ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition

Wing-Kin (Ken) Ma

2022-23 First Term
Department of Electronic Engineering The Chinese University of Hong Kong

Lecture 8: QR Decomposition

- QR decomposition
- Gram-Schmidt QR
- Householder QR
- Givens QR
- the QR algorithm for computing eigenvalues

Summary

QR decomposition: Any $\mathbf{A} \in \mathbb{R}^{m \times n}$ admits a decomposition

$$
\mathbf{A}=\mathbf{Q} \mathbf{R}
$$

where $\mathbf{Q} \in \mathbb{R}^{m \times m}$ is orthogonal, $\mathbf{R} \in \mathbb{R}^{m \times n}$ takes an upper triangular form.

- efficient to compute
- done algorithmically by either Gram-Schmidt, Householder reflections, or Givens rotations
- can be used to compute
- a basis for $\mathcal{R}(\mathbf{A})$ or for $\mathcal{R}(\mathbf{A})^{\perp}$;
- LS solutions.
- a building block for the QR algorithm—a popular numerical method for solving the eigenvalue problem (all eigenvalues)

Thin QR for Tall or Square A

- suppose that QR decomposition exists; we will prove that later
- for $m \geq n$,

$$
\mathbf{A}=\mathbf{Q R}=\left[\begin{array}{ll}
\mathbf{Q}_{1} & \mathbf{Q}_{2}
\end{array}\right]\left[\begin{array}{c}
\mathbf{R}_{1} \\
\mathbf{0}
\end{array}\right]=\mathbf{Q}_{1} \mathbf{R}_{1}
$$

where $\mathbf{Q}_{1} \in \mathbb{R}^{m \times n}, \mathbf{Q}_{2} \in \mathbb{R}^{m \times(m-n)}, \mathbf{R}_{1} \in \mathbb{R}^{n \times n}$ which is upper triangular

- the decomposition $\mathbf{A}=\mathbf{Q}_{1} \mathbf{R}_{1}$ is called the thin QR decomposition of $\mathbf{A} ;\left(\mathbf{Q}_{1}, \mathbf{R}_{1}\right)$ is called a thin QR factor of \mathbf{A}
- properties under thin QR and $m \geq n$:
- A has full column rank if and only if $r_{i i} \neq 0$ for all i;
- if A has full column rank,

$$
\mathcal{R}(\mathbf{A})=\mathcal{R}\left(\mathbf{Q}_{1}\right), \quad \mathcal{R}(\mathbf{A})^{\perp}=\mathcal{R}\left(\mathbf{Q}_{2}\right)
$$

LS via QR

- Problem: compute the solution to

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2}
$$

with A being of full column rank

- observe

$$
\begin{aligned}
\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2} & =\left\|\mathbf{Q}^{T} \mathbf{y}-\mathbf{R x}\right\|_{2}^{2}=\left\|\left[\begin{array}{c}
\mathbf{Q}_{1}^{T} \mathbf{y} \\
\mathbf{Q}_{2}^{T} \mathbf{y}
\end{array}\right]-\left[\begin{array}{c}
\mathbf{R}_{1} \mathbf{x} \\
\mathbf{0}
\end{array}\right]\right\|_{2}^{2} \\
& =\left\|\mathbf{Q}_{1}^{T} \mathbf{y}-\mathbf{R}_{1} \mathbf{x}\right\|_{2}^{2}+\left\|\mathbf{Q}_{2}^{T} \mathbf{y}\right\|_{2}^{2}
\end{aligned}
$$

- Solution (computational): compute the thin QR factor $\left(\mathbf{Q}_{1}, \mathbf{R}_{1}\right)$ of \mathbf{A}; then solve

$$
\mathbf{R}_{1} \mathbf{x}=\mathbf{Q}_{1}^{T} \mathbf{y}
$$

via backward substitution.

Existence of QR Decomposition for Full Column-Rank Matrices

Theorem 8.1. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a full column-rank matrix. Then \mathbf{A} admits a decomposition

$$
\mathbf{A}=\mathbf{Q}_{1} \mathbf{R}_{1}
$$

where $\mathbf{Q}_{1} \in \mathbb{R}^{m \times n}$ is semi-orthogonal; $\mathbf{R}_{1} \in \mathbb{R}^{n \times n}$ is upper triangular. If we restrict $r_{i i}>0$ for all i, then $\left(\mathbf{Q}_{1}, \mathbf{R}_{1}\right)$ is unique.

- Proof:

1. let $\mathbf{C}=\mathbf{A}^{T} \mathbf{A}$, which is PD if \mathbf{A} has full column rank
2. since \mathbf{C} is PD, it admits the Cholesky decomposition $\mathbf{C}=\mathbf{R}_{1}^{T} \mathbf{R}_{1}$
3. \mathbf{R}_{1}, as the Cholesky factor, is unique (cf. Theorem 7.3)
4. let $\mathbf{Q}_{1}=\mathbf{A} \mathbf{R}_{1}^{-1}$. It can be verified that $\mathbf{Q}_{1}^{T} \mathbf{Q}_{1}=\mathbf{I}, \mathbf{Q}_{1} \mathbf{R}_{1}=\mathbf{A}$

- Remark: the proof above reveals that thin QR may be computed via Cholesky decomposition, but this is not what we usually do in practice

Gram-Schmidt for Thin QR

Recall the Gram-Schmidt procedure in Lecture 1:

```
Algorithm: Gram-Schmidt
input: a collection of linearly independent vectors \(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\)
\(\tilde{\mathbf{q}}_{1}=\mathbf{a}_{1}, \mathbf{q}_{1}=\tilde{\mathbf{q}}_{1} /\left\|\tilde{\mathbf{q}}_{1}\right\|_{2}\)
for \(i=2, \ldots, n\)
    \(\tilde{\mathbf{q}}_{i}=\mathbf{a}_{i}-\sum_{j=1}^{i-1}\left(\mathbf{q}_{j}^{T} \mathbf{a}_{i}\right) \mathbf{q}_{j}\)
    \(\mathbf{q}_{i}=\tilde{\mathbf{q}}_{i} /\left\|\tilde{\mathbf{q}}_{i}\right\|_{2}\)
end
output: \(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\)
```

- let $r_{i i}=\left\|\tilde{\mathbf{q}}_{i}\right\|_{2}, r_{i j}=\mathbf{q}_{j}^{T} \mathbf{a}_{i}$ for $j=1, \ldots, i-1$
- we see that $\mathbf{a}_{i}=\sum_{j=1}^{i} r_{i j} \mathbf{q}_{i}$ for all i, or, equivalently,

$$
\mathbf{A}=\mathbf{Q}_{1} \mathbf{R}_{1}
$$

where $\mathbf{Q}_{1}=\left[\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right] ; \mathbf{R}_{1}$ is upper triangular with $\left[\mathbf{R}_{1}\right]_{i j}=r_{i j}$ for $j \leq i$

Gram-Schmidt for Thin QR

- complexity of Gram-Schmidt: $\mathcal{O}\left(m n^{2}\right)$
- there are several variants with the Gram-Schmidt procedure, and they were usually proposed for improving numerical stability
- say, what if $\tilde{\mathbf{q}}_{i}$ is close to $\mathbf{0}$?
- Gram-Schmidt tells us how we may compute the thin QR , but not the full QR

Reflection Matrices

- a matrix $\mathbf{H} \in \mathbb{R}^{m \times m}$ is called a reflection matrix if

$$
\mathbf{H}=\mathbf{I}-2 \mathbf{P}
$$

where \mathbf{P} is an orthogonal projector.

- interpretation: denote $\mathbf{P}^{\perp}=\mathbf{I}-\mathbf{P}$, and observe

$$
\mathbf{x}=\mathbf{P} \mathbf{x}+\mathbf{P}^{\perp} \mathbf{x}, \quad \mathbf{H x}=-\mathbf{P} \mathbf{x}+\mathbf{P}^{\perp} \mathbf{x}
$$

The vector $\mathbf{H x}$ is a reflected version of \mathbf{x}, with $\mathcal{R}\left(\mathbf{P}^{\perp}\right)$ being the "mirror"

- a reflection matrix is orthogonal:

$$
\mathbf{H}^{T} \mathbf{H}=(\mathbf{I}-2 \mathbf{P})(\mathbf{I}-2 \mathbf{P})=\mathbf{I}-4 \mathbf{P}+4 \mathbf{P}^{2}=\mathbf{I}-4 \mathbf{P}+4 \mathbf{P}=\mathbf{I}
$$

Householder Reflections

- Problem: given $\mathbf{x} \in \mathbb{R}^{m}$, find an orthogonal $\mathbf{H} \in \mathbb{R}^{m \times m}$ such that

$$
\mathbf{H} \mathbf{x}=\left[\begin{array}{l}
\beta \\
\mathbf{0}
\end{array}\right]=\beta \mathbf{e}_{1}, \quad \text { for some } \beta \in \mathbb{R} .
$$

- Householder reflection: let $\mathbf{v} \in \mathbb{R}^{m}, \mathbf{v} \neq \mathbf{0}$. Let

$$
\mathbf{H}=\mathbf{I}-\frac{2}{\|\mathbf{v}\|_{2}^{2}} \mathbf{v} \mathbf{v}^{T}
$$

which is a reflection matrix with $\mathbf{P}=\mathbf{v} \mathbf{v}^{T} /\|\mathbf{v}\|_{2}^{2}$

- it can be verified that (try)

$$
\mathbf{v}=\mathbf{x} \mp\|\mathbf{x}\|_{2} \mathbf{e}_{1} \quad \Longrightarrow \quad \mathbf{H x}= \pm\|\mathbf{x}\|_{2} \mathbf{e}_{1}
$$

the sign above may be determined to be the one that maximizes $\|\mathbf{v}\|_{2}$, for the sake of numerical stability

Householder QR

- let $\mathbf{H}_{1} \in \mathbb{R}^{m \times m}$ be the Householder reflection w.r.t. \mathbf{a}_{1}. Transform \mathbf{A} as

$$
\mathbf{A}^{(1)}=\mathbf{H}_{1} \mathbf{A}=\left[\begin{array}{cccc}
\times & \times & \ldots & \times \\
0 & \times & \ldots & \times \\
\vdots & \vdots & & \vdots \\
0 & \times & \ldots & \times
\end{array}\right]
$$

- let $\tilde{\mathbf{H}}_{2} \in \mathbb{R}^{(m-1) \times(m-1)}$ be the Householder reflection w.r.t. $\mathbf{A}_{2: m, 2}^{(1)}$ (marked red above). Transform $\mathbf{A}^{(1)}$ as

$$
\mathbf{A}^{(2)}=\underbrace{\left[\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0} & \tilde{\mathbf{H}}_{2}
\end{array}\right]}_{=\mathbf{H}_{2}} \mathbf{A}^{(1)}=\left[\begin{array}{ccc}
\times & \times & \ldots \times \\
\mathbf{0} & \tilde{\mathbf{H}}_{2} \mathbf{A}_{2: m, 2: n}^{(1)}
\end{array}\right]=\left[\begin{array}{ccccc}
\times & \times & \times & \ldots & \times \\
0 & \times & \times & \ldots & \times \\
\vdots & 0 & \times & \ldots & \times \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \times & \ldots & \times
\end{array}\right]
$$

- by repeatedly applying the trick above, we can transform \mathbf{A} as the desired \mathbf{R}

Householder QR

- assume $m \geq n$, without loss of generality (why?)

$$
\begin{aligned}
& \mathbf{A}^{(0)}=\mathbf{A} \\
& \text { for } k=1, \ldots, n-1 \\
& \qquad \mathbf{A}^{(k)}=\mathbf{H}_{k} \mathbf{A}^{(k-1)}, \text { where } \\
& \qquad \mathbf{H}_{k}=\left[\begin{array}{cc}
\mathbf{I}_{k-1} & \mathbf{0} \\
\mathbf{0} & \tilde{\mathbf{H}}_{k}
\end{array}\right]
\end{aligned}
$$

\mathbf{I}_{k} is the $k \times k$ identity matrix; $\tilde{\mathbf{H}}_{k}$ is the Householder reflection of $\mathbf{A}_{k: m, k}^{(k-1)}$ end

- the above procedure results in

$$
\mathbf{A}^{(n-1)}=\mathbf{H}_{n-1} \cdots \mathbf{H}_{2} \mathbf{H}_{1} \mathbf{A}, \quad \mathbf{A}^{(n-1)} \text { taking an upper triangular form }
$$

- by letting $\mathbf{R}=\mathbf{A}^{(n-1)}, \mathbf{Q}=\left(\mathbf{H}_{n-1} \cdots \mathbf{H}_{2} \mathbf{H}_{1}\right)^{T}$, we obtain the full QR
- a popularly used method for QR decomposition

Householder QR

$$
\mathbf{A}^{(0)}=\mathbf{A}
$$

$$
\text { for } k=1, \ldots, n-1
$$

$\mathbf{A}^{(k)}=\mathbf{H}_{k} \mathbf{A}^{(k-1)}$, where

$$
\mathbf{H}_{k}=\left[\begin{array}{cc}
\mathbf{I}_{k-1} & \mathbf{0} \\
\mathbf{0} & \tilde{\mathbf{H}}_{k}
\end{array}\right]
$$

\mathbf{I}_{k} is the $k \times k$ identity matrix; $\tilde{\mathbf{H}}_{k}$ is the Householder reflection of $\mathbf{A}_{k: m, k}^{(k-1)}$ end

- the complexity (for $m \geq n$):
- $\mathcal{O}\left(n^{2}(m-n / 3)\right)$ for \mathbf{R} only
* a direct implementation of the above Householder pseudo-code does not lead us to this complexity; the structures of \mathbf{H}_{k} are exploited in the implementations to lead to this complexity
- $\mathcal{O}\left(m^{2} n-m n^{2}+n^{3} / 3\right)$ if \mathbf{Q} is also wanted

Givens Rotations

- Example: Let

$$
\mathbf{J}=\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]
$$

where $c=\cos (\theta), s=\sin (\theta)$ for some θ. Consider $\mathbf{y}=\mathbf{J} \mathbf{x}$:

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
c x_{1}+s x_{2} \\
-s x_{1}+c x_{2}
\end{array}\right] .
$$

It can be verified that

- \mathbf{J} is orthogonal;
- $y_{2}=0$ if $\theta=\tan ^{-1}\left(x_{2} / x_{1}\right)$, or if

$$
c=\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}, \quad s=\frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}} .
$$

Givens Rotations

- Givens rotations:

$$
\mathbf{J}(i, k, \theta)=\left[\begin{array}{lllll}
\mathbf{I} & \downarrow & & \downarrow & \\
& c & & s & \\
& & \mathbf{I} & & \\
& -s & & c & \\
& & & & \mathbf{I}
\end{array}\right] \leftarrow i
$$

where $c=\cos (\theta), s=\sin (\theta)$.

- $\mathbf{J}(i, k, \theta)$ is orthogonal
- let $\mathbf{y}=\mathbf{J}(i, k, \theta) \mathbf{x}$. It holds that

$$
y_{j}= \begin{cases}c x_{i}+s x_{k}, & j=i \\ -s x_{i}+c x_{k}, & j=k \\ x_{j}, & j \neq i, k\end{cases}
$$

$-y_{k}$ is forced to zero if we choose $\theta=\tan ^{-1}\left(x_{k} / x_{i}\right)$.

Givens QR

- Example: consider a 4×3 matrix.

$$
\begin{aligned}
& \mathbf{A} {\left[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times
\end{array}\right] } \\
& \xrightarrow{\mathbf{J}_{1,2}}\left[\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
\times & \times & \times \\
\times & \times & \times
\end{array}\right] \xrightarrow{\mathbf{J}_{1,3}}\left[\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
0 & \times & \times \\
\times & \times & \times
\end{array}\right] \xrightarrow{\mathbf{J}_{1,4}}\left[\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
0 & \times & \times \\
0 & \times & \times
\end{array}\right] \xrightarrow{\mathbf{J}_{2,3}} \\
& {\left[\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
0 & 0 & \times \\
0 & \times & \times
\end{array}\right] \xrightarrow{\mathbf{J}_{2,4}}\left[\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
0 & 0 & \times \\
0 & 0 & \times
\end{array}\right] \xrightarrow{\mathbf{J}_{3,4}}\left[\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
0 & 0 & \times \\
0 & 0 & 0
\end{array}\right]=\mathbf{R} }
\end{aligned}
$$

where $\mathbf{B} \xrightarrow{\mathbf{J}} \mathbf{C}$ means $\mathbf{B}=\mathbf{J C} ; \mathbf{J}_{i, k}=\mathbf{J}(i, k, \theta)$, with θ chosen to zero out the (i, k) th entry of the matrix transformed by $\mathbf{J}_{i, k}$.

Givens QR

- Givens QR: assume $m \geq n$. Perform a sequence of Givens rotations to annihilate the lower triangular parts of \mathbf{A} to obtain

$$
\underbrace{\left(\mathbf{J}_{m, n} \ldots \mathbf{J}_{n+2, n} \mathbf{J}_{n+1, n}\right) \ldots\left(\mathbf{J}_{2 m} \ldots \mathbf{J}_{24} \mathbf{J}_{23}\right)\left(\mathbf{J}_{1 m} \ldots \mathbf{J}_{13} \mathbf{J}_{12}\right)}_{=\mathbf{Q}^{T}} \mathbf{A}=\mathbf{R}
$$

where \mathbf{R} takes the upper triangular form, and \mathbf{Q} is orthogonal.

- complexity (for $m \geq n$): $\mathcal{O}\left(n^{2}(m-n / 3)\right)$ for \mathbf{R} only
- not as efficient as Householder QR for general (and dense) A's
- the flop count for Householder QR is $2 n^{2}(m-n / 3)$ (for \mathbf{R} and for $m \geq n$)
- the flop count for Givens QR is $3 n^{2}(m-n / 3)$
- can be faster than Householder QR if \mathbf{A} has certain sparse structures and we exploit them

The QR Algorithm for Computing Eigenvalues

```
input: \(\mathbf{A} \in \mathbb{C}^{n \times n}\)
\(\mathbf{A}^{(0)}=\mathbf{A}\)
for \(k=1,2, \ldots\)
    \(\mathbf{Q}^{(k)} \mathbf{R}^{(k)}=\mathbf{A}^{(k-1)}\) (perform QR decomposition)
    \(\mathbf{A}^{(k)}=\mathbf{R}^{(k)} \mathbf{Q}^{(k)}\)
end
```

- denote the Schur decomposition of \mathbf{A} by $\mathbf{A}=\mathbf{U T U}^{H}$
- under some mild assumptions, $\mathbf{A}^{(k)}$ converges to \mathbf{T}
- if our problem is to compute all the eigenvalues of \mathbf{A}, picking the diagonal elements of $\mathbf{A}^{(k)}$ for a sufficiently large k would do
- no simple way to understand why it works...
- the most popular method for computing all eigenvalues of a general \mathbf{A}
- the practical QR algorithm used in modern software is more sophisticated, although the main idea is the same as that of the above basic $Q R$ algorithm

