# ENGG5781 Matrix Analysis and Computations Lecture 9: Kronecker Product 

Wing-Kin (Ken) Ma

2022-23 First Term<br>Department of Electronic Engineering<br>The Chinese University of Hong Kong

## Lecture 9: Kronecker Product

- Kronecker product and properties
- vectorization
- Kronecker sum


## Motivating Problem: Matrix Equations

- Problem: given $\mathbf{A}, \mathbf{B}$, find an $\mathbf{X}$ such that

$$
\begin{equation*}
\mathbf{A X}=\mathbf{B} \tag{*}
\end{equation*}
$$

- an easy problem; if $\mathbf{A}$ has full column rank and $(*)$ has a solution, the solution is merely $\mathbf{X}=\mathbf{A}^{\dagger} \mathbf{B}$.
- Question: but how about matrix equations like
$-\mathbf{A X}+\mathbf{X B}=\mathbf{C}$,
$-\mathbf{A}_{1} \mathbf{X B}_{1}+\mathbf{A}_{2} \mathbf{X B}_{2}=\mathbf{C}$,
$-\mathbf{A X}+\mathbf{Y B}=\mathbf{C}, \mathbf{X}, \mathbf{Y}$ both being unknown?
- such matrix equations can be tackled via matrix tools arising from the Kronecker product


## Kronecker Product

The Kronecker product of $\mathbf{A}$ and $\mathbf{B}$ is defined as

$$
\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{cccc}
a_{11} \mathbf{B} & a_{12} \mathbf{B} & \ldots & a_{1 n} \mathbf{B} \\
a_{21} \mathbf{B} & a_{22} \mathbf{B} & & a_{2 n} \mathbf{B} \\
\vdots & & \ddots & \vdots \\
a_{m 1} \mathbf{B} & a_{m 2} \mathbf{B} & \ldots & a_{m n} \mathbf{B}
\end{array}\right]
$$

- Example: let $\mathbf{a} \in \mathbb{R}^{m}, \mathbf{b} \in \mathbb{R}^{m}$. By definition,

$$
\mathbf{a} \otimes \mathbf{b}=\left[\begin{array}{c}
a_{1} \mathbf{b} \\
a_{2} \mathbf{b} \\
\vdots \\
a_{m} \mathbf{b}
\end{array}\right]
$$

Note that, since

$$
\mathbf{b a}^{T}=\left[a_{1} \mathbf{b}, a_{2} \mathbf{b}, \ldots, a_{m} \mathbf{b}\right],
$$

$\mathbf{a} \otimes \mathbf{b}$ is a column-by-column concatenation of the outer product $\mathbf{b a} \mathbf{a}^{T}$.

## Properties

Elementary properties:

1. $\mathbf{A} \otimes(\alpha \mathbf{B})=(\alpha \mathbf{A}) \otimes \mathbf{B}$.
2. $(\mathbf{A}+\mathbf{B}) \otimes \mathbf{C}=\mathbf{A} \otimes \mathbf{C}+\mathbf{B} \otimes \mathbf{C}, \quad \mathbf{A} \otimes(\mathbf{B}+\mathbf{C})=\mathbf{A} \otimes \mathbf{B}+\mathbf{A} \otimes \mathbf{C}$ (distributive)
3. $\mathbf{A} \otimes(\mathbf{B} \otimes \mathbf{C})=(\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C}$ (associativity).
4. $\mathbf{0}_{m n}=\mathbf{0}_{m} \otimes \mathbf{0}_{n}, \mathbf{I}_{m n}=\mathbf{I}_{m} \otimes \mathbf{I}_{n} ; \mathbf{0}_{n}$ and $\mathbf{I}_{n}$ are $n \times n$ zero and identity matrices.
5. $(\mathbf{A} \otimes \mathbf{B})^{T}=\mathbf{A}^{T} \otimes \mathbf{B}^{T},(\mathbf{A} \otimes \mathbf{B})^{H}=\mathbf{A}^{H} \otimes \mathbf{B}^{H}$.
6. there exist permutation matrices $\mathbf{U}_{1}$ and $\mathbf{U}_{2}$ such that

$$
\mathbf{U}_{1}(\mathbf{A} \otimes \mathbf{B}) \mathbf{U}_{2}=\mathbf{B} \otimes \mathbf{A}
$$

Note: Kronecker product is not commutative; i.e., $\mathbf{A} \otimes \mathbf{B} \neq \mathbf{B} \otimes \mathbf{A}$ in general. Property 6 above is a weak version of commutativity.

## More Properties

Property 9.1 (mixed product rule).

$$
(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D})=(\mathbf{A C}) \otimes(\mathbf{B D})
$$

for $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ of appropriate matrix dimensions.
Some properties from Property 9.1:

1. if $\mathbf{A} \in \mathbb{R}^{m \times m}$ and $\mathbf{B} \in \mathbb{R}^{n \times n}$ are nonsingular, then

$$
(\mathbf{A} \otimes \mathbf{B})^{-1}=\mathbf{A}^{-1} \otimes \mathbf{B}^{-1}
$$

- proof: $\left(\mathbf{A}^{-1} \otimes \mathbf{B}^{-1}\right)(\mathbf{A} \otimes \mathbf{B})=\left(\mathbf{A}^{-1} \mathbf{A}\right) \otimes\left(\mathbf{B}^{-1} \mathbf{B}\right)=\mathbf{I}_{m} \otimes \mathbf{I}_{n}=\mathbf{I}_{m n}$.

2. if $\mathbf{Q}_{1}, \mathbf{Q}_{2}$ are semi-orthogonal, then $\mathbf{Q}_{1} \otimes \mathbf{Q}_{2}$ is semi-orthogonal.

- proof: $\left(\mathbf{Q}_{1} \otimes \mathbf{Q}_{2}\right)^{T}\left(\mathbf{Q}_{1} \otimes \mathbf{Q}_{2}\right)=\left(\mathbf{Q}_{1}^{T} \otimes \mathbf{Q}_{2}^{T}\right)\left(\mathbf{Q}_{1} \otimes \mathbf{Q}_{2}\right)=\left(\mathbf{Q}_{1}^{T} \mathbf{Q}_{1}\right) \otimes\left(\mathbf{Q}_{1}^{T} \mathbf{Q}_{1}\right)=$ I.


## Example: Hadamard Matrix

Consider an $2 \times 2$ orthogonal matrix

$$
\mathbf{H}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] .
$$

From $\mathbf{H}_{2}$, construct a $4 \times 4$ matrix

$$
\mathbf{H}_{4}=\mathbf{H}_{2} \otimes \mathbf{H}_{2}=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

and inductively, $\mathbf{H}_{n}=\mathbf{H}_{n / 2} \otimes \mathbf{H}_{n / 2}$ for any $n$ that is a power of 2 .

- is $\mathbf{H}_{4}$ orthogonal? Yes, because $\mathbf{H}_{4} \mathbf{H}_{4}^{T}=\left(\mathbf{H}_{2} \otimes \mathbf{H}_{2}\right)\left(\mathbf{H}_{2}^{T} \otimes \mathbf{H}_{2}^{T}\right)=\left(\mathbf{H}_{2} \mathbf{H}_{2}^{T} \otimes\right.$ $\left.\mathbf{H}_{2} \mathbf{H}_{2}^{T}\right)=\mathbf{I}$.
- for the same reason, any $\mathbf{H}_{n}$ is orthogonal


## Kronecker Product and Eigenvalues

Theorem 9.1. Let $\mathbf{A} \in \mathbb{R}^{m \times m}, \mathbf{B} \in \mathbb{R}^{n \times n}$. Let $\left\{\lambda_{i}, \mathbf{x}_{i}\right\}_{i=1}^{m}$ be the set of $m$ eigen-pairs of $\mathbf{A}$, and let $\left\{\mu_{i}, \mathbf{y}_{i}\right\}_{i=1}^{n}$ be the set of $n$ eigen-pairs of $\mathbf{B}$. The set of $m n$ eigen-pairs of $\mathbf{A} \otimes \mathbf{B}$ is given by

$$
\left\{\lambda_{i} \mu_{j}, \mathbf{x}_{i} \otimes \mathbf{y}_{j}\right\}_{i=1, \ldots, m, j=1, \ldots, n}
$$

Properties arising from Theorem 9.1 (for square $\mathbf{A}, \mathbf{B}$ ):

1. $\operatorname{det}(\mathbf{A} \otimes \mathbf{B})=[\operatorname{det}(\mathbf{A})]^{n}[\operatorname{det}(\mathbf{B})]^{m}$.
2. $\operatorname{tr}(\mathbf{A} \otimes \mathbf{B})=\operatorname{tr}(\mathbf{A}) \operatorname{tr}(\mathbf{B})$.
3. if $\mathbf{A}$ and $\mathbf{B}$ are (symmetric) $P S D$, then $\mathbf{A} \otimes \mathbf{B}$ is PSD .

## Vectorization

The vectorization of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$
\operatorname{vec}(\mathbf{A})=\left[\begin{array}{c}
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\vdots \\
\mathbf{a}_{n}
\end{array}\right]
$$

i.e., we stack the columns of a matrix to form a column vector.

## Property 9.2. $\operatorname{vec}(\mathbf{A X B})=\left(\mathbf{B}^{T} \otimes \mathbf{A}\right) \operatorname{vec}(\mathbf{X})$.

Special cases of Property 9.2:

$$
\begin{aligned}
\operatorname{vec}(\mathbf{A X}) & =(\mathbf{I} \otimes \mathbf{A}) \operatorname{vec}(\mathbf{X}) \\
\operatorname{vec}(\mathbf{X A}) & =\left(\mathbf{A}^{T} \otimes \mathbf{I}\right) \operatorname{vec}(\mathbf{X})
\end{aligned}
$$

## Proof Sketch of Property 9.2

- write

$$
\mathbf{X}=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j} \mathbf{e}_{i} \mathbf{e}_{j}^{T}
$$

- by letting $\mathbf{a}_{i}$ be the $i$ th column of $\mathbf{A}$ and $\mathbf{b}_{j}$ the $j$ th row of $\mathbf{B}$,

$$
\operatorname{vec}(\mathbf{A X B})=\operatorname{vec}\left(\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j} \mathbf{A} \mathbf{e}_{i} \mathbf{e}_{j}^{T} \mathbf{B}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j} \operatorname{vec}\left(\mathbf{a}_{i} \mathbf{b}_{j}^{T}\right) .
$$

- by noting

$$
\operatorname{vec}\left(\mathbf{a}_{i} \mathbf{b}_{j}^{T}\right)=\operatorname{vec}\left(\left[\mathbf{a}_{i} b_{j 1}, \ldots, \mathbf{a}_{i} b_{j, q}\right]\right)=\left[\begin{array}{c}
b_{j 1} \mathbf{a}_{i} \\
\vdots \\
b_{j, q} \mathbf{a}_{i}
\end{array}\right]=\mathbf{b}_{j} \otimes \mathbf{a}_{i}
$$

we get $\operatorname{vec}(\mathbf{A X B})=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j} \mathbf{b}_{j} \otimes \mathbf{a}_{i}=\left(\mathbf{B}^{T} \otimes \mathbf{A}\right) \operatorname{vec}(\mathbf{X})$.

## Kronecker Sum

- Problem: given $\mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{B} \in \mathbb{R}^{m \times m}, \mathbf{C} \in \mathbb{R}^{n \times m}$, solve

$$
\begin{equation*}
\mathbf{A X}+\mathbf{X B}=\mathbf{C} \tag{*}
\end{equation*}
$$

with respect to $\mathbf{X} \in \mathbb{R}^{m \times n}$.

- the above problem is a linear system. By vectorizing $(*)$, we get

$$
\left(\mathbf{I}_{m} \otimes \mathbf{A}\right) \operatorname{vec}(\mathbf{X})+\left(\mathbf{B}^{T} \otimes \mathbf{I}_{n}\right) \operatorname{vec}(\mathbf{X})=\operatorname{vec}(\mathbf{C})
$$

- the Kronecker sum of $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{B} \in \mathbb{R}^{m \times m}$ is

$$
\mathbf{A} \oplus \mathbf{B}=\left(\mathbf{I}_{m} \otimes \mathbf{A}\right)+\left(\mathbf{B} \otimes \mathbf{I}_{n}\right)
$$

- if a unique solution to $(*)$ is desired, we wish to know conditions under which $\mathbf{A} \oplus \mathbf{B}$ is nonsingular


## Kronecker Sum

Theorem 9.2. Let $\left\{\lambda_{i}, \mathbf{x}_{i}\right\}_{i=1}^{n}$ be the set of $n$ eigen-pairs of $\mathbf{A}$, and let $\left\{\mu_{i}, \mathbf{y}_{i}\right\}_{i=1}^{m}$ be the set of $m$ eigen-pairs of $\mathbf{B}$. The set of $m n$ eigen-pairs of $\mathbf{A} \oplus \mathbf{B}$ is given by

$$
\left\{\lambda_{i}+\mu_{j}, \mathbf{y}_{j} \otimes \mathbf{x}_{i}\right\}_{i=1, \ldots, n, j=1, \ldots, m}
$$

Theorem 9.3. The matrix equations

$$
\mathbf{A X}+\mathbf{X B}=\mathbf{C}
$$

has a unique solution for every given $\mathbf{C}$ if and only if

$$
\lambda_{i} \neq-\mu_{j}, \quad \text { for all } i, j,
$$

where $\left\{\lambda_{i}\right\}_{i=1}^{n}$ and $\left\{\mu_{i}\right\}_{i=1}^{m}$ are the set of eigenvalues of $\mathbf{A}$ and $\mathbf{B}$, resp.

- idea behind Theorem 9.3: if $\lambda_{i}=-\mu_{j}$ for some $i, j$, then from Theorem 9.2 there exists a zero eigenvalue for $\mathbf{A} \oplus \mathbf{B}$.


## Kronecker Sum

- Consider

$$
\mathbf{A}^{T} \mathbf{X}+\mathbf{X} \mathbf{A}=\mathbf{C}
$$

which is called the Lyapunov equations.

- from Theorem 9.3, the Lyapunov equations admit a unique solution if

$$
\lambda_{i} \neq-\lambda_{j}, \quad \text { for all } i, j .
$$

- if $\mathbf{A}$ is PD such that $\lambda_{i}>0$ for all $i$, the Lyapunov equations always have a unique solution.

