ENGG 5781 Matrix Analysis and Computations Lecture 8: QR Decomposition

Wing-Kin (Ken) Ma

2024–25 First Term

Department of Electronic Engineering The Chinese University of Hong Kong

Lecture 8: QR Decomposition

- QR decomposition
- Gram-Schmidt QR
- Householder QR
- Givens QR
- the QR algorithm for computing eigenvalues

Summary

QR decomposition: Any $\mathbf{A} \in \mathbb{R}^{m \times n}$ admits a decomposition

 $\mathbf{A}=\mathbf{Q}\mathbf{R},$

where $\mathbf{Q} \in \mathbb{R}^{m \times m}$ is orthogonal, $\mathbf{R} \in \mathbb{R}^{m \times n}$ takes an upper triangular form.

- efficient to compute
 - done algorithmically by either Gram-Schmidt, Householder reflections, or Givens rotations
- can be used to compute
 - a basis for $\mathcal{R}(\mathbf{A})$ or for $\mathcal{R}(\mathbf{A})^{\perp}$;
 - LS solutions.
- a building block for the QR algorithm—a popular numerical method for solving the eigenvalue problem (all eigenvalues)

Thin QR for Tall or Square ${\bf A}$

- suppose that QR decomposition exists; we will prove that later
- for $m \ge n$, $\mathbf{A} = \mathbf{Q}\mathbf{R} = \begin{bmatrix} \mathbf{Q}_1 & \mathbf{Q}_2 \end{bmatrix} \begin{bmatrix} \mathbf{R}_1 \\ \mathbf{0} \end{bmatrix} = \mathbf{Q}_1\mathbf{R}_1,$

where $\mathbf{Q}_1 \in \mathbb{R}^{m imes n}$, $\mathbf{Q}_2 \in \mathbb{R}^{m imes (m-n)}$, $\mathbf{R}_1 \in \mathbb{R}^{n imes n}$ which is upper triangular

- the decomposition $A = Q_1 R_1$ is called the thin QR decomposition of A; (Q_1, R_1) is called a thin QR factor of A
- properties under thin QR and $m \ge n$:
 - A has full column rank if and only if $r_{ii} \neq 0$ for all *i*;
 - if ${\bf A}$ has full column rank,

$$\mathcal{R}(\mathbf{A}) = \mathcal{R}(\mathbf{Q}_1), \qquad \mathcal{R}(\mathbf{A})^{\perp} = \mathcal{R}(\mathbf{Q}_2)$$

LS via QR

• Problem: compute the solution to

$$\min_{\mathbf{x}\in\mathbb{R}^n} \|\mathbf{y}-\mathbf{A}\mathbf{x}\|_2^2,$$

with ${\bf A}$ being of full column rank

• observe

$$\begin{aligned} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} &= \|\mathbf{Q}^{T}\mathbf{y} - \mathbf{R}\mathbf{x}\|_{2}^{2} = \left\| \begin{bmatrix} \mathbf{Q}_{1}^{T}\mathbf{y} \\ \mathbf{Q}_{2}^{T}\mathbf{y} \end{bmatrix} - \begin{bmatrix} \mathbf{R}_{1}\mathbf{x} \\ \mathbf{0} \end{bmatrix} \right\|_{2}^{2} \\ &= \|\mathbf{Q}_{1}^{T}\mathbf{y} - \mathbf{R}_{1}\mathbf{x}\|_{2}^{2} + \|\mathbf{Q}_{2}^{T}\mathbf{y}\|_{2}^{2} \end{aligned}$$

• Solution (computational): compute the thin QR factor $(\mathbf{Q}_1, \mathbf{R}_1)$ of \mathbf{A} ; then solve

$$\mathbf{R}_1 \mathbf{x} = \mathbf{Q}_1^T \mathbf{y}$$

via backward substitution.

Existence of QR Decomposition for Full Column-Rank Matrices

Theorem 8.1. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a full column-rank matrix. Then \mathbf{A} admits a decomposition

 $\mathbf{A} = \mathbf{Q}_1 \mathbf{R}_1,$

where $\mathbf{Q}_1 \in \mathbb{R}^{m \times n}$ is semi-orthogonal; $\mathbf{R}_1 \in \mathbb{R}^{n \times n}$ is upper triangular. If we restrict $r_{ii} > 0$ for all i, then $(\mathbf{Q}_1, \mathbf{R}_1)$ is unique.

• Proof:

- 1. let $\mathbf{C} = \mathbf{A}^T \mathbf{A}$, which is PD if \mathbf{A} has full column rank
- 2. since C is PD, it admits the Cholesky decomposition $C = R_1^T R_1$
- 3. \mathbf{R}_1 , as the Cholesky factor, is unique (cf. Theorem 7.3)
- 4. let $\mathbf{Q}_1 = \mathbf{A}\mathbf{R}_1^{-1}$. It can be verified that $\mathbf{Q}_1^T\mathbf{Q}_1 = \mathbf{I}, \mathbf{Q}_1\mathbf{R}_1 = \mathbf{A}$
- Remark: the proof above reveals that thin QR may be computed via Cholesky decomposition, but this is not what we usually do in practice

Gram-Schmidt for Thin QR

Recall the Gram-Schmidt procedure in Lecture 1:

Algorithm: Gram-Schmidt input: a collection of linearly independent vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$ $\tilde{\mathbf{q}}_1 = \mathbf{a}_1, \, \mathbf{q}_1 = \tilde{\mathbf{q}}_1 / \| \tilde{\mathbf{q}}_1 \|_2$ for $i = 2, \ldots, n$ $\tilde{\mathbf{q}}_i = \mathbf{a}_i - \sum_{j=1}^{i-1} (\mathbf{q}_j^T \mathbf{a}_i) \mathbf{q}_j$ $\mathbf{q}_i = \tilde{\mathbf{q}}_i / \| \tilde{\mathbf{q}}_i \|_2$ end output: $\mathbf{q}_1, \ldots, \mathbf{q}_n$

• let
$$r_{ii} = \|\tilde{\mathbf{q}}_i\|_2$$
, $r_{ij} = \mathbf{q}_j^T \mathbf{a}_i$ for $j = 1, \dots, i-1$

• we see that $\mathbf{a}_i = \sum_{j=1}^i r_{ij} \mathbf{q}_i$ for all i, or, equivalently,

 $\mathbf{A} = \mathbf{Q}_1 \mathbf{R}_1,$

where $\mathbf{Q}_1 = [\mathbf{q}_1, \dots, \mathbf{q}_n]$; \mathbf{R}_1 is upper triangular with $[\mathbf{R}_1]_{ij} = r_{ij}$ for $j \leq i$

Gram-Schmidt for Thin QR

- complexity of Gram-Schmidt: $\mathcal{O}(mn^2)$
- there are several variants with the Gram-Schmidt procedure, and they were usually proposed for improving numerical stability
 - say, what if $\tilde{\mathbf{q}}_i$ is close to 0?
- Gram-Schmidt tells us how we may compute the thin QR, but not the full QR

Reflection Matrices

• a matrix $\mathbf{H} \in \mathbb{R}^{m imes m}$ is called a reflection matrix if

$$\mathbf{H} = \mathbf{I} - 2\mathbf{P},$$

where \mathbf{P} is an orthogonal projector.

• interpretation: denote $\mathbf{P}^{\perp} = \mathbf{I} - \mathbf{P}$, and observe

$$\mathbf{x} = \mathbf{P}\mathbf{x} + \mathbf{P}^{\perp}\mathbf{x}, \qquad \mathbf{H}\mathbf{x} = -\mathbf{P}\mathbf{x} + \mathbf{P}^{\perp}\mathbf{x}.$$

The vector $\mathbf{H}\mathbf{x}$ is a reflected version of \mathbf{x} , with $\mathcal{R}(\mathbf{P}^{\perp})$ being the "mirror"

• a reflection matrix is orthogonal:

$$\mathbf{H}^{T}\mathbf{H} = (\mathbf{I} - 2\mathbf{P})(\mathbf{I} - 2\mathbf{P}) = \mathbf{I} - 4\mathbf{P} + 4\mathbf{P}^{2} = \mathbf{I} - 4\mathbf{P} + 4\mathbf{P} = \mathbf{I}$$

Householder Reflections

• Problem: given $\mathbf{x} \in \mathbb{R}^m$, find an orthogonal $\mathbf{H} \in \mathbb{R}^{m imes m}$ such that

$$\mathbf{Hx} = \begin{bmatrix} \beta \\ \mathbf{0} \end{bmatrix} = \beta \mathbf{e}_1, \qquad \text{for some } \beta \in \mathbb{R}.$$

• Householder reflection: let $\mathbf{v} \in \mathbb{R}^m$, $\mathbf{v} \neq \mathbf{0}$. Let

$$\mathbf{H} = \mathbf{I} - \frac{2}{\|\mathbf{v}\|_2^2} \mathbf{v} \mathbf{v}^T,$$

which is a reflection matrix with $\mathbf{P} = \mathbf{v}\mathbf{v}^T/\|\mathbf{v}\|_2^2$

• it can be verified that (try)

$$\mathbf{v} = \mathbf{x} \mp \|\mathbf{x}\|_2 \mathbf{e}_1 \quad \Longrightarrow \quad \mathbf{H}\mathbf{x} = \pm \|\mathbf{x}\|_2 \mathbf{e}_1;$$

the sign above may be determined to be the one that maximizes $\|\mathbf{v}\|_2$, for the sake of numerical stability

Householder QR

• let $\mathbf{H}_1 \in \mathbb{R}^{m imes m}$ be the Householder reflection w.r.t. \mathbf{a}_1 . Transform \mathbf{A} as

$$\mathbf{A}^{(1)} = \mathbf{H}_1 \mathbf{A} = \begin{bmatrix} \times & \times & \dots & \times \\ 0 & \times & \dots & \times \\ \vdots & \vdots & & \vdots \\ 0 & \times & \dots & \times \end{bmatrix}$$

• let $\tilde{\mathbf{H}}_2 \in \mathbb{R}^{(m-1) \times (m-1)}$ be the Householder reflection w.r.t. $\mathbf{A}_{2:m,2}^{(1)}$ (marked red above). Transform $\mathbf{A}^{(1)}$ as

$$\mathbf{A}^{(2)} = \underbrace{\begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{H}}_2 \end{bmatrix}}_{=\mathbf{H}_2} \mathbf{A}^{(1)} = \begin{bmatrix} \times & \times & \dots & \times \\ \mathbf{0} & \tilde{\mathbf{H}}_2 \mathbf{A}^{(1)}_{2:m,2:n} \end{bmatrix} = \begin{bmatrix} \times & \times & \times & \dots & \times \\ 0 & \times & \times & \dots & \times \\ \vdots & 0 & \times & \dots & \times \\ 0 & 0 & \times & \dots & \times \end{bmatrix}$$

 $\bullet\,$ by repeatedly applying the trick above, we can transform ${\bf A}$ as the desired ${\bf R}$

Householder QR

• assume $m \ge n$, without loss of generality (why?)

$$\begin{split} \mathbf{A}^{(0)} &= \mathbf{A} \\ \text{for } k = 1, \dots, n-1 \\ \mathbf{A}^{(k)} &= \mathbf{H}_k \mathbf{A}^{(k-1)} \text{, where} \\ \mathbf{H}_k &= \begin{bmatrix} \mathbf{I}_{k-1} & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{H}}_k \end{bmatrix} \text{,} \\ \mathbf{I}_k \text{ is the } k \times k \text{ identity matrix; } \tilde{\mathbf{H}}_k \text{ is the Householder reflection of } \mathbf{A}^{(k-1)}_{k:m,k} \\ \text{end} \end{split}$$

• the above procedure results in

 $\mathbf{A}^{(n-1)} = \mathbf{H}_{n-1} \cdots \mathbf{H}_2 \mathbf{H}_1 \mathbf{A}, \quad \mathbf{A}^{(n-1)}$ taking an upper triangular form

- by letting $\mathbf{R} = \mathbf{A}^{(n-1)}$, $\mathbf{Q} = (\mathbf{H}_{n-1} \cdots \mathbf{H}_2 \mathbf{H}_1)^T$, we obtain the full QR
- a popularly used method for QR decomposition

$$\begin{split} \mathbf{A}^{(0)} &= \mathbf{A} \\ \text{for } k = 1, \dots, n-1 \\ \mathbf{A}^{(k)} &= \mathbf{H}_k \mathbf{A}^{(k-1)} \text{, where} \\ \mathbf{H}_k &= \begin{bmatrix} \mathbf{I}_{k-1} & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{H}}_k \end{bmatrix}, \\ \mathbf{I}_k \text{ is the } k \times k \text{ identity matrix; } \tilde{\mathbf{H}}_k \text{ is the Householder reflection of } \mathbf{A}_{k:m,k}^{(k-1)} \\ \text{end} \end{split}$$

- the complexity (for $m \ge n$):
 - $\mathcal{O}(n^2(m-n/3))$ for ${f R}$ only
 - * a direct implementation of the above Householder pseudo-code does not lead us to this complexity; the structures of \mathbf{H}_k are exploited in the implementations to lead to this complexity
 - $\mathcal{O}(m^2n-mn^2+n^3/3)$ if ${\bf Q}$ is also wanted

Givens Rotations

• Example: Let

 $\mathbf{J} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$ where $c = \cos(\theta), s = \sin(\theta)$ for some θ . Consider $\mathbf{y} = \mathbf{J}\mathbf{x}$:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} cx_1 + sx_2 \\ -sx_1 + cx_2 \end{bmatrix}.$$

It can be verified that

- **J** is orthogonal;

-
$$y_2 = 0$$
 if $\theta = \tan^{-1}(x_2/x_1)$, or if

$$c = \frac{x_1}{\sqrt{x_1^2 + x_2^2}}, \quad s = \frac{x_2}{\sqrt{x_1^2 + x_2^2}}.$$

Givens Rotations

• Givens rotations:

$$\mathbf{J}(i,k,\theta) = \begin{bmatrix} \mathbf{i} & k \\ \downarrow & \downarrow \\ \mathbf{C} & \mathbf{S} \\ \mathbf{I} & \mathbf{I} \\ -s & c \\ \mathbf{I} \end{bmatrix} \xleftarrow{k} \mathbf{i}$$
$$= \sin(\theta)$$

where $c = \cos(\theta)$, $s = \sin(\theta)$.

– $\mathbf{J}(i,k,\theta)$ is orthogonal

- let $\mathbf{y} = \mathbf{J}(i, k, \theta)\mathbf{x}$. It holds that

$$y_j = \begin{cases} cx_i + sx_k, & j = i \\ -sx_i + cx_k, & j = k \\ x_j, & j \neq i, k \end{cases}$$

- y_k is forced to zero if we choose $\theta = \tan^{-1}(x_k/x_i)$.

Givens QR

• Example: consider a 4×3 matrix.

where $\mathbf{B} \xrightarrow{\mathbf{J}} \mathbf{C}$ means $\mathbf{B} = \mathbf{J}\mathbf{C}$; $\mathbf{J}_{i,k} = \mathbf{J}(i,k,\theta)$, with θ chosen to zero out the (i,k)th entry of the matrix transformed by $\mathbf{J}_{i,k}$.

Givens QR

 Givens QR: assume m ≥ n. Perform a sequence of Givens rotations to annihilate the lower triangular parts of A to obtain

$$\underbrace{(\mathbf{J}_{m,n}\ldots\mathbf{J}_{n+2,n}\mathbf{J}_{n+1,n})\ldots(\mathbf{J}_{2m}\ldots\mathbf{J}_{24}\mathbf{J}_{23})(\mathbf{J}_{1m}\ldots\mathbf{J}_{13}\mathbf{J}_{12})}_{=\mathbf{Q}^{T}}\mathbf{A}=\mathbf{R}$$

where ${\bf R}$ takes the upper triangular form, and ${\bf Q}$ is orthogonal.

- complexity (for $m \ge n$): $\mathcal{O}(n^2(m n/3))$ for \mathbf{R} only
- not as efficient as Householder QR for general (and dense) A's
 - the flop count for Householder QR is $2n^2(m-n/3)$ (for **R** and for $m \ge n$)
 - the flop count for Givens QR is $3n^2(m-n/3)$
- \bullet can be faster than Householder QR if ${\bf A}$ has certain sparse structures and we exploit them

The QR Algorithm for Computing Eigenvalues

input:
$$\mathbf{A} \in \mathbb{C}^{n \times n}$$

 $\mathbf{A}^{(0)} = \mathbf{A}$
for $k = 1, 2, ...$
 $\mathbf{Q}^{(k)}\mathbf{R}^{(k)} = \mathbf{A}^{(k-1)}$ (perform QR decomposition)
 $\mathbf{A}^{(k)} = \mathbf{R}^{(k)}\mathbf{Q}^{(k)}$
end

- denote the Schur decomposition of A by $\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^H$
- under some mild assumptions, $\mathbf{A}^{(k)}$ converges to \mathbf{T}
 - if our problem is to compute all the eigenvalues of A, picking the diagonal elements of $A^{(k)}$ for a sufficiently large k would do
 - no simple way to understand why it works...
- ${\ensuremath{\bullet}}$ the most popular method for computing all eigenvalues of a general ${\ensuremath{\mathbf{A}}}$
 - the practical QR algorithm used in modern software is more sophisticated, although the main idea is the same as that of the above basic QR algorithm