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Abstract

For orthogonal space-time block coded orthogonal frequency division multiplexing (OSTBC-OFDM)
systems, many of the existing blind detection and channel estimation methods rely on the assumption
that the channel is static for many OSTBC-OFDM blocks. This paper considers the blind (semiblind)
maximum-likelihood (ML) detection problem of OSTBC-OFDM with a single OSTBC-OFDM block
only. The merit of such an investigation is the ability to accommodate channels with shorter coherence
time. We examine both the implementation and identifiability issues, with a focus on BPSK or QPSK con-
stellations. In the implementation, we propose reduced-complexity detection schemes using subchannel
grouping. In the identifiability analysis, we show that the proposed schemes can ensure a probability one
identifiability condition using very few number of pilots. For example, the proposed semiblind detection
scheme only requires a single pilot code for unique data identification; while the conventional pilot-
based channel estimation method requiresL pilots whereL denotes the channel length. Our simulation
results demonstrate that the proposed schemes can provide performance close to that of their non-blind
counterparts.
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I. INTRODUCTION

In frequency selective fading channels, space-time coded orthogonal frequency division multiplexing

(OFDM) [1] is a popular approach to providing transmit diversity and coding gains; e.g., space-time

trellis coded OFDM [2], [3], and space-time block coded OFDM[4]–[13]. In particular, the combination

of orthogonal space-time block codes (OSTBCs) and OFDM, or simply OSTBC-OFDM [5]–[13], has

drawn much attention because it attains the maximum transmit diversity and has a simple maximum-

likelihood (ML) receiver structure given channel state information (CSI) at the receiver. Recently, there

have been considerable interests in techniques requiring no CSI at the receiver; e.g., blind (semiblind)

channel estimation [5]–[7], [11], [12] and the differential schemes [8]–[10]. Many of the existing blind

channel estimators, such as those based on second order statistics [5]–[7], assume that the channel is

static over many OSTBC-OFDM blocks. For example, the blind subspace-based estimator in [5] uses at

least150 OSTBC-OFDM blocks in the simulations. Thus, these estimators may not be applicable if the

channel changes in a block-by-block1 manner. When the channel can be invariant for at least two blocks,

differentially encoded OSTBC-OFDM is a convenient scheme for no-CSI detection. It, however, incurs

a 3 dB performance loss in terms of signal-to-noise ratio (SNR).

On the other hand, we have seen significant progress in the blind ML detection techniques for OSTBCs

in flat fading channels. In essence, by exploiting the special OSTBC characteristics one can simplify

the blind ML receiver realization problem considerably. This has led to various realization methods,

such as the low-complexity cyclic ML method [14], [15], the simple norm relaxation method [16],

[17], optimal sphere decoding [17], [18], and the efficient quasi-optimal semidefinite relaxation (SDR)

method [17], [19]. Extensions to unknown noise covariance and time-selective fading have also been

considered in [15] and [18], respectively. These successeshave recently motivated investigation of blind

ML OSTBC identifiability, a crucial fundamental aspect thatdetermines conditions under which a blind

OSTBC scheme can operate properly. A blind ML identifiability analysis with a focus on BPSK/QPSK

constellations has been provided in [20]. This work not onlyproves that there exist OSTBCs having

very relaxed identifiability conditions (say, capability of unique code identification with one receive

antenna only), it also develops a construction method for such OSTBCs with BPSK/QPSK constellations.

Meanwhile, the concurrent works [18], [19] have concentrated on an OSTBC scheme design using dual

MPSK constellations, which is also found to attain excellent identifiability. It is worth mentioning that

1In the rest of this paper we assume the tacit understanding that “block” simply stands for “OSTBC-OFDM block”, for the

sake of convenience.
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OSTBCs are beneficial not just to the blind ML approach. In theparallel developments of the blind

subspace approach, OSTBCs are also found to be a good class ofspace-time codes bringing about

simple estimator structure and attractive identifiability; see [16], [21]–[23] for the details, and see [17]

for some discussions comparing the ML and subspace approaches.

The purpose of this paper is to extend the above described blind ML OSTBC technique to the OSTBC-

OFDM scenario, with an emphasis on BPSK/QPSK constellations. A straightforward approach is to treat

the OFDM subchannels as if they were mutually independent flat fading channels. This subchannel-wise

approach enables direct application of the previously described flat-fading based blind ML techniques, but

it typically works well only when the channel remains staticover many (OSTBC-OFDM) blocks. This

work follows a different approach that has only been appliedto the single-input-multiple-output OFDM

scenario so far; see [24] and the references therein, and [25]. The idea is to exploit the inter-subchannel

relationship, specifically by linking the suchannels through their time-domain characterization. By doing

so we establish a subchannel dependent ML approach that can perform well with just one block. The

advantages of this approach are the ability to handle block fading channels (i.e., channels that vary from

one block to another), and short detection latency which is favorable for delay-constrained applications.

This work deals with two important issues that were not addressed in the previous studies. First, we

consider reduced-complexity implementation by proposingsubchannel grouping OSTBC-OFDM (SGOO)

blind/semiblind detection schemes. This development is essential because full OSTBC-OFDM (FOO)

blind/semblind ML detection is usually a large scale problem. Specifically the FOO problem size is

proportional to the discrete Fourier transform (DFT) size,the latter of which is very large in practice;

e.g., 128 for IEEE 802.11a and2048 for DVB-H2. SGOO works by breaking the FOO problem into

smaller subproblems, and then by handling each subproblem individually. Further improvement can be

obtained by using the low-complexity cyclic ML method to fuse the SGOO solutions to yield a refined

solution. We found that this combined method works very well, as the simulation results in Sec. VI will

demonstrate.

Second, we perform a theoretical analysis for blind ML identifiability of OSTBC-OFDM. While an

identifiability analysis for OSTBCs in flat fading channels has been given in [20], its implications are not

sufficient enough to deal with its OSTBC-OFDM counterpart. We provide a generalization of the existing

results, and more importantly we derive new results that connect the blind ML identifiability conditions

of OSTBC and OSTBC-OFDM. With these results, we are able to design blind and semiblind SGOO

2DVB-H: Digital video broadcasting-handheld [26].
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schemes that guarantee unique identifiability in a probability one sense. The designed schemes require

few number of pilots; for example, in our semiblind SGOO scheme, only one pilot OSTBC is needed.

This is in sharp contrast to the conventional pilot-aided channel estimation methods [13], [27], in which

unique channel identification requires at leastL pilot codes whereL denotes the channel length.

This paper is organized as follows. Section II reviews the OSTBC-OFDM signal model with an

emphasis on BPSK/QPSK constellations. Section III describes the subchannel dependent blind ML

detection approach, and the SGOO detection method. The proposed blind and semiblind SGOO schemes

are also introduced in that section. Sections IV and V respectively deal with the implementation and

identifiability issues, based on a unified framework covering both the SGOO and full OSTBC-OFDM

problems. In Sec. VI, simulation results are presented to demonstrate the performance advantages of the

proposed methods. Finally, some conclusions are drawn in Sec. VII.

II. BACKGROUND

In this review section, we first describe the OSTBC-OFDM system model under consideration in the

first subsection. Then, we briefly explain the subchannel-independent blind ML approach and discuss its

drawbacks in the second subsection.

A. OSTBC-OFDM System Model
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Fig. 1. OSTBC-OFDM system structure diagram.

Consider an OSTBC-OFDM system [5], [12] equipped withNt transmit antennas andNr receive

antennas as illustrated in Fig. 1. As seen in the figure,Nc denotes the discrete Fourier transform (DFT)

August 29, 2007 4 DRAFT



size of OFDM, or the number of subchannels. Moreover, the length of the employed space-time codes

is denoted byT . As a common assumption in space-time-frequency coding, weassume that the channel

can at least remain static forT OFDM symbols. Each subchannel, indexed byn ∈ {1, . . . , Nc}, has a

preassigned OSTBC encoder denoted by a mapping

Cn : {±1}Kn → C
T×Nt

whereKn is the number of bits per code3. Over a time frame ofT OFDM symbols or simply anOSTBC-

OFDM block, each subchannel will transmit one space-time matrix according to Cn(·). The model of

the resultant received signal can be formulated as

Yn[p] = Cn (sn[p])Hn[p] + Wn[p], (1)

wheren = 1, 2, . . . , Nc, and p = 1, 2, . . . is the OSTBC-OFDM block index. Here,Yn[p] ∈ C
T×Nr

is the received code matrix in thepth block at subchanneln, sn[p] ∈ {±1}Kn is the transmitted data

vector sequence for subchanneln, Hn[p] ∈ C
Nt×Nr is the MIMO channel frequency response matrix

in the pth block at subchanneln, andWn ∈ C
T×Nr is an AWGN matrix with the average power per

entry denoted byσ2
w. It should be stressed that the notationHn[p] implies a block fading environment4

where the channel may change from one block to another. Our focus in this work is on BPSK/QPSK

constellations. In this case, each OSTBC functionCn takes the linear dispersion form [28]

Cn(sn[p]) =

Kn
∑

k=1

Xn,ksn,k[p], (2)

wheresn,k[p] ∈ {±1} is the kth entry of sn[p], andXn,k ∈ C
T×Nt are the basis matrices ofCn. The

basis matrices are specially designed such that for anysn[p] ∈ {±1}Kn ,

C
H(sn[p])C(sn[p]) = KnINt

, (3)

whereINt
is theNt × Nt identity matrix.

3In the coherent scenario we usually use the same OSTBC encoder for all subchannels. But, in the blind scenario, we shall

see that allowing a different OSTBC for each subchannel has some advantage from a blind identifiability standpoint.

4More precisely, the block fading assumption necessitates that the channel coherence interval should be longer thanT (Nc +

L)Ts sec., whereL denotes the cyclic prefix length, andTs is the sampling interval whose unit is second.
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B. Subchannel-wise Blind ML Detection for Slow Fading Channels

Let us consider a slow fading environment whereHn[p] is static overP consecutive (OSTBC-OFDM)

blocks, say

Hn[1] = Hn[2] = . . . = Hn[P ] , Hn

for all subchannelsn = 1, 2, . . . , Nc. If we treat eachHn as an independent deterministic unknown, then

blind ML detection associated with the observations in (1) for p = 1, 2, . . . , P is given byNc independent

subproblems:

min
sn[p]∈{±1}Kn , p=1,2,...,P

Hn∈CNt×Nr

P
∑

p=1

‖Yn[p] − Cn(sn[p])Hn‖2
F (4)

for n = 1, 2, . . . , Nc. The objective of (4) is to find a pair of channel and symbols that gives the least

square approximation error to the observations. In essence, each subproblem in (4) is equivalent to that

of blind ML OSTBC detection in flat-fading channels. Hence, the previously developed treatments for

the latter [12], [14]–[18], [29] can be directly applied to (4). However, there are several reasons that

would render this subchannel-wise blind ML detection approach unsatisfactory:

i) A moderate to largeP (or large data size) is usually required to achieve near coherent performance,

from our experience with the flat-fading scenario. This translates into a long channel coherence time

which may be violated in certain fast fading environments.

ii) Each blind detection subproblem in (4) is subject to a sign ambiguity. To fix this problem, we need to

place pilot bits or even pilot codes in each subchannel. Eachsubchannel is unable to take advantage

of the pilots in other subchannels.

iii) The MIMO frequency responsesHn are actually dependent. They follow a relationship called the

FIR channel parameterization.Specifically, the(m, i)th entry ofHn is given by

[Hn]m,i =
1√
Nc

L−1
∑

`=0

hm,i[`]e
−j2π`(n−1)/Nc (5)

where{hm,i[`]}L−1
`=0 is the (finite) impulse response of the channel between themth transmit antenna

and theith receive antenna, andL is the channel length (or the cyclic prefix length) withL � Nc in

practice. The subchannel-wise approach, albeit simple, does not exploit the FIR channel relationship.

III. B LIND ML D ETECTION IN ONE OSTBC-OFDM BLOCK: AN OVERVIEW

Starting from this section, we concentrate on the subchannel-dependent blind ML approach that enables

detection in one block. This section serves as an overview for this approach. The more detailed derivations
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for implementations and identifiability will be provided inSecs. IV and V, respectively. In the first

subsection, the problem formulation is presented. In the second subsection, we introduce the subchannel

grouping OSTBC-OFDM (SGOO) schemes for complexity reduction.

A. Basic Problem Formulation

Recall the signal model in (1). Our problem is to blindly detect the bit symbols{s1[p], . . . , sNc
[p]}

from the associated received signal block{Y1[p], . . . ,YNc
[p]}, thereby enabling detection in one block.

Under such circumstances, it is notationally convenient todrop the index ‘p’ from (1) to form a simplified

signal model:

Yn = Cn (sn)Hn + Wn, n = 1, 2, . . . , Nc. (6)

The key ingredient of the subchannel-dependent approach isto exploit the FIR channel parameterization in

(5). Letfn = 1√
Nc

[ 1, e−j 2π

Nc
(n−1), . . . , e−j 2π

Nc
(n−1)(L−1) ]T andhm,i = [ hm,i[0], hm,i[1], . . . , hm,i[L−1] ]T

be a DFT vector and a time-domain channel vector, respectively. Equation (5) can be re-expressed as

[Hn]m,i = f
T
n hm,i. (7)

Furthermore, by letting

H =











h1,1 · · · h1,Nr

...
. ..

...

hNt,1 · · · hNt,Nr











∈ C
LNt×Nr (8)

be the time-domain MIMO channel matrix, eachHn can be formulated as

Hn =
(

INt
⊗ f

T
n

)

H, (9)

where⊗ denotes the Kronecker product. Note that if we define

Gn(sn) = Cn(sn)(INt
⊗ f

T
n ), (10)

the model in (6) can be rewritten as

Yn = Gn(sn)H + Wn, n = 1, 2, . . . , Nc. (11)

An interesting observation is that from a standpoint of flat-fading based space-time coding, Eq. (11)

can be viewed as the received signal for a sequence of time-varying space-time block codesGn over a

flat-fading channel. The blind ML detector for (11) is given by

min
sn∈{±1}Kn , n=1,2,...,Nc

H∈CLNt×Nr

Nc
∑

n=1

‖Yn −Gn(sn)H‖2
F . (12)
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There are two possible approaches for dealing with the aboveminimization problem. One is to use

cyclic minimization [15]. The idea is to cyclically update the channel and symbol estimates, denoted

respectively byĤ and{ŝn}Nc

n=1, by solving the following two subproblems:

Ĥ := arg min
H∈CLNt×Nr

Nc
∑

n=1

‖Yn − Gn(ŝn)H‖2
F , (13)

{ŝn}Nc

n=1 := arg min
sn∈{±1}Kn ,
n=1,2,...,Nc

Nc
∑

n=1

∥

∥

∥
Yn − Gn(sn)Ĥ

∥

∥

∥

2

F
. (14)

The cyclic (or multistage) update continues until some stopping criterion is satisfied; see [15] for the

details. It can be shown that (13) is a least-squares (LS) channel estimator fixing{ŝn}Nc

n=1, and that (14)

is the coherent OSTBC detector given̂H. The two update processes can be shown to be very simple and

of low complexity [15]. However, cyclic ML cannot operate properly without reasonable initialization of

eitherĤ or {ŝn}Nc

n=1.

Another approach for handling (12) is based on Boolean quadratic program (BQP) reformulation [17].

To illustrate this, lets = [ s
T
1 , . . . , sT

Nc
]T ∈ {±1}K̄ , whereK̄ =

∑Nc

n=1 Kn is the total number of bits

to be detected. It will be shown in the next section that (12) can be simplified to be the BQP

max
s∈{±1}K̄

s
T Rs (15)

for some appropriateR ∈ R
K̄×K̄ , and that determining the optimal estimate ofH from the solution of

(15) is simple. The reformulation in (15) enables us to handle the problem by directly applying a readily

available BQP solver; e.g., the quasi-optimal SDR solver [17], [30] which has a worst-case polynomial-

time complexity ofO(K̄3.5). This approach also serves as a reliable means of finding goodinitializations

for cyclic ML. We should note that the problem sizēK is proportional to the DFT sizeNc. For practical

DFT sizes, say,Nc = 128 or evenNc = 2048, the blind ML BQP is a large scale problem meaning that

direct application of BQP solvers would still be computationally too expensive. This inherent difficulty

motivates the subchannel grouping method considered in thenext subsection.

B. Subchannel Grouping OSTBC-OFDM

When dealing with a large scale problem, we would often consider decoupling the original problem

into smaller subproblems for complexity reduction. This isthe idea behindsubchannel grouping(SG).

Essentially, we group theNc subchannels into a number of subsets, and then apply blind MLdetection to

each subset individually. Suppose that we haveP groups, and letSp ⊂ {1, 2, . . . , Nc} be the subchannel
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index set for thepth group. Fixing groupp, we have a dimension reduced signal model

Yn = Gn(sn)H + Wn, n ∈ Sp, (16)

and a group-wise blind ML problem

min
sn∈{±1}Kn ,n∈Sp

H∈CLNt×Nr

∑

n∈Sp

‖Yn − Gn(sn)H‖2
F . (17)

We call (17) the SG OSTBC-OFDM (SGOO) problem. To distinguish SGOO from the complete OSTBC-

OFDM problem in (12), we call (12) the full OSTBC-OFDM (FOO) problem.

In designing a blind or semiblind SGOO scheme, there are three factors to consider: The SG assignment,

the placement of pilots, and the choosing of the codes{Cn}Nc

n=1. A carelessly designed SGOO scheme

may have poor data identifiability, meaning that the scheme would not operate properly even in the

absence of noise. Here we describe two SGOO schemes that willbe theoretically proven to exhibit good

identifiability (in Sec. V):
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Pure data
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Fig. 2. Proposed SG scheme forNc = 9 andP = 3.

Semiblind SGOO Scheme: In this scheme, subchannel1 is assigned for pilot transmission (ors1 is

assumed to be known at the receiver). The SG assignment is depicted in Fig. 2 and is given by

S1 =
{

1 + mNc

M

∣

∣ m = 0, 1, . . . ,M − 1
}

, (18a)

Sp = {1} ∪
{

p + mNc

M

∣

∣ m = 0, 1, . . . ,M − 1
}

, p = 2, . . . , P (18b)
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whereM = Nc/P . It is assumed thatM > L. This SG assignment is similar to that for coherent and

differential space-time-frequency coding [4], [9], [10] as well as for training-based channel estimation

[27], [31], [32], but there is some subtle difference. We letall the groups access subchannel 1, and thus

each SGOO problem is able to use the pilots to fix the sign ambiguity effect. As for code selection, we

can simply employ the same OSTBC in every subchannel; i.e.,C1(·) = . . . = CNc
(·) = C(·).

Blind SGOO Odd-Even Scheme: In a blind scheme, only one pilot bit is used. We employ the same

SG assignment as in (18), and assign the pilot bit to the1st bit of the symbol of subchannel1, i.e.,

s1,1. The blind SGOO design presents a more difficult challenge. For example, unlike the semiblind

SGOO scheme described above, a blind SGOO scheme with universal OSTBC for all subchannels does

not necessarily result in good identifiability. In fact, simulation results in Sec. VI will show that such a

blind scheme could exhibit poor error performance. To guarantee good identifiability in the blind case,

we employ theodd-evenOSTBC arrangement, first introduced in [20] for flat-fading blind ML OSTBC

detection. The arrangement is as follows: Subchannels2 to Nc (the data subchannels) use a universal

OSTBC, denoted byCe(·), while subchannel1 (the pilot-embedded subchannel) uses a different OSTBC,

denoted byCo(·); that is,C1(·) = Co(·) andC2(·) = . . . = CNc
(·) = Ce(·). Let

Ce(s) =

K
∑

k=1

Xksk,

and assume thatK is even. Being the code function for carrying most information symbols,Ce would be

chosen to be a maximal-rate BPSK/QPSK OSTBC [33], which often has an evenK. The ‘odd’ OSTBC

function Co is constructed fromCe by taking out one bit:

Co(s) =

K−1
∑

k=1

Xksk.

Some discussions are now in order:

i) Once we solve all SGOO problems (say, in a quasi-optimal fashion by SDR), we can enhance the

quality of the obtained solution by applying the cyclic ML refinement mentioned in Sec. III-A. Our

experience with simulations is that this combined method works very well, and this will be illustrated

in Sec. VI.

ii) If the above proposed semiblind scheme and blind odd-even scheme are applied to the flat fading

scenario [specifically by modifyingGn(sn) = Cn(sn) which removes the subcarriers], the existing

analysis results [20] will be sufficient in showing that these two schemes achieve good identifiability

conditions. Such desirable conditions do not directly carry over into the SGOO scenario, however.

The SGOO identifiability analysis has an intricate relationship with the assigned SG pattern, as we
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will see in Sec. V. But, in summary, it will be proven that the SG assignment used in the two

schemes is sufficient in leading to good identifiability conditions.

IV. B LIND ML RECEIVER REALIZATION USING A UNIFIED TREATMENT

In this section, we present the detailed derivations of the blind ML BQP reformulation, for both

SGOO and FOO. To facilitate the development, it is desirableto establish a unified OSTBC-OFDM

(UOO) formulation for the two problems. Consider the following generalized signal model:

Ym = Gm(sm)H + Wm, m = 1, 2, . . . ,M, (19)

Gm(sm) = Cm(sm)(INt
⊗ fT

m). (20)

Here,Cm : {±1}κm → C
T×Nt is a κm-bit OSTBC function which admits a linear dispersion expression

Cm(sm) =

κm
∑

k=1

X m,ksm,k, (21)

sm ∈ {±1}κm is the bit vector transmitted byCm(·), fm = [ 1, z−1
m , . . . , z

−(L−1)
m ]T wherezm ∈ C, H is

the deterministically unknown channel, andWm is AWGN. This UOO formulation is generalized in the

sense that we only assumezm to be distinct; i.e.,zm 6= zn for any m 6= n. We see that (19) represents

FOO in (11) if M = Nc, zm = ej 2π

Nc
(m−1), Cm(·) = Cm(·), Ym =

√
NcYm, Wm =

√
NcWm and so

on. Similarly, an equivalence can be established for each SGOO problem in (16).

Let us defineY = [ YT
1 , . . . ,YT

M ]T , W = [ WT
1 , . . . ,WT

M ]T , s = [ sT
1 , . . . , sT

M ]T , and

G(s) = [ GT
1 (s1), . . . ,G

T
M (sM ) ]T . (22)

Equation (19) can be rewritten as

Y = G(s)H + W (23)

and its respective blind ML problem is

min
s∈{±1}κ̄

{

min
H∈CLNt×Nr

‖Y − G(s)H‖2
F

}

(24)

whereκ̄ =
∑M

m=1 κm is the total number of bits. Our first step is to investigate the inner minimization

of (24). The inner minimization is an LS problem givens, which has a unique solution

Ĥ(s) = [GH(s)G(s)]−1GH(s)Y (25)
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if and only if G(s) is of full column rank. Let us study conditions forG(s) to have full column rank.

Let

F =











fT
1

...

fT
M











=











1 z−1
1 . . . z

−(L−1)
1

...
...

. . .
...

1 z−1
M . . . z

−(L−1)
M











∈ C
M×L (26)

which is a Vandermonde matrix. By noting the following expression ofG(s)

G(s) =











C1(s1) 0

. . .

0 CM (sM )





















INt
⊗ (eT

1 F)
...

INt
⊗ (eT

MF)











whereem ∈ R
M is the unit vector with themth entry equal to1, G(s) can be rewritten as:

G(s) = DC(s)Π(INt
⊗ F) (27)

where DC(s) = blkdiag[C1(s1), . . . ,CM (sM )] ∈ C
MT×MNt (a block diagonal matrix), andΠ ∈

C
MNt×MNt is a permutation matrix given by

Π = [ INt
⊗ e1, . . . , INt

⊗ eM ]T .

It can be shown that, for anyA ∈ C
M×M , the following commutativity property holds:

Π
T (A ⊗ INt

)Π = INt
⊗ A. (28)

Using (27) and (28), one can verify that

GH(s)G(s) = INt
⊗ (FHDκF) (29)

whereDκ = diag(κ1, . . . , κM ). Using (29) and some standard matrix results, we show that

rank{G(s)} = rank{GH(s)G(s)} = Nt min{M,L}. (30)

We therefore conclude from (30) thatG(s) has full column rank if and only ifM ≥ L.

The second step of the BQP reformulation is to substitute theinner minimization solution in (25) into

the blind ML problem in (24). The resulting problem is given by

min
s∈{±1}κ̄

‖Y − PG(s)Y‖2
F (31)

wherePG(s) = G(s)[GH(s)G(s)]−1GH(s) is the orthogonal projector ofG(s). Equation (31) can be

simplified to a BQP, by substituting (29) and (21) into (31). The development is conceptually identical

to that in flat-fading blind ML OSTBC detection [17], [18], though the derivations in this case appear to

be notationally more involved. Hence, for brevity, the result is given without proof as follows:
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Proposition 1 Suppose thatM ≥ L. For the blind ML problem in(24), an optimal symbol solution can

be obtained by solving the BQP

max
s∈{±1}κ̄

M
∑

m=1

M
∑

n=1

sT
mRm,nsn = max

s∈{±1}κ̄
sT Rs (32)

whereRm,n ∈ R
κm×κn has its(k, `) entry given by

[Rm,n]k,` = Re{Tr{γm,nYH
mX m,kX

H
n,`Yn}}, (33)

γm,n = e
T
mF(FHDκF)−1FH

en, (34)

and

R =











R1,1 . . . R1,M

...
. . .

...

RM,1 . . . RM,M











. (35)

The associated optimal channel solution is obtained by substituting the optimal solution of(32) into (25).

As mentioned earlier, the BQP problem in (32) can be effectively handled by readily available al-

gorithms; e.g., the SDR algorithm which yields a complexityof O(κ̄3.5). Readers are referred to the

literature [17] for detailed descriptions of SDR and the other available BQP solvers.

The above developed blind ML framework can be easily extended to the semiblind case. In this paper

we are interested in using only 1 pilot code. Without loss of generality, assume thats1 is known. Let

sd = [ sT
2 , . . . , sT

M ]T ∈ {±1}κ̄−κ1 be the unknown data vector. The semiblind ML problem is givenby

min
s=[ s

T
1 ,sT

d
]T

sd∈{±1}κ̄−κ1

{

min
H∈CLNt×Nr

‖Y − G(s)H‖2
F

}

. (36)

Like Proposition 1, problem (36) can be reformulated as a BQP. That reformulation shares the same idea

as that in the flat-fading scenario [17], and its details are omitted here for conciseness.

We notice that the blind ML BQP in (32) has at least two solutions: If s? is a solution of (32) then

−s? is also a solution of (32). This sign ambiguity may be fixed by assigning one bit as the pilot. As

for the semiblind ML problem in (36), there should be no such problem. However, it can be shown that

Lemma 1 The solution to the blind ML problem in(24) is unique up to a sign only ifM > L. The

solution to the semiblind ML problem in(36) is unique only ifM > L.

The proof of this lemma is given in Appendix I, where we show that the blind and semblind ML problems

may give multiple solutions ifM ≤ L.
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V. BLIND ML I DENTIFIABILITY ANALYSIS

Following the development in the previous section, this section considers blind ML identifiability

analysis under the UOO framework. Through the process we will see that the semiblind and blind

SGOO schemes proposed in Sec. III-B, as special cases of UOO,have a rather relaxed probability

one identifiability condition. In the first subsection, we briefly review and generalize some existing

identifiability results for OSTBCs in flat fading channels [20]. Then, in the second subsection, the

relationship of the existing results and the UOO identifiability conditions is explored.

A. Review and Generalization of Some Existing Results

A key result that will be used in this paper isprobability one blind/semiblind identifiability, which was

developed for OSTBCs [20]. The essence of the result may be well described by considering a noise-free

generic MIMO problem

Y = GH, G ∈ G (37)

whereG is redefined as a transmitted code matrix drawn from a (finite)codeword setG ⊂ C
T×Nt, and

againY ∈ C
T×Nr andH ∈ C

Nt×Nr are the received signal matrix and MIMO channel of the problem,

respectively. Our treatment is general in the sense thatG is not restricted to any particular class of schemes.

Hence it may be applied not only to OSTBC, but also to UOO as well as other space-time-frequency

and space-time coding schemes. For the UOO framework in (23), the blind problem is equivalent to that

in (37) with a codeword setG = { G(s) ∈ C
MT×LNt | s ∈ {±1}κ̄ } whereG(·) is given in (27). As for

the semiblind problem, we haveG = { G([ sT
1 sT

d ]T ) ∈ C
MT×LNt | sd ∈ {±1}κ̄−κ1} wheres1 is fixed.

Consider applying blind ML detection to (37), in the same wayas before. To uniquely determine the

true G from Y, it is essential that the following ambiguity situation does not hold

GH = G
′
H

′ (38)

for any G
′ ∈ G\{G} andH

′ ∈ C
Nt×Nr . Simply speaking,G is said to be unique identifiable if (38)

cannot be satisfied. Consider the following definition:

Definition 1 A codeword setG is said to be pairwise non-transformable (PNT) if, for any two distinct

codewordsG,G′ ∈ G, there does not exist a matrixU ∈ C
Nt×Nt such that

G
′
U = G (39)

Moreover,G is said to be PNT up to a sign (PNT-±1) if (39) does not hold for anyG ∈ G and

G
′ ∈ G\{±G}.
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It can be verified from (38) and (39) that the PNT and PNT-±1 conditions are necessary for unique

code identifiability and unique code identifiability up to a sign, respectively. PNT and PNT-±1 are also

sufficient identifiability conditions, in a probability onesense. This is described in the following theorem:

Theorem 1 Assume thatH is Gaussian distributed, and that at least one column ofH has a positive

definite covariance matrix. Then, for the blind ML detectionof (37),

i) the code matrixG is uniquely identifiable with probability one ifG is PNT; and

ii) the code matrixG is uniquely identifiable up to a sign with probability one ifG is PNT-±1.

Note that the i.i.d. Rayleigh fading channels satisfy the channel assumption in Theorem 1. The proof is

presented in Appendix II. The idea behind the proof is to showthat the ambiguity in (38) happens with

probability zero, under the premises in Theorem 1.

We should emphasize that Definition 1 and Theorem 1 are generalization of the probability one

identifiability result in [20], which was only for orthogonal codes. In [20] we have the following definition:

Definition 2 Let C : {±1}K → C
T×Nt be an BPSK or QPSK OSTBC function, andG = { C(s) | s ∈

{±1}K }. If G is PNT-±1, thenC(·) is said to be strictly non-rotatable.

The use of the term ‘non-rotatable’ was due to the observation thatU in (39) must be a rotation matrix

if (39) is to be satisfied by the OSTBC. An important question is where to find a strictly non-rotatable

OSTBC. This aspect has been studied in [20], and simply speaking not all the existing OSTBCs have

the strictly non-rotatable property. But there exists a simple way of converting a (BPSK/QPSK) OSTBC

to a strictly non-rotatable OSTBC5:

Lemma 2 (Ma [20]) Given a BPSK/QPSK OSTBCCe(s) =
∑K

k=1 Xksk, whereK is even, construct

Co(s) =

K−1
∑

k=1

Xksk. (40)

The following concatenated code is strictly non-rotatable:

C(s) = [ C
T
o (s1) C

T
e (s2) . . . C

T
e (sM ) ]T , (41)

wheres =
[

s
T
1 s

T
2 . . . sT

M

]T
, s1 ∈ {±1}K−1, and sm ∈ {±1}K for m = 2, . . . ,M .

5The procedure was proposed to construct the so-called non-intersecting subspace OSTBCs. This class of codes is a subset

of the strictly non-rotatable code class, which has added advantage in the flat fading scenario (see [20] for the details).

August 29, 2007 15 DRAFT



B. Identifiability of OSTBC-OFDM

We now focus on the symbol identifiability of UOO under the following assumptions:

A1) M > L (this is a necessary identifiability condition; cf., Lemma 1).

A2) H is Gaussian distributed and at least one column ofH has a positive definite covariance matrix.

Our aim is to derive conditions under which the super-codeG in (27) has the PNT/PNT-±1 property for

the semiblind/blind case, thereby achieving the probability-1 identifiability stated in Theorem 1. To do

this, let

C(s) = [ CT
1 (s1), . . . ,C

T
M (sM ) ]T (42)

be a concatenation of the OSTBCs in UOO. We consider the following condition:

C1) Let P = F(FHF)−1FH ∈ C
M×M . For anym,n ∈ IM with m 6= n, whereIM = {1, 2, . . . ,M},

there exists an length-I index sequence{$1,$2, . . . ,$I} ⊆ IM such that$1 = m, $I = n, and the

I − 1 elements($i,$i+1) in P are nonzero, i.e.,

P$i,$i+1
6= 0, i = 1, 2, . . . , I − 1, (43)

and the following lemma:

Lemma 3 UnderC1), G is PNT if and only ifC is PNT. Moreover, underC1) G is PNT-±1 if and only

if C is strictly non-rotatable.

The proof is provided in Appendix III. Lemma 3 has profound implication: If we can guarantee that

C1) holds, then the study of identifiability of UOO reduces to that of its OSTBCs. Now, a key question

is whether the subcarrier sets of FOO and SGOO satisfyC1). Fortunately the answer is yes, through

careful investigation. Consider the following two lemmas which are relevant to FOO and SGOO:

Lemma 4 Suppose that

{z1, z2, . . . , zM} = {1, ej 2π

M , . . . , ej 2π

M
(M−1)}.

Then, the correspondingF satisfiesC1).

Lemma 5 Suppose that we expand the problem size of UOO fromM to M + 1, and that

{z1, z2, z3, . . . , zM+1} = {1, ejα, ejα+j 2π

M , . . . , ejα+j 2π

M
(M−1)}

for someα ∈ R. Then, the correspondingF satisfiesC1).
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The proofs of the two lemmas are presented in Appendices IV and V, respectively. We note that Lemma 4

is applicable to the FOO problem and the SGOO problem associated withS1 [see (18a)], and that Lemma 5

is applicable to the SGOO problems associated withSp for p = 2, . . . ,M [see (18b)]. Hence we conclude

that

Remark 1 The FOO problem satisfiesC1). All SGOO problems satisfyC1).

Now, the remaining problem in our identifiability analysis is to examine the PNT/PNT-±1 condition

of C in (42).

Semiblind Detection Case:The pairwise transformation identity forC, given in (39) in Definition 1,

can be explicitly expressed as

Cm(s′m)U = Cm(sm), m = 1, 2, . . . ,M (44)

wheres, s′ ∈ {±1}κ̄ are distinct. Since the OSTBCs have full column rank and subchannel1 contains

only the pilot; i.e.,s′1 = s1, from (44) we must haveU = INt
. Thus, Eqs. (44) can be all satisfied only

whensm = s′m for all m. In other words, by Definition 1, the codewords ofC have to be PNT in the

semiblind case. Hence, by Lemma 3 and Theorem 1, we obtain thefollowing theorem:

Theorem 2 Consider the semiblind ML detection of the UOO problem [in(36)]. Under C1), the data

vectorsd is uniquely identifiable with probability one.

Blind Detection Case:Let us focus on the odd-even scheme described in Lemma 2, the same arrange-

ment used in the blind SGOO odd-even scheme proposed in Sec. III-B. Specifically, given an OSTBC

Ce(·) with even number of bitsK, choose

C1(·) = Co(·), Cm(·) = Ce(·), m = 2, 3, . . . ,M, (45)

whereCo(·) is the ‘odd’ counterpart ofCe(·), defined in the same way as (40). Since Lemma 2 indicates

that the resultantC is strictly non-rotatable (or PNT-±1), we have the following theorem:

Theorem 3 Consider the blind ML detection of UOO [in(24)], and suppose that the odd-even arrange-

ment in(45) is employed. UnderC1), the data vectors is uniquely identifiable up to a sign with probability

one.

Now we are ready to consider the identifiability of SGOO, as a special case of UOO. Due to Remark 1

and Theorems 2 and 3, the following important conclusion is reached:
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Corollary 1 In the semiblind SGOO scheme in Sec. III-B, the data symbols are uniquely identifiable

with probability one. In the blind SGOO odd-even scheme in Sec. III-B, the data symbols are uniquely

identifiable up to a sign with probability one. The same identifiability holds for its FOO counterpart.

VI. SIMULATION RESULTS

This section presents three simulation examples to justifythe efficacy of the proposed blind/semiblind

ML methods. Either the QPSK Alamouti code (T = 2, Nt = 2, K = 4) [34] or the QPSK4 × 3

OSTBC code (Eqn. (120) of [33]) (T = 4, Nt = 3, K = 6) was used. The DFT sizeNc was 256 for

all the examples. Since the respective FOO problems are large scale optimization problems meaning that

they cannot be handled efficiently, we consider the SGOO schemes only6. The blind or semiblind ML

SGOO BQP was handled by the SDR algorithm [17]. The obtained SGOO solutions were then refined

by a one-cycle cyclic ML procedure; the relevant equations are given in (13) and (14). We compare the

proposed schemes to the coherent ML detector (which has perfect CSI) and the pilot-based LS channel

estimator [13], [27], [35]. Assume that the LS method employed NLS pilot codes, whereNLS ≥ L and

dividesNc. Following [31], the pilot placement of LS method is given by

S =
{

1, 1 + Nc

NLS
, 1 + Nc

NLS
· 2, . . . , 1 + Nc

NLS
· (NLS − 1)

}

.

If not mentioned specifically, we setNLS = L. The differential OSTBC-OFDM scheme [8] was also

compared, which was the one by applying the differential OSTBC scheme [36] to each subchannel. In

the simulations, the coefficients ofH are zero-mean i.i.d. complex Gaussian distributed with variance

equal to1, and change from one OSTBC-OFDM block to next. The SNR per subchannel is defined as

SNR =
E{‖DC(s)Π(INt

⊗ F)‖2
F }

TNcσ2
w

=
NtNrTr(FHDKF)

TNcσ2
w

,

whereDC(s) = blkdiag[C1(s1), . . . ,CNc
(sNc

)], F = [f1, . . . , fNc
]T is the Nc × L DFT submatrix and

DK = diag{K1, . . . ,KNc
}. The detector performance was evaluated in terms of averagesymbol error

rate (SER), and there were10, 000 trials performed in each simulation example.

Simulation Example 1: Figure 3 illustrates the results for the QPSK4 × 3 OSTBC. In Fig. 3(a), we

show the BER performance of the proposed SGOO schemes with and without the cyclic ML solution

refinement. In the legend, “CML” stands for cyclic ML, and “Odd-Even” refers to the blind SGOO odd-

even scheme. One can see that, for both the blind and semiblind SGOO schemes, the cyclic ML solution

6Readers who are interested in the FOO performance are referred to [35], where two simulation examples for FOO with

smaller problem size were provided.
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Fig. 3. Performance (SER) of the proposed schemes for QPSK4 × 3 OSTBC,P = 16, (a) L = 12 andNr = 3,

(b) L = 8 andNr = 2, (c) L = 8 andNr = 4, (d) L = 8 and SNR= 14 dB.

refinement procedure enhances the performance of SGOO quitesignificantly. This empirical finding

implies that the SGOO solutions may provide sufficiently good initialization for cyclic ML to arrive at a

near-optimal FOO solution. Figures 3(b), 3(c) and 3(d) compare the performance of the proposed method

to that of the pilot-based LS method and the differential scheme, under various conditions. We see that

both the semiblind and blind SGOO schemes outperform the LS method and the differential scheme.

One can also observe that the performance of the two proposedschemes is close to that of the coherent

ML detector.
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Simulation Example 2: This example aims to illustrate the performance differences of identifiable and

non-identifiable blind schemes. The QPSK Alamouti code is employed. It is known that the Alamouti

code is not identifiable in the flat fading context, without using the odd-even arrangement [20] or other

methods [16], [18], [19]. The results are plotted in Fig. 4. In the legend, “Blind SGOO” stands for the

direct application of the Alamouti code to SGOO (i.e., all subchannels employ the QPSK Alamouti code),

while “Blind SGOO Odd-Even” is the proposed SGOO odd-even scheme. We should recall that “Blind

SGOO Odd-Even” works by removing only one bit symbol from “Blind SGOO”. The figure indicates

that the Alamouti code is still non-identifiable in the OSTBC-OFDM context, and that the odd-even

arrangement is successful in turning the non-identifiable blind SGOO scheme to an identifiable one. As

a reference, we also show the SER of the semiblind SGOO schemein Fig. 4. One can see that the

semiblind SGOO scheme achieves near-optimal performance,once again.
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Fig. 4. Performance (SER) of the proposed schemes for QPSK Alamouticode,P = 8, L = 8 andNr = 4.

Simulation Example 3: In this example, we compare the performance of the proposed ML detector

and the Swindlehurst-Leus subspace detector [37]. The Swindlehurst-Leus subspace detector was not

developed for the block-fading OSTBC-OFDM scenario, but wefound that the detector is, in essence,

applicable to that case. However, this method works only when some restrictive assumptions are satisfied.

For example, it requires the channel matrixH to have full row rank, which translates into the necessity

of Nr ≥ LNt. This requirement is impractical even when the channel length is moderate. In contrast to

the subspace method, the proposed ML method does not suffer from this limitation, as we have proven

in Sec. V. It has also been verified from Fig. 3(d) that the proposed schemes work well even when
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Nr = 2 (while LNt = 24). For fair comparison, the subspace method was applied to the semiblind

SGOO scheme by replacing the SGOO ML detector with a Swindlehurst-Leus subspace counterpart.

The obtained solutions were also refined by the cyclic ML method. Figure 5 presents the performance

comparison for the semiblind case for QPSK Alamouti code with L = 3, P = 8 andNr = 6. One can

see from this figure that the proposed ML method significantlyoutperforms the subspace method.

6 8 10 12 14

10-5

10-4

10-3

10-2

10-1

Semiblind Swindlehurst-Leus 
subspace + CML

Semiblind ML + CML

Coherent ML detector

SNR (dB)

S
E

R

Fig. 5. Performance (SER) comparison to the Swindlehurst-Leus subspace method for Alamouti code,L = 3,

P = 8 andNr = 6.

VII. C ONCLUSIONS ANDDISCUSSIONS

In this paper, we have developed a blind ML OSTBC-OFDM framework that covers both the practical

implementation and theoretical identifiability issues. The proposed framework features blind detection

in one OSTBC-OFDM block, a characteristic that is not present in most existing blind methods. We

have proposed subchannel grouping OSTBC-OFDM (SGOO) detection schemes that aim to overcome

the large scale optimization problem inherent in full OSTBC-OFDM (FOO) detection, thereby enabling

realizable implementations in practical OFDM applications. Our analysis has shown that both the SGOO

and FOO schemes guarantee unique symbol identifiability in aprobability one sense. Using simulations,

we have demonstrated that the SGOO schemes, when coupled with the cyclic ML method, can outperform

the pilot-based LS method and the differential scheme. In fact, the simulation results indicated that the

proposed detectors can exhibit near-coherent performance.

Although our focus has been on BPSK/QPSK constellations, the results can be extended to general

MPSK constellations. The implementation in this extensionmay be handled effectively by incorporating
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the readily available MPSK quadratic programming methods [18], [19], [38]. As for the identifiability, it

is not difficult to see that our semiblind identifiability result, which assumes constant modulus OSTBCs

only, is perfectly applicable to the MPSK case. For a similarreason, it is likely that the application

of the dual MPSK constellation schemes [18], [19] to OSTBC-OFDM should result in the same blind

identifiability condition as the odd-even BPSK/QPSK schemeproposed here. These directions provide

an interesting avenue for future research.

APPENDIX I

PROOF OFLEMMA 1

For the blind ML problem in (24), the blind channel estimate is unique only ifG(s) is of full column

rank. We have shown in (30) thatG(s) has full column rank if and only ifM ≥ L. Now, let us consider

the case whereM = L. SinceF is invertible in this case, (34) can be reduced to

γm,n = e
T
mFF−1D−1

κ F−HFH
en = e

T
mD−1

κ en, (A.1)

i.e., γm,n = 0 ∀ m 6= n. Substituting this result into (33), we obtainRm,n = 0 ∀ m 6= n. Subsequently,

the blind BQP in (32) reduces toM independent subproblems:

max
sm∈{±1}κm

sT
mRm,msm (A.2)

for m = 1, 2, . . . ,M . Each subproblem in (A.2) is subject to a sign ambiguity of its own. Hence,

if {s?
1, . . . , s

?
M} is a solution to (A.2) then any{±s?

1, . . . ,±s?
M} also serves as a solution to (A.2).

Similarly, we can find the same problem in the semiblind case. �

APPENDIX II

PROOF OFTHEOREM 1

Suppose that (38) holds, and that there is noU satisfying (39). LetG′† denote the pseudo inverse of

G
′. PremultiplyingG

′
G

′† on the both sides of (38) results in

G
′
UH = G

′
H

′, (A.3)

where we denoteU = G
′†
G, and we have used the basic propertyG

′
G

′†
G

′ = G
′ at the right hand

side. Substituting (A.3) into (38), we obtain

(G −G
′
U)H = 0. (A.4)
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Let Φ = G − G
′
U, which must not equal0. The probability that (A.4) holds is given by

Pr{ΦH = 0} = Pr

{

Nr
⋂

i=1

Φhi = 0

}

≤ Pr{Φhi = 0} (A.5)

for all i = 1, 2, . . . , Nr. Herehi denotes theith column ofH. Without loss of generality, suppose thath1

is Gaussian distributed with a positive definite covariancematrix. Then one can show thatPr{Φh1 = 0}
is of measure zero [39]. Hence, we havePr{ΦH = 0} = 0, which is equivalent to saying that (38) holds

with probability zero. It also follows that Theorem 1 is true. �

APPENDIX III

PROOF OFLEMMA 3

Assume thatC1) holds. Proving Lemma 3 is equivalent to proving the following alternative statement:

Given s, s′ ∈ {±1}κ̄, there exists a matrixU ∈ C
LNt×LNt such that

Gm(s′m)U = Gm(sm), m = 1, 2, . . . ,M (A.6)

if and only if there exists a matrixQ ∈ C
Nt×Nt such that

Cm(s′m)Q = Cm(sm), m = 1, 2, . . . ,M. (A.7)

The sufficiency of the statement in (A.6)-(A.7) is straightforward. Suppose that (A.7) holds, and let

U = Q ⊗ IL. By recalling thatGm(sm) = Cm(sm)(INt
⊗ fT

m), we obtain

Gm(s′m)U = Cm(s′m)(Q ⊗ fT
m). (A.8)

SinceQ ⊗ fT
m = (Q ⊗ 1)(INt

⊗ fT
m) = Q(INt

⊗ fT
m), the right hand side of (A.8) can be reduced to

that of (A.6).

To prove necessity, suppose that (A.6) holds. Equation (A.6) can be rewritten asG(s′)U = G(s),

which can be further expanded as

DC(s′)Π(INt
⊗ F)U = DC(s)Π(INt

⊗ F). (A.9)

Let the thin singular value decomposition ofF be F = V ΣW H , whereV ∈ C
M×L is semi-unitary,

Σ ∈ C
L×L is diagonal and invertible, andW ∈ C

L×L is unitary. Postmultiplying both sides of (A.9) by

INt
⊗ WΣ

−1 yields

DC(s′)Π(INt
⊗ V )Ũ = DC(s)Π(INt

⊗ V ), (A.10)

Ũ = (INt
⊗ ΣW H)U(INt

⊗ WΣ
−1). (A.11)
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We first show thatŨ is unitary, a property that will prove useful later. Let

G̃(s) = (D−1/2
κ ⊗ IT )DC(s′)Π(INt

⊗ V ), (A.12)

It can be shown that̃G(s) is semiunitary for anys ∈ {±1}κ̄. Equation (A.10) implies that

G̃(s′)Ũ = G̃(s). (A.13)

SinceG̃(s) and G̃(s′) are semi-unitary,̃U has to be unitary in order to satisfy (A.13).

Second, we show that ifPm,n 6= 0 for some(m,n), then there exists a matrixQ such thatCm(s′m)Q =

Cm(sm) and Cn(s′n)Q = Cn(sn). Combining this result withC1) will lead to (A.7), the final result.

From (A.10), the following two equations are obtained

Cm(s′m)(INt
⊗ e

T
mV )Ũ = Cm(sm)(INt

⊗ e
T
mV ), (A.14)

Cn(s′n)(INt
⊗ e

T
nV )Ũ = Cn(sn)(INt

⊗ e
T
nV ). (A.15)

We notice thatPm,n = e
T
mF(FHF)−1FH

en = e
T
mV V H

en. By using the property(INt
⊗e

T
mV )(INt

⊗
e

T
nV )H = Pm,nINt

and the unitarity ofŨ , we find that

Cm(sm)CH
n (sn) = 1

Pm,n
Cm(s′m)(INt

⊗ e
T
mV )Ũ ŨH(INt

⊗ e
T
nV )HCH

n (s′n)

= 1
Pm,n

Cm(s′m)(INt
⊗ e

T
mV )(INt

⊗ e
T
nV )HCH

n (s′n)

= Cm(s′m)CH
n (s′n). (A.16)

Postmultiplying both sides of (A.16) byCn(sn) results in

Cm(s′m)Qm = Cm(sm), (A.17)

whereQm = 1
κn

CH
n (s′n)Cn(sn). Similarly, premultiplying (A.16) byCH

m(sm) leads to

Cn(s′n)Qn = Cn(sn), (A.18)

whereQn = 1
κm

CH
m(s′m)Cm(sm). By premultiplying (A.18) byCH

n (s′n), we achieve

Qn = 1
κn

CH
n (s′n)Cn(sn). (A.19)

Hence, we obtain

Q ≡ Qn = Qm. (A.20)

By C1) and by induction, we conclude that (A.17), (A.18), and (A.20) holds for any(m,n) with m 6= n

andPm,n 6= 0. �
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APPENDIX IV

PROOF OFLEMMA 4

The correspondingF satisfiesFHF = MIL. Subsequently,

Pm,m+1 = Me
T
mFFH

em+1 = M
L−1
∑

`=0

(zmz∗m+1)
−` = M

L−1
∑

`=0

e−j 2π

M
` 6= 0

sinceM > L. It follows that for any(m,n) with n > m, we have a sequence{$1,$2, . . . ,$I} =

{m,m + 1, . . . , n} satisfying (43). �

APPENDIX V

PROOF OFLEMMA 5

Without loss of generality, reorder{zm} such thatzm = ejα+j 2π

M
(m−1) for m = 1, 2, . . . ,M , and

zM+1 = 1. Its Vandermonde matrixF can be expressed as

F =





Υ

νH



 (A.21)

where

Υ =











1 z−1
1 . . . z

−(L−1)
1

...
...

...

1 z−1
M . . . z

−(L−1)
M











(A.22)

and νH = [ 1 z−1
M+1 . . . z

−(L−1)
M+1 ]. The above expression leads to a partitioned form forP =

F(FHF)−1FH ∈ C
M+1×M+1:

P =





Υ(FHF)−1
Υ

H
Υ(FHF)−1ν

νH(FHF)−1
Υ

H νH(FHF)−1ν



 ,





A b

bH c



 . (A.23)

Let us consider the closed form of(FHF)−1 = (ΥH
Υ + ννH )−1. It can be shown, in the same way

as the proof of Lemma 4, thatΥH
Υ = MIL. Using the matrix inversion lemma, we get

(FHF)−1 = 1
M

(

IL − 1
L+M ννH

)

. (A.24)

Substituting (A.24) into the submatrices in (A.23), we showthat b andA have simplified forms

b = 1
M

(

1 − L
L+M

)

Υν, (A.25)

A = 1
M

(

ΥΥ
H − 1

L+M (Υν)(Υν)H
)

. (A.26)
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Recall that our aim is to showC1), which says that for anym,n ∈ IM+1 with m 6= n (Note that we

have extendedM to M +1 in this lemma), there exists a sequence{$1,$2, . . . ,$I} ⊆ IM+1 such that

$1 = m, $I = n, andP$i,$i+1
6= 0 for i = 1, 2, . . . , I − 1. To prove this, letI be the set

I = { i | bi 6= 0 , i ∈ IM} (A.27)

(where bi denotes theith element ofb) and Ī = IM\I. The setI must be nonempty, sinceΥ has

full column rank implying thatΥν 6= 0. Moreover, it can be shown that[ΥΥ
H ]m,m+1 6= 0 for m =

1, 2, . . . ,M − 1, a familiar result presented in Lemma 4. Applying the above results to (A.25)-(A.26),

we locate some nonzero elements ofP that are sufficient for this proof:

Pm,M+1 6= 0, PM+1,m 6= 0, ∀ m ∈ I, (A.28)

Pm,m+1 6= 0, ∀ m ∈ Ī. (A.29)

Our investigation is divided into two cases:

Case A.1 ≤ m < n ≤ M : If m ∈ I and n ∈ I, then a feasible hopping sequence{$1, . . . ,$I}
is simply {m,M + 1, n} due to (A.28). Ifm ∈ I and n ∈ Ī, we can find a hopping sequence in the

following way. Letp be a number such thatm ≤ p < n, p ∈ I, andi ∈ Ī for all i = p + 1, p + 2, . . . , n.

By inspection, such ap always exists. Using (A.28)-(A.29), we obtain a feasible hopping sequence

{m,M + 1, p, p + 1, p + 2, . . . , n}. Using the same idea, we can show that hopping sequences exist for

the remaining subcases, namely the subcasem ∈ Ī, n ∈ I, and the subcasem ∈ Ī, n ∈ Ī.

Case B.1 ≤ m ≤ M , n = M + 1: If m ∈ I then the hopping sequence is simply{m,M + 1}. If

m ∈ Ī, then either one of the following possibilities must hold. In the first possibility, there exists a

numberq such thatm < q ≤ M , q ∈ I, andi ∈ Ī for all i = m,m + 1, . . . , q − 1. The corresponding

hopping sequence is{m,m + 1, . . . , q − 1, q,M + 1}. In the second possibility, there exists a number

p such that1 ≤ p < m, p ∈ I, and i ∈ Ī for all i = p + 1, p + 2, . . . ,m. The corresponding hopping

sequence is{M + 1, p, p + 1, p + 2, . . . ,m}.

Combining the results in Cases A and B, we conclude thatC1) holds. �
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