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Lecture 9: Kronecker Product

• Kronecker product and properties

• vectorization

• Kronecker sum
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Motivating Problem: Matrix Equations

• Problem: given A, B, find an X such that

AX = B. (∗)

– an easy problem; if A has full column rank and (∗) has a solution, the solution
is merely X = A†B.

• Question: but how about matrix equations like

– AX+XB = C,

– A1XB1 +A2XB2 = C,

– AX+YB = C, X,Y both being unknown?

• such matrix equations can be tackled via matrix tools arising from the Kronecker
product
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Kronecker Product

The Kronecker product of A and B is defined as

A⊗B =


a11B a12B . . . a1nB
a21B a22B a2nB

... . . . ...
am1B am2B . . . amnB

 .
• Example: let a ∈ Rm, b ∈ Rm. By definition,

a⊗ b =


a1b
a2b

...
amb


Note that, since

baT = [ a1b, a2b, . . . , amb ],

a⊗ b is a column-by-column concatenation of the outer product baT .
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Properties

Elementary properties:

1. A⊗ (αB) = (αA)⊗B.

2. (A+B)⊗C = A⊗C+B⊗C, A⊗ (B+C) = A⊗B+A⊗C (distributive)

3. A⊗ (B⊗C) = (A⊗B)⊗C (associativity).

4. 0mn = 0m⊗ 0n, Imn = Im⊗ In; 0n and In are n×n zero and identity matrices.

5. (A⊗B)T = AT ⊗BT , (A⊗B)H = AH ⊗BH.

6. there exist permutation matrices U1 and U2 such that

U1(A⊗B)U2 = B⊗A.

Note: Kronecker product is not commutative; i.e., A ⊗ B 6= B ⊗ A in general.
Property 6 above is a weak version of commutativity.
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More Properties

Property 9.1 (mixed product rule).

(A⊗B)(C⊗D) = (AC)⊗ (BD),

for A, B, C, D of appropriate matrix dimensions.

Some properties from Property 9.1:

1. if A ∈ Rm×m and B ∈ Rn×n are nonsingular, then

(A⊗B)−1 = A−1 ⊗B−1

– proof: (A−1 ⊗B−1)(A⊗B) = (A−1A)⊗ (B−1B) = Im ⊗ In = Imn.

2. if Q1, Q2 are semi-orthogonal, then Q1 ⊗Q2 is semi-orthogonal.

– proof: (Q1⊗Q2)
T (Q1⊗Q2) = (QT

1 ⊗QT
2 )(Q1⊗Q2) = (QT

1Q1)⊗(QT
1Q1) =

I.
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Example: Hadamard Matrix

Consider an 2× 2 orthogonal matrix

H2 =
1√
2

[
1 1
1 −1

]
.

From H2, construct a 4× 4 matrix

H4 = H2 ⊗H2 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ,
and inductively, Hn = Hn/2 ⊗Hn/2 for any n that is a power of 2.

• is H4 orthogonal? Yes, because H4H
T
4 = (H2 ⊗H2)(H

T
2 ⊗HT

2 ) = (H2H
T
2 ⊗

H2H
T
2 ) = I.

• for the same reason, any Hn is orthogonal
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Kronecker Product and Eigenvalues

Theorem 9.1. Let A ∈ Rm×m, B ∈ Rn×n. Let {λi,xi}mi=1 be the set of m
eigen-pairs of A, and let {µi,yi}ni=1 be the set of n eigen-pairs of B. The set of
mn eigen-pairs of A⊗B is given by

{λiµj,xi ⊗ yj}i=1,...,m, j=1,...,n

Properties arising from Theorem 9.1 (for square A,B):

1. det(A⊗B) = [det(A)]n[det(B)]m.

2. tr(A⊗B) = tr(A)tr(B).

3. if A and B are (symmetric) PSD, then A⊗B is PSD.
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Vectorization

The vectorization of A ∈ Rm×n is defined as

vec(A) =


a1
a2
...
an

 ,
i.e., we stack the columns of a matrix to form a column vector.

Property 9.2. vec(AXB) = (BT ⊗A)vec(X).

Special cases of Property 9.2:

vec(AX) = (I⊗A)vec(X)

vec(XA) = (AT ⊗ I)vec(X)

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 8



Proof Sketch of Property 9.2

• write

X =

m∑
i=1

n∑
j=1

xijeie
T
j

• by letting ai be the ith column of A and bj the jth row of B,

vec(AXB) = vec

 m∑
i=1

n∑
j=1

xijAeie
T
j B

 =

m∑
i=1

n∑
j=1

xijvec(aib
T
j ).

• by noting

vec(aib
T
j ) = vec([ aibj1, . . . ,aibj,q ]) =

bj1ai...
bj,qai

 = bj ⊗ ai

we get vec(AXB) =
∑m

i=1

∑n
j=1 xijbj ⊗ ai = (BT ⊗A)vec(X).
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Kronecker Sum

• Problem: given A ∈ Rn×n, B ∈ Rm×m, C ∈ Rn×m, solve

AX+XB = C (∗)

with respect to X ∈ Rm×n.

• the above problem is a linear system. By vectorizing (∗), we get

(Im ⊗A)vec(X) + (BT ⊗ In)vec(X) = vec(C)

• the Kronecker sum of A ∈ Rn×n and B ∈ Rm×m is

A⊕B = (Im ⊗A) + (B⊗ In).

– if a unique solution to (∗) is desired, we wish to know conditions under which
A⊕B is nonsingular
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Kronecker Sum
Theorem 9.2. Let {λi,xi}ni=1 be the set of n eigen-pairs of A, and let {µi,yi}mi=1

be the set of m eigen-pairs of B. The set of mn eigen-pairs of A⊕B is given by

{λi + µj,yj ⊗ xi}i=1,...,n, j=1,...,m

Theorem 9.3. The matrix equations

AX+XB = C

has a unique solution for every given C if and only if

λi 6= −µj, for all i, j,

where {λi}ni=1 and {µi}mi=1 are the set of eigenvalues of A and B, resp.

• idea behind Theorem 9.3: if λi = −µj for some i, j, then from Theorem 9.2
there exists a zero eigenvalue for A⊕B.
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Kronecker Sum

• Consider
ATX+XA = C,

which is called the Lyapunov equations.

• from Theorem 9.3, the Lyapunov equations admit a unique solution if

λi 6= −λj, for all i, j.

• if A is PD such that λi > 0 for all i, the Lyapunov equations always have a
unique solution.
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