methods in HU The setconv{a,...,ay} is called an(N — 1)-simplex, or

2. SPA can be extended in at least two ways. First, it cagimply a simplex, if{ai,...,an} is affinely independent.

be modified to accommodate outliers, which are anomalhe vertices of a simplex are,,...,ay. Given a full-

lous pixels that exhibit markedly different behaviors fromdimensional simplex, i.e., &V — 1)-simplex lying inR"V "

the nominal model, and can cause substantial performané@r M = IV — 1), its volume can be determined by

degradation. The idea s to consider outliers as endmembers

identify them together with true endmembers, and discard vol(ay,...,ay) = c|det <[O§1 af’])‘ (16a)

them from the obtained estimates [23]. Second, one can ex- T

tend the method for joint blind HU and endmember number = c|det([a; —an,...,an_1 —an])|, (16b)

identification. We note that if we keep running the SPA step i )

in (10) recursively, then, at stage— N + 1, the projection wherec = 1/(N — 1)!. For the mathematlca! details of the

residualﬂ|P§ y[n]||2 become zeros. Thus, the projec- above concepts, readers are referred to the literature [35]
1:k—1

tion residuals may serve as an indicator of the number of
endmembers. Similar ideas have been considered in [24,273

.2. Convex Geometry in Hyperspectral Signals
here is a strong connection between convex analysis and hy-
perspectral signals. To see it, consider the signal model (1
5. CONVEX GEOMETRY (3) in the noiseless case. By comparing the model and the
We have previously shown how blind HU may be easily handefinition of convex hull in (15), we observe that
dled under the pure pixel assumption. The pure pixel concept
actually came from the study ebnvex geometrfCG) of hy- y[n] € conv{ay,... ,an}, foralln=1,..., L,

perspectral signals, where remote sensing researchers eXa tis each measured hyperspectral pixel] is a convex
ined the special geometric structure of hyperspectralasign D ) el
P 9 YPErsp combination of the endmember signatuegs. . . , a . Also,

and looked for automatic methods for endmember determina:

tion, that is, blind HU. In fact, a vast majority of blind HU de the sekconv{ay, ..., ay} is a simplex, sincdas, ..., an}
. ; Lo is linearly independent (and thus affinely independent)e Th
velopments, if not all, are directly or intuitively relategicon-

cepts introduced in early CG studies, such as simplex Volumleft—hand side of Fig. 2 gives a vector space illustration fo

minimization by Craig [4], simplex volume maximization by f]?ri;isfef)zlvot; tﬁ'a&AS ?an be Seer;()gv;(gj[r'éhéz%}n Ifsor
Winter [7], and the previously reviewed pure pixel search b ge, oV, .. AN

Yy - .
Boardmanet al. [6]. We give a historical review in the box N = 4, and so forth. Also, everg[n] is enclosed by the
. . . e triangle, and the corners of the triangle, or more formally,
who discovered convex geometry for blind unmixing?

the vertices ofonv{as,...,ay}, are the true endmember

signaturesiy, ..., ay. This observation is simple, but gives
5.1. Preliminaries a very powerful implication- we can find all the vertices
We introduce several mathematical notations and facts iof conv{a,...,ax} from the observatiofy[n]}Z_,, then

convex analysis, whose physical relevance to blind HU willblind HU is solved.



Who Discovered Convex Geometry for Blind Unmixing?

In geoscience and remote sensing, the work by Craig in tHg 880’s [3, 4] is widely recognized to be most seminal
in introducing the notion of CG for hyperspectral signal lgsa and unmixing. Craig’s original work not only descrie
simplex volume minimization, which turns out to become a K&y concept for blind HU, it also inspired other pioneers,
such as Boardman who made notable early contributions th&$@d blind HU [5] and introduced pure pixel search [6]; @and
Winter who proposed the simplex volume maximization con¢épwhich results in the popularized N-FINDR algorithm
class. What is remarkable in these early studies is that disgovered such beautiful blind SP concepts through gharp
empirical observations and strong intuitions, rather timough rigorous SP or mathematics.
CG is also an idea that has been discovered several timeffenedit areas. The introduction of CG can be traced bagk to
as early as 1964 by Imbrie [28]. Imbrie’s work belongs to &eotbranch of geoscience studies wherein CG is used for
analysis of compositional data in Earth science, such asmaimssemblages, grain-size distribution data, and geoichl
and petrological data; see [29] for an overview. In fact, li@b Q-mode analysis and the subsequent QMODEL by Klgvan
and Miesch [30] are conceptually identical to vertex or ppisel search, although the methodology is different. Likssy
Full et. alalready considered the same simplex volume minimizatiorciple as Craig’s in the 1980's [31]. CG has also bgen
independently discovered in other fields such as chemared82] and SP [33, 34]. In all the discoveries or redisc@ggri
mentioned above, the driving force that led researchersftareht backgrounds to devise the same idea seems to beheith
geometric elegance of CG and its powerful implications daisg blind unmixing problems. r

aﬁ{a’h oocg a’5}
conv{by, by, b3}

xz[n] = C'(y[n] - d)
—_—

affine transformation

y[n]

by

conv{ar; as, az}

a;

Fig. 2. Convex geometry of hyperspectral signals.

Intuitively speaking, CG-based blind HU amounts to find-hull representation in (14), we can write

ing a set of vectors, saya,...,ay}, such that the corre-
sponding simplexconv{as, ...,ax} gives a best fitting to y[n] = Cz[n] +d, 17)
the true endmembers’ simplexnv{ai,...,ay}. The pre-

Mx(N—-1 _ M
viously reviewed pure pixel search algorithms are among on" somegfle RM*WN=Y, pank(C) = N —1,d € R,
class of such CG solutions; the idea is that pure pixels, it € B »n=1,..., L. Suppose thatC' d) is known,
they exist, are also vertices obnv{ar,...,ay}. Hence, and consider the inverse of (17) with respect to (w.zf1))
pure pixel search is also vertex search in CG, under the pure ot _d 18
pixel assumption. Now, we are interested in a different ap- zln] = Cl(yln] ) (18)
proach where simplex volume is used as the metric to find thgrom the signal model (1)-(3), it is easy to show that
best fitting simplex. Moreover, the pure pixel assumptiolh wi
not be assumed during the development. We should neverthe- N
less mention a subtle point that the pure pixel assumptitin wi z[n] = bisi[n] = Bslnl, (19)
come back when we discuss endmember identifiability. i=1

Before proceeding to the main developments, it is esserwhereb; = C'(a; — d) € RV, i = 1,....N, and
tial for us to introduce a concept related to the affine nadfire B = [ by,...,by | € RW-DXN_ We see that (19)
y[n]. Sincey[n] € conv{a,...,an}, it also holds true that takes exactly the same form as the original model (1), but

y[n| € aff{aq,...,an}; cf. (13). By the equivalent affine its vector dimension isV — 1 which is less thanV/. Also,



conv{by,...,byx} is afull-dimensional simplex [36]. There- It can be shown that [20, 37]

fore, (19) is a dimension-reduced equivalent model for hype

spectral signals, where the CG structure is preserved. We wi 9 al N
employ the equivalent model (19) in our subsequent CG de- | det(F)|” = H HPFuk—nfk’
velopments. The transformation for the equivalent model is k=1

illustrated in Fig. 2. _ _ ~ whereF;,; € RV*i denotes a submatrix df, obtained by
We should discuss how the affine set varialié d) i picking the firsti columns ofF. We see from the simplex vol-
obtained in practice. Sln(;e there is no prior knowledge Olme formula in (16a) that maximizingl(B) is the same as
{a, . - ay}, we must estimateC’, d) from the observation  ayimizing (22). In SVMAX, the principle is to exploit the
{y[nl}7—.. This can be done by solving an affine set fitting g;ccessive structure of (22) to recursively generate aroapp
(ASF) problem imate solution to problem (21). Specifically, we carry owt th

2
; (22)
2

I following heuristic: fork = 1,..., N, determine an estimate
L min Syl - Calnl —dl} (20) : i :
rank(C)=N—1 1=1 by = arg Hll,itx HPFL(kfl)kaQ (23)
where the rationale is to find an affine set that gives the best s.t. by, € conv{z[l],..., 2[L]},
fitting w.r.t. the measured pixelgn], given knowledge ofV; ) ) . . )
see [36] for details. The ASF solution is as follows. pgt=  WhereFy.._y) is defined in the same way @§. (1), with

%25:1 y[n] and®, = L Zi:1(y[n]_ﬂy)(y[n]_'u’y)T be b replacedAbylA)i for all 4. Esse_ntially, we estimate one
the sample mean and sample covariancg[ef, resp. Also, endmembeb,; based on the previous endmember estimates
let ¢; be theith principal eigenvector ob,,. The solutionto b1, .., br—1 and partial maximization of (22). Let us com-
(20) is given byC = [ q1,...,qn_1 ], d = p,. Thereis an plete the SVMAX algorithm by giving the solution to (23):
interesting coincidence herethe ASF solution is exactly the X X X 5

same as that of principal component analysis (PG#)ich is by = x[ly], (r = arg max HPL a_c[n]H2 ;o (24)

a commonly used DR preprocessing procedure. While ASF n=l- Fe-n

and PCA turn out to be equivalent, one should note that theyae [20]. Intriguingly, we have seen this algorithm before—
were derived from different principles: ASF is determinis-gpa i the previous section. To explain, first note taét]

tic and concerned with CG-preserving transformation, &hil .5, pe expressed &n] = Fs[n], an LMM form. If we ap-

PCA is statistical and does not exploit CG. ply SPA to{z[n]}%_, to retrieveF, then the resulting SPA
is exactly the same as SVMAX. Hence, we conclude 8\t
5.3. Simplex Volume Maximization MAX is also a pure pixel search algorithm, and SPA has a

This subsection focuses on the simplex volume maximizatiordual” identity in VolMax.

approach. This approach considers the following problem: ~ Successive N-FINDR (SC-N-FINDR) We consider an
alternative scheme based on alternating optimization (AO)

max vol(B) The idea is to optimize problem (21) w.r.t. obgat a time,
B _ (21)  while fixing other variablegb;} ;. To be specific, given a
s.t. b € conviz[l],...,2[L]}, i=1,...,N. starting pointB = [ by, ..., by ], we update each, via

We will call problem (21)VolMax for convenience. A pic-

ture is illustrated in Fig. 3(a) to help us explain what prob- b, := a“"gn%i‘x vol([ B, b ])

lem (21) aims at. We intend to find a best fitting simplex, s.t. by € conv{z[1],...,z[L]} )
conv{by,...,bx}, by maximizing its volume while keeping

it inside conv{«[1],...,z[L]}. One can imagine that if the 5, ;. — 1,....N, whereB_, denotes a submatrix d in
pure pixel assumption holds, thennv{z[1],...,z[L]} IS \yhich thekth column is removed. Also, we repeat the AO

also the true endmembers’ simplex and the maximum volum@yde in (25) until some stopping rule (e.g., almost no vadum

simplex should perfectly match the latter—this is Wintéms  j,crease) is satisfied. The updates in (25) have a closed form
tuition when he first introduced VolMax [7].

We are interested in simple optimization schemes for pro- b [Z l io—
cessing VolMax. Two such schemes are described as follows. % — Tkl fp = atg | Tax

Successive Volume Maximization (SVMAXPO0] (also | | | |
[37]): To facilitate our description, let where (26) is obtained by using (22) to turn (25) to (23) (with

a proper index reordering), and then applying (24). We call
by ... by bl _ x[n] the resulting algorithm SC-N-FINDR since it is very simi-
F= 1 1 fi= 1]’ Z[n] = ‘ lar to the SC-N-FINDR proposed in [38]. The pseudo-code
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Fig. 3. (a) Simplex volume maximization. (b) Simplex volume miigation.

of SC-N-FINDR is given in Algorithm 2. Note that for ini- vealed that SC-N-FINDR has several good characteristics.
tialization, we can use another algorithm, e.g., SVMAX, or 2. WolMax is a provably sound criterion from an endmem-
do so randomly. There are several interesting connectionsber identifiability viewpoint. Specifically, the optimal so
here. First,SC-N-FINDR performs pure pixel searclrol- lution of problem (21) is uniquely the true endmembers’
lowing [20, Property 1], it can be shown that in the noiseless signatures in the noiseless case and under the pure pixel
case and under the pure pixel assumption, SC-N-FINDR mayassumption [20]. Also, in this setup, the optimal solution
perfectly identify all the endmembers’ pure pixels withimeo  can be easily retrieved by either SC-N-FINDR or SVMAX.
AO cycle. Second, since[n] = F's[n], we see from (26) that However, we should note a fundamental caveat—that SC-
SC-N-FINDR is performing nulling—this time for all other N-FINDR and SVMAX arenot globally optimal solvers of
endmember estimateB_;,; cf. the nulling in SPA in (9a).  problem (21), say, in the presence of noise and/or without
Thus,SC-N-FINDR is also a nulling-based algorithifhird, pure pixels. In fact, problem (21) is NP-hard in general [37]
we notice that each AO cycle in SC-N-FINDR is essentially

the same as the SPA postprocessing strategy we briefly dig-4. Simplex Volume Minimization

cussed in Section 4.2, which is provably robust againsenois e turn our attention to the simplex volume minimization

approach, or simplyolMin, which was first pursued by

Algorithm 2 SC-N-FINDR Craig [4] and Boardman [5] in the blind HU context. VoIMin
input {x[n]}%_,, N, B (a starting point) is different from VolMax. It performs simplex fitting by find-

1: repeat ing a simplex that encloses all the measured pixels, while

2: fork=1,...,Ndo yielding the minimum volume. This is illustrated in Fig. 3(b

3: F:=[BT17|T Mathematically, VoIMin can be formulated as

“ %k - argAmaXn:L___L ||P;,‘7k:f3[n]||% min vol(B)

5: b, = :B[fk] B (27)

6: end for s.t.w[n] ECOIIV{bl,...,bN}, n=1,...,L.

7. until a stopping rule is satisfied

output B — [br.....by |. VoIMin is generally recognized as a more powerful ap-

proach than VolMax. Let us illustrate this numerically, be-
fore describing VolMin optimization schemes. We simulated
VolMax-based solutions, such as the SYMAX and SC-N-a noiseless, three endmember case, where the endmembers
FINDR algorithms above, are usually simple and efficient towere taken from a spectral library [39] and the abundances
implement. Some further discussions are in order. synthetically generated. Fig. 4(a) shows a scenario wihere t
1. Historically, Winter mainly used VolMax to devise the pure pixel assumption holds. We see that both VolMax (via
N-FINDR concept [7] for pure pixel search. There, the in-SVMAX or SC-N-FINDR) and VoIMin perfectly identify the
tuition is to update one endmember estimate at a time tbrue endmembers. Fig. 4(b) shows another scenario where
iteratively increase the volume. N-FINDR is now a pop-pure pixels are missing. VolMax is seen to fail, while VolMin
ularized algorithm class in blind HU, where we can findcan still give accurate endmember estimates. Readers-are re
many N-FINDR implementation variants in the literature;ferred to [2, 20, 36, 40—43] for more numerical comparisons
see [2, 20, 38] for a coverage. The SC-N-FINDR we justand real-data experiments. Simply speaking, VolMin is nu-
showed is just among one of them, although we have remerically found to be robust against lack of pure pixels.




| - data points [n] -+ true endmembers b; /\ SVMAX %/ SC-N-FINDR [ VolMin O CSR |

Fig. 4. Numerical comparison of VolMax, VolMin and sparse regi@ssolutions.

Let us now discuss how VolMin is optimized. VolMin by (Bl R
does not have simple closed-form schemes as in VoIMax, and
requires numerical optimization. In fact, the VolMin prebi A =
in (27) is more difficult to handle; a major obstacle is witk th by Y
the simplex constraints in (27), which are nonconvex. T$s i 3
sue can be overcome by transforming the simplex to a polyhe-
dron (see, e.g., [35, pp.32-33]). To help understand the ide  Fig. 5. Transformation of a simplex to a polyhedron.
an illustration is given in Fig. 5. We see that a simplex can

be equivalently represented by an intersection of halispac
i.e., a polyhedron. More precisely, the following equivale

1. As mentioned above, numerical evidence suggests that

holds for an affinely independefib, , . . ., by } [36] VolMin may be able to identify the true endmembers accu-
rately in the absence of pure pixels. By analysis, it is known
x[n] € conv{by,..., by} that in the noiseless case, the optimal solution of VolMin is
s Haln] - g > 0, (Haln] — )71 < 1 (28) uniquely the true endmembers’ signatuifethe pure pixel
= -7 assumption holds [36]. A proof for the no pure pixel case is
where the RHS is a polyhedron, and currently unavailable, and is an open fundamental question

2. While VoIMin is deterministic and geometric-based, it
H=[b —by,...,by_1 —by]|"", g=Hby. (29) has a dual identity in stochastic maximum-likelihood (ML)
) ] ] estimation. Specifically, consider the noiseless caseaand
By the change of variables in (29), and noting (28) and (16b), syme that every abundance vectdn] is i.i.d. uniformly

we can recast problem (27) as distributed on the support of unit simplek Then, it can
max |det(H )| be shown that the corresponding ML estimator is the same
g (30) as the equivalent VolMin problem in (30) [42]. Note that
st. Hen) —g >0, (Hzn] —g)'1<1,ne L the authors in [42] also consider a generalization where the

abundance prior distribution is non-uniform.

wherel = {1,...,L}. The equivalent VoIMin problem in
(30) is arguably easier to handle than the original in (27). ) )
Specifically, the constraints in problem (30), which forms a2-5- Further Discussion
data-enclosing polyhedron, are linear (and convex). Hewev The CG framework presented above is based on exploitation
there is still one obstacle—the objective functipiet(H )|  of the simplexconv{ai,...,ax}. There is an alternative
is nonconvex. Current state-of-the-arts methods for VoIMi CG formulation where the simpleconv{0, a1,...,an} is
tackle this issue by successive convex approximation.iSpec utilized [40-42]; the concepts are identical, though the re
ically, one can apply iterative linear approximationto tie  sulting algorithms exhibit minor differences. Readersustio
jective function [40, 44]. Another alternative is to perfor also note other CG interpretations, e.g., [45]. For tutquis-
row-by-row AO w.r.t. (H, g) [36]. These two schemes both poses, we have focused on the noiseless case only. In the pres
operate by solving a sequence of convex optimization probence of spectrally i.i.d. noise, the ASF preprocessingestag
lems; see [36, 40, 44] for the details and comparison. equivalently PCA) can be shown to be noise-resistant. How-

We complete this subsection by the following comments.ever, for non-i.i.d. noise, HySime [46] may provide better



DR performance. Moreover, both VolIMax and VoIMin can y[n]. This is not trivial because we often hate > M and

be modified to improve robustness against noise; e.g., sattie corresponding system in (32) is underdetermined. How-
constraints [41], chance constraints [43], and robust max- ever, we know beforehand thait:] have only a few non-zero
volume [20]. CG is known to be sensitive to outliers. A robustcomponents, since the number of materials present in one
ASF can be used to identify and discard outliers, before thepixel is often very small, typically withirs. Hence, a nat-
getinto the data [47]. Soft constraints also help “de-g&esi  ural formulation for the semiblind HU problem is fimd the

VolIMin w.r.t. the outliers [41]. sparsests[n| for the representation if32). This inference
problem turns out to be identical to that investigated in CS,
6. DICTIONARY-BASED SEMIBLIND HU where the objective is to recover a sparse representatian of

This section describes a relatively new development, wherl'i.‘ig_nal on agiyen frame from com_pre_ssive measurements [48].
HU is performed by using spectral libraries and techniqueg—h's connection allows us to capitalize on the wealth of theo

arising in compressive sensing (CS). This approach alsa hasret'c""hI and algorithmic rgsultssavallabt:? in the %S argg\. b
linkage to sensor array processing in SP, as we will discuss. The sparse regression (SR) problem we describe above
can be formulated as

6.1. Sparse Regression gl[g]l [s[n]llo
When performing blind HU, we generally assume no infor- ; A
mation on the spectral shapes of the true endmember signa- s.t. y[n] = As[n],

tures. The latter is not totally true. In geoscience and temo for eachn = 1,..., L, where||s[n]|o denotes the number of
sensing, a tremendous amount of efforts has been spent aBnzero elements ia[n]. The above SR problem possesses
measuring and recording spectral samples of many differepfrovably good endmember identifiability. Specifically, ipro

materials, which has resulted in spectral libraries foiot&  |em (33) is known to have a unique solution if the true sparse
research purposes. For example, the U.S. Geological Surv@yundance vectai]n] satisfies

(USGS) library, which has taken ove® years to assemble, .
contains more thah300 spectral samples covering materials [s[nlllo < 5 - spark(A) (34)
such as minerals, rocks, liquids, artificial materials, etag wherespark(A)

. . ; is the smallest number of linearly dependent
tions and even microorganisms [39]. Such valuable knowlzumns ofA [49]. Since everys[n] is highly sparse by na-

edge base can be turned to blind HU purposes, or more prgyre (34) should hold in practice. The consequent impbeat
cisely, §em|bl|nd HU. ) ) . ) _is meaningful—the SR problem (33) can perfectly identity al
A slight abuse of notations is required to explain the semizhq true endmembers in general.

. . atedd g
blind formulation. We redefinel = [ai, ..., ax] € RM* While the SR approach sounds promising, there are chal-
as a dictionary ofi” hyperspectral samples, where each gnges. Since problem (33) is NP-hard in general, it is rtur

corresponds to one material (eachis also assumed to have 4 geek approximate solutions. Let us consider the popular-

been appropriately processed, e.g., atmospherically enmp ized/, relaxation solution to problem (33):
sated). We assume that the dictionatyis known, obtained

(33)

from an available spectral library, and that the true endmem min [|s[n][|1

bers in each measured pixgln| are covered by the dictio- stnl (35)

nary. The measured pixels in the noiseless case (again, for s.t. y[n] = Asn],

tutorial purposes) can then be represented by which is convex and has efficient solvers. The CS litera-

ture has a series of analysis results telling when problén (3
yln] = Z a;si[n], (31) gives the same solution as problem (33), or simply suffi-
i€5n cient conditions for exact recovery. Those sufficient cendi
whereS,, C {1,..., K} is an index subset that indicates the tions usually depends on the conditioning4f For example,

materials present in the measured piyéh], ands;[n] >  one sufficient exact recovery condition for problem (35) is
0,i € S, are the corresponding abundances. In this represefs[n]|lo < 3(1 + x~*(A)), where
tation, note that the sum-to-one constrdif. s si[n] = 1

may not hold; the measurement conditions of library samples w(A) = max — I _
and the actual scene are often different and this can intedu SRR laillzlla;ll2
scaling inconsistencies between the library samples ard tr
endmembers. By also letting[n] = 0 forall i ¢ S, (31)
can be written as

Tq.
|ai a]| (36)

is called the mutual coherenceAf[49]. Unfortunately, spec-
tral libraries in practice are strongly correlated, yialgli.(A)
almost being one [50]. A similar issue also occurs in other

y[n] = As[n], (32) " sufficient conditions, namely in the restricted isometrgper
wheres[n] = [ s1[n],...,sx[n] |7 € RE is now asparse erty (RIP) [48]. Thus, one may not obtain a desirable SR
abundance vector. The problem now is to recasjfet from  solution from a straight; relaxation application.



However, all is not lost. Recall that evesyn| is, by na-  on exploitation of simplex structures, while SR does not. To
ture, non-negative. Let us considenan-negative/; relax- illustrate, consider the previous numerical example in Big
ation problem, which is problem (35) plus the non-negativen Fig. 4(c), we generated a heavily mixed (and noisele®s) sc
constraints[n] > 0. As it turns out, exploiting non-negativity nario where data do not possess simplex structures expected
helps a lot. There is a large amount of experimental evidenda CG. It is seen that even VolMin fails in this scenario. How-
that indicates that non-negati¢grelaxation can yield useful ever, CSR, which was run under the USGS library wifi3
unmixing results [2,50, 51]. Also, non-negatiferelaxation  spectral signatures, is seen to be able to identify the tnde e
is theoretically proven to be able to give rather sparse-solunembers perfectly. Note that the true endmember signatures
tions for certain classes of [52]. Although the above noted were taken from the same library, which makes the setting
theoretical result does not give a direct answer to exaotrec slightly ideal. It would not be too surprising that if thedéyy
ery under highly correlated libraries, it gives good insigh  fails to cover all true endmember signatures (e.g., a new ma-
the capability of non-negativg relaxation. terial), then SR solutions would fail. For further numetica

We can also combat the spectral library mutual coherenceesults and real-data experiments, see [2,50, 54,56, 57].
issue by using the multiple-measurement vector (MMV) for-
mulation [53], which exploits the fact that in a given datag.2. Sensor Array Processing Meets Semiblind HU
set all the spectral vectors are generated by the same subg1v is a powerful concept which has been applied to es-
of library signatures, corresponding to the endmember sigimation problems in statistical SP and sensor array psces
natures. LetS = [s[l],....s[L]] € R®*" andY = ing[58]. Curiously, a classical concept originated from-se
[y[1],...,y[L]] € RM*", so that we can writd” = AS.  sor array processing, namely, subspace methods, alsotiinds i
Also, define|S||.o.—o to be the number of nonzero rows in way to MMV research [59]—this provides yet another oppor-
S; i€, [[S|row-0 = |rowsupp(S)], rowsupp(S) = {1 < tunity for semiblind HU [56].

i < K |[s' # 0}. We consider a collaborative SR (CSR)  The idea is simple for readers who are familiar with sub-

problem [54] . space methods or sensor array processing; or, see classical
an Sl row—0 literatures such as [17]. Consider the block modek AS
(37) (again, assuming no noise). L&t= rowsupp(S) be the set
st.Y = AS * - PP

) ] ~of indices of active materials in the measured ditaand
where the rationale is to use the whole set of measured plxelgs be a submatrix ofA whose columns aréa; };cs. Note
. . 1J1 .
rather than one, to strengthen SR performance. It is intefy ¢ 4, is the true endmember matrix. Let us assume that

esting to note thalS||.ow—o also represents the number of {s'}scs, the set of true abundance maps, is linearly indepen-
endmembers. Like the previous SR problem, we can apply gent; in practice this refers to situations where the abnoela

convex relaxation to CSR by replacifi||row—0 IN (37) by maps are sufficient different. Then, one can easily deduce

K i .
1S]12,1, wherel| S|, = (3,1, [|s'[$)"/%. Intheory, thereis  thatR(Y) = R(As), whereR denotes the range space of
no extra benefit in using the CSR or MMV formulation in the jts argument. The above expression implies that

worst-case sense (think about a special and rather urtiealis N

case wheres[1] = ... = s[L]) [63]. However, an average Pyap=0<=keS (39)
analysis in [55] gives an implication that increasing theu  for all 1 < k < K, as far as{a;,} U {@;}ics\ gy s linearly
ber of measurements (or pixels here) can significantly redUQndependent forany < k < K. Since the latter holds for

the probability of recovery failure. In practice, this ha=eh |S|+1 < spark(A), we have the following endmember iden-
found to be so. Also, the non-negativity constraht> 0 can tifiapility condition for (39):

be incorporated in problem (37) to improve performance.
A practical SR or CSR solution should also cater for the [S|[row—0 < spark(A) — 1. (40)

presence of noise. For CSR, the following alternative canveRremarkably, with the mild assumption of linear indepengenc
relaxation formulation may be used to provide HU [54] of {s'}ics, we can achieve such provably good endmember

min ||Y — ASH% + A|[S]l2.1 (38) identifiability by the simple subspace projection in (39).

520 ’ In practice, the identification in (39) can be imple-
for some constant > 0. The rationale is to seek an LS data Mented by the classical multiple signal classification (MU-
fitting, rather than exact, with a sparse promoting regedari  SIC) method [17]; see [56] for implementation details.
Al|S|l2,1. It is important to note that while problem (38) is
convex, it is a large-scale optimization problem. An efiitie 6.3. Further Discussion
solver for problem (38) is provided in [54], where a divide- There are a few more points to note.
and-conquer optimization strategy, namely, the altengadi- 1. As a side advantage, the SR approach does not require
rection method of multipliers (ADMM), was implemented. knowledge of the number of endmembéfs Note that this

At this point readers may be wondering: How do we com- does not apply to the subspace approach, which often re-
pare SR and CG-based solutions? Simply speaking, CG reliegjuires knowledge olV to construct subspace projections.



2. Hyperspectral signals are very often piecewise smooth, ;. > 0 are some constants. In particular, the additiory of
w.r.t. their three dimensional domain (one spectral dimenandh is to make problem (42) more well-posed through ex-
sion plus two spatial dimensions). Therefore, one can exploitation of the problem natures. Also, for the same reason
ploit such spatial/spectral contextual information for-im we incorporate the unit simplex constraints$n

proving SR performance by applying piecewise smooth reg- In the literature one can find a plethora of NMF-based
ularization, such as total variations (TV) [57], on top of anblind HU algorithms—each work may use differeqth,

SR formulation, e.g., problem (38). modified constraints for simpler implementations (e.g., no
3. An interesting, but also elusive question is whether aonstraints onAd), and a different optimization algorithm.
given dictionary can truly cover the true endmembers. FronDur intention here is not to give an extensive coverage of
an end user’s viewpoint, it depends on the scene and whethell these developments. Instead, we are interested inaever
one can preselect a reliable library for that scene specifrepresentative NMF-based blind HU formulations, where we
cally. Moreover, there are concurrent studies that considewill see connections between NMF, CG and SR. A summary
learning the dictionary from the data, thereby circumventof those formulations is shown in Table 1.

ing these issues [51, 60, 61]. Dictionary learning is arvacti Although we see many choices with the regularizeasd
research topic. Itis also related to NMF, to be described im,, the philosophies behind the choices follow a few core prin-
the next section. In addition, there has been interest imgusi ciples. For the endmember regularizethe principle can be
the measured daf# itself as the dictionary for MMV [62].  traced back to VoIMin in CG. A classical example is mini-
This self-dictionary MMV (SD-MMV) approach is related mum volume constrained NMF (MVC-NMF) [69]

to pure pixel search. For example, SPA and VCA can both

be derived from SD-MMV [63]. min _ ||[Y — AS||%Z + X - (vol(B))? (43)
A>0,SeSt
7. NON-NEGATIVE MATRIX FACTORIZATION wherevol(B) is the simplex volume corresponding 4, in
This section turns attention back to blind HU, where we revhich b, = Ct(a; — d) for all i; cf. Section 5. MVC-
view a class of algorithms known as non-negative matrix facNMF is essentially a variation of the VolMin formulation
torization (NMF). (see problem (27)) in the noisy case, with endmember non-
NMF was originally proposed as a linear DR tool for an- negativity incorporated. As mentioned beforel(B) is non-
alyzing environmental data [64] and for data mining appli-convex. Iterated constrained endmember (ICE) [70] and-spar
cations [65]. Itis posed as a low-rank matrix approximationsity promoting ICE (SPICE) [73] avoid this issue by replac-

problem_where, givena\_data mgtﬁike R]g:;,the tasj\lfxisLto ing (vol(B))? with a convex surrogate, namely(A) =
find a pair of non-negative matrices € R 8 € RV, SVt Z;_V:Z_H |a; — a;]|3, which is the sum of differences

with N' < min{M, L}, that solves between vertices. A similar idea is also adopted in collabor
min |Y — AS|%. (41) tive NMF (CoNMF) [74]; see Table 1.

A20,520 As for the abundance regularizky the design principle
In blind HU, the connection is that the NMF factors obtained,usually follows that of sparsity. A good showcasing example
A and S, can serve as estimates of the endmembers artlriously, lies in dictionary learning (DL) [60]:
abundances, resp. (note that endmember spectral sigaature
are non-negative by nature). However, there are two prob- A>1812>o Y — AS||% + p- ||1S]|1.1; (44)
lems here. First, problem (41) is NP-hard in general [66]. T
For this reason, optimization schemes we see in the current

L N ] - .
NMF-based blind HU developments are rather pragmatic. WQOte tha|Sls,1 = 32—y 225y Isi[n]|. The original idea of

should however mention that lately, there are new theoryprObIem (44) is to learn the dictionar by joint dictionary

: - O and sparse signal optimization, cf. Section 6 and partitula
ded NMF devel t t tion [67,68]. S d,
guice evelopments in optimization [ I. Secon roblem (38). However, problem (44) can also be seen as

NMF may not guarantee solution uniqueness. This is a serf2 . ) S ;
y g q n NMF with sparse promoting regularization. Following the

ous issue to the blind HU application, since it means that af

NMF solution may not necessarily be the true endmemberg®Me spirit.Ly ;-NMF [71] uses a nonconvex, but stronger

and abundances, even in the noiseless case. sparse promoting regulari;er_ based onlﬁhg quasi-nor_m.

In blind HU, NMF is modified to fit the problem better. Apa_rt fro_m sparsity, e_xplgltatlon of spatial contextugian
Roughly speaking, we may unify many NMF-based blind HUmat|0n via TV regullanzatlon may-also be used [72].
developments under one formulation The aforementioned connection between DL and NMF

provides an additional insight. In DL, the dictionary size i
A>Bn:1gn o |[Y — AS||7 + X-g(A)+p-h(S)  (42) often set to be large, and should be larger than the true num-
= ber of endmembers; the number of endmembers is instead
whereST = {S | s[n] > 0,1Ts[n] = 1,1 <n < L},gand determined by the row sparsity &, i.e., ||S|/;ow_0. From
h are regularizers, which vary from one work to another, anc&an NMF-based blind HU perspective, this means that we can



Table 1. A summary of some NMF formulations.

algorithm g(A) h(S) opt. schemes and remarks
MVC-NMF [69] | vol?(CT(A — d17)) 0 AO + one-step projected gradient
N—1 N
ICE [70] S>> llai—agl3 | 0 AQ; unconstrainedd
i=1 j=i+1
AO + one-step projected gradient fek;
DL [60] 0 181111 5> 0 pprojecied g
Ly/o-NMF[71] | O |\S||1 ; 1/2 AO + multiplicative update
T
> > lislnl=slilh
APS [72] 0 n=1jeN (n) AO + one-step projected subgradient
where (n) is the neighborhood
pixel index set of pixeh.
N—-1 N N ] AO; unconstrainedi;
SPICE [73] > llai—agl3 | Do qllsth iteratively reweightedy; via
i=1 j=i+1 i=1 Vi 1= l/H[S(kfl)]i,l;LHl, 1<i<N
N N o o
; AO + one-step majorization minimization;
L 2 1|P
CONMF [74] ;Haz Hyll2 ;HS 2,0 <p=1 unconstrainedd

use row sparsity to provide joint endmember number, endse thoroughly analyzed. However, by numerical experience,
member and abundance estimation. More formally, considenany NMF-based blind HU algorithms work well under ap-

a blind version of the MMV problem (38) propriate settings (e.g., using reasonable initializegivhich
) ) can be obtained for example with VCA or N-FINDR).
A>0.SEST 1Y = AS|z +A-g(A) + 1o~ [[Sllrow—o  (45) To summarize, NMF is a versatile approach that has con-

nections to both CG and SR. It leads to a fundamentally hard
where the number of columns o4, given by V, is now  gptimization problem, although practical solutions based
chosen to be a number greater than the true number of enflyg-block AO usually offer good performance by experience.
members (say, by overestimating the latter), and we Usg|so, before we finish, we should highlight that the more ex-
[|Sl:ow—0 to represent the endmember number. SPICE is aiting developments of NMF-based blind HU lie in exten-
guably the first algorithm that explores such opportuni8j[7 sjons to scenarios such as nonlinear HU [77], endmember
In SPICE, the abundance regularizer can be expressed @&riability [78] and multispectral and hyperspectral data

h(S) = > i—ivills'[x for some weights{~;} that are it-  sjon [79]. Such extensions may not be easily achieved irrothe
eratively updated; this regularizer is a convex surrogéte oapproaches.

|S]|row—0. CONMF also aims at row sparsity, using a non-
convex surrogaté(S) = 325 ||s'[15,0 < p < 1[74].

We should also discuss optimization in NMF-based blin
HU. Most NMF-based blind HU algorithms follow a two-
block AO strategy, although their implementation details e
hibit many differences. Two-block AO optimizes problem
(42) w.r.t. eitherA or S alternatingly. Specifically, it gen-
erates a sequence of iterafgst ()| §(¥))}, via

8. CONCLUSION

dThis article provided a tutorial review on blind HU technégu
using a fundamental SP perspective. Four major blind HU ap-
proaches, namely, pure pixel search, convex geometrsapar
regression and NMF, have been studied. Before we finish,
we should briefly compare their advantages and drawbacks.
Pure pixel search and VolMax are very simple, but require the
A®) = arg min Y — ASF-1) |2 +X-g(A) (46a) pure pixel assumption; VolMin is resistant to lack of pure-pi
A20 els, but still has limitations when data are too heavily rdixe
S®) = arg min |[Y — A®S||Z +u-h(S)  (46b) sparse regression holds great potential in unmixing heavil
sest mixed data, but one should be aware of its reliance on dic-
Note that ifg and h are convex, then problems (46a)-(46b)tionaries; NMF is a very flexible formulation for blind HU,
are convex and hence can usually be solved efficiently. Morebut leads us to a hard optimization problem to solve. Also,
over, every limit point of (A*), §())}, is a stationary point  real hyperspectral data can be quite elusive at times, where
of problem (42) under some fairly mild assumptions [75, 76]we may be faced with issues such as outliers, modeling er-
For practical reasons, most algorithms use cheap but ihexa®rs, and uncertainty in the number of endmembers. Their
updates for (46a) and (46b), e.g., multiplicative updatd,[7 subsequent effects on the aforementioned approaches could
one-step projected gradient or subgradient update [60269, be substantial. On the other hand, the need for meeting these
and one-step majorization minimization [74]. Convergencehallenges also makes HU continue to be a vibrant and active
to a stationary point of these inexact AO methods has still tdield of research.
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