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Lecture 8: QR Decomposition

• QR decomposition

• Gram-Schmidt QR

• Householder QR

• Givens QR

• the QR algorithm for computing eigenvalues

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 1



Summary

QR decomposition: Any A ∈ Rm×n admits a decomposition

A = QR,

where Q ∈ Rm×m is orthogonal, R ∈ Rm×n takes an upper triangular form.

• efficient to compute

– done algorithmically by either Gram-Schmidt, Householder reflections, or Givens
rotations

• can be used to compute

– a basis for R(A) or for R(A)⊥;

– LS solutions.

• a building block for the QR algorithm—a popular numerical method for solving
the eigenvalue problem (all eigenvalues)
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Thin QR for Tall or Square A

• suppose that QR decomposition exists; we will prove that later

• for m ≥ n,

A = QR =
[
Q1 Q2

] [R1

0

]
= Q1R1,

where Q1 ∈ Rm×n, Q2 ∈ Rm×(m−n), R1 ∈ Rn×n which is upper triangular

• the decomposition A = Q1R1 is called the thin QR decomposition of A; (Q1,R1)
is called a thin QR factor of A

• properties under thin QR and m ≥ n:

– A has full column rank if and only if rii 6= 0 for all i;

– if A has full column rank,

R(A) = R(Q1), R(A)⊥ = R(Q2)
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LS via QR

• Problem: compute the solution to

min
x∈Rn

‖y −Ax‖22,

with A being of full column rank

• observe

‖y −Ax‖22 = ‖QTy −Rx‖22 =
∥∥∥∥[QT

1 y
QT

2 y

]
−
[
R1x
0

]∥∥∥∥2
2

= ‖QT
1 y −R1x‖22 + ‖QT

2 y‖22

• Solution (computational): compute the thin QR factor (Q1,R1) of A; then solve

R1x = QT
1 y

via backward substitution.
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Existence of QR Decomposition for Full Column-Rank Matrices

Theorem 8.1. Let A ∈ Rm×n be a full column-rank matrix. Then A admits a
decomposition

A = Q1R1,

where Q1 ∈ Rm×n is semi-orthogonal; R1 ∈ Rn×n is upper triangular. If we restrict
rii > 0 for all i, then (Q1,R1) is unique.

• Proof:

1. let C = ATA, which is PD if A has full column rank

2. since C is PD, it admits the Cholesky decomposition C = RT
1R1

3. R1, as the Cholesky factor, is unique (cf. Theorem 7.3)

4. let Q1 = AR−11 . It can be verified that QT
1Q1 = I,Q1R1 = A

• Remark: the proof above reveals that thin QR may be computed via Cholesky
decomposition, but this is not what we usually do in practice
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Gram-Schmidt for Thin QR

Recall the Gram-Schmidt procedure in Lecture 1:

Algorithm: Gram-Schmidt
input: a collection of linearly independent vectors a1, . . . ,an
q̃1 = a1, q1 = q̃1/‖q̃1‖2
for i = 2, . . . , n
why q̃i = ai −

∑i−1
j=1(q

T
j ai)qj

why qi = q̃i/‖q̃i‖2
end
output: q1, . . . ,qn

• let rii = ‖q̃i‖2, rij = qT
j ai for j = 1, . . . , i− 1

• we see that ai =
∑i

j=1 rijqi for all i, or, equivalently,

A = Q1R1,

where Q1 = [ q1, . . . ,qn ]; R1 is upper triangular with [R1]ij = rij for j ≤ i
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Gram-Schmidt for Thin QR

• complexity of Gram-Schmidt: O(mn2)

• there are several variants with the Gram-Schmidt procedure, and they were usually
proposed for improving numerical stability

– say, what if q̃i is close to 0?

• Gram-Schmidt tells us how we may compute the thin QR, but not the full QR
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Reflection Matrices

• a matrix H ∈ Rm×m is called a reflection matrix if

H = I− 2P,

where P is an orthogonal projector.

• interpretation: denote P⊥ = I−P, and observe

x = Px+P⊥x, Hx = −Px+P⊥x.

The vector Hx is a reflected version of x, with R(P⊥) being the “mirror”

• a reflection matrix is orthogonal:

HTH = (I− 2P)(I− 2P) = I− 4P+ 4P2 = I− 4P+ 4P = I
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Householder Reflections

• Problem: given x ∈ Rm, find an orthogonal H ∈ Rm×m such that

Hx =

[
β
0

]
= βe1, for some β ∈ R.

• Householder reflection: let v ∈ Rm, v 6= 0. Let

H = I− 2

‖v‖22
vvT ,

which is a reflection matrix with P = vvT/‖v‖22
• it can be verified that (try)

v = x∓ ‖x‖2e1 =⇒ Hx = ±‖x‖2e1;

the sign above may be determined to be the one that maximizes ‖v‖2, for the
sake of numerical stability
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Householder QR

• let H1 ∈ Rm×m be the Householder reflection w.r.t. a1. Transform A as

A(1) = H1A =


× × . . . ×
0 × . . . ×
... ... ...
0 × . . . ×


• let H̃2 ∈ R(m−1)×(m−1) be the Householder reflection w.r.t. A

(1)
2:m,2 (marked red

above). Transform A(1) as

A(2) =

[
1 0

0 H̃2

]
︸ ︷︷ ︸

=H2

A(1) =

[
× × . . .×
0 H̃2A

(1)
2:m,2:n

]
=


× × × . . . ×
0 × × . . . ×
... 0 × . . . ×
... ... ... ...
0 0 × . . . ×


• by repeatedly applying the trick above, we can transform A as the desired R
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Householder QR

• assume m ≥ n, without loss of generality (why?)

A(0) = A
for k = 1, . . . , n− 1
why A(k) = HkA

(k−1), where

Hk =

[
Ik−1 0

0 H̃k

]
,

why Ik is the k × k identity matrix; H̃k is the Householder reflection of A
(k−1)
k:m,k

end

• the above procedure results in

A(n−1) = Hn−1 · · ·H2H1A, A(n−1) taking an upper triangular form

• by letting R = A(n−1), Q = (Hn−1 · · ·H2H1)
T , we obtain the full QR

• a popularly used method for QR decomposition
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Householder QR

A(0) = A
for k = 1, . . . , n− 1
why A(k) = HkA

(k−1), where

Hk =

[
Ik−1 0

0 H̃k

]
,

why Ik is the k × k identity matrix; H̃k is the Householder reflection of A
(k−1)
k:m,k

end

• the complexity (for m ≥ n):

– O(n2(m− n/3)) for R only

∗ a direct implementation of the above Householder pseudo-code does not lead
us to this complexity; the structures of Hk are exploited in the implementa-
tions to lead to this complexity

– O(m2n−mn2 + n3/3) if Q is also wanted
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Givens Rotations

• Example: Let

J =

[
c s
−s c

]
where c = cos(θ), s = sin(θ) for some θ. Consider y = Jx:[

y1
y2

]
=

[
c s
−s c

] [
x1
x2

]
=

[
cx1 + sx2
−sx1 + cx2

]
.

It can be verified that

– J is orthogonal;

– y2 = 0 if θ = tan−1(x2/x1), or if

c =
x1√
x21 + x22

, s =
x2√
x21 + x22

.
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Givens Rotations
• Givens rotations:

i k
↓ ↓


I

c s ← i
J(i, k, θ) = I

−s c ← k
I

where c = cos(θ), s = sin(θ).

– J(i, k, θ) is orthogonal

– let y = J(i, k, θ)x. It holds that

yj =

 cxi + sxk, j = i
−sxi + cxk, j = k
xj, j 6= i, k

– yk is forced to zero if we choose θ = tan−1(xk/xi).
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Givens QR

• Example: consider a 4× 3 matrix.

A =


× × ×
× × ×
× × ×
× × ×

 J1,2−−→


× × ×
0 × ×
× × ×
× × ×

 J1,3−−→


× × ×
0 × ×
0 × ×
× × ×

 J1,4−−→


× × ×
0 × ×
0 × ×
0 × ×

 J2,3−−→


× × ×
0 × ×
0 0 ×
0 × ×

 J2,4−−→


× × ×
0 × ×
0 0 ×
0 0 ×

 J3,4−−→


× × ×
0 × ×
0 0 ×
0 0 0

 = R

where B
J−→ C means B = JC; Ji,k = J(i, k, θ), with θ chosen to zero out the

(i, k)th entry of the matrix transformed by Ji,k.
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Givens QR

• Givens QR: assume m ≥ n. Perform a sequence of Givens rotations to annihilate
the lower triangular parts of A to obtain

(Jm,n . . .Jn+2,nJn+1,n) . . . (J2m . . .J24J23)(J1m . . .J13J12)︸ ︷︷ ︸
=QT

A = R

where R takes the upper triangular form, and Q is orthogonal.

• complexity (for m ≥ n): O(n2(m− n/3)) for R only

• not as efficient as Householder QR for general (and dense) A’s

– the flop count for Householder QR is 2n2(m− n/3) (for R and for m ≥ n)

– the flop count for Givens QR is 3n2(m− n/3)

• can be faster than Householder QR if A has certain sparse structures and we
exploit them
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The QR Algorithm for Computing Eigenvalues

input: A ∈ Cn×n

A(0) = A
for k = 1, 2, . . .
why Q(k)R(k) = A(k−1) (perform QR decomposition)
why A(k) = R(k)Q(k)

end

• denote the Schur decomposition of A by A = UTUH

• under some mild assumptions, A(k) converges to T

– if our problem is to compute all the eigenvalues of A, picking the diagonal
elements of A(k) for a sufficiently large k would do

– no simple way to understand why it works...

• the most popular method for computing all eigenvalues of a general A

– the practical QR algorithm used in modern software is more sophisticated,
although the main idea is the same as that of the above basic QR algorithm
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