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ABSTRACT

data points

In blind hyperspectral unmixing, it has been commonly hveliethat +  true endmembers

the minimum volume enclosing simplex (MVES) criterion iduost
against lack of pure pixels. Specifically, such a belief hemnbased
on empirical experience, where extensive humerical restiowed
that MVES-based algorithms may identify the underlyingraeth-
bers quite accurately under high signal-to-noise ratias waithout
pure pixels. In this paper, we report some theoretical tesud the
endmember identifiability of the MVES criterion in the ndisss
case. We employ an assumption that is a two-mixture gemarali
tion of the pure-pixel assumption; particularly, we requir set of
pixels, each being constituted by only two endmembersératian
one as in the pure-pixel assumption), to exist in the datalseder
this assumption and some rather mild condition, we show ttieat
MVES solution perfectly identifies the true endmembers. Nrim
cal simulation results are provided to verify our theomtiesults.

Index Terms— Hyperspectral unmixing, minimum volume en- (@)
closing simplex, identifiability analysis, convex georpetr
data points
1. INTRODUCTION +  true endmembers

MVES

Hyperspectral unmixing (HU) is a crucial technology forrexting

the underlying materials (or endmembers) and their coomedipg
abundance maps in a scene of interest from the observed-hyper
spectral imaging data [1, 2]. It has numerous applicatiath @s
mineral identification, environmental monitoring, to naenéew. In

this context, the well-known pure-pixel assumption hasnbesry
successfully utilized for the development of blind HU aligoms;
such pure-pixel-based algorithms are not only easy to imets,

their performance is also promising when the pure-pixaliaggion
holds. However, the pure-pixel assumption may be too msti(at
least in an exact sense) when dealing with heavily mixedasgan

In the no pure-pixel case, another approach, called mininaoln
ume enclosing simplex (MVES), and also known as minimum vol-
ume simplex analysis (MVSA) or simplex volume minimizatibas
been found to exhibit robustness against lack of pure pigis]. (b)
Advocated by Craig in the early 1990’s in the context of rezrssns-

ing [6], the idea is to find a set of vertices whose simplex eses$

the data cloud and whose simplex volume is the smallest. Fig. 1. Demonstrations of the MVES for the case of three endmem-

To give some insight, in Fig. 1 we provide demonstrations ofpers and noiseless data, where MVES works well in the sae(eyi
the MVES for the case of three endmembers and noiseless datgnd fails in the scenario (b).

Fig. 1(a) illustrates an instance where pure pixels areingssind
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the MVES performs poorly. Hence, at least from the above aemo
strations, it seems that the MVES can be robust against figglre
pixels if the data points are not too heavily mixed.

We should note that from a viewpoint of computational com-

plexity, the MVES criterion amounts to an optimization peh
that is known to be NP-hard in general [7]. Despite such a lim
itation, several practical algorithms for handling the MY¥Igrob-
lem, e.g., [3-5], have been developed, and numerical eethdtein
have demonstrated that the MVES-based algorithms may gae r
sonably accurate endmember identification performancerurigh
signal-to-noise ratios and without pure pixels. Such a figdivas
encouraging, and has suggested an opportunity for robinst HU
solutions in the no pure-pixel regime. From a theoreticedwgoint,

it also leads to the following question:

Assume the noiseless case. Is it possible to prove when tHe\IV
solution identifies the true endmembers perfectly? If secults|
can be proven, what are the conditions that the data shotitflysa
to attain perfect identifiability?

An answer to the above question is not only meaningful in artte
ical sense, but the subsequent results would also benefititlzces
of blind HU techniques in remote sensing.

Very recently, we endeavor to address the above question b%

proving several MVES endmember identifiability results het
noiseless case [8]. This conference paper serves as argedbrid
version of [8]. We will focus on reporting one key result ir,[8
where we consider an assumption that may roughly be regasied
an “order-two” generalization of the pure-pixel assumptid-rom
this assumption, we will show when the MVES solution ideaffi
the true endmembers exactly and uniquely. The practicalicaip
tions of the identifiability result will be discussed, andmmerical
results for verifying the result will be provided.

Some basic notations are as follows. The set of all reale¢alu
n-dimensional vectors angh-by-n matrices are denoted ®/* and
R™*™, respectively (resp.)j - || denotes the Euclidean norm of a
vector; 7 denotes the transpose of the vecigrz > 0 means
thatx is elementwise non-negativa; denotes an all-one vector of
appropriate dimension.

2. PROBLEM STATEMENT AND BACKGROUND

The MVES identifiability problem considered in this papebased
on a conventional blind HU problem setup; see the literaterg.,
[1, 2], for full coverage. The signal model is briefly desedbas
follows. Letz,, € R™ denote the:th pixel of a hyperspectral image
captured at a scene of interest, where the elements afe spectral
measurements at different bands, avdis the number of spectral
bands. The pixels are modeled as linear mixtures of the rghect
signatures of the underlying endmembers in the scene, arttigi
noiseless case, the corresponding mixing model is written a

@)

whereA = [ai,...,anx | € RM*Y is the endmember signature
matrix, with each columm; being the spectral signature vector of a
distinct endmemberd is the number of endmembers;, € RY is
the abundance vector at théh pixel; L is the number of pixels. As
standard blind HU assumptions, we have the following assiomg

T, =As,, n=1,...,L,

i) every abundance vector satisfigs > 0, 1%'s,, = 1 (i.e., the
abundance non-negativity and sum-to-one constraints),

i) A has full column rank, and

i) [s1,...,sz]has full row rank.

The MVES is a blind HU approach that attempts to recover the
unknown endmember spectral signatuigs. . . , an from the data
x1,...,z byfinding an(NV —1)-dimensional simplex that circum-
scribes all the data points,,’s and yields the smallest volume. To

put this into context, let

N
T = Z@sz

i=1

conv{by,...,by} = {

9>0,1T0:1}7

denote the convex hull dib, . .., bx } € R, andvol.A denote the
volume of the given setl. The MVES criterion can be formulated
as an optimization problem

i b
bl,mI,I;;I;leRM N})

s.t. @, € conv{bi,...,by}, n=1,...,L,

vol(conv{bi, ..

)

where the solution to problem (2) serves as an estimate adrite
member spectral signatures. Note that in problem (2), timebeu
of endmembersV is assumed to be known. As discussed in the
troduction, problem (2) is NP-hard in general [7]. This meémat
e existing MVES-based algorithms [3-5], which were depel
from an application-driven viewpoint, may not always obttie so-
lution to problem (2) in a globally optimal sense. Despitattiprac-
tical experience has suggested that the MVES-based digwitnay
give reasonable endmember identification performancetuding
instances where the pure-pixel assumption is violated.
Motivated by the good empirical results with the MVES-based
algorithms, in this paper we consider the theoretical perigen-
tifiability of the MVES criterion in problem (2).Specifically, we
define perfect identifiability as conditions under which slodution
to problem(2) is uniquely and exactly given by the true endmember
spectral signaturests, ..., an, subject to permutations of the or-
dering ofas,...,an, which are minor effectsBefore proceeding
to the main result in the next section, we should mention &stiag
MVES identifiability result. To describe it, let us recaletbefinition
of the pure-pixel assumption.

n_

Assumption 1 (pure-pixel assumption) For everyi € {1,...,
N}, there exists a pixel, whose index is denotednlfy), such that
its abundance vector takes the form

Sn(i) = €i,

wheree; denotes a unit vector, witle;]; = 1 for j = ¢ and|e;]; =
0 for j # 4.

The corresponding MVES identifiability result is as follaws

Fact 1 ([4], Theorem 1) Assume the noiseless case, and suppose
that Assumption 1 holds. Then, the solution to probi@nis
uniquely and exactly given hy, ..., an subject to ordering per-
mutations.

3. THE MAIN RESULT

In this section, we report an MVES perfect identifiabilitguét in the
no pure-pixel case. We consider an assumption that is moergle
than the pure-pixel assumption, given as follows.



Assumption 2 For everyi,j € {1,...,N}, i # j, there exists 4. SKETCH OF THE PROOF OF THE MAIN RESULT

a pixel, whose index is denoted byi, j), such that its abundance
vector takes the form In this section we give a sketch of the proof of Claim 1. Readan
find the full details in [8]. For convenience, let

X ={z1,...,xr}, Sp={s1,...,s.},

denote the sets of all the observed pixels and the corresgpabun-
dance vectors, resp., and

€ 7;:COHV{61,...76N}QRN,

Sn(i,) = ®ijei + (1 — aqj)e;, (3)

for some coefficient;; that satisfies; < a;; < 1.

. =conv{ai,...,an} C ]RM,

be the(NV — 1)-dimensional unit simplex and the true endmembers’
simplex, resp. Consider the following definition.

Definition 1 (minimum volume enclosing simplex) Given anm-
dimensional sett/ C R™, MVES(/) denotes the set that collects
all m-dimensional minimum volume simplices that enclésad lie

in the affine hull ot4.

From the above definition, the perfect MVES identifiabilitpplem
can be stated as the problem of finding conditions under which

MVES (1) = {T.}.

Sn(3,2) Sn(2,3)

As our first step, consider the following result.

Fig. 2. lllustration of Assumption 2 for the case &f = 3. . . .
Proposition 1 MVES(X.) = {7.} if and only if MVES(S.) =
Fig. 2 gives an illustration of Assumption 2 for the caseN\of= 3. {7}
Assumption 2 means that one can find pixels that are corelitoy
two endmembers (for all pairs of endmembers), with one datin
ing another as indicated by the coefficien > % Also, the pixels
in (3) lie on the edges of the unit simplex. In addition, Asgtion 2
is seen to reduce to Assumption 1 when = 1 for all ¢, 5. Hence,
Assumption 2 subsumes the pure-pixel assumption. Fromnssu MVES(S.) = {7},
tion 2, we have the following main result.

The proof of Proposition 1, as well as those of the theorentseto
presented below, can be found in [8], and here we omit thelsleta
By Proposition 1, the perfect MVES identifiability problerduces
to that of finding conditions under which

which is invariant witha1, . .., a .
Claim 1 Assume the noiseless case, and suppose that Assumption 2 OUr second step aims at finding a relationship between the con
holds. Then, the solution to proble@) is uniquely and exactly given dition MVES(S1) = {7.} and the abundance pixel purities. To this
byai,...,an subject to ordering permutations if end, we introduce the following measure

1. N:3andaij > %for all 4, 7, orif fy:sup{'rg 1 |R(r) gCOHV{S1,...7SL}}, 4)

2. N 24 where

Claim 1 is a consequence of two theorems in [8]. To get some
feeling with Claim 1, take the demonstrations back in Figslaa
example. The two instances in Fig. 1 basically satisfy Agstion 2.  We call (4) theuniform pixel purity level Owing to space limita-
The instance in Fig. 1(a) has; > % while that in Fig. 1(b) has tion, we shall not describe the physical meanings of (4) itaitle
aq; < 2. The identifiability results observed in these two instance Interested readers are referred to [8], wherein we give géien
have a good match with that in condition 1 of Claim 1. interpretations of (4). In simple terms, (4) quantifies aepigu-

Let us discuss the implications arising from Claim 1. First, rity level that applies to all the endmembers. In particlitezan be
Claim 1 suggests that if the pixels are not too heavily miethat ~ shown that— < v < 1, where the most heavily mixed instance
there exist “good” pixels that are at appropriate positomshe edge g, = ... = 5, = %1 hasy = LN and the pure-pixel instances
of the unit simplex, itis possible for the MVES to attain effiden- (e instances that satisfy Assumption 1) have: 1. A key result
for N > 4 has no restriction on the mixing coefficienis;’s (as
long as they satisfy} < a; < 1), and is more relaxed than that for Theorem 1 AssumeN > 3. If the uniform pixel purity level satis-
N = 3. This seems to suggest that the MVES criterion may pro<jeg
vide stronger identifiability as the problem dimensidnincreases. 1
However, we should also note that there is no free lunch. fisfga N -1
Assumption 2 with generat;;'s, we would need at least (N — 1
pixels in (3). Subsequently, Jthe number of pixélshould ée no Ie)ss thenMVES(S) = {7}
than N (N — 1), which implies that more pixels would be required  1Here, the dimension of a sgt C R” is defined as the affine dimension
as the problem dimension increases. of the affine hull of A.

R(r) ={s € conv{ei,...,en}||s| <r}.




The last step lies in linking the conditions in Theorem 1 ani
Assumption 2.

Theorem 2 Under Assumption 2 and fav > 2, the uniform pixel
purity level satisfies
+1],

vz
wherea = ming jegi,... N},itj Qij-
If we compare Theorems 1 and 2, we see that the condition
v
N

implies perfect identifiability of MVES. It is shown that ttebove
inequality is equivalent to

[(Nﬁ S

(Nao—1)2
N -1

+ 1| > —,
|> 7=

a> —,
N

for N > 3. By also noting% < «a < 1in Assumption 2, and the
factthat > 2 for N > 4, we obtain Claim 1.
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Fig. 3. A numerical result on the MVES identification performance.

6. CONCLUSIONS AND DISCUSSIONS

Before we finish, we should give a remark. From the proof'n this paper, we have presented a sufficient condition ®MVES
above, we see that Claim 1 is a special case of Theorem 1. As g attain perfect endmember identifiability in the noisslease; cf.

future direction, it would be interesting to study whetheere are
other conditions that also satisfy Theorem 1; by doing so vag m
pin down more MVES perfect identifiability results.

5. NUMERICAL SIMULATIONS

In this section, we verify Claim 1 through numerical simidas. We
generate the data points,’s by the noiseless linear mixing model in
(1). Since perfect MVES identifiability does not depend om¢hd-
member signatures in the noiseless case (cf. Propositjanelyim-
ply choos€{a1,...,an} ={e1,...,en}andM = N. The abun-

dance pixelss,,’'s are generated according to Assumption 2. Specif-

ically, we seta;; = « for all 4, j, generate all the combinations of
(3), and use them as the abundance pixel set.

We implement the MVES by using the alternating linear pro-

gramming (LP) algorithm in [4]. This algorithm does not garm
tee convergence to the MVES solution in a globally optimaisse
(note that the same applies to the other computationallgieffi

MVES-based algorithms, as the MVES problem is generally NP-

Claim 1. The condition considers a two-mixture generaiimabf

the well-known pure-pixel assumption, and suggests tlaMWES

is robust against lack of pure pixels to a certain level. Asreiwork,

it would be interesting to study how the analysis leadindneogdbove
condition can be extended to provide further MVES identifigh
results; e.g., those in the noisy case.
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