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How OSTBCs look like

Real constellations 1: let s1, . . . , sK ∈ R be a set of real symbols.

[
s1 −s2

s2 s1

]
,

s1 −s2 −s3 −s4

s2 s1 s4 −s3

s3 −s4 s1 s2

 ,


s1 −s2 −s3 −s4

s2 s1 s4 −s3

s3 −s4 s1 s2

s4 s3 −s2 s1


Complex constellations 2: let u1, . . . , uK ∈ C be a set of complex syms.

[
u1 −u∗2
u2 u∗1

]
,

u1 −u∗2 −u∗3 0
u2 u∗1 0 −u∗3
u3 0 u∗1 u∗2

 ,


u1 −u∗2 −u∗3 0
u2 u∗1 0 −u∗3
u3 0 u∗1 u∗2
0 −u∗3 u∗2 u1


1V. Tarokh, et al., “Space-time block codes from orthogonal designs,” IEEE Trans. IT, 1999.
2X.-B. Liang, “Orthogonal designs with maximal rates,” IEEE Trans. IT, 2003.
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Illustration of OSTBC Transmission

Take the complex Alamouti code as an example:[
u1 −u∗2
u2 u∗1

]
Transmission at time instant 1:

u1
*

u2

Transmission at time instant 2:

-u2
*

u1
*
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Signal Model

Received signal model for a generic space-time block code (STBC):

Y = HC(s) + V

H ∈ CMr×Mt MIMO channel (frequency flat);

(Mr, Mt) number of receiver and transmitter antennas;

s ∈ RK symbol vector;

C : RK → CMt×T STBC mapping function with length T ;

V ∈ CMr×T additive white Gaussian noise (AWGN).

Space-Time
Coder

. . . . . .

. . . . . . Space-Time
Detector

Symbols
s

Detected
Symbols

Channel
H
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OSTBC Expression

Assume BPSK or QPSK constellations.

An OSTBC is a real linear combination of complex basis matrices

C(s) =
K∑

k=1

skXk, s ∈ {±1}K (1)

where Xk satisfy i) XkXH
k = I, & ii) XkXH

` = −X`XH
k for k 6= `.
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OSTBC Expression

Assume BPSK or QPSK constellations.

An OSTBC is a real linear combination of complex basis matrices

C(s) =
K∑

k=1

skXk, s ∈ {±1}K (1)

where Xk satisfy i) XkXH
k = I, & ii) XkXH

` = −X`XH
k for k 6= `.

Example: BPSK Alamouti code

[
s1 −s2

s2 s1

]
= s1

[
1 0
0 1

]
+ s2

[
0 −1
1 0

]
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OSTBC Expression

Assume BPSK or QPSK constellations.

An OSTBC is a real linear combination of complex basis matrices

C(s) =
K∑

k=1

skXk, s ∈ {±1}K (1)

where Xk satisfy i) XkXH
k = I, & ii) XkXH

` = −X`XH
k for k 6= `.

Example: QPSK Alamouti code

[
u1 −u∗2
u2 u∗1

]
= <{u1}

[
1 0
0 1

]
+ ={u1}

[
j 0
0 −j

]
+ <{u2}

[
0 −1
1 0

]
+ ={u2}

[
0 j
j 0

]
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OSTBC Expression

Assume BPSK or QPSK constellations.

An OSTBC is a real linear combination of complex basis matrices

C(s) =
K∑

k=1

skXk, s ∈ {±1}K (1)

where Xk satisfy i) XkXH
k = I, & ii) XkXH

` = −X`XH
k for k 6= `.

Well known results

OSTBC codewords have orthogonal rows

C(s)CH(s) = ‖s‖22I (2)

From (1)–(2) OSTBCs were shown to attain the max. diversity
order and have simple ML detector structures, when H is known
at the receiver.
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OSTBC Expression

Assume BPSK or QPSK constellations.

An OSTBC is a real linear combination of complex basis matrices

C(s) =
K∑

k=1

skXk, s ∈ {±1}K (1)

where Xk satisfy i) XkXH
k = I, & ii) XkXH

` = −X`XH
k for k 6= `.

Remark: Generalized orthogonal designs (GODs)

Most OSTBCs available today are from GODs.

In GODs, each entry of C(.) has to be a symbol, its conjugate, or
zero; e.g., the Alamouti code[

u1 −u∗2
u2 u∗1

]
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OSTBC Expression

Assume BPSK or QPSK constellations.

An OSTBC is a real linear combination of complex basis matrices

C(s) =
K∑

k=1

skXk, s ∈ {±1}K (1)

where Xk satisfy i) XkXH
k = I, & ii) XkXH

` = −X`XH
k for k 6= `.

Remark: GODs (cont’d)

Here is a non-GOD (rarely used) u1 −u∗2
1√
2
u∗3

1√
2
u∗3

u2 u∗1
1√
2
u∗3 − 1√

2
u∗3

1√
2
u3

1√
2
u3

1
2 (−u1 − u∗1 + u2 − u∗2)

1
2 (u2 + u∗2 + u1 − u∗1)


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Detection without CSI

This talk focuses on ML detection when H is unknown at the
receiver.

Channel state information (CSI) is usually obtained through training.

But training is arguably inefficient when

the channel coherence time is small, and
the power & bandwidth overheads for training are unaffordable (e.g.,
uplink).

. . . . . .

pilot

. . . . . .

coherence time
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Signal Model

Assume that H remains static over P consecutive code blocks.

. . . . . .

coherence time

C(s1) C(s2) C(sP)C(s3)

The received signal model:

Yp = HC(sp) + Vp, p = 1, . . . , P

By letting Y = [ Y1, . . . , YP ], C(s) = [ C(s1), . . . , C(sP ) ], &
s = [ sT

1 , . . . , sT
P ]T , the model can be conveniently expressed as

Y = HC(s) + V
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Blind ML Detection Formulation

We consider the deterministic blind ML detector [or the generalized
likelihood ratio test (GLRT)]:

ŝ = arg min
s∈{±1}KP

{
min

H∈CMr×Mt
‖Y −HC(s)‖2F

}
(3)

In this formulation, H is treated as a deterministic unknown.

Given a generic space-time coding function C(.), Eq. (3) is a
challenging optimization problem.

A common approx. method for (3) is to use cyclic minimization3:

minimize ‖Y −HC(s)‖2F w.r.t. H only at one time, minimize

‖Y −HC(s)‖2F w.r.t. s only at another time.

3E. G. Larsson, P. Stoica, & J. Li, “Orthogonal space-time block codes: ML detection for
unknown channles and unstructured interferences,” IEEE Trans. SP, 2003.
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Difficulty with Blind ML Detection

The inner min. problem is a least-squares problem

min
H∈CMr×Mt

‖Y −HC(s)‖2F = ‖Y −HC(s)‖2F
∣∣∣
H=YCH(s)[C(s)CH(s)]−1

= ‖Y(I−Π(s))‖2F (4)

where Π(s) = CH(s)[C(s)CH(s)]−1C(s).

Substituting (4) into the blind ML problem, we arrive at

min
s∈{±1}KP

‖Y(I−Π(s))‖2F (5)

where the objective function is highly nonlinear & nonconvex.

A complete search for (5) would cost us a complexity of O(2KP ).

But, for BPSK or QPSK OSTBCs, we can prove that4

4W.-K. Ma, B.-N. Vo, T. N. Davidson, & P. C. Ching, “Blind ML detection of OSTBCs:
Efficient high-performance implementations,” IEEE Trans. SP, Feb. 2006.
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BQP Reformulation

Proposition

The blind ML detection problem for BPSK or QPSK OSTBCs

min
s∈{±1}KP

‖Y(I−Π(s))‖2F

can be reformulated as a Boolean quadratic program (BQP)

max
s∈{±1}KP

sT Rs

where

R =

R11 . . . R1,P

...
. . .

...
RP,1 . . . RP,P

 ,

and Rpq ∈ RK×K with [Rpq]k` = <{tr{YpXH
k X`YH

q }}.
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Idea behind the BQP Reformulation

For BPSK or QPSK OSTBCs,

C(s)CH(s) = ‖s‖22I = KP I.

Hence, the projector Π(s) can be reduced to

Π(s) = CH(s)[C(s)CH(s)]−1C(s) =
1

KP
CH(s)C(s)

Substituting this into the blind ML problem, the proposition will be
obtained.
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On Solving the BQP

The reformulated blind ML problem

max
s∈{±1}KP

sT Rs

is much simplified compared to its original counterpart.

Still, it is a hard discrete optimization problem (NP-hard).

We propose two alternatives to handling the opt., namely

semidefinite relaxation (SDR)5, an efficient high-performance
approximation method; &
sphere decoding6, an exact solver with good efficiency for small to
moderate problem sizes.

5W.-K. Ma, T. N. Davidson, K. M. Wong, Z.-Q. Luo, & P. C. Ching, “Quasi-ML multiuser
detection using SDR with application to sync. CDMA,” IEEE Trans. SP, Apr. 2002.

6O. Damen, H. El Gamal, & G. Caire, “On ML detection and the search for the closest lattice
point,” IEEE Trans. IT, 2003.
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A Simple Suboptimal BQP Solution

The original BQP

max sT Rs

s.t. s ∈ {±1}KP

s1

s2
Original 
feasible points

The relaxed problem is the principal eigenvector problem, which has
a closed form.

This method is equivalent to the SVD method7 & the subspace
method8.

7P. Stoica & G. Ganesan, “Space-time block codes: trained, blind, and semi-blind detection,”
Digital Signal Process., 2003.

8S. Shahbazpanahi, A. Gershman, & J. Manton, “Closed-form blind MIMO channel estimation
for OSTBCs,” IEEE Trans. SP, Dec. 2005.
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A Simple Suboptimal BQP Solution

Norm relaxation

max sT Rs

s.t. ‖s‖22 = KP

s1

s2
Relaxed 
feasible set

The relaxed problem is the principal eigenvector problem, which has
a closed form.

This method is equivalent to the SVD method7 & the subspace
method8.

7P. Stoica & G. Ganesan, “Space-time block codes: trained, blind, and semi-blind detection,”
Digital Signal Process., 2003.

8S. Shahbazpanahi, A. Gershman, & J. Manton, “Closed-form blind MIMO channel estimation
for OSTBCs,” IEEE Trans. SP, Dec. 2005.
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Semidefinite Relaxation

The BQP can be reformulated as

max tr{SR} ⇐⇒ sT Rs

s.t. Sii = 1, i = 1, . . . ,KP ⇐⇒ s2
i = 1

S = ssT

The constraint S = ssT implies that S is positive semidefinite
(PSD), and has rank 1.

The idea of SDR is to drop the rank-1 constraint:

max tr{SR}
s.t. Sii = 1, i = 1, . . . ,KP

S � 0

The resultant problem is a convex optimization problem called
semidefinite program, whose globally optimal solution can be
numerically computed with a complexity of O((KP )3.5).
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SDR Approximation Accuracy

Let

fML = max
s∈{±1}KP

sT Rs,

fSDR = max
S�0,diag(S)=1

tr{SR},

fNR = max
‖s‖22=KP

sT Rs

denote the optimal values of the true blind ML, SDR, and norm
relaxation, respectively.

Lemma

For any R,
|fML − fSDR| ≤ |fML − fNR|

This implies that SDR should perform at least no worse than norm
relaxation.
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Simulation Results: Performance

3× 4 BPSK OSTBC, Mr = 4, P = 8.
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ML detection with CSI
Blind SDR−ML
Blind ML by sphere decoding
Blind norm relaxed ML
Blind cyclic ML
Blind Swindlehurst−Leus
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Extension: 16-QAM Constellations

For M -PSK constellations, the quadratic maximization reformulation
remains valid. Again, SDR or sphere decoding can be used 9,10.

But, for 16-QAM constellations where sk ∈ {±1,±3}, the same
reformulation will lead to a Rayleigh quotient maximization

max
s∈{±1,±3}PK

sT Rs

sT s

where SDR and sphere decoding are no longer applicable (not
directly, at least).

9T. Cui and C. Tellambura, “Efficient blind receiver design for OSTBCs,” IEEE Trans. WC,
May 2007.

10L. Zhou, J.-K. Zhang, and K.-M. Wong, “A novel signaling scheme for blind unique
identification of Alamouti space-time block-coded channel,” IEEE Trans. SP, June 2007.
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Linear Fractional SDR for 16-QAM Constellations

Consider a bound-constrained SDR11 for Rayleigh quotient max.:

max
tr{SR}
tr{S}

s.t. 1 ≤ Sii ≤ 9, i = 1, . . . ,KP (in lieu of Sii ∈ {1, 32})

S � 0

The objective is linear fractional; quasi-convex but not convex.

This linear fractional SDR can be solved by bisection, where a
sequence of SDP feasibility problems are solved (=⇒ expensive).

We can turn the linear fractional SDR to an SDP.12

11N. D. Sidiropoulos and Z.-Q. Luo, “A SDP approach to MIMO detection for higher-order
constellations,” IEEE Signal Process. Lett., 2006.

12C.-W. Hsin, T.-H. Chang, W.-K. Ma, & C.-Y. Chi, A linear fractional SDR approach to ML
detection of higher-order QAM OSTBC in unknown channels,” to appear in IEEE Trans. SP, 2010.
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Linear Fractional SDR for 16-QAM Constellations

The idea is to use Charnes-Cooper transformation. Assume wlog that
sPK is known and that sPK = 1. Then,

S? = arg max
tr{SR}
tr{S}

(∗)

s.t. 1 ≤ Sii ≤ 9, i = 1, . . . ,KP − 1
SKP,KP = 1, S � 0

By letting Z = S/tr{S}, we prove that

Proposition

The following SDP

Z? = arg max tr{ZR} (†)
s.t. ZKP,KP ≤ Zii ≤ 9ZKP,KP , i = 1, . . . ,KP − 1

tr{Z} = 1, Z � 0

is equivalent to Problem (∗), in the sense that S? = Z?/Z?
KP,KP .
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Simulation Results: Performance

3× 4 16-QAM OSTBC, Mr = 4, P = 8.
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Extension: OSTBC-OFDM

In this scenario, each OFDM subchannel is a MIMO flat fading
channel.
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A straightforward way would be to apply the aforedescribed blind
ML methods to each subchannel independently.
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Extension: OSTBC-OFDM
(Cont’d)

We are interested in a subcarrier dependent approach.
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The advantage is the ability to accommodate faster fading.
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Extension: OSTBC-OFDM
(Cont’d)

Let Nc be the OFDM size. The received signal for subchannel n is:

Yn = HnC(sn) + Vn, n = 1, . . . , Nc

where Hn is MIMO frequency response at subcarrier n.

Hn can be parametrized by their FIR coefficients. Specifically,

Hn = H(IMt ⊗ fn)

where

H =

 hT
11 . . . hT

Mt,1
...

. . .
...

hT
1,Mr

. . . hT
Mt,Mr

 ∈ CMr×LMt ,

hm,i = [ hm,i[0], hm,i[1], . . . , hm,i[L− 1] ]T is the impulse response
between the mth tx & ith rx antennas, L denotes the channel
length, & fn = 1

Nc
[ 1, e−j 2π

Nc
(n−1), . . . , e−j 2π

Nc
(n−1)(L−1) ]T .
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Extension: OSTBC-OFDM
(Cont’d)

The received signal model can therefore be rewritten as

Yn = H(IMt
⊗ fn)C(sn) + Vn.

By letting Y = [ Y1, . . . , YNc ], Gn(sn) = (IMt ⊗ fn)C(sn), &
G(s) = [ G1(s1), . . . , GNc(sNc) ], we obtain

Y = HG(s) + V

Like the flat fading case, G(s)GH(s) is shown to be independent of
any s ∈ {±}KNc .

Hence, the implementation techniques in the flat fading case are
applicable to the OSTBC-OFDM case here.13,14

13T. Cui and C. Tellambura, “Joint data detection and channel estimation for OFDM systems,”
IEEE Trans. Commun., Apr. 2006.

14T.-H. Chang, W.-K. Ma, & C.-Y. Chi, “ML detection of OSTBC-OFDM in unknown block
fading channels,” IEEE Trans. SP, Apr. 2008.
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Extension: OSTBC-OFDM
(Cont’d)

QPSK Alamouti code, Mr = 2, L = 4, Nc = 32, 15, 000 trials.

‘LS channel estimation’

Use L pilot codes (min.
requirement) to estimate the
channel, followed by coherent
detection.

‘Semiblind SDR-ML’

Use SDR to solve the
semiblind ML problem. Only
1 pilot code is used.
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1 Background
Orthogonal space-time block codes (OSTBCs): The basics
Detection without channel state information (CSI)

2 Blind Maximum-Likelihood (ML) OSTBC detection: Implementations
Flat fading channels
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Extension: OSTBC-OFDM for frequency selective block fading
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3 Blind Identifiability and Code Constructions
Probability 1 identifiability
Perfect identifiability and code constructions
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Problem Statement

For ease of exposition of the problem, assume that noise is absent,
& that P = 1.

The signal model can be notationally simplified to

Y = HC(s)

Identifiability problem statement: Does there exist another channel
and symbols, denoted by {s̃, H̃}, such that

HC(s) = H̃C(s̃)? (6)

An obvious case is when {s̃, H̃} = {−s,−H}. But this sign
ambiguity can be easily fixed, say by using 1 pilot bit.

s (or H) is said to be uniquely identifiable up to a sign (UI-±1) if
(6) cannot be satisfied for any {s̃, H̃} 6= {±s,±H}.
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Strictly Non-Rotatable OSTBCs

Definition

An OSTBC C(.) is said to be strictly non-rotatable if there does not
exist a matrix Q ∈ CMt×Mt such that

QC(s) = C(s̃) (7)

for any s, s̃ ∈ {±1}K , s 6= ±s̃.

Suppose that (7) can be satisfied for some s, s̃.

It can be shown that Q is unitary.

Then,
HC(s) = HQHQC(s) = (HQH)C(s̃)

where we are faced with a rotational ambiguity.
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An Example of Rotatable Codes

Example

Consider the BPSK Alamouti code

C(s) =
[
s1 −s2

s2 s1

]
.

We note that[
0 −1
1 0

] [
s1 −s2

s2 s1

]
=
[
−s2 −s1

s1 −s2

]
= C((−s2, s1))
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Probability 1 Identifiability

To achieve unique identifiability, it is necessary to employ strictly
non-rotatable codes. But is that sufficient?

We show that15

Theorem

Suppose that H is Gaussian distributed, & that at least one row of H
has positive def. covariance matrix. Then, s is UI-±1 with probability 1
if C(.) is strictly non-rotatable.

Corollary

For i.i.d. Gaussian channels, s is UI-±1 with probability 1 if C(.) is
strictly non-rotatable.

Note that these results are true even for Mr = 1.

15W.-K. Ma, “Blind ML detection of OSTBCs: Identifiability and code constructions,” IEEE
Trans. SP, July 2007.
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Strict Non-Rotatability of the Existing Codes

(T, Mt, K) strictly non-rotatable?

(2, 2, 2) no

(4, 3, 4) yes

(4, 4, 4) no

(8, 5, 8) yes

(8, 6, 8) no

(8, 7, 8) yes

(8, 8, 8) no

Real OSTBCs.

(T, Mt, K/2) strictly non-rotatable?

(2, 2, 2) no

(4, 3, 3) no

(4, 4, 3) no

(15, 5, 10) not known

(8, 5, 4) yes

(8, 6, 4) yes

(8, 7, 4) no

(8, 8, 4) no

Complex OSTBCs.

It appears that many existing OSTBCs are not strictly non-rotatable.

A natural question that arises is whether or not we can design our
own blindly identifiable codes. This leads to the nonintersecting
subspace OSTBCs to be presented next.
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Non-Intersecting Subspace OSTBCs

Let us use the notation R(A) to denote the range space of A.

Definition

An OSTBC is said to be a non-intersecting subspace (NIS) OSTBC if

R(CT (s)) ∩R(CT (s̃)) = {0} (8)

for every s, s̃ ∈ {±1}K , s 6= ±s̃.

The NIS property in (8) has been used in noncoherent space-time
coding for achieving the max. noncoherent diversity16,17 in i.i.d.
Gaussian channels.

16F. E. Oggier, N. J. A. Sloane, S. N. Diggavi, and A. R. Calderbank, “Nonintersecting
subspaces based on finite alphabets,” IEEE Trans. IT, 2005.

17M. Brehler & M. K. Varanasi, “Asymptotic error probability analysis of quadratic receivers in
Rayleigh fading channels with applications to a unified analysis of coherent and noncoherent
space-time receivers,” IEEE Trans. IT, 2001.
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Perfect Identifiability

NIS-OSTBCs are ‘perfect’ from a blind identifiability standpoint:

Theorem

s is UI-±1 for any nonzero H, if and only if C(.) is an NIS-OSTBC.

There is a price for using NIS-OSTBCs, however.

Lemma

Suppose that C(.) is a real or complex GOD. If C(.) is also an
NIS-OSTBC, then it does not achieve the full rate; i.e., K < T for real
GODs and K/2 < T for complex GODs.

An additional property:

Property

All NIS-OSTBCs have 2Mt ≤ T .
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A Seemingly Heuristic Code Construction

Procedure

1 Given an OSTBC with even no. of bits.

2 Concatenate two OSTBCs into one.

3 Drop one bit.

Ce(s) =

 s1 s2 s3 s4

−s2 s1 s4 −s3

−s3 −s4 s1 s2



The constructed code satisfies the 2 necessary NIS conditions. But, is it
sufficient that the code is NIS?

Answer: Yes!
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A Seemingly Heuristic Code Construction

Procedure

1 Given an OSTBC with even no. of bits.

2 Concatenate two OSTBCs into one.

3 Drop one bit.

 s1 s2 s3 s4

−s2 s1 s4 −s3

−s3 −s4 s1 s2︸ ︷︷ ︸
one Ce(.)

s5 s6 s7 s8
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NIS Code Constructions

A formal description of the above described procedure:

Construction I

1 given an OSTBC Ce(s) =
∑K

k=1 skXk where K is even.

2 set Co(s) =
∑K−1

k=1 skXk.

3 output Cnew(s) = [ Co(s1) Ce(s2) ] as the new code, where
s = [ sT

1 sT
2 ]T .

Theorem

Given any BPSK/QPSK OSTBC function Ce : RK → CMt×T where K
is even, the code generated by Construction I is an NIS-OSTBC.
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Some Constructed NIS-OSTBCs

From the QPSK Alamouti code[
u1 −u∗2
u2 u∗1

]
we can construct an QPSK 2-transmitter NIS-OSTBC[

u1 −s2 u3 −u∗4
s2 u∗1 u4 u∗3

]
.

Likewise, from u1 −u∗2 −u∗3 0
u2 u∗1 0 −u∗3
u3 0 u∗1 u∗2


we can construct an QPSK 3-transmitter NIS-OSTBCu1 −u∗2 −s3 0 u4 −u∗5 −u∗6 0

u2 u∗1 0 −s3 u5 u∗4 0 −u∗6
s3 0 u∗1 u∗2 u6 0 u∗5 u∗4

 .
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Simulation Results

QPSK Alamouti, Mr = 1, SDR-ML was employed.
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Concurrent Works in Identifiability & Code Design

Some further extensions of blind ML OSTBC:

NIS OSTBC designs for M-ary PSK 18: use two different (coprime)
PSK constellations for the Alamouti codes, and NIS will be achieved.

Probability-1 identifiability of OSTBC-OFDM and scheme design19:
Such identifiability can be achieved with 1 pilot code, or even 1 pilot
bit with proper code assignment.

Perfect identifiability of OSTBC-OFDM and scheme design20: More
stringent than probability-1 identifiability. You need at least L pilot
bits (where L is the channel length).

18J.-K. Zhang and W.-K. Ma, “Full diversity blind Alamouti space-time block codes for unique
identification of flat fading channels,” IEEE Trans. SP, 2009.

19T.-H. Chang, W.-K. Ma, & C.-Y. Chi, “ML detection of OSTBC-OFDM in unknown block
fading channels,” IEEE Trans. SP, Apr. 2008.

20T.-H. Chang, W.-K. Ma, & C.-Y. Chi, “On Perfect Channel Identifiability of Semiblind ML
Detection of Orthogonal Space-Time Block Coded OFDM,” in ICASSP 2009.
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Concurrent Works in Identifiability & Code Design

It was also found that in second-order statistics (SOS)-based blind
channel estimation, OSTBCs provide many advantages.

Identifiability analysis for SOS-based blind receivers21

Achieving SOS-based blind identifiability by unequal symbol power
loading22.

Time-varying STBC transmissions for enhancing SOS-based blind
identifiability23.

21J. V́ıa & I. Santamaria, “On the blind identifiability of MIMO-OSTBC channels based on
second-order statistics,” IEEE Trans. IT, 2008.

22S. Shahbazpanahi, A. Gershman, & J. Manton, “Closed-form blind MIMO channel estimation
for OSTBCs,” IEEE Trans. SP, Dec. 2005.

23J. V́ıa, I. Santamaria, & J. Pérez, “Code combination for blind channel estimation in general
MIMO-STBC systems,” EURASIP J. Advances SP, 2009.
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Conclusion and Discussion

We show that OSTBCs are ‘good’ codes for blind or noncoherent
space-time coding.

Its ML receiver can be effectively implemented, by exploiting the
code structures.

There exist OSTBCs that provide very attractive blind identifiability
conditions, though they do not fall into the conventional class of
OSTBCs and judicious code constructions are required.

Code designs with provable identifiability results remain an open
direction.

Thank you!
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