ENGG5781 Matrix Analysis and Computations Lecture 7: Linear Systems

Wing-Kin (Ken) Ma
2022-23 First Term
Department of Electronic Engineering
The Chinese University of Hong Kong

Lecture 7: Linear Systems

- triangular systems and LU decomposition
- LDM decomposition, LDL decomposition and Cholesky factorization
- iterative methods for linear systems

Main Results

- a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to have an $L U$ decomposition if it can be factored as

$$
\mathbf{A}=\mathbf{L} \mathbf{U}
$$

where $\mathbf{L} \in \mathbb{R}^{n \times n}$ is lower triangular; $\mathbf{U} \in \mathbb{R}^{n \times n}$ is upper triangular

- does not always exist
- pivoting: there exists a permutation matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ such that $\mathbf{P A}=\mathbf{L U}$
- if $\mathbf{A} \in \mathbb{S}^{n \times n}$ has an LU decomposition, then $\mathbf{U}=\mathbf{D L}^{T}$ where \mathbf{D} is diagonal
- Cholesky factorization: if $\mathbf{A} \in \mathbb{S}^{n \times n}$ is PD , it can always be factored as

$$
\mathbf{A}=\mathbf{G G}^{T}
$$

where \mathbf{G} is lower triangular.

The System of Linear Equations

Consider the system of linear equations

$$
\mathbf{A x}=\mathbf{b}
$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$ are given, and $\mathbf{x} \in \mathbb{R}^{n}$ is the solution to the system.

- A will be assumed to be nonsingular (unless specified)
- we consider the real case for convenience; extension to the complex case is simple

Solving the Linear System

Problem: compute the solution to $\mathbf{A x}=\mathbf{b}$ in a numerically efficient manner.

- the problem is easy if \mathbf{A}^{-1} is known
- but computing \mathbf{A}^{-1} also costs computations...
- do you know how to compute \mathbf{A}^{-1} efficiently?
- here, \mathbf{A} is assumed to be a general nonsingular matrix.
- the problem may become easy in some special cases, e.g., orthogonal A, circulant A.

LU Decomposition

LU decomposition: given $\mathbf{A} \in \mathbb{R}^{n \times n}$, find two matrices $\mathbf{L}, \mathbf{U} \in \mathbb{R}^{n \times n}$ such that

$$
\mathbf{A}=\mathbf{L} \mathbf{U}
$$

where
$\mathbf{L} \in \mathbb{R}^{n \times n}$ is lower triangular with unit diagonal elements (i.e., $\ell_{i i}=1$ for all i);
$\mathbf{U} \in \mathbb{R}^{n \times n}$ is upper triangular.
Idea: Suppose that \mathbf{A} has an LU decomposition. Then, solving $\mathbf{A x}=\mathbf{b}$ can be recast as two linear system problems:

1. solve $\mathbf{L z}=\mathbf{b}$ for \mathbf{z}, and then
2. solve $\mathbf{U x}=\mathbf{z}$ for \mathbf{x}.

Questions:

1. how to solve $\mathbf{L z}=\mathbf{b}$, and then $\mathbf{U x}=\mathbf{z}$?
2. how to perform $\mathbf{A}=\mathbf{L U}$? Does LU decomposition exist?

Backward Substitution

Example: a 3×3 upper triangular system

$$
\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right] .
$$

If $u_{11}, u_{22}, u_{33} \neq 0$, then x_{1}, x_{2}, x_{3} can be solved by, in sequence,

$$
\begin{aligned}
& x_{3}=z_{3} / u_{33} \\
& x_{2}=\left(z_{2}-u_{23} x_{3}\right) / u_{22} \\
& x_{1}=\left(z_{1}-u_{12} x_{2}-u_{13} x_{3}\right) / u_{11}
\end{aligned}
$$

Backward Substitution

Backward substitution for solving $\mathbf{U x}=\mathbf{z}$:

$$
x_{i}=\left(z_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}, \quad \text { for } i=n, n-1, \ldots, 1 .
$$

Backward substitution in MATLAB form:

```
function \(x=\) back_subs \((U, z)\)
\(\mathrm{n}=\) length (z);
\(\mathrm{x}=\operatorname{zeros}(\mathrm{n}, 1)\);
\(\mathrm{x}(\mathrm{n})=\mathrm{z}(\mathrm{n}) / \mathrm{U}(\mathrm{n}, \mathrm{n})\);
for \(i=n-1:-1: 1\),
    \(\mathrm{x}(\mathrm{i})=(\mathrm{z}(\mathrm{i})-\mathrm{U}(\mathrm{i}, \mathrm{i}+1: \mathrm{n}) * \mathrm{x}(\mathrm{i}+1: \mathrm{n})) / \mathrm{U}(\mathrm{i}, \mathrm{i}) ;\)
end;
```

- complexity: $\mathcal{O}\left(n^{2}\right)$

Forward Substitution

Example: a 3×3 lower triangular system

$$
\left[\begin{array}{ccc}
\ell_{11} & 0 & 0 \\
\ell_{21} & \ell_{22} & 0 \\
\ell_{31} & \ell_{32} & \ell_{33}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] .
$$

If $\ell_{11}, \ell_{22}, \ell_{33} \neq 0$, then z_{1}, z_{2}, z_{3} can be solved by

$$
\begin{aligned}
& z_{1}=b_{1} / \ell_{11} \\
& z_{2}=\left(b_{2}-\ell_{21} z_{1}\right) / \ell_{22} \\
& z_{3}=\left(b_{3}-\ell_{31} z_{1}-\ell_{32} z_{2}\right) / \ell_{33}
\end{aligned}
$$

Forward Substitution

Forward substitution for solving $\mathbf{L z}=\mathbf{b}$:

$$
z_{i}=\left(b_{i}-\sum_{j=1}^{i-1} \ell_{i j} z_{j}\right) / \ell_{i i}, \quad \text { for } i=1,2, \ldots, n
$$

Forward substitution in MATLAB form:

```
function z= for_subs(L,b)
n= length(b);
z= zeros(n,1);
z(1)= b(1)/L(1,1);
for i=2:1:n
    z(i)=(b(i)-L(i,1:i-1)*z(1:i-1))/L(i,i);
end;
```

- complexity: $\mathcal{O}\left(n^{2}\right)$

Gauss Transformations: the Key Building Block for LU

Observation: given $\mathbf{x} \in \mathbb{R}^{n}$ that has $x_{k} \neq 0,1 \leq k \leq n$,

$$
\underbrace{\left[\begin{array}{cccccc}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & -\frac{x_{k+1}}{x_{k}} & 1 & & \\
& & \vdots & & \ddots & \\
& & -\frac{x_{n}}{x_{k}} & & & 1
\end{array}\right]}_{=\mathrm{M}}\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{k} \\
x_{k+1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{k} \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

The above \mathbf{M} also satisfies

$$
\mathbf{M y}=\mathbf{y}, \quad \text { for any } \mathbf{y}=\left[y_{1}, \ldots, y_{k-1}, 0, \ldots, 0\right]^{T}, y_{i} \in \mathbb{R}
$$

Characterization of \mathbf{M} :

$$
\mathbf{M}=\mathbf{I}-\boldsymbol{\tau} \mathbf{e}_{k}^{T}, \quad \boldsymbol{\tau}=\left[0, \ldots, 0, x_{k+1} / x_{k}, \ldots, x_{n} / x_{k}\right]^{T}
$$

Finding U by Gauss Elimination

Problem: find Gauss transformations $\mathbf{M}_{1}, \ldots, \mathbf{M}_{n-1} \in \mathbb{R}^{n \times n}$ such that

$$
\mathbf{M}_{n-1} \cdots \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{A}=\mathbf{U}, \quad \mathbf{U} \text { being upper triangular. }
$$

Step 1: choose \mathbf{M}_{1} such that $\mathbf{M}_{1} \mathbf{a}_{1}=\left[a_{11}, 0, \ldots, 0\right]^{T}$

- if $a_{11} \neq 0$, then we can choose

$$
\mathbf{M}_{1}=\mathbf{I}-\boldsymbol{\tau}^{(1)} \mathbf{e}_{1}^{T}, \quad \boldsymbol{\tau}^{(1)}=\left[0, a_{21} / a_{11}, \ldots, a_{n 1} / a_{11}\right]^{T}
$$

- result:

$$
\mathbf{M}_{1} \mathbf{A}=\left[\begin{array}{cccc}
a_{11} & \times & \ldots & \times \\
0 & \times & \ldots & \times \\
\vdots & \vdots & & \vdots \\
0 & \times & \ldots & \times
\end{array}\right]
$$

Finding U by Gauss Elimination

Step 2: let $\mathbf{A}^{(1)}=\mathbf{M}_{1} \mathbf{A}$. Choose \mathbf{M}_{2} such that $\mathbf{M}_{2} \mathbf{a}_{2}^{(1)}=\left[a_{12}^{(1)}, a_{22}^{(1)}, 0, \ldots, 0\right]^{T}$.

- if $a_{22}^{(1)} \neq 0$, then we can choose

$$
\mathbf{M}_{2}=\mathbf{I}-\boldsymbol{\tau}^{(2)} \mathbf{e}_{2}^{T}, \quad \boldsymbol{\tau}^{(2)}=\left[0,0, a_{32}^{(1)} / a_{22}^{(1)}, \ldots, a_{n, 2}^{(1)} / a_{22}^{(1)}\right]^{T} .
$$

- result:

$$
\mathbf{M}_{2} \mathbf{A}^{(1)}=\left[\begin{array}{ccccc}
a_{11}^{(1)} & a_{12}^{(1)} & \times & \ldots & \times \\
0 & a_{22}^{(1)} & \times & \ldots & \times \\
\vdots & 0 & \times & & \times \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \times & \ldots & \times
\end{array}\right]
$$

Finding U by Gauss Elimination

Let $\mathbf{A}^{(k)}=\mathbf{M}_{k} \mathbf{A}^{(k-1)}, \mathbf{A}^{(0)}=\mathbf{A}$. Note $\mathbf{A}^{(k)}=\mathbf{M}_{k} \cdots \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{A}$.
Step k : Choose \mathbf{M}_{k} such that $\mathbf{M}_{k} \mathbf{a}_{k}^{(k-1)}=\left[a_{1 k}^{(k-1)}, \ldots, a_{k k}^{(k-1)}, 0, \ldots, 0\right]^{T}$.

- if $a_{k k}^{(k-1)} \neq 0$, then

$$
\mathbf{M}_{k}=\mathbf{I}-\boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}, \quad \boldsymbol{\tau}^{(k)}=\left[0, \ldots, 0, a_{k+1, k}^{(k-1)} / a_{k k}^{(k-1)}, \ldots, a_{n, k}^{(k-1)} / a_{k k}^{(k-1)}\right]^{T}
$$

- result:

$$
\mathbf{A}^{(k)}=\mathbf{M}_{k} \mathbf{A}^{(k-1)}=\left[\begin{array}{cccccc}
a_{11}^{(k-1)} & \cdots & a_{1 k}^{(k-1)} & \times & \ldots & \times \\
0 & \ddots & \vdots & \vdots & & \vdots \\
\vdots & & a_{k k}^{(k-1)} & \vdots & & \vdots \\
\vdots & & 0 & \times & & \times \\
\vdots & & \vdots & \vdots & & \vdots \\
0 & \cdots & 0 & \times & \cdots & \times
\end{array}\right]
$$

$-\mathbf{A}^{(n-1)}=\mathbf{U}$ is upper triangular

Where is L ?

We have seen that under the assumption of $a_{k k}^{(k-1)} \neq 0$ for all k,

$$
\mathbf{U}=\mathbf{M}_{n-1} \cdots \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{A} \text { is upper triangular. }
$$

But where is \mathbf{L} ?
Property 7.1. Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ be lower triangular. Then, $\mathbf{A B}$ is lower triangular. Also, if \mathbf{A}, \mathbf{B} have unit diagonal entries, then $\mathbf{A B}$ has unit diagonal entries.

Property 7.2. If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is lower triangular, then $\operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} a_{i i}$.
Property 7.3. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be nonsingular lower triangular. Then, \mathbf{A}^{-1} is lower triangular with $\left[\mathbf{A}^{-1}\right]_{i i}=1 / a_{i i}$.

Suppose that every \mathbf{M}_{k} is invertible. Then,

$$
\mathbf{L}=\mathbf{M}_{1}^{-1} \mathbf{M}_{2}^{-1} \cdots \mathbf{M}_{n-1}^{-1}
$$

satisfies $\mathbf{A}=\mathbf{L U}$, and is lower triangular with unit diagonal entries.

A Naive Implementation of LU (Don't Use It)

```
function [L,U]= my_naive_lu(A)
n= size(A,1);
L= eye(n); t= zeros(n,1); U= A;
for k=1:1:n-1,
    rows= k+1:n;
    t(rows)= U(rows,k)/U(k,k);
    M= eye(n); M(rows,k)= -t(rows);
    U= M*U; % compute A}\mp@subsup{\mathbf{A}}{}{(k)}=\mp@subsup{\mathbf{M}}{k}{}\mp@subsup{\mathbf{A}}{}{(k-1)
    L=L*inv(M); % to eventually obtain L}=\mp@subsup{\mathbf{M}}{1}{-1}\mp@subsup{\mathbf{M}}{2}{-1}\cdots\mp@subsup{\mathbf{M}}{n-1}{-1
end;
```

Weaknesses:

- the above code treats each $\mathbf{A}^{(k)}=\mathbf{M}_{k} \mathbf{A}^{(k-1)}$ as a general matrix multiplication process, which takes $\mathcal{O}\left(n^{3}\right)$ flops. It does not utilize structures of \mathbf{M}_{k}.
- (more serious) to compute \mathbf{L}, the above code calls inverse $n-1$ times. If the problem is to solve $\mathbf{A x}=\mathbf{b}$, then why not just call inverse once for \mathbf{A} ?

Computing L

Fact: $\quad \mathbf{M}_{k}^{-1}=\mathbf{I}+\boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}$.
Verification: by noting $\left[\boldsymbol{\tau}^{(k)}\right]_{k}=0$,

$$
\begin{aligned}
\left(\mathbf{I}+\boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}\right) \mathbf{M}_{k} & =\left(\mathbf{I}+\boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}\right)\left(\mathbf{I}-\boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}\right) \\
& =\mathbf{I}+\boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}-\boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}-\boldsymbol{\tau}^{(k)} \underbrace{\mathbf{e}_{k}^{T} \boldsymbol{\tau}^{(k)}}_{=0} \mathbf{e}_{k}^{T}=\mathbf{I} .
\end{aligned}
$$

By the same spirit, it can be verified that

$$
\mathbf{L}=\mathbf{M}_{1}^{-1} \ldots \mathbf{M}_{n-1}^{-1}=\mathbf{I}+\sum_{k=1}^{n-1} \boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}
$$

A More Mature LU Code (Still Not the LU inside MATLAB)

```
function [L,U]= my_lu(A)
n= size(A,1);
L= eye(n); t= zeros(n,1); U= A;
for k=1:1:n-1,
    rows= k+1:n;
    t(rows)= U(rows,k)/U(k,k);
    U(rows,rows)= U(rows,rows) - t(rows)*U(k,rows);
    U(rows,k)= 0;
    L(rows,k)= t(rows);
end;
```

- complexity: $\mathcal{O}\left(2 n^{3} / 3\right)$
- works as long as $a_{k k}^{(k-1)}$ —the so-called pivots-are all nonzero

Existence of LU Decomposition

Theorem 7.1. A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has an $L U$ decomposition if every principal submatrix $\mathbf{A}_{\{1, \ldots, k\}}$ satisfies

$$
\operatorname{det}\left(\mathbf{A}_{\{1, \ldots, k\}}\right) \neq 0
$$

for $k=1,2, \ldots, n-1$. If the LU decomposition of \mathbf{A} exists and \mathbf{A} is nonsingular, then (\mathbf{L}, \mathbf{U}) is unique.

- the proof is essentially about when $a_{k k}^{(k-1)} \neq 0$.

Discussion

- the LU algorithm described above requires nonzero pivots, $a_{k k}^{(k-1)} \neq 0$ for all k.
- Gauss elimination is known to be numerically unstable when a pivot is close to zero
- pivoting: at each Gauss elimination step, interchange the rows of $\mathbf{A}^{(k)}$ to obtain better pivots.
- when you call $l u(A)$ or $A \backslash b$ in MATLAB, it always perform pivoting
- besides solving $\mathbf{A x}=\mathbf{b}$, LU decomposition can also be used to
- compute \mathbf{A}^{-1} : let $\mathbf{B}=\mathbf{A}^{-1}$.

$$
\mathbf{A B}=\mathbf{I} \quad \Longleftrightarrow \quad \mathbf{A} \mathbf{b}_{i}=\mathbf{e}_{i}, i=1, \ldots, n \text { (i.e., solve } n \text { linear systems). }
$$

- compute $\operatorname{det}(\mathbf{A}): \operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{L}) \operatorname{det}(\mathbf{U})=\prod_{i=1}^{n} u_{i i}$ (cf. Property 7.2).

LDM Decomposition

LDM decomposition: given $\mathbf{A} \in \mathbb{R}^{n \times n}$, find matrices $\mathbf{L}, \mathbf{D}, \mathbf{M} \in \mathbb{R}^{n \times n}$ such that

$$
\mathbf{A}=\mathbf{L D M}^{T}
$$

where
\mathbf{L} is lower triangular with unit diagonal elements;
$\mathbf{D}=\operatorname{Diag}\left(d_{1}, \ldots, d_{n}\right)$;
\mathbf{M} is lower triangular with unit diagonal elements.

- a different way of writing the LU decomposition: if $\mathbf{A}=\mathbf{L U}$ is the LU decomposition, then the same \mathbf{L},

$$
\mathbf{D}=\operatorname{Diag}\left(u_{11}, \ldots, u_{n n}\right), \quad \mathbf{M}=\mathbf{U}^{T} \mathbf{D}^{-1}
$$

form the LDM decomposition.

- the existence of LDM decomposition follows that of LU.

Solving LDM Decomposition

Notation: $\quad \mathbf{A}_{i: j, k: l}$ denotes a submatrix of \mathbf{A} obtained by keeping $i, i+1, \ldots, j$ rows and $k, k+1, \ldots, l$ columns of \mathbf{A}.

Idea: examine $\mathbf{A}=\mathbf{L D M}^{T}$ column by column:

$$
\mathbf{A}_{1: n, j}=\mathbf{A} \mathbf{e}_{j}=\mathbf{L v}
$$

where $1 \leq j \leq n$,

$$
\mathbf{v}=\mathbf{D M}^{T} \mathbf{e}_{j}
$$

Observations:

1. $v_{i}=d_{j} m_{j i}$;
2. $v_{i}=0, i=j+1, \ldots, n$;
3. (\star) can be expanded as

$$
\left[\begin{array}{c}
\mathbf{A}_{1: j, j} \\
\mathbf{A}_{j+1: n, j}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{L}_{1: j, 1: j} & \mathbf{0} \\
\mathbf{L}_{j+1: n, 1: j} & \mathbf{L}_{j+1: n, j+1: n}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{1: j} \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{L}_{1: j, 1: j} \mathbf{v}_{1: j} \\
\mathbf{L}_{j+1: n, 1: j} \mathbf{v}_{1: j}
\end{array}\right]
$$

Solving LDM Decomposition

Recall from the last page that

$$
\begin{aligned}
\mathbf{A}_{1: j, j} & =\mathbf{L}_{1: j, 1: j} \mathbf{v}_{1: j} \\
\mathbf{A}_{j+1: n, j} & =\mathbf{L}_{j+1: n, 1: j} \mathbf{v}_{1: j}
\end{aligned}
$$

Problem: suppose that $\mathbf{L}_{1: n, 1: j-1}$, the first $j-1$ columns of \mathbf{L}, is known. Find $\mathbf{L}_{1: n, j}$, the j th column of \mathbf{L}.

1. $\mathbf{L}_{1: j, 1: j}$ is known (why?)
2. solve $\mathbf{A}_{1: j, j}=\mathbf{L}_{1: j, 1: j} \mathbf{v}_{1: j}$ for $\mathbf{v}_{1: j}$
3. $\mathbf{L}_{j+1: n, j}=\left(\mathbf{A}_{j+1: n, j}-\mathbf{L}_{j+1: n, 1: j-1} \mathbf{v}_{1: j-1}\right) / v_{j}$.
4. (bonus) $d_{j}=v_{j}, m_{j i}=v_{i} / d_{i}$ for $i=1, \ldots, j-1$.

An LDM Decomposition Code

```
function [L,D,M]= my_ldm(A)
n= size(A,1);
L= eye(n); d= zeros(n,1); M= eye(n);
v= zeros(n,1);
for j=1:n,
        % solve A}\mp@subsup{\mathbf{A}}{1:j,j}{}=\mp@subsup{\mathbf{L}}{1:j,1:j}{}\mp@subsup{\mathbf{v}}{1:j}{}\mathrm{ by forward substitution
        v(1:j)= for_subs(L(1:j,1:j),A(1:j,j));
        d(j)= v(j);
        for i=1:j-1,
            M(j,i)= v(i)'/d(i);
        end;
        L(j+1:n,j)=(A(j+1:n,j)-L(j+1:n,1:j-1)*v(1:j-1))/v(j);
end;
D= diag(d);
```

- complexity: $\mathcal{O}\left(2 n^{3} / 3\right)$ (same as the previous LU code)

LDL Decomposition for Symmetric Matrices

If \mathbf{A} is symmetric, then the LDM decomposition may be reduced to

$$
\mathbf{A}=\mathbf{L D L}^{T}
$$

Theorem 7.2. If $\mathbf{A}=\mathbf{L D M}^{T}$ is the LDM decomposition of a nonsingular symmetric \mathbf{A}, then $\mathbf{L}=\mathbf{M}$.

Solving LDL:

- recall that in the previous LDM decomposition, the key is to find the unknown

$$
\mathbf{v}=\mathbf{D M}^{T} \mathbf{e}_{j}
$$

by solving $\mathbf{A}_{1: j}=\mathbf{L}_{1: j, 1: j} \mathbf{v}_{1: j}$ via forward substitution.

- Now, since $\mathbf{M}=\mathbf{L}$,

$$
v_{i}=d_{i} \ell_{j i}
$$

Finding \mathbf{v} is much easier and there is no need to run forward substitution.

An LDL Decomposition Code

```
function [L,D]= my_ldl(A)
n= size(A,1);
L= eye(n); d= zeros(n,1); M= eye(n);
v= zeros(n,1);
for j=1:n,
        v(1:j)= for_subs(L(1:j, 1:j),A(1:j,j));
        v(1:j-1)=L(j,1:j-1)'.*d(1:j-1); % replace for_subs.
        v(j)=A(j,j)-L(j,1:j-1)*v(1:j-1); % replace for_subs.
        d(j)= v(j);
        for i=1:j-1,
            M(j,i)=v(i)'/d(i);
        end;
        L(j+1:n,j)=(A(j+1:n,j)-L(j+1:n,1:j-1)*V(1:j-1))/v(j);
end;
D= diag(d);
```

- complexity: $\mathcal{O}\left(n^{3} / 3\right)$, half of LU or LDM

Cholesky Factorization for PD Matrices

Cholesky factorization: given a $\mathrm{PD} \mathbf{A} \in \mathbb{S}^{n}$, factorize \mathbf{A} as

$$
\mathbf{A}=\mathbf{G} \mathbf{G}^{T},
$$

where $\mathbf{G} \in \mathbb{R}^{n \times n}$ is lower triangular with positive diagonal elements.
Theorem 7.3. If $\mathbf{A} \in \mathbb{S}^{n}$ is PD , then there exists a unique lower triangular $\mathbf{G} \in \mathbb{R}^{n \times n}$ with positive diagonal elements such that $\mathbf{A}=\mathbf{G G}^{T}$.

- idea: if \mathbf{A} is symmetric and PD, then its LDL decomposition

$$
\mathbf{A}=\mathbf{L} \mathbf{D} \mathbf{L}^{T}
$$

has $d_{i}>0$ for all $i=1, \ldots, n$ (as an exercise, verify this). Putting $\mathbf{G}=\mathbf{L} \mathbf{D}^{\frac{1}{2}}$ yields the Cholesky factorization.

- can be computed in $\mathcal{O}\left(n^{3} / 3\right)$ (similar to LDL and details skipped), no pivoting required, numerically very stable

Iterative Methods for Linear Systems

- solving linear systems via LU requires $\mathcal{O}\left(n^{3}\right)$
- $\mathcal{O}\left(n^{3}\right)$ is too much for large-scale linear systems
- the motivation behind iterative methods is to seek less expensive ways to find an (approximate) linear system solution
- note: see also Lecture 1 for ideas of handling large-scale LS problems, which is relevant to the context here

The Key Insight of Iterative Methods

- assume $a_{i i} \neq 0$ for all i
- observe

$$
\begin{align*}
\mathbf{b}=\mathbf{A} \mathbf{x} & \Longleftrightarrow b_{i}=a_{i i} x_{i}+\sum_{j \neq i} a_{i j} x_{j}, \quad i=1, \ldots, n \\
& \Longleftrightarrow x_{i}=\left(b_{i}-\sum_{j \neq i} a_{i j} x_{j}\right) / a_{i i}, \quad i=1, \ldots, n
\end{align*}
$$

- idea: find an x that fulfils the equations in (\dagger)

Jacobi Iterations

$$
\begin{aligned}
& \text { input: a starting point } \mathbf{x}^{(0)} \\
& \text { for } k=0,1,2, \ldots \\
& \qquad x_{i}^{(k+1)}=\left(b_{i}-\sum_{j \neq i} a_{i j} x_{j}^{(k)}\right) / a_{i i} \text {, for } i=1, \ldots, n \\
& \text { end }
\end{aligned}
$$

- complexity per iteration: $\mathcal{O}\left(n^{2}\right)$ for dense $\mathbf{A}, \mathcal{O}(\operatorname{nnz}(\mathbf{A}))$ for sparse \mathbf{A}
- the Jacobi update step can be computed in a parallel or distributed fashion
- same idea appeared in distributed power control in 2G or 3G wireless networks
- a natural idea, heuristic at first glance
- does the Jacobi iterations converge to the linear system solution?
- it does not, in general
- it does if the diagonal elements $a_{i i}$'s are "dominant" compared to the offdiagonal elements; see Theorem 10.1.1 in [Golub-van-Loan'12] for details

Gauss-Seidel Iterations

```
input: a starting point \(\mathbf{x}^{(0)}\)
for \(k=0,1,2, \ldots\).
    for \(i=1,2, \ldots, n\)
        \(x_{i}^{(k+1)}=\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k+1)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}\right) / a_{i i}\)
    end
end
```

- use the most recently available \mathbf{x} to perform update
- sequential, cannot be computed in a distributed or parallel manner
- guaranteed to converge to the linear system solution if
- A has diagonally dominant characteristics (similar to the Jacobi iterations)
- A is symmetric PD; see see Theorem 10.1.2 in [Golub-van-Loan'12]

References

[Golub-van-Loan'12] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd edition, JHU Press, 2012.

