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Lecture 8: QR Decomposition
e QR decomposition
e Gram-Schmidt QR
e Householder QR
e Givens QR

e the QR algorithm for computing eigenvalues
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Summary

QR decomposition: Any A € R"*™ admits a decomposition
A = QR,

where Q € R™*™ is orthogonal, R € R™*"™ takes an upper triangular form.

e efficient to compute

— done algorithmically by either Gram-Schmidt, Householder reflections, or Givens
rotations

e can be used to compute
— a basis for R(A) or for R(A)*;

— LS solutions.

e a building block for the QR algorithm—a popular numerical method for solving
the eigenvalue problem (all eigenvalues)
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Thin QR for Tall or Square A

e suppose that QR decomposition exists; we will prove that later

e for m > n,
A=QR=|Q: Q) [I({)l] = Q1R

where Q; € R™*", Qy € R™*(m=n) R, € R™ ™ which is upper triangular

e the decomposition A = Q1R is called the thin QR decomposition of A; (Q1,R4)
is called a thin QR factor of A

e properties under thin QR and m > n:

— A has full column rank if and only if r;; # 0 for all i;

— if A has full column rank,

R(A)=R(Q1), R(A)" =R(Qq)
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LS via QR

e Problem: compute the solution to

min [ly — Ax]3

with A being of full column rank

e Observe

R
Iv - Axlt = 107y - R = | [ 4] - [Fo]

= HQl y — RlXHQ T ||Q2 Y||2

2

e Solution (computational): compute the thin QR factor (Q1, R1) of A; then solve

Rix=Qjy

via backward substitution.
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Existence of QR Decomposition for Full Column-Rank Matrices

Theorem 8.1. Let A € R™*"™ be a full column-rank matrix. Then A admits a

decomposition
A = Q1Ry,

where Q1 € R"*"™ is semi-orthogonal; R; € R™*"™ is upper triangular. If we restrict
ry; > 0 for all 7, then (Q1,R4) is unique.

e Proof:
1. let C = AT A, which is PD if A has full column rank
2. since C is PD, it admits the Cholesky decomposition C = RI R,
3. Ry, as the Cholesky factor, is unique (cf. Theorem 7.3)
4. let Q; = AR;'. It can be verified that Q7Q; =I1,Q;R; = A

e Remark: the proof above reveals that thin QR may be computed via Cholesky
decomposition, but this is not what we usually do in practice
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Gram-Schmidt for Thin QR

Recall the Gram-Schmidt procedure in Lecture 1:

Algorithm: Gram-Schmidt
input: a collection of linearly independent vectors aq,...,a,
a1 =ay, q1 = q1/||a1lf2
forie=2,...,n
~ 1—1, T
A =a; —)_;_1(9;a;)q,
q; = q;/||qil[2
end
output: qi,...,q,

o let r;; = H(}Z‘Q, T4 :q?ai fOI’j = 1,...,’i— 1
e we see that a; = 2;21 r;;q; for all 7, or, equivalently,
A =QR;,

where Q1 = [ q1,...,9x, |; Ry is upper triangular with [R;];; = r;; for j <4
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Gram-Schmidt for Thin QR

e complexity of Gram-Schmidt: O(mn?)

e there are several variants with the Gram-Schmidt procedure, and they were usually
proposed for improving numerical stability

— say, what if q; is close to 07

e Gram-Schmidt tells us how we may compute the thin QR, but not the full QR
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Reflection Matrices

e a matrix H € R™*"™ is called a reflection matrix if
H=1-2P,
where P is an orthogonal projector.
e interpretation: denote P+ =1 — P, and observe
x =Px + PJ‘X, Hx = —Px + P'x.
The vector Hx is a reflected version of x, with R(P) being the “mirror”

e a reflection matrix is orthogonal:

H'H=I-2P)I1—-2P)=1—-4P +4P?* =1— 4P + 4P =1
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Householder Reflections

e Problem: given x € R™, find an orthogonal H € R™*"™ such that

Hx = [ﬁ] — feq, for some B € R.

e Householder reflection: let v € R™, v # 0. Let

2
vvl,

H=1-

v 13

which is a reflection matrix with P = vv! /||v||3

e it can be verified that (try)
v=xF|x|2e1 = Hx==%|x|-ze;

the sign above may be determined to be the one that maximizes ||v||2, for the
sake of numerical stability
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Householder QR

o let H; € R™*™ be the Householder reflection w.r.t. a;. Transform A as

X X
AL —HA = O A
10 X

o let Hy € R(™~Dx(m=1) he the Householder reflection w.r.t. AS}M (marked red

above). Transform A(1) as

1 0 X X ... X
[0 HJ 0 H,A

l, 2:m,2:n

—H,

e by repeatedly applying the trick above, we can transform A as the desired R

- O X

0

- O X

0

X

X

X X

X
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Householder QR

e assume m > n, without loss of generality (why?)

A0 = A
fork=1,...,n—1
AR) — HkA(k_l), where
_ dg=1 O
Hy. = [ 0 HJ !
I is the £ X k identity matrix; H;, is the Householder reflection of A,gkﬂfbl,z
end

e the above procedure results in
ACD=H, , - -HHA, ACD taking an upper triangular form
o by letting R=AM""1 Q= (H,_;---HyH;)T, we obtain the full QR

e a popularly used method for QR decomposition
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Householder QR

A0 = A
fork=1,....n—1
AR = H,AFD where
g1 O
Hy. = [ 0 HJ !
I is the k x k identity matrix; H;,. is the Householder reflection of A,gk;bl,z
end

e the complexity (for m > n):
— O(n?*(m —n/3)) for R only

x a direct implementation of the above Householder pseudo-code does not lead
us to this complexity; the structures of H; are exploited in the implementa-
tions to lead to this complexity

— O(m*n —mn?+n3/3) if Q is also wanted
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Givens Rotations

=1

where ¢ = cos(6), s = sin(f) for some 0. Consider y = Jx:

Yyi| | ¢ s||x1| | cr1+ STo
ya|  |—s c¢| |za| |—sx1+cxal|’

It can be verified that

e Example: Let

— J is orthogonal;

— 9o = 0if 0 = tan~(xo/x1), or if

X1 L2

2 27
\/ajl—l—a:2

C =
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Givens Rotations
e Givens rotations:

7 k
. v
I
C S — 1
J(i, k,0) = I
—S c — k
- I_
where ¢ = cos(6), s = sin(6).
— J(i,k,0) is orthogonal
— let y = J(4,k,0)x. It holds that
cr; + sx, 71 =1
yj = —Sxit+crk, j=k

— 1y, is forced to zero if we choose 6 = tan™!(xy/x;).
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e Example:
B
A=~
X

B

B

0

0

0

Givens QR

consider a 4 x 3 matrix.

X X X X

X © X X

X X X X
|

X X X X
|

I
X X © X

1
S O O X

X X X X

O O X X

IXXXX

><><><><I

I
X © O X

1
S O O X

X X X X

S O X X

IXXXX

OXXXI

S O O X

X X X X

X X X X

where B 25 C means B = JC; J; r = J(i,k,0), with 6 chosen to zero out the

(¢, k)th entry of the matrix transformed by J; .
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Givens QR

e Givens QR: assume m > n. Perform a sequence of Givens rotations to annihilate
the lower triangular parts of A to obtain

iJm,n .. -Jn—I—Q,an—I—l,n) “ e (ng .. .J24J23)(J1m .. .J13J122A — R

_QT

where R takes the upper triangular form, and Q is orthogonal.
e complexity (for m >n): O(n?(m —n/3)) for R only

e not as efficient as Householder QR for general (and dense) A's
— the flop count for Householder QR is 2n?(m — n/3) (for R and for m > n)
— the flop count for Givens QR is 3n?(m — n/3)

e can be faster than Householder QR if A has certain sparse structures and we
exploit them
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The QR Algorithm for Computing Eigenvalues

input: A € C"*"

A0 — A

fork=1,2,...
QWRM® = A1) (perform QR decomposition)
AW — RIQ)

end

e denote the Schur decomposition of A by A = UTUH

e under some mild assumptions, A (F) converges to T

— if our problem is to compute all the eigenvalues of A, picking the diagonal
elements of A(¥) for a sufficiently large & would do

— no simple way to understand why it works...
e the most popular method for computing all eigenvalues of a general A

— the practical QR algorithm used in modern software is more sophisticated,
although the main idea is the same as that of the above basic QR algorithm
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