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ABSTRACT

In blind hyperspectral unmixing, it has been commonly believed that
the minimum volume enclosing simplex (MVES) criterion is robust
against lack of pure pixels. Specifically, such a belief has been based
on empirical experience, where extensive numerical results showed
that MVES-based algorithms may identify the underlying endmem-
bers quite accurately under high signal-to-noise ratios and without
pure pixels. In this paper, we report some theoretical results on the
endmember identifiability of the MVES criterion in the noiseless
case. We employ an assumption that is a two-mixture generaliza-
tion of the pure-pixel assumption; particularly, we require a set of
pixels, each being constituted by only two endmembers (rather than
one as in the pure-pixel assumption), to exist in the data set. Under
this assumption and some rather mild condition, we show thatthe
MVES solution perfectly identifies the true endmembers. Numeri-
cal simulation results are provided to verify our theoretical results.

Index Terms— Hyperspectral unmixing, minimum volume en-
closing simplex, identifiability analysis, convex geometry

1. INTRODUCTION

Hyperspectral unmixing (HU) is a crucial technology for extracting
the underlying materials (or endmembers) and their corresponding
abundance maps in a scene of interest from the observed hyper-
spectral imaging data [1, 2]. It has numerous applications such as
mineral identification, environmental monitoring, to namea few. In
this context, the well-known pure-pixel assumption has been very
successfully utilized for the development of blind HU algorithms;
such pure-pixel-based algorithms are not only easy to implement,
their performance is also promising when the pure-pixel assumption
holds. However, the pure-pixel assumption may be too restrictive (at
least in an exact sense) when dealing with heavily mixed scenarios.
In the no pure-pixel case, another approach, called minimumvol-
ume enclosing simplex (MVES), and also known as minimum vol-
ume simplex analysis (MVSA) or simplex volume minimization, has
been found to exhibit robustness against lack of pure pixels[3–5].
Advocated by Craig in the early 1990’s in the context of remote sens-
ing [6], the idea is to find a set of vertices whose simplex encloses
the data cloud and whose simplex volume is the smallest.

To give some insight, in Fig. 1 we provide demonstrations of
the MVES for the case of three endmembers and noiseless data.
Fig. 1(a) illustrates an instance where pure pixels are missing, and
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Fig. 1. Demonstrations of the MVES for the case of three endmem-
bers and noiseless data, where MVES works well in the scenario (a)
and fails in the scenario (b).

we can see that the MVES estimates the true endmembers very ac-
curately. Fig. 1(b) illustrates another instance where thedata points
become very heavily mixed and there is no pure pixel, and thistime



the MVES performs poorly. Hence, at least from the above demon-
strations, it seems that the MVES can be robust against lack of pure
pixels if the data points are not too heavily mixed.

We should note that from a viewpoint of computational com-
plexity, the MVES criterion amounts to an optimization problem
that is known to be NP-hard in general [7]. Despite such a lim-
itation, several practical algorithms for handling the MVES prob-
lem, e.g., [3–5], have been developed, and numerical results therein
have demonstrated that the MVES-based algorithms may give rea-
sonably accurate endmember identification performance under high
signal-to-noise ratios and without pure pixels. Such a finding was
encouraging, and has suggested an opportunity for robust blind HU
solutions in the no pure-pixel regime. From a theoretical viewpoint,
it also leads to the following question:

Assume the noiseless case. Is it possible to prove when the MVES
solution identifies the true endmembers perfectly? If such results
can be proven, what are the conditions that the data should satisfy
to attain perfect identifiability?

An answer to the above question is not only meaningful in a theoret-
ical sense, but the subsequent results would also benefit theadvances
of blind HU techniques in remote sensing.

Very recently, we endeavor to address the above question by
proving several MVES endmember identifiability results in the
noiseless case [8]. This conference paper serves as an abridged
version of [8]. We will focus on reporting one key result in [8],
where we consider an assumption that may roughly be regardedas
an “order-two” generalization of the pure-pixel assumption. From
this assumption, we will show when the MVES solution identifies
the true endmembers exactly and uniquely. The practical implica-
tions of the identifiability result will be discussed, and numerical
results for verifying the result will be provided.

Some basic notations are as follows. The set of all real-valued
n-dimensional vectors andm-by-n matrices are denoted byRn and
R

m×n, respectively (resp.);‖ · ‖ denotes the Euclidean norm of a
vector; xT denotes the transpose of the vectorx; x ≥ 0 means
thatx is elementwise non-negative;1 denotes an all-one vector of
appropriate dimension.

2. PROBLEM STATEMENT AND BACKGROUND

The MVES identifiability problem considered in this paper isbased
on a conventional blind HU problem setup; see the literature, e.g.,
[1, 2], for full coverage. The signal model is briefly described as
follows. Letxn ∈ R

M denote thenth pixel of a hyperspectral image
captured at a scene of interest, where the elements ofxn are spectral
measurements at different bands, andM is the number of spectral
bands. The pixels are modeled as linear mixtures of the spectral
signatures of the underlying endmembers in the scene, and, in the
noiseless case, the corresponding mixing model is written as

xn = Asn, n = 1, . . . , L, (1)

whereA = [ a1, . . . ,aN ] ∈ R
M×N is the endmember signature

matrix, with each columnai being the spectral signature vector of a
distinct endmember;N is the number of endmembers;sn ∈ R

N is
the abundance vector at thenth pixel;L is the number of pixels. As
standard blind HU assumptions, we have the following assumptions:

i) every abundance vector satisfiessn ≥ 0, 1T
sn = 1 (i.e., the

abundance non-negativity and sum-to-one constraints),

ii) A has full column rank, and

iii) [ s1, . . . , sL ] has full row rank.

The MVES is a blind HU approach that attempts to recover the
unknown endmember spectral signaturesa1, . . . ,aN from the data
x1, . . . ,xL by finding an(N−1)-dimensional simplex that circum-
scribes all the data pointsxn’s and yields the smallest volume. To
put this into context, let

conv{b1, . . . , bN} =

{

x =
N
∑

i=1

θibi

∣

∣

∣

∣

θ ≥ 0, 1
T
θ = 1

}

,

denote the convex hull of{b1, . . . , bN} ⊆ R
M , andvolA denote the

volume of the given setA. The MVES criterion can be formulated
as an optimization problem

min
b1,...,bN∈RM

vol(conv{b1, . . . , bN})

s.t. xn ∈ conv{b1, . . . , bN}, n = 1, . . . , L,
(2)

where the solution to problem (2) serves as an estimate of theend-
member spectral signatures. Note that in problem (2), the number
of endmembersN is assumed to be known. As discussed in the In-
troduction, problem (2) is NP-hard in general [7]. This means that
the existing MVES-based algorithms [3–5], which were developed
from an application-driven viewpoint, may not always obtain the so-
lution to problem (2) in a globally optimal sense. Despite that, prac-
tical experience has suggested that the MVES-based algorithms may
give reasonable endmember identification performance—including
instances where the pure-pixel assumption is violated.

Motivated by the good empirical results with the MVES-based
algorithms, in this paper we consider the theoretical perfect iden-
tifiability of the MVES criterion in problem (2).Specifically, we
define perfect identifiability as conditions under which thesolution
to problem(2) is uniquely and exactly given by the true endmember
spectral signaturesa1, . . . ,aN , subject to permutations of the or-
dering ofa1, . . . ,aN , which are minor effects.Before proceeding
to the main result in the next section, we should mention an existing
MVES identifiability result. To describe it, let us recall the definition
of the pure-pixel assumption.

Assumption 1 (pure-pixel assumption) For every i ∈ {1, . . . ,
N}, there exists a pixel, whose index is denoted byn(i), such that
its abundance vector takes the form

sn(i) = ei,

whereei denotes a unit vector, with[ei]j = 1 for j = i and[ei]j =
0 for j 6= i.

The corresponding MVES identifiability result is as follows.

Fact 1 ( [4], Theorem 1) Assume the noiseless case, and suppose
that Assumption 1 holds. Then, the solution to problem(2) is
uniquely and exactly given bya1, . . . ,aN subject to ordering per-
mutations.

3. THE MAIN RESULT

In this section, we report an MVES perfect identifiability result in the
no pure-pixel case. We consider an assumption that is more general
than the pure-pixel assumption, given as follows.



Assumption 2 For everyi, j ∈ {1, . . . , N}, i 6= j, there exists
a pixel, whose index is denoted byn(i, j), such that its abundance
vector takes the form

sn(i,j) = αijei + (1− αij)ej , (3)

for some coefficientαij that satisfies1
2
< αij ≤ 1.
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e2e3
sn(2,3)sn(3,2)

sn(1,3)
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Fig. 2. Illustration of Assumption 2 for the case ofN = 3.

Fig. 2 gives an illustration of Assumption 2 for the case ofN = 3.
Assumption 2 means that one can find pixels that are constituted by
two endmembers (for all pairs of endmembers), with one dominat-
ing another as indicated by the coefficientαij > 1

2
. Also, the pixels

in (3) lie on the edges of the unit simplex. In addition, Assumption 2
is seen to reduce to Assumption 1 whenαij = 1 for all i, j. Hence,
Assumption 2 subsumes the pure-pixel assumption. From Assump-
tion 2, we have the following main result.

Claim 1 Assume the noiseless case, and suppose that Assumption 2
holds. Then, the solution to problem(2) is uniquely and exactly given
bya1, . . . ,aN subject to ordering permutations if

1. N = 3 andαij > 2
3

for all i, j, or if

2. N ≥ 4.

Claim 1 is a consequence of two theorems in [8]. To get some
feeling with Claim 1, take the demonstrations back in Fig. 1 as an
example. The two instances in Fig. 1 basically satisfy Assumption 2.
The instance in Fig. 1(a) hasαij > 2

3
, while that in Fig. 1(b) has

αij < 2
3
. The identifiability results observed in these two instances

have a good match with that in condition 1 of Claim 1.
Let us discuss the implications arising from Claim 1. First,

Claim 1 suggests that if the pixels are not too heavily mixed so that
there exist “good” pixels that are at appropriate positionson the edge
of the unit simplex, it is possible for the MVES to attain perfect iden-
tifiability. Second, we observe that the perfect identifiability result
for N ≥ 4 has no restriction on the mixing coefficientsαij ’s (as
long as they satisfy1

2
< αij ≤ 1), and is more relaxed than that for

N = 3. This seems to suggest that the MVES criterion may pro-
vide stronger identifiability as the problem dimensionN increases.
However, we should also note that there is no free lunch. To satisfy
Assumption 2 with generalαij ’s, we would need at leastN(N − 1)
pixels in (3). Subsequently, the number of pixelsL should be no less
thanN(N − 1), which implies that more pixels would be required
as the problem dimension increases.

4. SKETCH OF THE PROOF OF THE MAIN RESULT

In this section we give a sketch of the proof of Claim 1. Readers can
find the full details in [8]. For convenience, let

XL = {x1, . . . ,xL}, SL = {s1, . . . , sL},

denote the sets of all the observed pixels and the corresponding abun-
dance vectors, resp., and

Te = conv{e1, . . . ,eN} ⊆ R
N
,

Ta = conv{a1, . . . ,aN} ⊆ R
M
,

be the(N − 1)-dimensional unit simplex and the true endmembers’
simplex, resp. Consider the following definition.

Definition 1 (minimum volume enclosing simplex) Given anm-
dimensional1 setU ⊆ R

n, MVES(U) denotes the set that collects
all m-dimensional minimum volume simplices that encloseU and lie
in the affine hull ofU .

From the above definition, the perfect MVES identifiability problem
can be stated as the problem of finding conditions under which

MVES(XL) = {Ta}.

As our first step, consider the following result.

Proposition 1 MVES(XL) = {Ta} if and only ifMVES(SL) =
{Te}.

The proof of Proposition 1, as well as those of the theorems tobe
presented below, can be found in [8], and here we omit the details.
By Proposition 1, the perfect MVES identifiability problem reduces
to that of finding conditions under which

MVES(SL) = {Te},

which is invariant witha1, . . . ,aN .
Our second step aims at finding a relationship between the con-

ditionMVES(SL) = {Te} and the abundance pixel purities. To this
end, we introduce the following measure

γ = sup{r ≤ 1 | R(r) ⊆ conv{s1, . . . , sL}}, (4)

where

R(r) = {s ∈ conv{e1, . . . ,eN} | ‖s‖ ≤ r}.

We call (4) theuniform pixel purity level. Owing to space limita-
tion, we shall not describe the physical meanings of (4) in detail.
Interested readers are referred to [8], wherein we give geometric
interpretations of (4). In simple terms, (4) quantifies a pixel pu-
rity level that applies to all the endmembers. In particular, it can be
shown that 1√

N
≤ γ ≤ 1, where the most heavily mixed instance

s1 = · · · = sL = 1
N
1 hasγ = 1√

N
, and the pure-pixel instances

(i.e., instances that satisfy Assumption 1) haveγ = 1. A key result
arising from the uniform pixel purity level is as follows.

Theorem 1 AssumeN ≥ 3. If the uniform pixel purity level satis-
fies

γ >
1√

N − 1
,

thenMVES(SL) = {Te}.

1Here, the dimension of a setA ⊆ R
n is defined as the affine dimension

of the affine hull ofA.



The last step lies in linking the conditions in Theorem 1 and
Assumption 2.

Theorem 2 Under Assumption 2 and forN ≥ 2, the uniform pixel
purity level satisfies

γ ≥
√

1

N

[

(Nα− 1)2

N − 1
+ 1

]

,

whereα = mini,j∈{1,...,N},i6=j αij .

If we compare Theorems 1 and 2, we see that the condition
√

1

N

[

(Nα− 1)2

N − 1
+ 1

]

>
1√

N − 1
,

implies perfect identifiability of MVES. It is shown that theabove
inequality is equivalent to

α >
2

N
,

for N ≥ 3. By also noting1
2
< α ≤ 1 in Assumption 2, and the

fact that1
2
≥ 2

N
for N ≥ 4, we obtain Claim 1.

Before we finish, we should give a remark. From the proof
above, we see that Claim 1 is a special case of Theorem 1. As a
future direction, it would be interesting to study whether there are
other conditions that also satisfy Theorem 1; by doing so we may
pin down more MVES perfect identifiability results.

5. NUMERICAL SIMULATIONS

In this section, we verify Claim 1 through numerical simulations. We
generate the data pointsxn’s by the noiseless linear mixing model in
(1). Since perfect MVES identifiability does not depend on the end-
member signatures in the noiseless case (cf. Proposition 1), we sim-
ply choose{a1, . . . ,aN} = {e1, . . . ,eN} andM = N . The abun-
dance pixelssn’s are generated according to Assumption 2. Specif-
ically, we setαij = α for all i, j, generate all the combinations of
(3), and use them as the abundance pixel set.

We implement the MVES by using the alternating linear pro-
gramming (LP) algorithm in [4]. This algorithm does not guaran-
tee convergence to the MVES solution in a globally optimal sense
(note that the same applies to the other computationally efficient
MVES-based algorithms, as the MVES problem is generally NP-
hard). We improve the chance of hitting the MVES solution by
running the alternating LP algorithm20 times, each with a differ-
ent initial point, and then choosing the result that gives the smallest
simplex volume. The endmember identification performance of the
resulting endmember estimate is evaluated by using the root-mean-
square (RMS) angle error

φ = min
π∈ΠN

√

√

√

√

1

N

N
∑

i=1

[

arccos

(

aT
i âπi

‖ai‖ · ‖âπi
‖

)]2

,

whereΠN denotes the set of all permutations of{1, . . . , N}, and
{â1, . . . , âN} denotes the endmember estimate.

Fig. 3 shows the RMS angle errors with respect toα. Note that a
smallerα means more heavily mixed pixels, and vice versa. We can
see that forN ≥ 4, zero RMS angle error, or equivalently, perfect
MVES identifiability, is attained for any1

2
< α ≤ 1. Also, for

N = 3, zero RMS angle error is attained for2
3
< α ≤ 1. These

observations are in good agreement with Claim 1.
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Fig. 3. A numerical result on the MVES identification performance.

6. CONCLUSIONS AND DISCUSSIONS

In this paper, we have presented a sufficient condition for the MVES
to attain perfect endmember identifiability in the noiseless case; cf.
Claim 1. The condition considers a two-mixture generalization of
the well-known pure-pixel assumption, and suggests that the MVES
is robust against lack of pure pixels to a certain level. As future work,
it would be interesting to study how the analysis leading to the above
condition can be extended to provide further MVES identifiability
results; e.g., those in the noisy case.
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