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Beamforming and Optimization

• beamforming, powered by optimization, is almost everywhere!|{z}group 1 group 2 group 3|{z} |{z}
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Transmit Beamforming

(a) Total Publications by Year (b) Sum of Times Cited by Year

The number of published papers having the keyword “transmit beamforming” and
the corresponding citations. Data obtained from SCI-Expanded database.
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This Talk

• I am not going to talk about optimization today

• I would like to go back to the basics, and share with you how classical wisdom
helps

• we will look into two different topics

– topic 1: multicast beamforming

– topic 2: one-bit massive MIMO precoding
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Topic 1: Multicast Beamforming
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Scenario

• scenario: K-user MISO downlink, common info. broadcast, perfect channel
state information at the transmitter (CSIT)

• received signal at user i:

yi(t) = hHi x(t) + vi(t),

where

hi ∈ CN is the user i channel;
x(t) ∈ CN is the transmit signal;
vi(t) is noise.
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Scenario

• scenario: K-user MISO downlink, common info. broadcast, perfect CSIT

• received signal at user i:

yi(t) = hHi x(t) + vi(t).

• transmit scheme: Beamforming (BF)

x(t) = ws(t),

where s(t) ∈ C is a data stream; w ∈ CN is the beamformer
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Scenario

• scenario: K-user MISO downlink, common info. broadcast, perfect CSIT

• received signal at user i:

yi(t) = hHi x(t) + vi(t).

• transmit scheme: Beamforming (BF) x(t) = ws(t).

• Problem: minimize the average transmit power, subject to SNR constraints

min
w∈CN

E[‖x(t)‖2] = ‖w‖2

s.t. SNRi =
|wHhi|2

σ2
i

≥ γ, i = 1, . . . ,K,

where σ2
i = E[|vi(t)|2]; γ is the SNR requirement; we assume E[|si(t)|2] = 1
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Multicast Beamforming

• a classic problem, popularized by [Sidiropoulos-Davidson-Luo’06]

• a topic dominated by optimization

– semidefinite relaxation (SDR) is the most famous

– numerous non-convex algorithms were also proposed

• a keystone that triggered SDR research for many, many, many BF problems

– note: another keystone is with unicast BF [Bengtsson-Ottersten’01]

• it’s an old problem, so it’s still practically meaningful?

– it depends

– live streaming, V2V info broadcast, etc., are all sound applications

– I see fewer works on massive common info broadcast
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A Rethinking

• BF is spatial selective
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A Rethinking

• Question: is BF always good? Or, does it always make sense to stick with BF?
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From an Information Theory Viewpoint

• consider the multicast capacity (MC). Let W = E[x(t)xH(t)].

CMC(P ) = max
W

min
i=1,...,K

log(1 + hHi Whi/σ
2
i ))

s.t. Tr(W ) ≤ P, W � 0

Let W ? be the MC-optimal solution
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From an Information Theory Viewpoint

• consider the multicast capacity (MC). Let W = E[x(t)xH(t)].

CMC(P ) = max
W

min
i=1,...,K

log(1 + hHi Whi/σ
2
i ))

s.t. Tr(W ) ≤ P, W � 0

Let W ? be the MC-optimal solution

• fact: if W ? has rank one, or W ? = w?(w?)H, BF is the optimal tx scheme

• fact: the SDR of the multicast BF rate max. problem

max
‖w‖2≤P

min
i=1,...,K

log(1 + |hHi w|2/σ2
i )

is identical to the MC capacity

– the difference is that when W ? has higher rank, we apply rank-one approx.
with W ? to get our beamformer w
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From an Information Theory Viewpoint

• consider the multicast capacity (MC). Let W = E[x(t)xH(t)].

CMC(P ) = max
W

min
i=1,...,K

log(1 + hHi Whi/σ
2
i ))

s.t. Tr(W ) ≤ P, W � 0

Let W ? be the MC-optimal solution

• Question: can we design a transceiver scheme that can do “higher-rank BF”?
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Stochastic Beamforming: System Model

• consider an approach called stochastic beamforming (SBF) [Wu-Ma-So’13]1

• transmission scheme: a single-stream time-varying BF scheme

x(t) = w(t)s(t), t = 1, 2, . . . ,

where w(t) is a random-in-time beamformer

• idea: generatew(t) such that E[w(t)w(t)H] = W ?, the MC-optimal covariance

• caveat: E[w(t)w(t)H] = W ? does not necessarily imply that SBF is MC-optimal

1X. Wu, W.-K. Ma, A. M.-C. So, “Physical-layer multicasting by stochastic transmit beamforming and Alamouti
space-time coding,” IEEE TSP, 2013.
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Idea: Swing the Beamformer

t=1

base station

mobile
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Idea: Swing the Beamformer

t=2

base station

mobile
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Idea: Swing the Beamformer

t=3...

base station

mobile
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Stochastic Beamforming: System Model

• received signals:

yi(t) = hHi w(t)s(t) + vi(t), t = 1, 2, . . .

The SNRs fluctuates in time, with

SNRi(t) = |hHi w(t)|2/σ2
i
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Traditional Wisdom: How We Fight Fast Fading

• consider a SISO model under fast fading

y(t) = α(t)s(t) + v(t), t = 1, 2, . . .

where α(t) is the fading coefficient; s(t) is a symbol; v(t) is noise
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Traditional Wisdom: How We Fight Fast Fading

• model: y(t) = α(t)s(t) + v(t), t = 1, 2, . . .

• issue: uncoded BERs are dominated by deep fade instances
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Traditional Wisdom: How We Fight Fast Fading

• model: y(t) = α(t)s(t) + v(t), t = 1, 2, . . .

• solution: use channel coding to “average out” deep fades (used in 2G!)
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Traditional Wisdom: How We Fight Fast Fading

• model: y(t) = α(t)s(t) + v(t), t = 1, 2, . . .

• solution: use channel coding to “average out” deep fades

• from an information theory viewpoint, the capacity is

C(P ) = Eα∼D[log(1 + αP/σ2)]

where D is the distribution of α.

• in practice, the above capacity may be approached if we apply a near-ideal scalar
channel code such as Turbo code and LDPC
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Stochastic Beamforming: How to Randomize the BF?

• so we will apply channel coding

• but how should we randomize the SBF vector w(t)?

• let’s do this heuristics—generate the SBF vectors by

w(t) ∼ CN (0,W ?)

in the time-i.i.d. fashion
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Simulation Results: SBF Does Work!
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8 tx antennas, 32 users, QPSK, BICM, rate-1/3 Turbo code with a code length 2880. Compare

BF (via SDR), SBF with Gaussian randomizations and SISO bound for the moment.
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Stochastic Beamforming: Achievable Rate Analysis

• assuming ideal channel coding of s(t), the SBF achievable multicast rate is

CSBF(P ) = min
i=1,...,K

Ew∼D[log(1 + hHi ww
Hhi)],

where D = CN (0,W ?) is the SBF distribution; note that W ? depends on P

• recall the multicast capacity

CMC(P ) = max
W�0,Tr(W )≤P

min
i=1,...,K

log(1 + hHi Whi)

The achievable rate gap of the Gaussian SBF satisfies, for all P ≥ 0,

CMC(P )− CSBF(P ) ≤ 0.8314 bits/s/Hz,

• this result does not depend on the number of users K, while SDR performance
tends to deteriorate as K increases
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Stochastic Beamforming: Further Endeavor

• Gaussian SBF is no good in terms of peak-to-average power spread

• Elliptic SBF: let r = rank(W ?); factorize W ? = LHL, L ∈ Cr×N

w =
LHα

‖α‖/
√
r
, α ∼ CN (0, Ir)

– ‖w‖2 ∈ [rλ+min(W ?), rλmax(W ?)] with prob. 1; E[w(t)wH(t)] = W ?

• Bingham SBF:

w =
LHα

‖LHα‖
, α ∼ CN (0, Ir).

– ‖w‖2 = 1 (zero power spread!); E[w(t)wH(t)] 6= W ?

For all P ≥ 0, both the elliptic and Bingham SBFs have

CMC(P )− CSBF(P ) ≤ 0.8314 bits/s/Hz
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Stochastic Beamforming: Further Endeavor

• a more powerful way of using SBF is to combine SBF with the (rank-2) Alamouti
space-time code.

For all P ≥ 0, the combinations of Alamouti space-time coding and
the aforementioned SBF schemes lead to a rate gap no worst than 0.39
bits/s/Hz.

• SBF can be applied to almost all other BF problems where SDR is applicable,
eliminating the need to do rank-one approx. in SDR

– this was shown to be working for multigroup multicasting [Wu-Li-So-Ma’16]
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Take-Home Point

• in SDR, when we get higher rank SDR solutions we generally see this as a
weakness

• SBF tells us to embrace the higher rank solution—and turn the weakness into
benefits—by rethinking the transceiver design

• it is the traditional wisdom of combating fast fading channels that presents us
with this opportunity
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Topic 2: One-Bit Massive MIMO Precoding
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One-Bit Massive MIMO

• massive MIMO: promise many nice things

• issue:

– massive no. of antennas = massive no. of RF front-ends and ADCs/DACs

– high-resolution ADCs/DACs are expensive

– RF power amplifiers that provides a wide linear dynamic range operate in high
backoff mode, this wastes a lot of energy

• one-bit MIMO:

– replace the high-resolution ADCs/DACs with the cheap one-bit ADCs/DACs

– lead to constant envelope transmission, low-backoff RF power amplifiers can
be used, energy saved
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One-Bit Massive MIMO

• challenge: many one-bit MIMO precoding designs require solving binary
optimization problems with a massive scale [Jacobsson-Durisi-Coldrey-
Goldstein-Studer’17], [Sohrabi-Liu-Yu’18], [Shao-Li-Ma-So’19] (and more)

• we can also consider conventional linear precoding first, and then one-bit quantize
that precoder

• but performance of such quantized linear precoding can be bad as quantization
error can be severe

• Question: is there a way we can do the precode-then-quantize route in a more
reliable way?
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One-Bit Massive MIMO

• challenge: many one-bit MIMO precoding designs require solving binary
optimization problems with a massive scale [Jacobsson-Durisi-Coldrey-
Goldstein-Studer’17], [Sohrabi-Liu-Yu’18], [Shao-Li-Ma-So’19] (and more)

• we can also consider conventional linear precoding first, and then one-bit quantize
that precoder

• but performance of such quantized linear precoding can be bad as quantization
error can be severe

• Question: is there a way we can do the precode-then-quantize route in a more
reliable way?

– we try to answer that question [Shao-Ma-Li-Swindlehurst’19]2

2M. Shao, W.-K. Ma, Q. Li, and L. Swindlehurst, “One-bit massive MIMO precoding,” ArXiv, 2019.
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Model

• model:

y =
√

P
2Nh

Tx+ v

where y ∈ C is the received signal; x ∈ CN is the transmitted signal; h ∈ CN is
the channel; v is noise; P is the transmit power; N is the no. of antennas

• constraint: x ∈ {±1± j}N
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Model

• model: y =
√

P
2Nh

Tx+ v

• constraint: x ∈ {±1± j}N

• channel model: uniform linear array, one-path propagation

h = αa(θ), a(θ) = (1, e−jφ, · · · , e−jφ(N−1)), φ = 2πd
λ sin(θ)

where α ∈ C is the complex channel gain; θ is the angle of departure; λ is the
carrier wavelength; d ≤ λ/2 is the inter-antenna spacing
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Model

• model: y =
√

P
2Nh

Tx+ v

• constraint: x ∈ {±1± j}N

• channel model: h = αa(θ),a(θ) = (1, e−jφ, · · · , e−jφ(N−1)), φ = 2πd
λ sin(θ)

• aim: design x ∈ {±1± j}N such that

hTx ≈ c · s

where c > 0 is scalar; s is a data symbol
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Temporal Σ∆ Modulation

• when you listen to music with your smart phone, DAC is being used.

• suppose that DAC is a 16-bit DAC, say, according to the technical specification

• do you think it’s a real 16-bit DAC?

• unlikely. It is too expensive to build a real 16-bit DAC (which requires outputting
65536 voltage levels)

• the DAC used is likely to be a (much) improved version of the one-bit Σ∆
modulator

38
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Temporal Σ∆ Modulation

• operation: xn = sgn(bn), bn = bn−1 + (x̄n − xn−1)

• we have
xn = x̄n + qn − qn−1

where qn = sgn(bn)− bn is the quantization error
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Temporal Σ∆ Modulation

• xn = x̄n + qn − qn−1, qn = sgn(bn)− bn is quant. error

• Fact (no overloading): if |x̄n| ≤ 1 for all n, then |qn| ≤ 1 for all n

• could have |qn| → ∞ if |x̄n| ≤ 1 for all n does not hold
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Temporal Σ∆ Modulation

• xn = x̄n + qn − qn−1, qn = sgn(bn)− bn is q. error

• assumption (no overloading): |x̄n| ≤ 1 for all n, so |qn| ≤ 1 for all n

• assumption (debatable, though used almost everywhere):

{qn} is white, uniformly distributed on [−1, 1], and independent of {x̄n}
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Temporal Σ∆ Modulation

• model:
xn = x̄n + qn − qn−1

where |x̄n| ≤ 1 for all n; {qn} is white, uniformly distributed on [−1, 1], and
independent of {x̄n}

• observation:
X(z) = X̄(z) + (1− z−1)Q(z)
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Temporal Σ∆ Modulation

• observation: X(z) = X̄(z) + (1− z−1)Q(z); q. noise is shaped as highpass
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Temporal Σ∆ Modulation

• we almost always oversample to avoid highpass region!

45



Temporal Σ∆ Modulation

• applying a lowpass filter finally does the task
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Back to MIMO

• recall y =
√

P
2Nh

Tx + v, h = αa(θ),a(θ) = (1, e−jφ, · · · , e−jφ(N−1)), φ =
2πd
λ sin(θ)

• the channel is a spatial bandpass filter
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Spatial Σ∆ Modulation

• how about applying Σ∆ modulation in space?
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Σ∆ Maximum Ratio Transmission (MRT)

• Σ∆-MRT: 1) choose x̄ = (x̄1, . . . , x̄n), the tx signal to be Σ∆-modulated, as

x̄ = (e−j∠αs) · a(θ)∗

where the symbol s is assumed to have |s| ≤ 1;

2) apply Σ∆ modulation on the real and imaginary part of x̄ to obtain x

• note that x̄ satisfies |<(x̄n)| ≤ 1, |<(x̄n)| ≤ 1, so no overloading
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Scatter Plot of Σ∆-MRT; 8-ary PSK
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Effective SNR of Σ∆-MRT

• the effective SNR:

SNReff =
|α|2PN

8|α|2P
3

∣∣∣∣sin(πdλ sin(θ)

)∣∣∣∣2︸ ︷︷ ︸
q. noise power

+2σ2
v

• implications:

– increasing the power P does not reduce the q. noise power

– increasing the no. of antennas N increases the effective SNR

∗ what’s favorable: massive antennas, even when each has very small power
(P/N)
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Effective SNR of Σ∆-MRT

• the effective SNR:

SNReff =
|α|2PN

8|α|2P
3

∣∣∣∣sin(πdλ sin(θ)

)∣∣∣∣2︸ ︷︷ ︸
q. noise power

+2σ2
v

• implications:

– decreasing the inter-antenna spacing d reduces the q. noise power

∗ identical to over-sampling in temporal Σ∆ modulation

∗ mutual coupling prohibits us from making d too small
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Effective SNR of Σ∆-MRT

• the effective SNR:

SNReff =
|α|2PN

8|α|2P
3

∣∣∣∣sin(πdλ sin(θ)

)∣∣∣∣2︸ ︷︷ ︸
q. noise power

+2σ2
v

• implications:

– increasing |θ| increases the q. noise power
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Effective SNR of Σ∆-MRT

• the effective SNR:

SNReff =
|α|2PN

8|α|2P
3

∣∣∣∣sin(πdλ sin(θ)

)∣∣∣∣2︸ ︷︷ ︸
q. noise power

+2σ2
v

• implications:

– increasing |θ| increases the q. noise power

∗ in sectored antennas, where the angle range is limited, say, from −30◦ to
30◦, the q. noise impact can be contained
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BER Performance of Σ∆-MRT

• inter-antenna spacing d = λ/8; angle θ = 60◦; 8-ary PSK

-15 -10 -5 0 5 10 15

(P/σ
v
2) / (dB)

10-4

10-3

10-2

10-1

100

S
ym

bo
l E

rr
or

 R
at

e 
(S

E
R

)
Σ∆ MRT Basic, sim.
Σ∆ MRT Basic, theo.

N=16

N=64

N=256

N=512

55



Spatial Σ∆ Modulation for the Multiuser Case

• the same idea applies; design precoding like zero-forcing (ZF) and symbol-level
precoding (SLP) under the amplitude constraints |<(x̄n)| ≤ 1, |<(x̄n)| ≤ 1
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BER Performance of Multiuser Σ∆ Precoding Schemes

• number of antennas N = 256; number of users K = 24; inter-antenna spacing
d = λ/8; angle range [−22.5◦, 22.5◦]; 8-ary PSK
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Steering the Angle for Spatial Σ∆ Modulation

• q. noise increases as |θ| increases
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Steering the Angle for Spatial Σ∆ Modulation

• Question: can we angle-shift the noise spectrum, thereby allowing the user to
experience (almost) zero q. noise?
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Steering the Angle for Spatial Σ∆ Modulation

• Question: can we angle-shift the noise spectrum, thereby allowing the user to
experience (almost) zero q. noise?

• Answer: yes, by borrowing insight from bandpass temporal Σ∆ modulation

60



Spatial Σ∆ Modulation with Angle Steering

• angle-steered Σ∆ modulator: given φ,

• it can be shown that
xn = x̄n + qn − ejφqn−1

and as such
X(z) = X̄(z) + (1− ejφz−1)Q(z)

61



Spatial Σ∆ Modulation with Angle Steering

• angle-steered Σ∆ modulator: given φ,

• Fact (no overloading): Let

A = 2− | cos(φ)| − | sin(φ)| ∈ [0.59, 1]

If |<(xn)| ≤ A, |=(xn)| ≤ A for all n, then |<(qn)| ≤ 1, |=(qn)| ≤ 1 for all n

• implication: (almost) zero q. noise can be attained, but the signal amplitude
can go down to 0.59 in the worst case

62



BER Performance of Angle-Steered Σ∆-MRT

• no. of antennas N = 128; inter-antenna spacing d = λ/3; angle θ = 90◦; 8-ary
PSK
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Take-Home Point

• spatial Σ∆ modulation allows us to design one-bit precoders in a continuous
way

• assumption required: uniform linear array; one path propagation, extendable to
more than one path

• in conventional precoding or BF, it is common to do

max QoS metric

s.t. E[‖x‖2] ≤ P (average power constraint)

• in Σ∆ precoding, we talk about

max QoS metric

s.t. ‖<(x̄)‖∞ ≤ A, ‖=(x̄)‖∞ ≤ A (amplitude constraint)

• that’s it! Thank you very much!
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