
Binary MIMO Detection via Homotopy Optimization and Its Deep

Adaptation

Mingjie Shao and Wing-Kin Ma
†Department of Electronic Engineering, The Chinese University of Hong Kong,

Hong Kong SAR of China

February 3, 2021

Abstract

In this paper we consider maximum-likelihood (ML) MIMO detection under one-bit quan-
tized observations and binary symbol constellations. This problem is motivated by the recent
interest in adopting coarse quantization in massive MIMO systems—as an effective way to scale
down the hardware complexity and energy consumption. Classical MIMO detection techniques
consider unquantized observations, and many of them are not applicable to the one-bit MIMO
case. We develop a new non-convex optimization algorithm for the one-bit ML MIMO detec-
tion problem, using a strategy called homotopy optimization. The idea is to transform the ML
problem into a sequence of approximate problems, from easy (convex) to hard (close to ML),
and with each problem being a gradual modification of its previous. Then, our attempt is to
iteratively trace the solution path of these approximate problems. This homotopy algorithm
is well suited to the application of deep unfolding, a recently popular approach for turning
certain model-based algorithms into data-driven, and performance enhanced, ones. While our
initial focus is on one-bit MIMO detection, the proposed technique also applies naturally to the
classical unquantized MIMO detection. We performed extensive simulations and show that the
proposed homotopy algorithms, both non-deep and deep, have satisfactory bit-error probability
performance compared to many state-of-the-art algorithms. Also, the deep homotopy algorithm
has attractively low computational complexity.

1 Introduction

MIMO detection has been, for decades, at the center of some very important developments in
signal processing, communications and beyond. Its problem statement is simple—to detect a mul-
titude of finite-alphabet variables from a noisy observation of their linearly entangled counterparts.
The problem is, however, very challenging if the goal is to build an MIMO detection algorithm
that can achieve optimal or near-optimal detection performance with a low implementation cost,
particularly, for large problem sizes. The above goal has attracted generations of researchers’ inno-
vations, e.g., around the 1990’s for multiuser code division multiple access, around the 2000’s for
multi-antenna systems, and recently for massive antenna arrays; and the consequence is a rich, en-
during, collection of methods—such as sphere decoding methods [1,2] for implementing the optimal
maximum-likelihood (ML) detection via combinatorial search; convex relaxation methods [3–7] for
efficient ML approximation via convex optimization; lattice reduction-aided methods [8] for improv-
ing the channel conditioning, and thereby performance, via basis design under integer coefficient

1

constraints; soft detection methods [9, 10] for posterior inference of the unknown finite-alphabet
variables via various approximations; to name a few. These developments show intimate connections
with studies in other areas, such as complexity theory, combinatorial and continuous optimization,
statistical inference, etc. Also, recent research takes insight from approximate message passing in
compressive sensing [11] to tackle MIMO detection [12]. Hence, MIMO detection is a topic of far-
reaching implications. We refer the reader to the literature, e.g., [13], for a chronological account
of the MIMO detection developments and a coverage of the numerous algorithms therein.

Lately, MIMO detection has been igniting new interest in two recent research directions, namely,
coarsely quantized massive MIMO and deep learning for communications. We separately describe
them in the following two subsections.

1.1 Coarsely Quantized Massive MIMO Detection

As a serious impediment to the real-world massive MIMO implementation, it is well-known that
if every radio-frequency front end of a massive MIMO system is equipped with a high-resolution
analog-to-digital converter (ADC) or digital-to-analog converter (DAC)—as in conventional MIMO,
the system will be very expensive to implement in terms of hardware complexity and energy con-
sumption. In view of this, there has been movement toward the use of low-resolution ADCs or
DACs in massive MIMO. One arising problem in this context is MIMO detection under coarsely
quantized observations—particularly one-bit, or sign-only, observations.

A challenge with coarsely quantized MIMO detection is that the classical MIMO detection
methods we have studied for decades cannot be straightforwardly extended to the quantized case;
this is owing to the different likelihood function in the quantized case. Some powerful classical
methods, such as sphere decoding, semidefinite relaxation [5, 6] and lattice reduction, are inappli-
cable in the quantized case because they were designed to exploit the convex quadratic structure of
the ML objective function in the unquantized case. Some researchers study the impacts of coarse
quantizations on some classical MIMO detection methods (e.g., zero forcing) [14], while others
redesign the MIMO detection methods to better harness the problem structure. For the latter,
Studer and Durisi took inspiration from the classical linear minimum-mean-square-error (MMSE)
detection to derive a variant in the quantized case [15]; Choi, Mo and Heath developed a convex
sphere relaxation of one-bit ML MIMO detection [16]; Jeon et al. devised a sphere decoder for
one-bit ML MIMO detection [17] (its appearance is very different from those we see in classical
MIMO detection); approximate message passing was redesigned for quantized MIMO detection
in [18,19]; coding theory-inspired detection algorithms were introduced in [20–22]. Also, quantized
MIMO detection for orthogonal frequency-division modulation (OFDM)-MIMO—a more realistic,
but also computationally more challenging, scenario—was studied in [15,23–25].

1.2 Deep Learning for MIMO Detection

Recently, the tremendous successes of deep neural networks in natural language processing, com-
puter vision and machine learning have sparked widespread interest in the communications com-
munity. In particular, we have seen a variety of emerging deep network applications for communi-
cations, such as end-to-end communication system design [26], multiuser power control [27], and,
as our main interest, MIMO detection [28–34]. Neural networks for MIMO detection was already
considered in around the 1990’s [35, 36]; it is worth noting that the motivation at the time lies in
neural networks’ ability to generate nonlinear decision regions, which the then-popular methods of

2

linear and decision-feedback detection have limitations. In the recent renewed interest, we have
so far not seen a report on successfully training a deep neural network—specifically, that under
a standard network architecture—that gives consistently near-optimal detection performance and
good training stability for a broad range of MIMO settings. Instead, attention appears to have
been drawn to the design approach of deep unfolding, which has a flavor of leveraging on both the
existing model-based MIMO detection methods and the data-driven deep learning approach.

Deep unfolding was first introduced in the context of sparse coding by Gregor and LeCun [37],
and it has recently received much attention [38, 39]. The rationale is to see an existing iterative
algorithm, e.g., the iterative shrinkage thresholding algorithm (ISTA) in sparse coding (see [37]),
as a deep network. It intends to learn a better algorithm than its predecessor algorithm by untying
some parameters of the predecessor, and then by learning those parameters from data. Also, one
can modify part of the structure of the predecessor to make it more general, and learn the new
structure from data. The result is a structured deep network whose structures preserve some of
the structures prescribed under a model-based framework. In the work by Gregor and LeCun,
they showed that the learnt ISTA requires much less number of iterations, or layers, to achieve
performance comparable to ISTA.

Deep unfolding was first applied to MIMO detection by Samuel, Diskin and Wiesel in 2017
[28]. The algorithm there, called DetNet, is a deep unfolding of a non-convex projected gradient
algorithm for ML MIMO detection. We have seen growing interest with deep learning for MIMO
detection since the DetNet work. For example, the works [30, 31] studied deep network structures
similar to DetNet. The works [32, 33] studied the deep unfolding of approximate message passing.
Apart from deep unfolding, the work [34] applied deep learning to learn the sphere radius in sphere
decoding.

1.3 Present Contribution and Related Works

The present contribution considers one-bit ML MIMO detection under binary symbol constellations.
We tackle the problem by a non-convex optimization strategy, namely, homotopy optimization; see
[40–45] and the references therein. Also called continuation or graduated non-convexity, homotopy
optimization is an idea that arose independently from a variety of applications in different fields,
such as molecular conformation [40], sparse optimization [42] and neural network training [44].
Homotopy methods can be vastly different from one application to another, but they often follow a
common principle. Specifically, it entails a problem transformation—called homotopy map—that
has the flexibility of either making the transformed problem easier to solve (e.g., convex) but less
accurate in approximating the original problem; or making the transformed problem harder but
closer to the original. Then, the attempt is to iteratively trace the solution path of a sequence
of such approximate problems, from easy to hard and in a gradual fashion. In the context of
MIMO detection, our empirical experience is the following: tackling the ML MIMO detection
problem directly by a straight application of a non-convex algorithm may result in poor detection
performance, owing to convergence to poor local minima; but handling the problem indirectly via
the aforementioned gradually easy-to-hard optimization principle may lead to better performance.

Homotopy optimization offers us a principle, not a numerical algorithm that fits all problems.
We often need to find a suitable problem transformation for the application at hand. We employ the
non-convex continuous reformulation of binary optimization in [46], as well as the efficient first-order
algorithm design therein. This technique was previously proposed by us to tackle a one-bit MIMO
precoding problem. In the present contribution, we incorporate this technique into the theme of

3

homotopy optimization and explore its potential in MIMO detection. Also we enrich the result
by connecting homotopy optimization with Lagrangian dual relaxation (LDR), as will be shown
in Section 3.2. It is worth noting that the LDR notion plays a vital role in ML MIMO detection;
e.g., semidefinite relaxation and regularized lattice decoding can be interpreted as outcomes of
LDR [47,48].

In our development, we found that the homotopy algorithm has a structure favorable for deep
unfolding. This motivates to consider deep unfolding of our homotopy algorithm. Our deep un-
folding involves mild untying and structure modification, which means that the structure does not
change a lot. By empirical experience, our deep homotopy network is easy to train. Also our deep
homotopy network is trained to cater for different channels, rather than a fixed channel. Note that
the former is more preferable since it allows us to have the expensive training done offline; the
latter requires online training for every given channel, and the subsequent real-time computational
overheads may be significant.

The contributions of this work are summarized as follows.

1. As a new attempt to tackle the challenge of efficient high-performance MIMO detection, we pro-
pose a non-convex homotopy optimization method for one-bit ML MIMO detection under binary
symbol constellations. By extensive simulations, we show that the homotopy algorithm yields
considerably better detection performance (specifically, bit-error rate performance) than some
state-of-the-art algorithms. However it has a relatively high complexity requirement, compared
to the state-of-the-art.

2. We apply deep unfolding to the proposed homotopy algorithm to learn a better algorithm.
Simulation results show that the deep-unfolded homotopy algorithm has detection performance
comparable to the original homotopy algorithm, and it does so with a much lower complexity
requirement—20 layers, or iterations, in all of our tested MIMO settings. The deep-unfolded
homotopy algorithm also runs faster than the state-of-the-art algorithms.

3. While our initial focus is on one-bit MIMO detection, the proposed homotopy method is also
applicable to classical (unquantized) MIMO detection. Simulation results show that the homo-
topy algorithms (deep and non-deep) provide near-optimal detection performance, and the other
empirical observations are similar to those in the one-bit case.

We should discuss related works. In the decades of MIMO detection research, non-convex opti-
mization was considered; see, e.g., [49,50]. But the notion of homotopy optimization for attempting
to avoid poor local minima, as well as our non-convex continuous reformulation for binary opti-
mization, appear to have not been previously applied to MIMO detection. Also, our homotopy
method for binary optimization appears to have not been seen in the prior homotopy optimization
literature. Furthermore, the majority of the current deep MIMO detection studies consider the
classical case. Our deep unfolding design covers both the classical and one-bit MIMO cases.

For the sake of reproducible research, we have released the source code at
http://www.ee.cuhk.edu.hk/~wkma/mimo/ or at https://github.com/mjshao-cuhk/DeepHOTML.

4

2 Problem Statement

2.1 Model and ML Detection

Let us begin by posing our problem in its generic abstract form. Consider a data model

y = sgn(Hx+ v), (1)

where y ∈ {−1, 1}M is an observed data vector; x ∈ {−1, 1}N is a binary vector; sgn denotes the
element-wise sign function; H ∈ RM×N is a system matrix; v ∈ RM is element-wise independent
and identically distributed (i.i.d.) Gaussian noise, with mean zero and variance σ2. Our task is to
detect x from y, given that H and σ are known. We do so by pursuing the maximum-likelihood
(ML) detection approach—which guarantees the minimum error probability of detecting x under
the assumption of element-wise uniform i.i.d. x. Under the model (1), the ML detector takes the
form

x̂ML = arg min
x∈{−1,1}N

f(x) , −
M∑
i=1

log Φ

(
yih

T
i x

σ

)
, (2)

where Φ(t) =
∫ t
−∞

1√
2π
e−τ

2/2dτ , and hi denotes the ith row of H; see [16, 51]. The ML problem

(2) is a discrete optimization problem due to the binary constraint x ∈ {−1, 1}N , and a method
capable of finding x̂ML tractably—given any instance (y,H, σ)—appears to be unavailable. In fact,
it is computationally challenging to solve problem (2) exactly when the problem dimension N is
large; e.g., complete enumeration of all points in {−1, 1}N is impossible for large N . Our problem
is to find an efficient strategy to tackle problem (2).

The above problem arises in one-bit massive MIMO detection which has spurred great interest
recently. To describe it, consider an uplink multiuser MIMO scenario where multiple single-antenna
users simultaneously transmit information symbols to a massive MIMO base station (BS); and, to
reduce the hardware cost, the BS employs low-resolution ADCs. Assuming flat fading channels,
the signal model of the above scenario can be formulated as

yC = Q(HCxC + vC), (3)

where yC ∈ CMC is a receive vector whose ith element yC,i represents the complex baseband

received signal at the ith antenna of the BS; xC ∈ XNC
C is a transmit vector whose ith element

xC,i is the symbol transmitted by the ith user; MC and NC are the numbers of receive antennas
and users, respectively; XC ⊂ C is the symbol constellation set; HC ∈ CMC×NC is the MIMO
channel; Q denotes an element-wise quantization function; vC ∈ CMC is element-wise i.i.d. circular
Gaussian noise with mean zero and variance σ2C. Let us consider the case of one-bit quantization
Q(yC) = sgn(R{yC}) + j · sgn(I{yC}). Also we focus on an in-phase quadrature-phase binary
constellation XC = {±1± j}, which is 4-ary quadratic amplitude modulation (QAM) or quaternary
phase shift keying (QPSK) constellation. Under the aforementioned one-bit quantization and binary
constellation, the complex-valued model (3) can be rewritten as the real-valued model (1) by setting
(M,N) = (2MC, 2NC), σ2 = σ2C/2,

y =

[
R(yC)
I(yC)

]
,x =

[
R(xC)
I(xC)

]
,v =

[
R(vC)
I(vC)

]
,H =

[
R(HC) −I(HC)
I(HC) R(HC)

]
. (4)

By the above relation, the ML detector (2) applies to the one-bit MIMO model (3).

5

2.2 Some Aspects

Some basic nature of the ML problem (2) should be noted. First, the objective function f of
problem (2) is convex (this is mainly because − log Φ(x) is convex [52]). The convexity of f can be
leveraged to develop efficient approximate ML detectors. In [16], the authors considered a convex
sphere relaxation of the ML problem (2); specifically,

min
‖x‖2≤N

f(x), (5)

where ‖ · ‖ denotes the Euclidean norm. Second, it is natural to question whether we can reliably
perform MIMO detection from one-bit observations. From the one-bit model (1) and its ML
detector (2), it is intuitively unobvious why or whether the true vector x can be recovered from the
heavily quantized observation y. We provide a clue to this basic question by the following simple
result.

Fact 1 Suppose that

(a) h1, . . . ,hM are i.i.d.;

(b) the probability density function of the hi’s, denoted by q(h), is continuous on its support;

(c) the support of q(h) is RN .

Consider M →∞ such that

1

M
f(x)

P−→ f̃(x) , −E
[
log Φ

(
yhTx

σ

)]
, (6)

provided the expectation exists. Here,
P−→ denotes convergence in probability; y and h represent

random variables associated with the realizations yi’s and hi’s, respectively; the expectation E[·] is
taken with respect to y and h. Then, the minimizer of f̃(x) over RN is uniquely given by the true
binary vector in the signal model (1). It follows that the ML problem

min
x∈{−1,1}N

f̃(x)

has its solution uniquely given by the true binary vector.

The result in Fact 1 was first reported in [51, Lemma 2] for the case of i.i.d. Gaussian h and
constant Euclidean-norm x, and here we show a more general result. Before giving the proof, let
us first discuss the implications. Fact 1 suggests that if the number of antennas at the BS is very
large (true for massive MIMO), then the ML problem (2) may lead to correct recovery of the true
binary vector. In fact, this large-M recovery result holds not only for the ML problem, but also
for unconstrained relaxation of problem (2) (i.e., replacing the constraint {−1, 1}N by RN) and
the sphere relaxation in (5); it also holds if the true vector x in the signal model (1) is drawn
from a higher-order constellation set (or even RN). In addition, the requirement with the channel
distribution is quite general; e.g., it works for i.i.d. Gaussian channels, correlated Gaussian channels
(with respect to users), or other continuously distributed channels (with support RN).

Proof of Fact 1: Our proof is different from [51, Lemma 2], which uses stochastic orders. We
employ a more basic proof, taking proof ideas from the consistency property of ML estimation.

6

To avoid notation overlap, re-denote the true binary vector in the signal model (1) as x0. The
probability mass function of yi given hi and x0 is

p(yi|hi,x0) = Φ

(
yih

T
i x0

σ

)
, (7)

which can be shown from (1). We see that, for any x 6= x0,

f̃(x0)− f̃(x) = E
[
log

(
p(y|h,x)

p(y|h,x0)

)]
=

∑
y∈{−1,1}

∫
RN

log

(
p(y|h,x)

p(y|h,x0)

)
p(y|h,x0)q(h)dh

≤
∑

y∈{−1,1}

∫
RN

(
p(y|h,x)

p(y|h,x0)
− 1

)
p(y|h,x0)q(h)dh

= 0,

where the inequality is due to log(t) ≤ t−1. The above inequality implies that x0 is a minimizer of
f̃(x) over RN . To show that x0 is the unique minimizer, note that equality in the above equation
holds if and only if p(y|h,x) = p(y|h,x0) for every y ∈ {−1, 1} and h ∈ RN . The latter condition
implies

hTx = hTx0, for every h ∈ RN ;

this is seen from (7) (the monotonicity of Φ should also be noted). Clearly the above equation does
not hold for any x 6= x0, which means that there does not exist x 6= x0 such that f̃(x) = f̃(x0).
The proof is complete. �

3 A Homotopy Optimization Method

3.1 The Main Idea

Our strategy for tackling the ML problem (2) hinges on a very recently introduced penalty ap-
proach [46]. Consider a penalty, and possibly approximate, formulation of problem (2)

(Pλ) min
x∈[−1,1]N

Fλ(x) , f(x)− λ‖x‖2, (8)

for a given parameter λ ≥ 0. Intuitively, the idea is to encourage large value with every x2i by
imposing the penalty term −λ‖x‖2 in the objective, on the one hand, and limit x2i ≤ 1 on the other
hand. In doing so, the optimal solution to problem (8) should be forced to x2i = 1, or xi ∈ {−1, 1},
if we apply a large λ. In fact, under a mild assumption, this intuition is correct:

Theorem 1 (a rephrased version of Theorem 2 in [46]) Let f be a twice differentiable func-
tion, not necessarily the one in (2), and consider the corresponding problems in (2) and (8). Let
Lf > 0 be a Lipschitz constant of the gradient of f on [−1, 1]N , which must exist for twice differ-
entiable f . For any λ > Lf/2, it holds that1

1As a technical remark, Theorem 2 in [46] only showed statement (a) of Theorem 1. Statements (b)–(c) are
straightforward corollaries of statement (a).

7

(a) any locally optimal solution to problem (8) lies in {−1, 1}N ;

(b) any globally optimal solution to problem (8) is also that to problem (2);

(c) if x is a stationary point of problem (8) and x does not lie in {−1, 1}N , then x must be either
a local maximum or a saddle point.

Hence, for a sufficiently large λ, we can employ problem (8) as an equivalent formulation of the
ML problem (2).

As the main benefit, the penalty formulation (8) turns the discrete ML problem into a contin-
uous, and convex constrained, optimization problem. As a result, we can use methods, such as the
descent-based methods, to efficiently compute a stationary point of problem (8) (and hopefully a
locally optimal solution to it). But we should also note that the penalty term −λ‖x‖2 in problem
(8) makes the problem non-convex, and a descent-based algorithm can converge to a poor local
minimum.

Algorithm 1 A homotopy strategy for tackling problem (2)

1: given an initial penalty parameter λ0 ≥ 0 and a starting point x0

2: k = 0
3: repeat
4: k = k + 1
5: set λk as increased version of λk−1
6: run a descent-based algorithm, with xk−1 as the starting point, to compute a stationary

point of problem (Pλk) in (8), and store the solution obtained as xk

7: until λk is larger than a pre-specified threshold.
8: output xk

As an attempt to circumvent local minima, we consider the following strategy. Problem (8) for
λ = 0, or problem (P0), is convex. This gives an intuition that problem (Pλ) in (8) should be easy
for small λ, and hard for large λ. It is therefore natural to consider the optimization strategy in
Algorithm 1, where we progressively increase λ, or the difficulty of the problem. Also, and just
as important, we use the previous solution xk−1 in an effort to find a good solution to problem
(Pλk). Imagine this: If xk−1 is a globally optimal solution to problem (Pλk−1

) and the change of
λk relative to λk−1 is small, then the optimization landscape may undergo only mild changes, and
a descent-based algorithm starting with xk−1 may “easily” descend to a close-by globally optimal
solution to problem (Pλk). Thus we may be able to find the ML solution by tracing a solution path
of problem (Pλ), from small λ to large λ. We give the reader more insight by pictorially illustrating
the above described idea in Fig. 1, and by displaying the landscape of a 2D instance of problem
(Pλ) in Fig. 2.

To demonstrate the benefits of the above optimization strategy, we show a simulation result
here. We consider one-bit MIMO detection with (M,N) = (256, 48). We perform detection by
tackling the ML problem (2) via formulation (8), either with a fixed λ or with the progressively
increasing λ strategy in Algorithm 1. The results are shown in Fig. 3. We observe that the
progressively increasing λ strategy leads to better bit-error rate performance than fixing λ. In
particular, using a large fixed λ yields unsatisfactory results, most likely due to convergence to
poor local minima. Using a smaller fixed λ mitigates the undesirable effects, but doing so also
weakens its approximation accuracy relative to the ML.

8

-1.5 -1 -0.5 0 0.5 1 1.5

-3

-2

-1

0

1

2

3

4

(a) from x0 to x1, λ = λ1

-1.5 -1 -0.5 0 0.5 1 1.5

-3

-2

-1

0

1

2

3

4

(b) from x1 to x2, λ = λ2

-1.5 -1 -0.5 0 0.5 1 1.5

-3

-2

-1

0

1

2

3

4

(c) from x3 to x2, λ = λ3

Figure 1: Illustration of how the homotopy method works.

Algorithm 1 may be taxonomized into the class of homotopy optimizaton methods; see [40–45]
and the references therein. The principle of homotopy optimization is to first find a transformation,
or a homotopy map, that maps the original problem to another problem. That transformation
depends on a parameter, say, λ. For large λ, the transformed problem is close to the original
problem but is hard to solve directly. For small λ, the transformed problem is easy to solve but
poorly approximates the original problem. Then, we seek to find a solution (possibly approximate)
to the original problem by attempting to trace the solution path of a sequence of such transformed
problems, from easy to hard and in a gradually changing fashion, e.g., by the routine we saw in
Algorithm 1 which is typical in homotopy methods.

Remark 1 (Related Work) We close this subsection by discussing the relationship of the pro-
posed homotopy formulation and the existing methods. For λ = 0, formulation (8) reduces to
convex box relaxation [3, 4, 7]. Thus, formulation (8) may be regarded as a non-convex enhance-
ment of box relaxation. Moreover, the negative square penalty −λ‖x‖2 used in formulation (8)
also appears in other contexts, such as low-density parity-check decoding [53] and one-bit precod-
ing [54], to force the solution closer to a binary vector. A subtle but important difference is that
the aforementioned studies often employ a fixed penalty parameter λ, while we use the homotopy
optimization strategy to progressively adjust λ.

9

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(a) λ = 0

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(b) λ = 2

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(c) λ = 4

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(d) λ = 6

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(e) λ = 8

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

=0

=3.5

=4

=6 =8

(f) solution path

Figure 2: An instance of the landscape of problem (Pλ) in (8), with N = 2. The contour is Fλ(x);
the gray area is the feasible set; the red circle is the optimal solution to problem (Pλ); the blue star
is the optimal ML solution; the instance is a randomly generated one for one-bit MIMO detection,
with M = 10, σ = 1.

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

progressive by Alg. 1

fixed =0 (or box relaxation)

fixed =1

fixed =10

fixed =100

fixed =1000

Figure 3: Performance of using formulation (8) to tackle the one-bit ML MIMO detection problem.

10

3.2 How to Choose the Penalty Sequence {λk}?

In the homotopy strategy in Algorithm 1, a crucial question is how the penalty parameter sequence
{λk} should be chosen. Having a small increase with λk at each iteration may allow us to follow the
solution path better, but it may take too many iterations to do so. Having a large increase with λk,
on the other hand, reduces the number of iterations but may also increase the risk of losing track
of the solution path. By our experience, a heuristically chosen {λk} works well—empirically. For
example, we may choose λk = λk−1c for some constant c > 1. But it is tempting to see whether
some theory-guided selection rule exists. Here we show one such rule by drawing a connection with
Lagrangian dual relaxation (LDR).

We start with studying an equivalent formulation of the ML problem (2)

f? = min
x∈D

f(x)

s.t. ‖x‖2 ≥ N
(9)

where D = [−1, 1]N denotes the problem domain, and f? the optimal value. We are interested in
the Lagrangian dual of the formulation in (9). Let

L(x, λ) = f(x) + λ(N − ‖x‖2)

be the Lagrangian of problem (9), and let

d(λ) = min
x∈D

L(x, λ) (10)

be the dual function. The dual problem of problem (9) is

d? = max
λ≥0

d(λ) (11)

where d? denotes the optimal value of problem (11). At this point, note that the minimization
problem in (10) is equivalent to the penalty formulation (8). Also, recall from the basic concepts of
Lagrangian duality that the dual problem (11) is convex, and the weak duality inequality f? ≥ d?
holds.

LDR is a method that exploits the dual problem to approximate the original problem; see,
e.g., [47,48]. It works by first finding the optimal solution to the dual problem (11), denoted herein
by λ?, and then finding the solution x to the minimization problem in (10) for λ = λ?. The duality
gap f? − d? provides strong indication of how well LDR approximates the original problem; the
smaller the gap is, the better LDR should be. For the problem at hand, we show that the LDR in
(11) is tight.

Theorem 2 Consider the same problem settings in Theorem 1. The primal-dual problem pair (9)
and (11) achieves zero duality gap f? − d? = 0.

Proof: Let λ̄ be any constant such that λ̄ > Lf/2. We have d? ≥ d(λ̄) = f?, where the equality
above is due to Theorem 1. This, together with f? ≥ d?, implies that f? = d?. �

There is a connection between the preceding homotopy strategy and the LDR here. Consider
finding the optimal solution to the dual problem (11) via the projected subgradient method [55],
given by

λk = max{0, λk−1 + µkg(λk−1)}, k = 1, 2, · · · (12)

11

Here, g(λ) denotes a subgradient of the dual function d at λ; µk is a step size (see the literature [55]
for step-size rules that guarantee that λk will converge to an optimal solution); λ0, the starting
point, is assumed to be non-negative. By the subgradient calculus [55], g(λ) is given by

g(λ) = N − ‖x̂λ‖2, (13)

where
x̂λ ∈ arg min

x∈D
L(x, λ). (14)

Putting (13)–(14) into (12), we can simplify the projected subgradient method (12) to

λk = λk−1 + µk(N − ‖x̂λk−1
‖2), k = 1, 2, · · · (15)

where we have used λ0 ≥ 0 and ‖x‖2 ≤ N for any x ∈ D. The above projected subgradient
method is seen to be closely related to the homotopy strategy in Algorithm 1: the former also
increases λk at each iteration, and it requires us to solve problem (14)—an equivalent of the
penalty formulation (8)—at each iteration. The challenge with realizing the projected subprojected
method is that problem (14) is non-convex. But we can substitute the globally optimal solution x̂λk
with an approximate solution, obtained by using x̂λk−1

to warm-start a descent-based algorithm.
The resulting (approximate) projected subgradient method will then be identical to the homotopy
strategy in Algorithm 1, with a clearly defined penalty update rule as shown in (15).

Let us summarize. In the homotopy strategy in Algorithm 1, we may choose λk by

λk = λk−1 + µk(N − ‖xk−1‖2), (16)

where {µk} is a standard step-size sequence in the subgradient method. It is interesting to observe
that if xk−1 is closer to {−1, 1}N , which implies a smaller N − ‖xk−1‖2, then the increase of λk
will be slowed down—which seems to make sense intuitively.

3.3 The Descent-Based Algorithm Used

We complete our design by specifying the descent-based algorithm in line 6 of Algorithm 1. The
constraint of problem (8) has a simple structure, and one can exploit such structure for efficient
optimization via structured optimization methods—such as the projected gradient method. Here
we employ a more advanced version of the projected gradient method which was numerically found
to be very fast in a different application [46].

The aforementioned method, called gradient extrapolated majorization-minimization (GEMM),
entails concepts from majorization-minimization and the accelerated project gradient method. Here
we concisely state the method, and the reader is referred to [46] for detailed descriptions such as
its intuitions and stationary-point convergence guarantee. Let ∇f(x) denote the gradient of a
differentiable function f at x. Given a starting point x0, the GEMM method iteratively runs

xt+1 = Π
(
zt + βt∇Gλ(zt|xt)

)
, t = 0, 1, 2, · · · (17)

Here, Π denotes the projection onto [−1, 1]N , which has a closed form Π(x) = [Π(x1), . . . ,Π(xN)]T ,

Π(x) =


−1, x < −1
x, −1 ≤ x ≤ 1
1, x > 1

;

12

Gλ(·|x̄) is a convex differentiable majorant of Fλ at x̄; ∇Gλ(x|x̄) is the gradient of Gλ(·|x̄) at x;
βt is a step size; zt is an extrapolated point of xt and takes the form

zt = xt + αt(x
t − xt−1) (18)

for some pre-specified extrapolation sequence {αt} (note that x−1 = x0). Simply speaking, the
GEMM method in (17) is an inexact majorization-minimization scheme that uses a one-iteration
accelerated projected gradient update as its inexact update. It reduces to the projected gradi-
ent method if we set αt = 0 and replace ∇Gλ(·|xt) with ∇Fλ(·), i.e., no extrapolation and no
majorization, respectively.

Let us examine the algorithmic details. We choose

Gλ(x|x̄) = f(x)− 2λ〈x̄,x− x̄〉 − λ‖x̄‖2 (19)

as our convex differentiable majorant (note that ‖x‖2 ≥ ‖x̄‖2 + 2〈x̄,x − x̄〉, and f is convex
differentiable). The gradient of the above majorant is

∇Gλ(x|x̄) = −
M∑
i=1

1

Φ(gTi x)

e−(g
T
i x)2/2

√
2π

gi − 2λx̄ (20)

where
gi =

yi
σ
hi, i = 1, . . . ,M. (21)

The step size βt is chosen such that the sufficient descent condition

Gλ(xt+1|xt) ≤ Gλ(zt|xt) + 〈∇Gλ(zt|xt),xt+1 − zt〉+
1

2βt
‖xt+1 − zt‖2 (22)

is satisfied. We use the backtracking line search [56] to find such a βt. The extrapolation sequence
{αt} is chosen as that of FISTA [56], given by

αt =
ξt−1 − 1

ξt
, ξt =

1 +
√

1 + 4ξ2t−1

2
, ξ−1 = 1. (23)

3.4 A Numerical Issue and Its Fix

We should mention a numerical issue with the gradient-based algorithm in the preceding subsection.
In the gradient expression in (20), observe that the term e−x

2/2 vanishes as |x| is very large. We
found that the occurrence of such vanishing instances can substantially slow down the convergence
speed of the gradient-based algorithm, and it may even lead to numerical instability. As a practical
trick, we get this around by over-estimating the noise variance, specifically, by replacing the original
σ with σ + σ0 for some fixed σ0 > 0. We found that this trick works empirically. On the other
hand, doing so means that we actually implement a mismatched ML detector

min
x∈{−1,1}N

−
M∑
i=1

log Φ

(
yih

T
i x

σ̂

)
, (24)

for some mismatched noise variance σ̂2. By our numerical experience, we do not see noticeable
performance degradation with the mismatched ML detector. We justify this by the following fact.

13

Fact 2 Consider the same settings as in Fact 1, but with the objective function f replaced by that in
(24). Suppose that the probability density function of h is Gaussian with mean zero and covariance
ρI for some ρ > 0. Then, the minimizer of the “large-M” objective function f̃(x) in (6) over
‖x‖2 = N is uniquely given by the true binary vector. It follows that the mismatched ML problem

min
x∈{−1,1}N

f̃(x)

has its solution uniquely given by the true binary vector. The above results hold for any σ̂2 > 0.

Fact 2 is a corollary of Lemma 2 in [51], which considers the no-mismatch case σ̂2 = σ2. Fact 2
suggests that, if the number of antennas at the BS is very large, the ML detector may be insensitive
to the mismatch of the noise variance.

Proof of Fact 2: First, we recall a basic result in stochastic orders [57]. Let ξ, υ be two
continuous random variables, and let φ : R→ R be a strictly increasing function. If

Prob{ξ ≥ t} ≤ Prob{υ ≥ t}, for all t, (25)

ξ and υ have unequal probability distributions, then we have E[φ(ξ)] > E[φ(υ)].
Second, we apply the above result to the problem at hand. Re-denote the true binary vector in

the signal model (1) as x0. Let x ∈ RN be any vector such that ‖x‖2 = N and x 6= x0, and let

ξ = hTx0, υ = hTx, φ(t) = log Φ(t/σ̂).

Note that φ is strictly increasing. It was shown in Lemma 2 in [51] that (25) holds, and ξ and υ
have unequal probability distributions. Consequently we have

−f̃(x0) = E[φ(hTx0)] > E[φ(hTx)] = −f̃(x),

and the minimum of f̃(x) over ‖x‖2 = N is attained at, and only at, x0. The proof is complete. �

4 Making the Homotopy Algorithm a Deep Learnt One

As mentioned in the Introduction, lately there has been growing interest in deep learning for MIMO
detection via the deep unfolding approach [28,29,37]. To employ deep unfolding, one first needs to
start with an existing algorithm that is iterative by nature. The deep unfolding approach sees each
iteration of the algorithm as a network layer, and it seeks to find a better network by untying some
of the existing algorithm’s parameters and learning those parameters from data. Additionally, or
alternatively, one may make the structure of each iteration more general, with the new structure
controlled by some parameters; and then we learn those parameters from data.

The homotopy algorithm in the preceding section is very suitable for deep unfolding. To put
into context, we first note that the homotopy algorithm in Algorithm 1, with the descent-based
algorithm given by the one in Section 3.3, contains two loops—one for the update of the penalty
parameter λk, another for the iterative process of the descent-based algorithm. But we can unfold
the two loops into one and write

xk+1 = Π(zk + βk∇Gλk(zk|xk)), (26)

14

for some appropriate αk, βk, λk; cf. Algorithm 1 and (17). By putting the derivation of ∇Gλ(x|x̄)
in (20) into (26), and recalling the expression of zk, we can represent the whole algorithm by

xk+1 = Π(zk + βkG
Tuk + 2βkλkx

k), (27a)

uk = Ψ(Gzk), (27b)

zk = xk + αk(x
k − xk−1), (27c)

where G = [g1, . . . , gM]T ; gi is defined in (21); Ψ(x) = [Ψ(x1), . . . ,Ψ(xN)]T ,

Ψ(x) =
1

Φ(x)

1√
2π
e−x

2/2.

As mentioned, deep unfolding sees each iteration in (27) as a network layer, and the whole iterative
process a deep network. Fig. 4(a) illustrates (27) in a network form. We see that Π and Ψ appear
as nonlinear activation functions; G, αk, βk, λk serve as weights.

We apply deep unfolding to (27) by untying αk, βk, λk, which are the extrapolation coefficient,
step size, and penalty parameter, respectively. This means that we want to learn, from data,
how the penalty parameters are adjusted. We should recall that the challenge with the homotopy
method lies in the selection of the penalty parameters, and now we use data-driven learning to tackle
the challenge. Similarly, we use data-driven learning to decide the step sizes and extrapolation. In
addition, we make the structure more general by adding element-wise weights and biases in (27b).
The network structure arising from the aforementioned untying and modification is given by

xk+1 = Π(zk + βkG
Tuk + γkx

k), (28a)

uk = Ψ(wk � (Gzk) + bk), (28b)

zk = xk + αk(x
k − xk−1), (28c)

where γk is the untied parameter of 2βkλk; wk, bk ∈ RM are a weight and bias, respectively; �
denotes the element-wise, or Hadamard, product. Fig. 4(b) illustrates the network structure of
(28). The set of parameters to learn at each layer is θk , {αk, βk, γk,wk, bk}.

(a) before deep unfolding (b) after deep unfolding

Figure 4: Illustration of the network structure.

In the above deep-unfolded homotopy algorithm, we do not give it a staring point x0. Instead
we learn a starting point. We generate x0 by

x0 = Π(W0y + b0), (29)

where W0 ∈ RN×M is a weight matrix and b0 ∈ RN is a bias; both are to be learnt. We let
θ0 = {W0, b0}.

15

Our training process is rather standard. The generative model y = sgn(Hx + v) in (1), or
more precisely, the complex model (3) and the subsequent complex-to-real conversion (4), is used
to generate a large number of training samples (xi,Hi,yi, σi)

R
i=1; note that R is the number of

samples, the xi’s are uniform i.i.d. generated, and the Hi’s are generated from a statistical channel
model such as the Rayleigh. The network parameters θ’s are obtained by applying stochastic
gradient descent to the empirical risk

R∑
i=1

‖xi − ϕ(yi,Hi, σi; Θ)‖2, (30)

where the function ϕ(y,H, σ; Θ) represents the input-output relationship of the deep network,
parameterized by Θ = (θk)

K
k=0; K is the number of layers.

Remark 2 We should also describe the big-O complexity of the deep-unfolded homotopy algorithm
in (28). In addition to the usual operations of floating-point +,−, x, /, log, exp, etc., the algorithm
also requires us to compute Φ; recall that Φ(t) =

∫ t
−∞

1√
2π
e−τ

2/2dτ is the cumulative distribution

of a standard Gaussian distribution. The computation of Φ takes definitely more than one floating-
point operations, although there exist highly specialized algorithms (e.g., erfc in MATLAB) for
efficient computation of Φ. In real-world implementations, one may build a dedicated operation for
Φ to efficiently implement the algorithm in (28). It can be verified that the per-iteration complexity
of the algorithm in (28) is O(M) for calling Φ, and O(MN) for the usual operations. Moreover,
the non-deep counterpart of (28) has the same big-O per-iteration complexity.

5 Variation for Classical MIMO Detection

The preceding concepts for one-bit MIMO detection can also be applied to classical MIMO detec-
tion. The latter considers the unquantized model

y = Hx+ v,

and the corresponding ML detector

x̂ML = arg min
x∈{−1,1}N

1
2‖y −Hx‖

2. (31)

The homotopy algorithm in Section 3 directly applies by changing f to 1
2‖y−Hx‖

2. Recalling the
algorithm representation in (26) and (28c), the homotopy algorithm for the classical MIMO case
has the form

xk+1 = Π(zk − βkHTHzk + βkH
Ty + 2βkλkx

k), (32a)

zk = xk + αk(x
k − xk−1); (32b)

(we obtain (32a) by applying ∇f(x) = HTHx −HTy to (19) and (26)). The step size βk can
be chosen as βk = 1/‖H‖22 where ‖ · ‖2 denotes the spectral norm; this is a standard method for
fulfilling the sufficient descent condition (22) when f is convex quadratic [56]. For the deep-unfolded
homotopy algorithm, we modify (32) as

xk+1 = Π(zk − βkHTHzk + ωkH
Ty + γkx

k), (33a)

zk = xk + αk(x
k − xk−1), (33b)

16

where αk, βk, ωk, γk are the parameters to learn. Note that we train only four parameters at each
layer (without counting the zeroth layer in (29)). The remaining details are essentially identical.
The per-iteration complexity of the algorithm in (33) is O(N2).

6 Simulation Results

Table 1: Summary of tested algorithms.

name algorithm, reference
1-bit or
classical

formulation, approach

HOTML homotopy algorithm in Sections 3 and 5 both ML, homotopy optimization

DeepHOTML
deep-unfolded homotopy algorithm in

Sections 4 and 5
both

ML, deep unfolding of
homotopy opt.

ZF zero-forcing detector both linear

nML near-ML detector [16] 1-bit ML, convex relaxation

nML,
two-stage

near-ML detector, then local exhaustive
search [16]

1-bit
ML, convex relaxation, local

search

GAMP
generalized approximate message

passing [18,19]
1-bit

Bayesian, approximate
message passing

MMSE DF
minimum-mean-square-error decision-feedback

detector
classical linear, decision feedback

LRA MMSE
DF

lattice reduction-aided MMSE DF detector [8] classical linear, lattice reduction

SD
sphere decoder, Schnorr-Euchner

implementation [1]
classical

ML, exact branch-and-bound
search

SDR
semidefinite relaxation, implemented by the

row-by-row method [58]
classical ML, convex relaxation

DetNet detection network [29] classical ML, deep unfolding

LAMA
large MIMO approximate message passing [12],

damping [59]
classical

Bayesian, approximate
message passing

In this section we show an extensive collection of numerical results to examine the performance
of the homotopy algorithm and its deep-unfolded adaptation proposed in the preceding sections,
and to provide benchmarking with the state-of-the-art algorithms.

6.1 Simulation and Algorithm Settings

We first describe how the simulations were prepared. The procedure is standard: We randomly
generate the signal according to the complex-valued MIMO model (3) for the one-bit MIMO case,
and its unquantized counterpart yC = HCxC + vC for the classical MIMO case. Then, we apply
the complex-to-real conversion in (4) to obtain an instance of (y,H,x). Unless otherwise specified,
the complex-valued channel HC is generated following the element-wise i.i.d. circular Gaussian
distribution with mean zero and unit variance (i.e., the Rayleigh channel). The transmit vector xC

is generated following the element-wise i.i.d. uniform distribution on the QPSK constellation set

17

{±1± j}. We define the SNR as

SNR = E[‖HCxC‖2]/E[‖vC‖2],

and we use the above formula to determine the noise variance σ2C (or its real counterpart σ2 = σ2C/2)
when the SNR is given. We use 100, 000 independently generated instances to evaluate the bit error
rates (BERs) of the algorithms under test. We also evaluate the computational complexities by
numerically counting the floating point operations (FLOPs) and also by measuring the actual
runtimes on our computer. For fairness, the evaluations were done on the same platform and on
the same computer; specifically, MATLAB 8.5, and a desktop computer with Intel i7-4770 processor
and 16GB memory.

Next, we provide the implementation details with our proposed algorithms. For convenience,
we name the homotopy algorithm in Section 3 Homotopy OpTimization ML (HOTML), and the
deep-unfolded homotopy algorithm in Section 4 DeepHOTML; the same convention applies to their
classical MIMO counterparts in Section 5. Let us first consider HOTML based on the representation
in Algorithm 1. We initialize the penalty parameter as λ0 = 0.01. We randomly initialize the
algorithm by uniformly generating x0 on [−1, 1]N . The update rule of λk is (16), with µk = 0.1/k
for the one-bit MIMO case and µk = 1/k for the classical MIMO case (a standard step-size rule in
subgradient methods). We stop Algorithm 1 when |λk−λk−1| ≤ 10−4. The descent-based algorithm
inside Algorithm 1, which is described in Section 3.3, is stopped when ‖xt+1−xt‖ ≤ 10−4 or when
the number of iterations exceeds a limit; that limit is 300 for the one-bit MIMO case, and 100 for
the classical MIMO case. For the remedy of the numerical issue discussed in Section 3.4, we set
σ0 = 0.5.

The implementation details with DeepHOTML, which are mostly with training, are as follows.
Unless otherwise specified, the number of network layers is K = 20. We implement the training
process by Tensorflow for Python [60]. The generation of training samples is exactly the same as the
signal generation described above. We use the ADAM stochastic gradient descent optimizer [61],
with exponentially decaying step sizes, for training: specifically, the initial step size is 0.001; the
step size decays by 0.9 for the one-bit case, and 0.95 for the classical MIMO case, once every 500
training iterations; each training iteration contains a batch of 500 training samples; we train the
network with 10, 000 iterations. In addition, for the one-bit MIMO case, we do the following: every
training sample has its SNR randomly drawn from a range of 5dB to 22dB, by uniform distribution;
the network parameters wi’s and bi’s are initialized as i.i.d. Gaussian random vectors with mean
zero and variance 0.01; we initialize βk = 0.01, γk = 0.001, αk = 0.5 for all k. For the classical
MIMO case the settings are similar, with the following differences: the SNR range is changed to
0dB to 18dB; we initialize βk = 0.01, ωk = −0.01, γk = 0.001, αk = 0.5 for all k.

The algorithms we benchmarked should also be mentioned. Table 1 provides a summary of the
tested algorithms. These algorithms either are some of the de facto standards in MIMO detection,
or are emerging methods. Some additional implementation details should be mentioned. We modify
nML [16] by changing its step-size rule to the backtracking line search, which is also used in HOTML
for one-bit MIMO detection; we found that this modification improves the performance of nML.
The number of iterations of GAMP is set to 20, as recommended in [18]. The number of iterations
of the row-by-row method [58] for SDR is 200. The number of iterations of LAMA is 100, the
same one used in [12]; also we stop LAMA if the difference of successive iterates is less than 10−4.
DetNet [29] has its source code available at https://github.com/neevsamuel/LearningToDetect.
We use that open source code to train DetNet under the recommended settings of 30 network layers,
50, 000 training iterations, and 3, 000 training samples for each training iteration.

18

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

ZF

HOTML

DeepHOTML, K=20

nML

nML, two-stage

GAMP

ML via exhaustive search

(a) M = 36, N = 8

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

ZF

HOTML

DeepHOTML, K=20

nML

nML, two-stage

GAMP

(b) M = 128, N = 32

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

ZF

HOTML

DeepHOTML, K=20

nML

nML, two-stage

GAMP

(c) M = 256, N = 48

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

ZF

HOTML

DeepHOTML, K=20

nML

nML, two-stage

GAMP

(d) M = 512, N = 96

Figure 5: One-bit MIMO detection performance.

Table 2: Complexity comparison with the one-bit MIMO detection algorithms.

M ×N HOTML DeepHOTML nML GAMP

128× 32

FLOPs 1.8862× 107 3.5187× 105 5.6806× 105 3.9269× 105

no. of Φ calc. 1.4555× 105 2.560× 103 4.5408× 103 2.560× 103

time (Sec.) 0.0589 0.0008 0.0027 0.0013

256× 48

FLOPs 5.1287× 107 1.03801× 106 1.4811× 106 1.1714× 106

no. of Φ calc. 2.6557× 105 5.120× 103 8.2565× 103 5.120× 103

time (Sec.) 0.0936 0.0014 0.0053 0.0021

512× 96

FLOPs 9.8408× 107 4.0913× 106 8.1409× 106 4.2355× 106

no. of Φ calc. 3.8483× 105 1.024× 104 2.0065× 104 1.024× 104

time (Sec.) 0.1308 0.0019 0.0088 0.0029

6.2 One-Bit MIMO Detection

In this subsection we examine the one-bit MIMO case. Fig. 5 shows the BERs of the tested
algorithms under different problem sizes (M,N). The benchmarked algorithms are the ZF detector,

19

which is the direct application of zero forcing in classic MIMO detection; nML and its two-stage
variant, which are based on sphere relaxation of the ML problem (2) (cf., problem (5)); and GAMP
which is the application of approximate message passing to one-bit MIMO detection. For the small
problem size case of (M,N) = (36, 8) in Fig. 5(a), we also provide a performance baseline by
evaluating the performance of the optimal ML detector via exhaustive search. We see from Fig. 5
that HOTML and DeepHOTML generally yield similar BER performance and achieve much better
BER performance than all the other benchmarked algorithms except the exhaustive search. It is
also observed that the performance of GAMP improves as the problem size increases.

Next, we compare the computational complexities of the tested algorithms. As mentioned in
Remark 2, HOTML and DeepHOTML require calling the function Φ(t) =

∫ t
−∞

1√
2π
e−τ

2/2dτ . Hence

we divide the operation counts into two, one as the FLOPs of the usual operations (+, −, ×, /,
log, exp), the other as the number of times Φ is called. Note that nML and GAMP also require
calling Φ 2, and their operational counts are done by the same way as above.

The complexity results are shown in Table 2. We use the same settings as in Fig. 5, with the SNR
fixed at 15dB. The fastest algorithm, as revealed by both the actual runtimes and operation counts,
is DeepHOTML. GAMP and nML are the second and third best, respectively; HOTML is the
slowest. It is worth noting that the computations of DeepHOTML are similar to those of a gradient
descent method with a fixed number of iterations (or layers) of 20—this is why DeepHOTML is fast.
The computations of HOTML are also similar to those of a gradient descent method. However,
as suggested by Table 2, HOTML uses considerably more iterations than DeepHOTML; in fact,
HOTML’s line search routine for determining the step sizes also costs a non-negligible amount of
computations.

It is also interesting to examine the BER performance of DeepHOTML under different number
of network layers. Fig. 6 shows the results; again, the settings are identical to those in Fig. 5. Note
that when we change the number of layers K, we train DeepHOTML for that particular K. We
observe from Fig. 6 is that the BER performance improves as the number of layers increases. Also,
it is encouraging to see that DeepHOTML with 10 layers can achieve BER performance similar to
that with 20 layers; DeepHOTML with 5 layers also looks good.

6.3 Classical MIMO Detection

Now we turn to the classical MIMO case. Fig. 7 shows the BERs of the tested algorithms for
the relatively easier instances of overdetermined MIMO channels (i.e., M > N). In the figures,
“lower bound” is the BER performance when there is no interference between symbols. Note
that SD is an optimal ML algorithm using some smart branch-and-bound search method, but
still it is computationally prohibitive when N is large. In our simulation, we only tested SD for
N = 40. Some observations are as follows. LAMA suffers from error floor effects for the case of
(M,N) = (60, 40), but it achieves near-optimal performance when the problem size increases to
(M,N) = (120, 80). LAMA appears to be favorable for large MIMO regimes, and we will see the
same behaviors later. Also, SDR, DetNet, HOTML and DeepHOTML all achieve near-optimal
performance.

In the BER plots in Fig. 8, we examine the more challenging instances of critically determined
channels (i.e., M = N). It is worth noting that DetNet, in its original paper [28,29], did not consider

2GAMP requires computing the expectation and variance of some posterior distribution, and this can be done by
computing Φ [19].

20

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

DeepHOTML, K=5

DeepHOTML, K=10

DeepHOTML, K=20

(a) M = 128, N = 32

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

DeepHOTML, K=5

DeepHOTML, K=10

DeepHOTML, K=20

(b) M = 256, N = 48

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

DeepHOTML, K=5

DeepHOTML, K=10

DeepHOTML, K=20

(c) M = 512, N = 96

Figure 6: One-bit MIMO detection performance of DeepHOTML under different numbers of layers.

the critically determined cases. We tried our best to train DetNet in critically determined cases, but
we were not too successful with obtaining satisfactory results as in the preceding overdetermined
cases. In the case of M = N = 400, we were even unable to complete the training; we found
that the training (implemented by Tensorflow) drew a very substantial amount of computational
resources. Fortunately, for DeepHOTML, we did not encounter the same problem; this is likely
because our DeepHOTML network has only 4 parameters per layer (without counting the 0th layer
in (29)). Also, note that we did not run SDR for the case of M = N = 400; although SDR is
known to have polynomial-time complexity, it is still too expensive to run SDR when the problem
size is very large. We observe that DetNet does not perform well, LAMA performs well only when
the problem sizes are large, and SDR, HOTML and DeepHOTML consistently show near-optimal
performance; DeepHOTML performs slightly worse for the small size M = N = 40 case.

In addition to the i.i.d. Gaussian channel simulations shown above, we are also interested in
correlated MIMO channels, specifically,

HC = R1/2
r H̃R

1/2
t ,

21

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

HOTML

DeepHOTML

DetNet

LAMA

ZF

MMSE DF

LRA MMSE DF

SD

SDR

lower bound

9.5 10 10.5
10-4

10-3

(a) M = 60, N = 40

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

HOTML

DeepHOTML

DetNet

LAMA

ZF

MMSE DF

LRA MMSE DF

SDR

lower bound

9.5 10 10.5
10-4

10-3

(b) M = 120, N = 80

Figure 7: Classical MIMO detection performance for overdetermined channel cases.

where H̃ is element-wise i.i.d. circular Gaussian with mean zero and unit variance; Rr and Rt are
the spatial correlation matrices at the receiver and transmitter, respectively, and they are modeled
as

[Rr]i,j =

{
ri−j , if i ≤ j
[Rr]

∗
i,j , otherwise

for |r| ≤ 1 [62]. In the simulation below, we set r = 0.2. Also, DeepHOTML is trained under the
SNR range of 18dB to 34dB. The other simulation settings are same as the i.i.d. Gaussian case
above. It is worth noting that LAMA works poorly for correlated channels because it exploits the
assumption of i.i.d. Gaussian channels [12]. To mend this issue we apply the recently proposed
damping technique in approximate message passing [59] to LAMA; the damping rate is damp =
0.7. LAMA with damping leads to a slower convergence by our empirical experience (the per-
iteration complexity is almost twice of that of the original LAMA), but the performance is improved
significantly. Fig. 9 shows the BER results for different problem sizes. It is seen that both HOTML
and DeepHOTML achieve near-optimal detection performance; SDR is only slightly worse; LAMA
with damping works well in the large-scale case in Fig. 9(b), but suffers from error floor effects for
the moderate size case in Fig. 9(a).

In Fig. 10 we compare the complexities of the tested algorithms by examining their FLOPs
under various problem sizes N ; the SNR is fixed at 10dB. We see that DeepHOTML stands as the
fastest algorithm in general.

We finish by showing the BER performance of DeepHOTML for different numbers of layers
in Fig. 11. The results indicate that DeepHOTML can achieve promising performance with the
number of layers as small as 10.

7 Conclusion

To conclude, we developed a homotopy optimization algorithm for efficient high-performance MIMO
detection under one-bit quantized or unquantized observations. We also studied the possibility of
using deep unfolding to enhance the performance of our homotopy algorithm. Our numerical

22

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)
HOTML

DeepHOTML

DetNet

LAMA

ZF

MMSE DF

LRA MMSE DF

SD

SDR

lower bound

11.5 12 12.5
10-4

10-3

(a) M = N = 40

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

HOTML

DeepHOTML

DetNet

LAMA

ZF

MMSE DF

LRA MMSE DF

SDR

lower bound

11.5 12 12.5
10-4

10-3

(b) M = N = 80

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)

HOTML

DeepHOTML

DetNet

LAMA

ZF

MMSE DF

LRA MMSE DF

SDR

lower bound

(c) M = N = 160

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)

HOTML

DeepHOTML

LAMA

ZF

MMSE DF

LRA MMSE DF

lower bound

(d) M = N = 400

Figure 8: Classical MIMO detection performance for critically determined channel cases.

results illustrated that the homotopy algorithms, non-deep and deep, achieve promising detection
performance. Also, the deep homotopy algorithm was found to be easy and stable to train for a
variety of MIMO settings, and its operational cost very competitive compared to those of many
existing MIMO detection methods. Our present study focused on binary symbol constellations,
and we hope that our endeavor would provide further insights into attacking other types of symbol
constellations. In addition it will be interesting to study the extension to the frequency-selective
fading scenario, which is much more challenging as revealed in studies such as [15].

References

[1] M. O. Damen, H. El Gamal, and G. Caire, “On maximum-likelihood detection and the search
for the closest lattice point,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2389–2402, 2003.

23

20 22 24 26 28 30 32 34 36 38 40

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)
HOTML

DeepHOTML

ZF

LRA MMSE DF

SDR

LAMA, damp=0.7

lower bound

(a) M = N = 80

20 22 24 26 28 30 32 34 36 38 40

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)

HOTML

DeepHOTML

ZF

LRA MMSE DF

SDR

LAMA, damp=0.7

lower bound

(b) M = N = 160

Figure 9: Classical MIMO detection performance for correlated channels.

50 100 150 200 250 300 350 400

N=M

104

105

106

107

108

109

F
lo

p
s
 C

o
u
n
t

SD

SDR

LAMA

DetNet

LRA MMSE DF

HOTML

DeepHOTML

Figure 10: Complexity comparison with the classical MIMO detection algorithms.

[2] J. Jaldén and B. Ottersten, “On the complexity of sphere decoding in digital communications,”
IEEE Trans. Signal Process., vol. 53, no. 4, pp. 1474–1484, 2005.

[3] P. H. Tan, L. K. Rasmussen, and T. J. Lim, “Constrained maximum-likelihood detection in
CDMA,” IEEE Trans. Commun., vol. 49, no. 1, pp. 142–153, 2001.

[4] A. Yener, R. D. Yates, and S. Ulukus, “CDMA multiuser detection: A nonlinear programming
approach,” IEEE Trans. Commun., vol. 50, no. 6, pp. 1016–1024, 2002.

[5] P. H. Tan and L. K. Rasmussen, “The application of semidefinite programming for detection
in CDMA,” IEEE J. Sel. Areas Commun., vol. 19, no. 8, pp. 1442–1449, 2001.

[6] W.-K. Ma, T. N. Davidson, K. M. Wong, Z.-Q. Luo, and P.-C. Ching, “Quasi-maximum-
likelihood multiuser detection using semi-definite relaxation with application to synchronous
CDMA,” IEEE Trans. Signal Process., vol. 50, no. 4, pp. 912–922, 2002.

24

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

DeepHOTML, K = 5

DeepHOTML, K = 10

DeepHOTML, K = 20

lower bound

(a) M = N = 80

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

DeepHOTML, K = 5

DeepHOTML, K = 10

DeepHOTML, K = 20

lower bound

(b) M = N = 160

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

10-4

10-3

10-2

10-1

100

B
it
 E

rr
o
r

R
a
te

 (
B

E
R

)

DeepHOTML, K = 5

DeepHOTML, K = 10

DeepHOTML, K = 20

lower bound

(c) M = N = 400

Figure 11: Classical MIMO detection performance of DeepHOTML under different numbers of
layers.

[7] C. Thrampoulidis, W. Xu, and B. Hassibi, “Symbol error rate performance of box-relaxation
decoders in massive MIMO,” IEEE Trans. Signal Process., vol. 66, no. 13, pp. 3377–3392,
2018.

[8] D. Wubben, D. Seethaler, J. Jalden, and G. Matz, “Lattice reduction,” IEEE Signal Process.
Mag., vol. 28, no. 3, pp. 70–91, 2011.

[9] J. Luo, K. R. Pattipati, P. K. Willett, and F. Hasegawa, “Near-optimal multiuser detection in
synchronous CDMA using probabilistic data association,” IEEE Commun. Lett., vol. 5, no. 9,
pp. 361–363, 2001.

[10] P. Fertl, J. Jaldén, and G. Matz, “Performance assessment of MIMO-BICM demodulators
based on mutual information,” IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1366–1382,
2011.

25

[11] A. Maleki, L. Anitori, Z. Yang, and R. G. Baraniuk, “Asymptotic analysis of complex LASSO
via complex approximate message passing (CAMP),” IEEE Trans. Inf. Theory, vol. 59, no. 7,
pp. 4290–4308, 2013.

[12] C. Jeon, R. Ghods, A. Maleki, and C. Studer, “Optimal data detection in large MIMO,”
arXiv:1811.01917, 2018.

[13] S. Yang and L. Hanzo, “Fifty years of MIMO detection: The road to large-scale MIMOs,”
IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 1941–1988, 2015.

[14] C. Risi, D. Persson, and E. G. Larsson, “Massive MIMO with 1-bit ADC,” arXiv:1404.7736,
2014.

[15] C. Studer and G. Durisi, “Quantized massive MU-MIMO-OFDM uplink,” IEEE Trans. Com-
mun., vol. 64, no. 6, pp. 2387–2399, 2016.

[16] J. Choi, J. Mo, and R. W. Heath, “Near maximum-likelihood detector and channel estimator
for uplink multiuser massive MIMO systems with one-bit ADCs,” IEEE Trans. Commun.,
vol. 64, no. 5, pp. 2005–2018, 2016.

[17] Y.-S. Jeon, N. Lee, S.-N. Hong, and R. W. Heath, “One-bit sphere decoding for uplink massive
MIMO systems with one-bit ADCs,” IEEE Trans. Wireless Commun., vol. 17, no. 7, pp. 4509–
4521, 2018.

[18] S. Wang, Y. Li, and J. Wang, “Multiuser detection for uplink large-scale MIMO under one-bit
quantization,” in Proc. IEEE Int. Conf. Commun. (ICC), 2014, pp. 4460–4465.

[19] C.-K. Wen, C.-J. Wang, S. Jin, K.-K. Wong, and P. Ting, “Bayes-optimal joint channel-and-
data estimation for massive MIMO with low-precision ADCs,” IEEE Trans. Signal Process.,
vol. 64, no. 10, pp. 2541–2556, 2015.

[20] S.-N. Hong, S. Kim, and N. Lee, “A weighted minimum distance decoding for uplink multiuser
MIMO systems with low-resolution ADCs,” IEEE Trans. Commun., vol. 66, no. 5, pp. 1912–
1924, 2017.

[21] Y. Cho and S.-N. Hong, “One-bit successive-cancellation soft-output (oss) detector for uplink
MU-MIMO systems with one-bit ADCs,” IEEE Access, vol. 7, pp. 27 172–27 182, 2019.

[22] D. Kim, S.-N. Hong, and N. Lee, “Supervised-learning for multi-hop MU-MIMO communica-
tions with one-bit transceivers,” IEEE J. Sel. Areas Commun., vol. 37, no. 11, pp. 2559–2572,
2019.

[23] D. Plabst, J. Munir, A. Mezghani, and J. A. Nossek, “Efficient non-linear equalization for 1-
bit quantized cyclic prefix-free massive MIMO systems,” in Proc. IEEE 15th Int. Symposium
Wireless Commun. Syst. (ISWCS), 2018.

[24] S. H. Mirfarshbafan, M. Shabany, S. A. Nezamalhosseini, and C. Studer, “Algorithm and VLSI
design for 1-bit data detection in massive MIMO-OFDM,” IEEE Open J. Circuits Syst., vol. 1,
pp. 170–184, 2020.

26

[25] M. Shao and W.-K. Ma, “Divide and conquer: One-bit MIMO-OFDM detection by inexact
expectation maximization,” to appear in Proc. IEEE Int. Conf. Acoustics, Speech and Signal
Process. (ICASSP), 2021.

[26] T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE
Trans. Cognitive Commun. Network., vol. 3, no. 4, pp. 563–575, 2017.

[27] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, “Learning to optimize:
Training deep neural networks for interference management,” IEEE Trans. Signal Process.,
vol. 66, no. 20, pp. 5438–5453, 2018.

[28] N. Samuel, T. Diskin, and A. Wiesel, “Deep MIMO detection,” in Proc. 2017 IEEE Int.
Workshop Signal Process. Advances Wireless Commun. (SPAWC), 2017.

[29] N. Samuel, T. Diskin, and A. Wiesel, “Learning to detect,” IEEE Trans. Signal Process.,
vol. 67, no. 10, pp. 2554–2564, May 2019.

[30] S. Takabe, M. Imanishi, T. Wadayama, R. Hayakawa, and K. Hayashi, “Trainable projected
gradient detector for massive overloaded MIMO channels: Data-driven tuning approach,”
IEEE Access, vol. 7, pp. 93 326–93 338, 2019.

[31] V. Corlay, J. J. Boutros, P. Ciblat, and L. Brunel, “Multilevel MIMO detection with deep
learning,” in Proc. 52nd Asilomar Conf. Signals, Systems, Comput., 2018, pp. 1805–1809.

[32] X. Tan, W. Xu, K. Sun, Y. Xu, Y. Be’ery, X. You, and C. Zhang, “Improving massive MIMO
message passing detectors with deep neural network,” IEEE Trans. Veh. Technol., vol. 69,
no. 2, pp. 1267–1280, 2020.

[33] H. He, C. Wen, S. Jin, and G. Y. Li, “Model-driven deep learning for MIMO detection,” IEEE
Trans. Signal Process., vol. 68, pp. 1702–1715, 2020.

[34] M. Mohammadkarimi, M. Mehrabi, M. Ardakani, and Y. Jing, “Deep learning-based sphere
decoding,” IEEE Trans. Wireless Commun., vol. 18, no. 9, pp. 4368–4378, 2019.

[35] G. J. Gibson, S. Siu, and C. Cowen, “Multilayer perceptron structures applied to adaptive
equalisers for data communications,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Pro-
cess. (ICASSP), 1989, pp. 1183–1186.

[36] S. Chen, B. Mulgrew, and P. M. Grant, “A clustering technique for digital communications
channel equalization using radial basis function networks,” IEEE Trans. Neural Netw,, vol. 4,
no. 4, pp. 570–590, 1993.

[37] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in Proc. Int. Conf.
Machine Learning, 2010, pp. 399–406.

[38] P. Sprechmann, A. M. Bronstein, and G. Sapiro, “Learning efficient sparse and low rank
models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1821–1833, 2015.

[39] X. Chen, J. Liu, Z. Wang, and W. Yin, “Theoretical linear convergence of unfolded ista and
its practical weights and thresholds,” in Proc. Advances Neural Inf. Process. Systems, 2018,
pp. 9061–9071.

27

[40] Z. Wu, “The effective energy transformation scheme as a special continuation approach to
global optimization with application to molecular conformation,” SIAM J. Opt., vol. 6, no. 3,
pp. 748–768, 1996.

[41] D. M. Dunlavy and D. P. O’Leary, “Homotopy optimization methods for global optimization,”
Report SAND2005-7495, Sandia National Laboratories, 2005.

[42] L. Xiao and T. Zhang, “A proximal-gradient homotopy method for the sparse least-squares
problem,” SIAM J. Optim., vol. 23, no. 2, pp. 1062–1091, 2013.

[43] H. Mobahi and J. W. Fisher, “On the link between gaussian homotopy continuation and
convex envelopes,” in Proc. Int. Workshop Energy Minimization Methods in Computer Vision
and Pattern Recognit. Springer, 2015, pp. 43–56.

[44] E. Hazan, K. Y. Levy, and S. Shalev-Shwartz, “On graduated optimization for stochastic
non-convex problems,” in Proc. Int. Conf. Machine Learning, vol. 48, 2016, pp. 1833–1841.

[45] A. Anandkumar, Y. Deng, R. Ge, and H. Mobahi, “Homotopy analysis for tensor PCA,” in
Proc. Machine Learning Research, vol. 65, 2017, pp. 79–104.

[46] M. Shao, Q. Li, W.-K. Ma, and A. M.-C. So, “A framework for one-bit and constant-envelope
precoding over multiuser massive MISO channels,” IEEE Trans. Signal Process., vol. 67, no. 20,
pp. 5309–5324, 2019.

[47] S. Poljak, F. Rendl, and H. Wolkowicz, “A recipe for semidefinite relaxation for (0, 1)-quadratic
programming,” J. Global Optim., vol. 7, no. 1, pp. 51–73, 1995.

[48] J. Pan, W.-K. Ma, and J. Jalden, “MIMO detection by Lagrangian dual maximum-likelihood
relaxation: Reinterpreting regularized lattice decoding,” IEEE Trans. Signal Process., vol. 62,
no. 2, pp. 511–524, 2013.

[49] S. D. Blunt and K. Ho, “An iterative approximate MAP symbol estimator for uncoded syn-
chronous CDMA,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp. 1663–1673, 2005.

[50] H. Liu, M.-C. Yue, A. M.-C. So, and W.-K. Ma, “A discrete first-order method for large-scale
MIMO detection with provable guarantees,” in Proc. 2017 IEEE Int. Workshop Signal Process.
Advances Wireless Commun. (SPAWC), 2017.

[51] J. Choi, D. J. Love, D. R. Brown, and M. Boutin, “Quantized distributed reception for MIMO
wireless systems using spatial multiplexing,” IEEE Trans. Signal Process., vol. 63, no. 13, pp.
3537–3548, 2015.

[52] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[53] X. Liu and S. C. Draper, “The ADMM penalized decoder for LDPC codes,” IEEE Trans. Inf.
Theory, vol. 62, no. 6, pp. 2966–2984, June 2016.

[54] O. Castañeda, S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and C. Studer, “1-bit massive
MU-MIMO precoding in VLSI,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 7, no. 4, pp.
508–522, 2017.

28

[55] S. Boyd, L. Xiao, and A. Mutapcic, Subgradient Methods. Lecture Notes of EE392o, Stanford
University, Autumn Quarter 2003–2004.

[56] A. Beck, First-Order Methods in Optimization. Philadelphia, PA, USA: SIAM, 2017, vol. 25.

[57] M. Shaked and J. G. Shanthikumar, Stochastic Orders. Springer Science & Business Media,
2007.

[58] H.-T. Wai, W.-K. Ma, and A. M.-C. So, “Cheap semidefinite relaxation MIMO detection using
row-by-row block coordinate descent,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal
Process. (ICASSP), 2011, pp. 3256–3259.

[59] S. Rangan, P. Schniter, A. K. Fletcher, and S. Sarkar, “On the convergence of approximate
message passing with arbitrary matrices,” IEEE Trans. Inf. Theory, vol. 65, no. 9, pp. 5339–
5351, 2019.

[60] M. Abadi et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed sys-
tems,” arXiv:1603.04467, 2016.

[61] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. 3rd Int.
Conf. Learn. Representations, 2014.

[62] S. L. Loyka, “Channel capacity of MIMO architecture using the exponential correlation ma-
trix,” IEEE Commun. Lett., vol. 5, no. 9, pp. 369–371, 2001.

29

