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Abstract

For orthogonal space-time block coded orthogonal frequeivision multiplexing (OSTBC-OFDM)
systems, many of the existing blind detection and chanrt@hason methods rely on the assumption
that the channel is static for many OSTBC-OFDM blocks. Thapgr considers the blind (semiblind)
maximume-likelihood (ML) detection problem of OSTBC-OFDMittv a single OSTBC-OFDM block
only. The merit of such an investigation is the ability to @eenodate channels with shorter coherence
time. We examine both the implementation and identifighitisues, with a focus on BPSK or QPSK con-
stellations. In the implementation, we propose reducedgtexity detection schemes using subchannel
grouping. In the identifiability analysis, we show that thegosed schemes can ensure a probability one
identifiability condition using very few number of pilotsoFexample, the proposed semiblind detection
scheme only requires a single pilot code for unique datatifigation; while the conventional pilot-
based channel estimation method requitegilots wherelL denotes the channel length. Our simulation
results demonstrate that the proposed schemes can praifberpance close to that of their non-blind
counterparts.

Index terms— MIMO systems, OFDM, maximum likelihood detection, spaiceet block code, blind
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. INTRODUCTION

In frequency selective fading channels, space-time cod#étgonal frequency division multiplexing
(OFDM) [1] is a popular approach to providing transmit dsigy and coding gains; e.g., space-time
trellis coded OFDM [2], [3], and space-time block coded OFIPM-[13]. In particular, the combination
of orthogonal space-time block codes (OSTBCs) and OFDM,iraply OSTBC-OFDM [5]-[13], has
drawn much attention because it attains the maximum trandiérsity and has a simple maximum-
likelihood (ML) receiver structure given channel stateommhation (CSI) at the receiver. Recently, there
have been considerable interests in techniques requitnG3i at the receiver; e.g., blind (semiblind)
channel estimation [5]-[7], [11], [12] and the differentichemes [8]-[10]. Many of the existing blind
channel estimators, such as those based on second ordsticstdb]-[7], assume that the channel is
static over many OSTBC-OFDM blocks. For example, the blindspace-based estimator in [5] uses at
least150 OSTBC-OFDM blocks in the simulations. Thus, these estinsatoay not be applicable if the
channel changes in a block-by-bldakanner. When the channel can be invariant for at least twekbl|o
differentially encoded OSTBC-OFDM is a convenient schepreno-CSI detection. It, however, incurs
a 3 dB performance loss in terms of signal-to-noise ratio (SNR)

On the other hand, we have seen significant progress in the kIL detection techniques for OSTBCs
in flat fading channels. In essence, by exploiting the sp&@BTBC characteristics one can simplify
the blind ML receiver realization problem considerably.isThas led to various realization methods,
such as the low-complexity cyclic ML method [14], [15], thénple norm relaxation method [16],
[17], optimal sphere decoding [17], [18], and the efficientsj-optimal semidefinite relaxation (SDR)
method [17], [19]. Extensions to unknown noise covarianed ime-selective fading have also been
considered in [15] and [18], respectively. These succesaes recently motivated investigation of blind
ML OSTBC identifiability, a crucial fundamental aspect tllgtermines conditions under which a blind
OSTBC scheme can operate properly. A blind ML identifiapiinalysis with a focus on BPSK/QPSK
constellations has been provided in [20]. This work not opigves that there exist OSTBCs having
very relaxed identifiability conditions (say, capability onique code identification with one receive
antenna only), it also develops a construction method foh €DSTBCs with BPSK/QPSK constellations.
Meanwhile, the concurrent works [18], [19] have conceertlabn an OSTBC scheme design using dual

MPSK constellations, which is also found to attain excelidentifiability. It is worth mentioning that

In the rest of this paper we assume the tacit understandig‘thock” simply stands for “OSTBC-OFDM block”, for the

sake of convenience.
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OSTBCs are beneficial not just to the blind ML approach. In plagallel developments of the blind
subspace approach, OSTBCs are also found to be a good clagsaoé-time codes bringing about
simple estimator structure and attractive identifialjilgge [16], [21]-[23] for the details, and see [17]
for some discussions comparing the ML and subspace ap@sach

The purpose of this paper is to extend the above described bIL OSTBC technique to the OSTBC-
OFDM scenario, with an emphasis on BPSK/QPSK constellatidrstraightforward approach is to treat
the OFDM subchannels as if they were mutually independentathng channels. This subchannel-wise
approach enables direct application of the previously rilesd flat-fading based blind ML techniques, but
it typically works well only when the channel remains statdicer many (OSTBC-OFDM) blocks. This
work follows a different approach that has only been appi@the single-input-multiple-output OFDM
scenario so far; see [24] and the references therein, ajdTBB idea is to exploit the inter-subchannel
relationship, specifically by linking the suchannels tlglodheir time-domain characterization. By doing
so we establish a subchannel dependent ML approach thateréormp well with just one block. The
advantages of this approach are the ability to handle bladkng channels (i.e., channels that vary from
one block to another), and short detection latency whiclawerable for delay-constrained applications.

This work deals with two important issues that were not askld in the previous studies. First, we
consider reduced-complexity implementation by proposimgchannel grouping OSTBC-OFDM (SGOOQO)
blind/semiblind detection schemes. This development sem$al because full OSTBC-OFDM (FOO)
blind/semblind ML detection is usually a large scale prahleéSpecifically the FOO problem size is
proportional to the discrete Fourier transform (DFT) sittes latter of which is very large in practice;
e.g., 128 for IEEE 802.11a an®048 for DVB-H2. SGOO works by breaking the FOO problem into
smaller subproblems, and then by handling each subprobidividually. Further improvement can be
obtained by using the low-complexity cyclic ML method to éuthe SGOO solutions to yield a refined
solution. We found that this combined method works very wael the simulation results in Sec. VI will
demonstrate.

Second, we perform a theoretical analysis for blind ML idfeatility of OSTBC-OFDM. While an
identifiability analysis for OSTBCs in flat fading channebshbeen given in [20], its implications are not
sufficient enough to deal with its OSTBC-OFDM counterparé pYovide a generalization of the existing
results, and more importantly we derive new results thaneonthe blind ML identifiability conditions
of OSTBC and OSTBC-OFDM. With these results, we are able gigaeblind and semiblind SGOO

2DVB-H: Digital video broadcasting-handheld [26].
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schemes that guarantee unique identifiability in a probigline sense. The designed schemes require
few number of pilots; for example, in our semiblind SGOO suobkeonly one pilot OSTBC is needed.
This is in sharp contrast to the conventional pilot-aidedrotel estimation methods [13], [27], in which
unique channel identification requires at leaspilot codes wherd. denotes the channel length.

This paper is organized as follows. Section Il reviews theTBS-OFDM signal model with an
emphasis on BPSK/QPSK constellations. Section Il dessrithe subchannel dependent blind ML
detection approach, and the SGOO detection method. Thegedblind and semiblind SGOO schemes
are also introduced in that section. Sections IV and V respdyg deal with the implementation and
identifiability issues, based on a unified framework cowgfioth the SGOO and full OSTBC-OFDM
problems. In Sec. VI, simulation results are presented toathstrate the performance advantages of the

proposed methods. Finally, some conclusions are drawn é¢n\Aé

Il. BACKGROUND

In this review section, we first describe the OSTBC-OFDM sgsimodel under consideration in the
first subsection. Then, we briefly explain the subchanragdyirendent blind ML approach and discuss its

drawbacks in the second subsection.

A. OSTBC-OFDM System Model

hy €]
—
PiS SP .
Sl[p} OSTBC i conversion, conversion, — Yy [p]
—> Encoder | T IpPT B &eyclc &cycic [ DFT |: i
: prefix prefix :
Cy () ] insertion removal !
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Encoder : : :
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n r : cyclic cyclic ) S,
— Encode ;| IDFT ) &oe &cycic = DFT |;
i prefix prefix : P Yy [p}
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Fig. 1. OSTBC-OFDM system structure diagram.

Consider an OSTBC-OFDM system [5], [12] equipped with transmit antennas and, receive

antennas as illustrated in Fig. 1. As seen in the figdfedenotes the discrete Fourier transform (DFT)
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size of OFDM, or the number of subchannels. Moreover, thgtlenf the employed space-time codes
is denoted byl". As a common assumption in space-time-frequency codinggsgeme that the channel
can at least remain static f@ OFDM symbols. Each subchannel, indexed/b¥ {1,...,N.}, has a

preassigned OSTBC encoder denoted by a mapping
C, : {£1}f — cTxM

wherek, is the number of bits per coéleOver a time frame of” OFDM symbols or simply al®STBC-
OFDM block each subchannel will transmit one space-time matrix aiegrto C,,(-). The model of

the resultant received signal can be formulated as

Yn[p] = Cy (sn[p]) Halp] + Wa[p], 1)

wheren = 1,2,...,N,, andp = 1,2,... is the OSTBC-OFDM block index. Heréy,[p] €¢ CT*N-

is the received code matrix in theh block at subchannel, s, [p] € {£1}%~ is the transmitted data
vector sequence for subchannglH,,[p] ¢ CV*N+ is the MIMO channel frequency response matrix
in the pth block at subchannel, andW, € CT>*"- is an AWGN matrix with the average power per
entry denoted by . It should be stressed that the notatin [p] implies a block fading environmeht
where the channel may change from one block to another. Quusfin this work is on BPSK/QPSK

constellations. In this case, each OSTBC funcin takes the linear dispersion form [28]

K,
Cn(sn [p]) = Z Xn,ksn,k[p]a (2)
k=1

wheres,, x[p] € {£1} is the kth entry ofs,[p], andX,, , € CT*": are the basis matrices @,,. The

basis matrices are specially designed such that forsafyf € {£1}%~,

CH(su[p]))Clsnlp) = Kuln,, 3)

wherely, is the N; x N, identity matrix.

3In the coherent scenario we usually use the same OSTBC enfmydall subchannels. But, in the blind scenario, we shall

see that allowing a different OSTBC for each subchannel basesadvantage from a blind identifiability standpoint.

“More precisely, the block fading assumption necessitétasthe channel coherence interval should be longer TH@¥. +

L)T, sec., wherel, denotes the cyclic prefix length, afd is the sampling interval whose unit is second.
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B. Subchannel-wise Blind ML Detection for Slow Fading Chesin

Let us consider a slow fading environment whéfg|p| is static overP consecutive (OSTBC-OFDM)
blocks, say
H,[1|=H,[2]=...=H,[P]| £ H,

for all subchannelsa = 1,2,..., N.. If we treat eaclH,, as an independent deterministic unknown, then
blind ML detection associated with the observations in ¢t)f=1,2,..., P is given by N, independent

subproblems:

Y, 2 y

HE{il}K" p=1,2,...P Z” sn[p))Hn | (4)
H, eCNtxNr

forn =1,2,...,N.. The objective of (4) is to find a pair of channel and symbok thives the least

square approximation error to the observations. In esseaad subproblem in (4) is equivalent to that

of blind ML OSTBC detection in flat-fading channels. Hendee previously developed treatments for

the latter [12], [14]-[18], [29] can be directly applied td)( However, there are several reasons that
would render this subchannel-wise blind ML detection applounsatisfactory:

i) A moderate to large” (or large data size) is usually required to achieve nearreshhg@erformance,
from our experience with the flat-fading scenario. This $tates into a long channel coherence time
which may be violated in certain fast fading environments.

i) Each blind detection subproblem in (4) is subject to axsagnbiguity. To fix this problem, we need to
place pilot bits or even pilot codes in each subchannel. Babkchannel is unable to take advantage
of the pilots in other subchannels.

iii) The MIMO frequency responseH,, are actually dependent. They follow a relationship calles t
FIR channel parameterizatiorspecifically, the(m, i)th entry of H,, is given by

L-1
2 2 bl OO ©)

where{h.,, ;[¢]}7=, is the (finite) impulse response of the channel betweemitietransmit antenna

[Hn]m,z —

and theith receive antenna, andis the channel length (or the cyclic prefix length) with« V. in

practice. The subchannel-wise approach, albeit simples dot exploit the FIR channel relationship.

[1I. BLIND ML DETECTION INONE OSTBC-OFDM B.ock: AN OVERVIEW

Starting from this section, we concentrate on the subcHademendent blind ML approach that enables

detection in one block. This section serves as an overviethis approach. The more detailed derivations
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for implementations and identifiability will be provided Becs. IV and V, respectively. In the first
subsection, the problem formulation is presented. In tleersé subsection, we introduce the subchannel
grouping OSTBC-OFDM (SGOO) schemes for complexity reaurcti

A. Basic Problem Formulation

Recall the signal model in (1). Our problem is to blindly detéhe bit symbols{s;[p],...,sn.[p]}
from the associated received signal bldé¥; [p], ..., Yx.[p]}, thereby enabling detection in one block.
Under such circumstances, it is notationally conveniemtrap the indexp’ from (1) to form a simplified
signal model:

Y,=C,(sp) H,+W,, n=12 ... N. (6)

The key ingredient of the subchannel-dependent approdoteigloit the FIR channel parameterization in

—j2= (n—1 —j 2% (n—1)(L-1
(). Letf, = A-[1,e 7% e I DET T andhy, ; = [ i[O, B (1], o s [L—=1] )7
be a DFT vector and a time-domain channel vector, respégtizquation (5) can be re-expressed as
H,]mi = £ hy )
Furthermore, by letting
hi; - hyn,
H = - e CLNtXNT (8)
hy,1 - hy, N,

be the time-domain MIMO channel matrix, eakh, can be formulated as
H, = (I, ® f]) H, (9)
where® denotes the Kronecker product. Note that if we define
Gin(sn) = Cu(sn)(Ly, @ £;), (10)
the model in (6) can be rewritten as
Y, =Gn(s)H+W,, n=12_.. N, (11)

An interesting observation is that from a standpoint of féaling based space-time coding, Eq. (11)
can be viewed as the received signal for a sequence of timygagaspace-time block coddes,, over a

flat-fading channel. The blind ML detector for (11) is giveyn b

N.

min Y, — Gu(sn)H||%. 12

sp {1} Kn n:1,2,...,NCZ ” " n( n) ”F ( )
HECENt XNy n=1
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There are two possible approaches for dealing with the abawénization problem. One is to use

cyclic minimization [15]. The idea is to cyclically updatkeet channel and symbol estimates, denoted

N.
n=11

respectively byH and {8,} by solving the following two subproblems:

A~

N.
H = i Y, — G,(8,)H|%, 13
argﬂeg}}gwgll n n(Sn) Mz (13)

N. 2
{8}, = ang sneﬁiﬁz«n,; Yo~ GutsH| - (14)

n:1727---7Nc

The cyclic (or multistage) update continues until some ity criterion is satisfied; see [15] for the
details. It can be shown that (13) is a least-squares (LS)reHaestimator fixing{én}nN;l, and that (14)
is the coherent OSTBC detector givéa The two update processes can be shown to be very simple and
of low complexity [15]. However, cyclic ML cannot operateoperly without reasonable initialization of
either 7 or {8, }2,.

Another approach for handling (12) is based on Boolean @i@dorogram (BQP) reformulation [17].
To illustrate this, lets = [ s],...,s} |7 € {£1}*, whereK = | K,, is the total number of bits

to be detected. It will be shown in the next section that (1&) be simplified to be the BQP

max s! Rs (15)
se{x1}¥

for some appropriatd? RE*K and that determining the optimal estimate7éffrom the solution of
(15) is simple. The reformulation in (15) enables us to harldé problem by directly applying a readily
available BQP solver; e.g., the quasi-optimal SDR solv&t,[[30] which has a worst-case polynomial-
time complexity ofO(K3%). This approach also serves as a reliable means of finding igddizations

for cyclic ML. We should note that the problem sigis proportional to the DFT siz&/,.. For practical
DFT sizes, sayN. = 128 or evenN, = 2048, the blind ML BQP is a large scale problem meaning that
direct application of BQP solvers would still be computattly too expensive. This inherent difficulty

motivates the subchannel grouping method considered imekesubsection.

B. Subchannel Grouping OSTBC-OFDM

When dealing with a large scale problem, we would often a@rstdecoupling the original problem
into smaller subproblems for complexity reduction. Thighe idea behindubchannel groupingSG).
Essentially, we group th&/. subchannels into a number of subsets, and then apply blindi®&tction to

each subset individually. Suppose that we h&vgroups, and leS, C {1,2,..., N.} be the subchannel
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index set for thepth group. Fixing group, we have a dimension reduced signal model
Y, =G,(sp) H+W,, nes, (16)
and a group-wise blind ML problem

min Y. — G (s )VHI. .
Sne{il}Kn7n€SP Z H n n( n) HF ( )
HECLNex Ny nes,

We call (17) the SG OSTBC-OFDM (SGOO) problem. To distingu500 from the complete OSTBC-
OFDM problem in (12), we call (12) the full OSTBC-OFDM (FOOjablem.

In designing a blind or semiblind SGOO scheme, there are tlators to consider: The SG assignment,
the placement of pilots, and the choosing of the co{@g}nN;l. A carelessly designed SGOO scheme
may have poor data identifiability, meaning that the schemeldvnot operate properly even in the
absence of noise. Here we describe two SGOO schemes thditentttieoretically proven to exhibit good

identifiability (in Sec. V):

Pilot-embedded Pure data
subchannel subchannels
| |
Cl(Sl) CQ(SQ) C4(S4) CB(SS)

Fig. 2. Proposed SG scheme fof, =9 and P = 3.

Semiblind SGOO Scheme: In this scheme, subchannklis assigned for pilot transmission (er is

assumed to be known at the receiver). The SG assignmentigtelkin Fig. 2 and is given by

812{ 1 +mi:

m=0,1,...,M -1}, (18a)

Sp:{l}U{p+mN°

m=0,1,....M -1}, p=2,...,P (18b)
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where M = N./P. It is assumed thad/ > L. This SG assignment is similar to that for coherent and
differential space-time-frequency coding [4], [9], [L0§ avell as for training-based channel estimation
[27], [31], [32], but there is some subtle difference. Wead#tthe groups access subchannel 1, and thus
each SGOO problem is able to use the pilots to fix the sign amtigffect. As for code selection, we
can simply employ the same OSTBC in every subchannel;Ce(;) = ... = Cn.(-) = C(+).

Blind SGOO Odd-Even Scheme: In a blind scheme, only one pilot bit is used. We employ theesam
SG assignment as in (18), and assign the pilot bit to Itbtebit of the symbol of subchanné| i.e.,
s1,1. The blind SGOO design presents a more difficult challenge. éxample, unlike the semiblind
SGOO scheme described above, a blind SGOO scheme with saliv@eSTBC for all subchannels does
not necessarily result in good identifiability. In fact, silation results in Sec. VI will show that such a
blind scheme could exhibit poor error performance. To gu@m good identifiability in the blind case,
we employ theodd-everOSTBC arrangement, first introduced in [20] for flat-fadidjné ML OSTBC
detection. The arrangement is as follows: Subchanets N. (the data subchannels) use a universal
OSTBC, denoted b, (+), while subchannel (the pilot-embedded subchannel) uses a different OSTBC,
denoted byC,(-); that is,C;(-) = C,(-) andCy(-) = ... = Cn,(-) = Ce(-). Let

K
Cels) = > Xgsi,
k=1

and assume thdt is even. Being the code function for carrying most informatsymbols C. would be
chosen to be a maximal-rate BPSK/QPSK OSTBC [33], whichnoftes an everi. The ‘odd’ OSTBC

function C, is constructed fronC, by taking out one bit:

K-1
CO(S) = Z stk.
k=1

Some discussions are now in order:

i) Once we solve all SGOO problems (say, in a quasi-optimshitan by SDR), we can enhance the
quality of the obtained solution by applying the cyclic MLfirement mentioned in Sec. IlI-A. Our
experience with simulations is that this combined methotka/@ery well, and this will be illustrated
in Sec. VI.

ii) If the above proposed semiblind scheme and blind odareseheme are applied to the flat fading
scenario [specifically by modifyingx,,(s,,) = C,(s,) which removes the subcarriers], the existing
analysis results [20] will be sufficient in showing that thewo schemes achieve good identifiability
conditions. Such desirable conditions do not directly ycawver into the SGOO scenario, however.

The SGOO identifiability analysis has an intricate reladioip with the assigned SG pattern, as we
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will see in Sec. V. But, in summary, it will be proven that th€& Sissignment used in the two

schemes is sufficient in leading to good identifiability cibiods.

IV. BLIND ML RECEIVER REALIZATION USING A UNIFIED TREATMENT

In this section, we present the detailed derivations of thedbML BQP reformulation, for both
SGOO and FOO. To facilitate the development, it is desirdblestablish a unified OSTBC-OFDM

(UOO) formulation for the two problems. Consider the follogr generalized signal model:
Ym :gm(sm)H+Wm> m=1,2,..., M, (19)
Gm(sm) = Cin(sm)(In, ® fi) (20)

Here,C,, : {£1}"» — CT*Nt is a k,,-bit OSTBC function which admits a linear dispersion expies

Km

Cm(sm) = Z Xm,ksm,lm (21)
k=1

sm € {£1}*~ is the bit vector transmitted b§,,,(-), fr = [ 1,2}, .. 2 E |7 wherez,, € C, H is
the deterministically unknown channel, am®,,, is AWGN. This UOO formulation is generalized in the
sense that we only assumg, to be distinct; i.e.z,, # z, for anym # n. We see that (19) represents
FOO in (11) if M = Ny, 2z = €% "™V, Ci() = Cu()y Yom = VN, Win = VNoW,, and so
on. Similarly, an equivalence can be established for eacB@@roblem in (16).

Let us definey = [ YT,.... 5, 1T w=[WTI ... W T, s=[sT,...,s, 17, and
G(s)=1G1(s1),---, Ghu(sm) " (22)

Equation (19) can be rewritten as
Y=G(sH+W (23)

and its respective blind ML problem is

win { i 1Y - o) | (24)

se{£1}r | HeCLNtxNr
wherer = 2%21 km 1S the total number of bits. Our first step is to investigate ittmer minimization

of (24). The inner minimization is an LS problem givenwhich has a unique solution

H(s) =[6"(s)G(s)]'G" (s)Y (25)

August 29, 2007 11 DRAFT



if and only if G(s) is of full column rank. Let us study conditions f¢(s) to have full column rank.

i 1 21_1 zl_(L_l)
F=1|:|=1: =+ - : e CMxL (26)

_ —(L—1

f}v} 1 le zM( )

which is a Vandermonde matrix. By noting the following exgsien ofG(s)
Ci(s1) 0 Iy, @ (e F)
G(s) = :
0 Cu(sm)| [In, @ (el,F)
wheree,,, € R is the unit vector with thenth entry equal tol, G(s) can be rewritten as:
G(s) = De(s)(Iy, ® F) (27)

where D.(s) = blkdiag[Ci(s1),...,Cn(sn)] € CMTXMNe (3 plock diagonal matrix), andl €

CMN:xMN: js g permutation matrix given by
M=[Iy ®e,....Iy @ey L.
It can be shown that, for angx € CM*M | the following commutativity property holds:
7 (A @Iy, =1y ®A. (28)

Using (27) and (28), one can verify that

G"(s)G(s) = In, @ (F'D.F) (29)
where D,; = diag(k1,...,kp). Using (29) and some standard matrix results, we show that
rank{G(s)} = rank{G (s)G(s)} = N; min{M, L}. (30)

We therefore conclude from (30) thé@ts) has full column rank if and only if\/ > L.
The second step of the BQP reformulation is to substitutérther minimization solution in (25) into

the blind ML problem in (24). The resulting problem is given b

i ~ P, 2 31
o 1Y = Pg(o)Vl|x (31)

where Pg ) = G(s)[G" (5)G(s)]"1G" (s) is the orthogonal projector of(s). Equation (31) can be
simplified to a BQP, by substituting (29) and (21) into (31heTdevelopment is conceptually identical
to that in flat-fading blind ML OSTBC detection [17], [18],ahgh the derivations in this case appear to

be notationally more involved. Hence, for brevity, the fesigiven without proof as follows:
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Proposition 1 Suppose thal/ > L. For the blind ML problem in24), an optimal symbol solution can
be obtained by solving the BQP

M M
T T
whereR,, , € R**"» has its(k, () entry given by
[Rm,n]k:,é = Re{TI‘{'Vm,nngm,er]ZZyn}L (33)
Y = €2 F(FID.F) ' Fle,, (34)
and
R171 e Rl,M
R=| + .t |, (35)
RM,l e RM,]\/I

The associated optimal channel solution is obtained bytgubiag the optimal solution 0f32) into (25).

As mentioned earlier, the BQP problem in (32) can be effettshandled by readily available al-
gorithms; e.g., the SDR algorithm which yields a complexifyO(x3°). Readers are referred to the
literature [17] for detailed descriptions of SDR and theeothvailable BQP solvers.

The above developed blind ML framework can be easily extdride¢he semiblind case. In this paper

we are interested in using only 1 pilot code. Without loss efigrality, assume that; is known. Let

sa=[s%,...,81, 17 € {1}~ be the unknown data vector. The semiblind ML problem is gilwgn
. . 2
— . 36
o {He(ggggm [n% Q(S)HHF} (36)
sa€{E1}im

Like Proposition 1, problem (36) can be reformulated as a.BlpBt reformulation shares the same idea
as that in the flat-fading scenario [17], and its details ardtted here for conciseness.

We notice that the blind ML BQP in (32) has at least two sohsiolf s* is a solution of (32) then
—s* is also a solution of (32). This sign ambiguity may be fixed lsgigning one bit as the pilot. As

for the semiblind ML problem in (36), there should be no suobbfem. However, it can be shown that

Lemma 1 The solution to the blind ML problem if24) is unique up to a sign only i/ > L. The
solution to the semiblind ML problem i{86) is unique only ifM > L.

The proof of this lemma is given in Appendix I, where we shoattthe blind and semblind ML problems

may give multiple solutions if\/ < L.
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V. BLIND ML I DENTIFIABILITY ANALYSIS

Following the development in the previous section, thistisacconsiders blind ML identifiability
analysis under the UOO framework. Through the process wkse# that the semiblind and blind
SGOO schemes proposed in Sec. IlI-B, as special cases of W@, a rather relaxed probability
one identifiability condition. In the first subsection, weidlly review and generalize some existing
identifiability results for OSTBCs in flat fading channels0]2 Then, in the second subsection, the

relationship of the existing results and the UOO identifigbconditions is explored.

A. Review and Generalization of Some Existing Results

A key result that will be used in this paperpsobability one blind/semiblind identifiabilitywhich was
developed for OSTBCs [20]. The essence of the result may Hledegcribed by considering a noise-free
generic MIMO problem

Y=GH, GEe&g (37)

whereG is redefined as a transmitted code matrix drawn from a (fimiegleword set; ¢ CT*V¢, and
againY € CT"*N- andH € CV*"- are the received signal matrix and MIMO channel of the pnoble
respectively. Our treatment is general in the senseilimnot restricted to any particular class of schemes.
Hence it may be applied not only to OSTBC, but also to UOO as aslother space-time-frequency
and space-time coding schemes. For the UOO framework in {@8)lind problem is equivalent to that
in (37) with a codeword sef = { G(s) € CMT*IN: | 5 ¢ {+1}% } whereG(-) is given in (27). As for
the semiblind problem, we ha@= { G([ s¥ s ]7) € CMTXLN: | g4 € {+1}F~*1} wheres; is fixed.
Consider applying blind ML detection to (37), in the same veaybefore. To uniquely determine the

true G from Y, it is essential that the following ambiguity situation dagot hold
GH = G'H (38)
for any G’ € G\{G} andH’ ¢ CV*"-, Simply speakingG is said to be unique identifiable if (38)

cannot be satisfied. Consider the following definition:

Definition 1 A codeword seg is said to be pairwise non-transformable (PNT) if, for anytdistinct

codewordsG, G’ € G, there does not exist a matrid € CV:*"+ such that
GU=G (39)

Moreover, G is said to be PNT up to a sign (PN#t) if (39) does not hold for anyG € G and
G’ € G\{+G}.
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It can be verified from (38) and (39) that the PNT and PNIT-conditions are necessary for unique
code identifiability and unique code identifiability up to igrs respectively. PNT and PN are also

sufficient identifiability conditions, in a probability orsense. This is described in the following theorem:

Theorem 1 Assume thaH is Gaussian distributed, and that at least one columrHohas a positive
definite covariance matrix. Then, for the blind ML detectan(37),

i) the code matrixG is uniquely identifiable with probability one § is PNT; and

ii) the code matrixG is uniquely identifiable up to a sign with probability onedifis PNT-1.

Note that the i.i.d. Rayleigh fading channels satisfy tharctel assumption in Theorem 1. The proof is
presented in Appendix Il. The idea behind the proof is to stiwat the ambiguity in (38) happens with
probability zero, under the premises in Theorem 1.

We should emphasize that Definition 1 and Theorem 1 are g&gadian of the probability one

identifiability result in [20], which was only for orthogoheodes. In [20] we have the following definition:

Definition 2 Let C : {#1}X — CT*N: be an BPSK or QPSK OSTBC function, afid= { C(s) | s €
{£1}K 1 If G is PNT-£1, thenC(-) is said to be strictly non-rotatable.

The use of the term ‘non-rotatable’ was due to the obsenvdtiatU in (39) must be a rotation matrix
if (39) is to be satisfied by the OSTBC. An important questisrwhere to find a strictly non-rotatable
OSTBC. This aspect has been studied in [20], and simply $pgaiot all the existing OSTBCs have
the strictly non-rotatable property. But there exists apggmway of converting a (BPSK/QPSK) OSTBC
to a strictly non-rotatable OSTBC

Lemma 2 (Ma [20]) Given a BPSK/QPSK OSTBC,(s) = Z{f:l Xsk, WhereK is even, construct
K-1
Co(s) = > Xpsi. (40)
k=1
The following concatenated code is strictly non-rotatable
C(s) = [ Cl(s1) Cl(s2) ... CZ(sm) ], (41)

wheres = [ s{ s ...s]; ]T, s; € {+£1}%-1 ands,, € {£1} form =2,..., M.

*The procedure was proposed to construct the so-calledmersecting subspace OSTBCs. This class of codes is a subset

of the strictly non-rotatable code class, which has adde@rgege in the flat fading scenario (see [20] for the details)
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B. Identifiability of OSTBC-OFDM

We now focus on the symbol identifiability of UOO under theldaling assumptions:

Al) M > L (this is a necessary identifiability condition; cf., Lemma 1

A2) ‘H is Gaussian distributed and at least one columf{ofias a positive definite covariance matrix.
Our aim is to derive conditions under which the super-cgde (27) has the PNT/PNT1 property for
the semiblind/blind case, thereby achieving the probgbiliidentifiability stated in Theorem 1. To do
this, let

C(s)=[Ci(s1),-...Cls(sm) | (42)

be a concatenation of the OSTBCs in UOO. We consider thewoilp condition:

Cl)LetP = F(FHEF)"'\FH c CM*M Foranym,n € Zy; withm # n, whereZy, = {1,2,..., M},
there exists an length-index sequencécws, ws,,...,w;} C Zy, such thateo; = m, w; = n, and the

I —1 elements(w;, w;+1) in P are nonzero, i.e.,
Pw737w1:+17é07 i:1727"'71_17 (43)

and the following lemma:

Lemma 3 UnderC1), G is PNT if and only ifC is PNT. Moreover, unde€1) G is PNT-1 if and only

if C is strictly non-rotatable.

The proof is provided in Appendix Ill. Lemma 3 has profoundplivation: If we can guarantee that
C1) holds, then the study of identifiability of UOO reduces tottbhits OSTBCs. Now, a key question
is whether the subcarrier sets of FOO and SGOO sa@dfy Fortunately the answer is yes, through

careful investigation. Consider the following two lemmakiet are relevant to FOO and SGOO:

Lemma 4 Suppose that

j2n 2
{e1,22, 0 2n} = {1,000, IO,

Then, the corresponding satisfiesC1).

Lemma 5 Suppose that we expand the problem size of UOO ftérto M + 1, and that
{z1,22,23,.. ., z2pm4+1} = {1,eja,ej°‘+j2ﬁ, .. ,ejo‘“%(M_l)}

for somea € R. Then, the corresponding satisfiesC1).
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The proofs of the two lemmas are presented in Appendices tMamespectively. We note that Lemma 4
is applicable to the FOO problem and the SGOO problem adedoidthS; [see (18a)], and that Lemma 5
is applicable to the SGOO problems associated Wjtfor p = 2,..., M [see (18b)]. Hence we conclude
that

Remark 1 The FOO problem satisfigS1). All SGOO problems satisfC1).

Now, the remaining problem in our identifiability analyststo examine the PNT/PNE1 condition
of C in (42).
Semiblind Detection Casé&he pairwise transformation identity fa@, given in (39) in Definition 1,

can be explicitly expressed as
Cn(s,)U=Cpn(sm), m=12,...,M (44)

wheres, s’ € {£1}* are distinct. Since the OSTBCs have full column rank and lsabiell contains
only the pilot; i.e.,s] = s1, from (44) we must hav&® = Iy,. Thus, Egs. (44) can be all satisfied only
when s, = s, for all m. In other words, by Definition 1, the codewords @fhave to be PNT in the

semiblind case. Hence, by Lemma 3 and Theorem 1, we obtaifollbeving theorem:

Theorem 2 Consider the semiblind ML detection of the UOO problem(B6)]. Under C1), the data

vector sq is uniquely identifiable with probability one.

Blind Detection Caselet us focus on the odd-even scheme described in Lemma 2athe arrange-
ment used in the blind SGOO odd-even scheme proposed in IB&c. $pecifically, given an OSTBC

C.(-) with even number of bitd(, choose
Ci()=Cos(1), Cn()=Cc(:), m=2,3,..., M, (45)

whereC,(-) is the ‘odd’ counterpart o€, (-), defined in the same way as (40). Since Lemma 2 indicates

that the resultan€ is strictly non-rotatable (or PNT1), we have the following theorem:

Theorem 3 Consider the blind ML detection of UOO [i{24)], and suppose that the odd-even arrange-
ment in(45)is employed. Unde€1), the data vectos is uniquely identifiable up to a sign with probability

one.

Now we are ready to consider the identifiability of SGOO, apectal case of UOO. Due to Remark 1

and Theorems 2 and 3, the following important conclusioreached:
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Corollary 1 In the semiblind SGOO scheme in Sec. IlI-B, the data symbelsiaiquely identifiable
with probability one. In the blind SGOO odd-even scheme in 8eB, the data symbols are uniquely
identifiable up to a sign with probability one. The same id&tiility holds for its FOO counterpart.

V1. SIMULATION RESULTS

This section presents three simulation examples to jusidyefficacy of the proposed blind/semiblind
ML methods. Either the QPSK Alamouti cod& (= 2, N; = 2, K = 4) [34] or the QPSK4 x 3
OSTBC code (Eqgn. (120) of [33])I{= 4, N; = 3, K = 6) was used. The DFT siz#/. was 256 for
all the examples. Since the respective FOO problems are &ale optimization problems meaning that
they cannot be handled efficiently, we consider the SGOOmsekeonly®. The blind or semiblind ML
SGOO BQP was handled by the SDR algorithm [17]. The obtair@®@ solutions were then refined
by a one-cycle cyclic ML procedure; the relevant equatiaesgiven in (13) and (14). We compare the
proposed schemes to the coherent ML detector (which hasqteZSI) and the pilot-based LS channel
estimator [13], [27], [35]. Assume that the LS method emplby; s pilot codes, whereVy,s > L and
divides N.. Following [31], the pilot placement of LS method is given by

_ N, N, N,
5_{1,1+N—LS,1+NLS-2,...,1+NLS-(NLS—1)}.

If not mentioned specifically, we sé¥1s = L. The differential OSTBC-OFDM scheme [8] was also
compared, which was the one by applying the differential BSTcheme [36] to each subchannel. In
the simulations, the coefficients G{ are zero-mean i.i.d. complex Gaussian distributed witlanae
equal tol, and change from one OSTBC-OFDM block to next. The SNR peclsainel is defined as

E{|[Dc(s)TI(Iy, @ B)|[F} _ NiN, Te(F?DiF)
TN.o2, B TN.o2, ’

whereD¢(s) = blkdiag[Ci(s1),...,Cn.(sn.)], F = [f1,...,fx.]T is the N. x L DFT submatrix and

SNR =

Dy = diag{K,..., Ky, }. The detector performance was evaluated in terms of aveswuéol error
rate (SER), and there weid), 000 trials performed in each simulation example.

Simulation Example 1: Figure 3 illustrates the results for the QP8k« 3 OSTBC. In Fig. 3(a), we
show the BER performance of the proposed SGOO schemes wdttwahout the cyclic ML solution
refinement. In the legend, “CML” stands for cyclic ML, and “@&ven” refers to the blind SGOO odd-

even scheme. One can see that, for both the blind and sechi®BOO schemes, the cyclic ML solution

8Readers who are interested in the FOO performance are aéféor[35], where two simulation examples for FOO with

smaller problem size were provided.
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Fig. 3. Performance (SER) of the proposed schemes for QRSK3 OSTBC, P = 16, (a) L = 12 and N,. = 3,
(b)) L=8andN, =2, (c) L =8 andN, =4, (d) L =8 and SNR= 14 dB.

refinement procedure enhances the performance of SGOO gjgitdicantly. This empirical finding
implies that the SGOO solutions may provide sufficiently djaatialization for cyclic ML to arrive at a
near-optimal FOO solution. Figures 3(b), 3(c) and 3(d) caraghe performance of the proposed method
to that of the pilot-based LS method and the differentialesal, under various conditions. We see that
both the semiblind and blind SGOO schemes outperform the e$had and the differential scheme.
One can also observe that the performance of the two propmmdetines is close to that of the coherent

ML detector.
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Simulation Example 2: This example aims to illustrate the performance differerafadentifiable and
non-identifiable blind schemes. The QPSK Alamouti code iplegyed. It is known that the Alamouti
code is not identifiable in the flat fading context, withouingsthe odd-even arrangement [20] or other
methods [16], [18], [19]. The results are plotted in Fig. d.the legend, “Blind SGOO” stands for the
direct application of the Alamouti code to SGOO (i.e., albshannels employ the QPSK Alamouti code),
while “Blind SGOO Odd-Even” is the proposed SGOO odd-evdreste. We should recall that “Blind
SGOO 0Odd-Even” works by removing only one bit symbol fromitl SGOQ”. The figure indicates
that the Alamouti code is still non-identifiable in the OSTBXFDM context, and that the odd-even
arrangement is successful in turning the non-identifiabir@tl5GOO scheme to an identifiable one. As
a reference, we also show the SER of the semiblind SGOO scleri. 4. One can see that the

semiblind SGOO scheme achieves near-optimal performamoe, again.

10° ==

107" f:=:=

1072

SER

108

| |
—>— Blind SGOO + CML
10" E| —A— Blind SGOO Odd-Even + CMLE
—©— Semiblind SGOO + CML
— — - Coherent ML detector

I I

10 : '
4 16 18

6 8 10 12 1
SNR (dB)

Fig. 4. Performance (SER) of the proposed schemes for QPSK Alamodé&,P =8, L = 8 and N,. = 4.

Simulation Example 3: In this example, we compare the performance of the proposedidtector
and the Swindlehurst-Leus subspace detector [37]. The dda¥inrst-Leus subspace detector was not
developed for the block-fading OSTBC-OFDM scenario, butfaend that the detector is, in essence,
applicable to that case. However, this method works onlynmdmme restrictive assumptions are satisfied.
For example, it requires the channel mattkto have full row rank, which translates into the necessity
of N, > LN;. This requirement is impractical even when the channeltleigmoderate. In contrast to
the subspace method, the proposed ML method does not stdfarthis limitation, as we have proven

in Sec. V. It has also been verified from Fig. 3(d) that the pemal schemes work well even when
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N, = 2 (while LN; = 24). For fair comparison, the subspace method was appliedeosémiblind
SGOO scheme by replacing the SGOO ML detector with a SwinnH eus subspace counterpart.
The obtained solutions were also refined by the cyclic ML méth-igure 5 presents the performance
comparison for the semiblind case for QPSK Alamouti codd it= 3, P = 8 and N,, = 6. One can

see from this figure that the proposed ML method significaatlyperforms the subspace method.

L| —0— Semiblind Swindlehurst-Leus == o=Nc=z=

F subspace+CML == ZIZ==3
[| ©- SsemibindML+CML |-~ "i— -
| | — - Coherent ML detector

6 8 10 12 14
SNR (dB)

Fig. 5. Performance (SER) comparison to the Swindlehurst-Leuspade method for Alamouti codéd;, = 3,
P =8andN, =6.

VII. CONCLUSIONS ANDDISCUSSIONS

In this paper, we have developed a blind ML OSTBC-OFDM framewthat covers both the practical
implementation and theoretical identifiability issues.eTroposed framework features blind detection
in one OSTBC-OFDM block, a characteristic that is not présermost existing blind methods. We
have proposed subchannel grouping OSTBC-OFDM (SGOO) timteschemes that aim to overcome
the large scale optimization problem inherent in full OSFBEDM (FOQO) detection, thereby enabling
realizable implementations in practical OFDM applicatio®ur analysis has shown that both the SGOO
and FOO schemes guarantee unique symbol identifiabilityprobability one sense. Using simulations,
we have demonstrated that the SGOO schemes, when couplethwityclic ML method, can outperform
the pilot-based LS method and the differential scheme. ¢h the simulation results indicated that the
proposed detectors can exhibit near-coherent performance

Although our focus has been on BPSK/QPSK constellatiores réisults can be extended to general

MPSK constellations. The implementation in this extensitay be handled effectively by incorporating
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the readily available MPSK quadratic programming methdd, [[19], [38]. As for the identifiability, it

is not difficult to see that our semiblind identifiability ds which assumes constant modulus OSTBCs
only, is perfectly applicable to the MPSK case. For a simikason, it is likely that the application
of the dual MPSK constellation schemes [18], [19] to OSTBEB®™ should result in the same blind
identifiability condition as the odd-even BPSK/QPSK schgmaposed here. These directions provide

an interesting avenue for future research.

APPENDIX |

PROOF OFLEMMA 1

For the blind ML problem in (24), the blind channel estimataihique only ifG(s) is of full column
rank. We have shown in (30) thét(s) has full column rank if and only i/ > L. Now, let us consider

the case wherd/ = L. SinceF is invertible in this case, (34) can be reduced to
Yo = e FF DA F HFHe, =el D e, (A1)

I.e., Ym,n = 0 ¥ m # n. Substituting this result into (33), we obtal,, , = 0 ¥ m # n. Subsequently,
the blind BQP in (32) reduces tdf independent subproblems:

max sfanmsm (A.2)
smE{E1}rm

for m = 1,2,..., M. Each subproblem in (A.2) is subject to a sign ambiguity sf aiwvn. Hence,

if {s7,...,s},} is a solution to (A.2) then any+s7,...,£s},} also serves as a solution to (A.2).
Similarly, we can find the same problem in the semiblind case. |
APPENDIX Il

PROOF OFTHEOREM 1

Suppose that (38) holds, and that there isthaatisfying (39). LetG'" denote the pseudo inverse of
G/. PremultiplyingG’G’" on the both sides of (38) results in

G'UH = G'H, (A.3)

where we denotdJ = G''G, and we have used the basic prope@yG’''G’ = G’ at the right hand
side. Substituting (A.3) into (38), we obtain

(G- GU)H =0. (A.4)
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Let ® = G — G'U, which must not equad. The probability that (A.4) holds is given by

N,
(] ®hi = o} < Pr{®h; = 0} (A.5)

Pr{®H =0} = Pr {
i=1

foralli =1,2,..., N,. Hereh; denotes théth column ofH. Without loss of generality, suppose that
is Gaussian distributed with a positive definite covariamegrix. Then one can show thBt{®h; = 0}
is of measure zero [39]. Hence, we ha¥e{®H = 0} = 0, which is equivalent to saying that (38) holds

with probability zero. It also follows that Theorem 1 is true |

APPENDIX I

PROOF OFLEMMA 3

Assume thatC1) holds. Proving Lemma 3 is equivalent to proving the follogvalternative statement:

Givens, s’ € {1}%, there exists a matri&/ € CLNVexINe sych that
Gn(8 VU = G(sm), m=12....,M (A.6)
if and only if there exists a matrig) € CV*N: such that
Cin(8,)Q = Cri(sm), m=1,2,..., M. (A7)
The sufficiency of the statement in (A.6)-(A.7) is straigitfard. Suppose that (A.7) holds, and let
U = Q ® 1. By recalling thatG,,,(s,,) = Cpn(sm)(In, ® f1), we obtain
Gm(8)U = Crn(5,)(Q ® fr)- (A.8)

SinceQ ® fI' = (Q ® 1)(Iy, ® 1) = Q(Iyn, ® fI), the right hand side of (A.8) can be reduced to
that of (A.6).
To prove necessity, suppose that (A.6) holds. Equation)(8ah be rewritten ag(s')\U = G(s),

which can be further expanded as
Dc(s/)H(INt ® F)U = De(s)II(In, @ F). (A.9)

Let the thin singular value decomposition & be F = VEW whereV ¢ CM*! is semi-unitary,
> ¢ CP*1l s diagonal and invertible, and#” € C** is unitary. Postmultiplying both sides of (A.9) by
Iy, ® WX~ yields

De¢(sTI(Iy, ® V)U = De(s)II(Iy, @ V), (A.10)

U=y o SWhHU(Iy, o w1, (A.11)
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We first show thatJ is unitary, a property that will prove useful later. Let
G(s) = (D;'? @ Ir)De(s Iy, @ V), (A.12)

It can be shown tha@(s) is semiunitary for any € {+1}*. Equation (A.10) implies that

G(s"U = G(s). (A.13)

SinceG(s) andG(s') are semi-unitarylJ has to be unitary in order to satisfy (A.13).
Second, we show that #,, ,, # 0 for some(m, n), then there exists a matr@ such thaC,,(s,,)Q =
Cm(sm) andC,(s),)Q = C,(s,). Combining this result withC1) will lead to (A.7), the final result.

From (A.10), the following two equations are obtained
Cin(sh,)An, ® €, VU = Cpn(s) Iy, © €, V), (A.14)
Cn(s))(In, @ eI VYU = C,u(5,)(Iy, @ el V). (A.15)

We notice that?,, ,, = el F(FH F)~1Fe, = el VVHe,. By using the propertyIy, ® el V))(Iy, ®

el V) = P, Iy, and the unitarity of/, we find that

Cn(8m)C (s0) = 5—Cin(s7,)(In, ® e, VIUU ™ (Iy, @ e, V)€l (s7,)
= p—Cun(s,) (I, ® e, V)(In, @ e, V)7 Cll (s,)
= Cin(57,)C;/ (7). (A.16)
Postmultiplying both sides of (A.16) b§,,(s,,) results in

Cin(81,)Qm = Crn(Sm), (A.17)
whereQ,, = ==C}!(s,)Cn(s,). Similarly, premultiplying (A.16) byC’(s,) leads to
Cn(8,)Qn = Cn(sn), (A.18)
whereQ,, = -C/!(s},)Cm(sm). By premultiplying (A.18) byC;!(s},), we achieve
Qn = -Cl(8},)Cnl(sn). (A.19)

Hence, we obtain

Q = Qn = Qm (AZO)

By C1) and by induction, we conclude that (A.17), (A.18), and (A.B0Ids for any(m,n) with m # n
and Py, ,, # 0. |
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APPENDIX IV

PROOF OFLEMMA 4

The correspondingF satisfiesF F = M1;,. Subsequently,

Prms1 = Mel FFHe, .1 =M Z Zmimy1) L= M Z eIt £ 0
since M > L. It follows that for any(m,n) with n > m, we have a sequenc{ezl,wz,...,wf} =
{m,m +1,...,n} satisfying (43). [
APPENDIX V

PROOF OFLEMMA 5

Without loss of generality, reordefz,,} such thatz,, = eJotisi(m=1) for m = 1,2,..., M, and

zym+1 = 1. Its Vandermonde matrigF can be expressed as

T
F = (A.21)
JH
where
1ot zl_(L 2
Y =|: : : (A.22)
1 z]T/[l z];I(L_l)
and v = [ 1 2/, ... z;ﬁfl) ]. The above expression leads to a partitioned form For=

]:(]:H:F)—lj:H € CM+1xM+1.
Y(FIF)IYE Y(FIF) |, |A b
P = = . (A.23)
v (FHF)-IYH pH(FHF) -1y b ¢
Let us consider the closed form F" F)~! = (YHY + vw)~L It can be shown, in the same way
as the proof of Lemma 4, thaf? Y = M1;. Using the matrix inversion lemma, we get

(FEF)- L = % <IL - ﬁuuH) . (A.24)

Substituting (A.24) into the submatrices in (A.23), we shinat b and A have simplified forms

b= (1- 1Ly ) Y. (A.25)
A=1L (‘I"I‘H L+M('ru)(ru)H) : (A.26)
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Recall that our aim is to sho®1), which says that for anyh,n € Zy;11 with m # n (Note that we
have extended/ to M + 1 in this lemma), there exists a sequeree,, ws,...,wr} C Zyr+1 Such that
w1 =m, wy =n, and Py, #0fori=1,2,...,1 — 1. To prove this, letZ be the set

yWit+1
I:{’i|bi§£0,’i€I]\/j} (A.27)

(where b; denotes theth element ofb) andZ = Z,,\Z. The setZ must be nonempty, sinc& has
full column rank implying thatYv # 0. Moreover, it can be shown th&@ Y], ,,,.1 # 0 for m =
1,2,..., M — 1, a familiar result presented in Lemma 4. Applying the aboesults to (A.25)-(A.26),

we locate some nonzero elementsBfthat are sufficient for this proof:
Pm,M-i—l 7é 07 PM-I—l,m 7& 07 Vme I7 (A28)
Pomi1 #0, Vmel. (A.29)

Our investigation is divided into two cases:

Case Al <m <n< M: If meZandn € Z, then a feasible hopping sequenge;,...,w;}

is simply {m, M + 1,n} due to (A.28). Ifm € Z andn € Z, we can find a hopping sequence in the
following way. Letp be a number suchthat <p<n,pcZ,andic Zforalli=p+1,p+2,...,n.

By inspection, such @ always exists. Using (A.28)-(A.29), we obtain a feasibleppiog sequence
{m,M +1,p,p+1,p+2,...,n}. Using the same idea, we can show that hopping sequencédaxis
the remaining subcases, namely the subeaseZ, n € Z, and the subcase € Z, n € 7.

Case B.1 <m < M,n=M+1: If m € Z then the hopping sequence is simghy, M + 1}. If

m € I, then either one of the following possibilities must hold. the first possibility, there exists a
numberg such thatm < ¢ < M, g € Z, andi € T for all i = m,m + 1,...,q — 1. The corresponding
hopping sequence ism,m + 1,...,q — 1,9, M + 1}. In the second possibility, there exists a number
psuchthatl <p<m,pecZ, andicZforalli=p+1,p+2,...,m. The corresponding hopping
sequence i§M + 1,p,p+ 1,p+2,...,m}.

Combining the results in Cases A and B, we conclude @igtholds. |
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