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Lecture 7: Linear Systems

• triangular systems and LU decomposition

• LDM decomposition, LDL decomposition and Cholesky factorization

• iterative methods for linear systems
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Main Results

• a matrix A ∈ Rn×n is said to have an LU decomposition if it can be factored as

A = LU,

where L ∈ Rn×n is lower triangular; U ∈ Rn×n is upper triangular

– does not always exist

– pivoting: there exists a permutation matrix P ∈ Rn×n such that PA = LU

• if A ∈ Sn×n has an LU decomposition, then U = DLT where D is diagonal

• Cholesky factorization: if A ∈ Sn×n is PD, it can always be factored as

A = GGT ,

where G is lower triangular.
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The System of Linear Equations

Consider the system of linear equations

Ax = b,

where A ∈ Rn×n and b ∈ Rn are given, and x ∈ Rn is the solution to the system.

• A will be assumed to be nonsingular (unless specified)

• we consider the real case for convenience; extension to the complex case is simple
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Solving the Linear System

Problem: compute the solution to Ax = b in a numerically efficient manner.

• the problem is easy if A−1 is known

– but computing A−1 also costs computations...

– do you know how to compute A−1 efficiently?

• here, A is assumed to be a general nonsingular matrix.

– the problem may become easy in some special cases, e.g., orthogonal A,
circulant A.
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LU Decomposition

LU decomposition: given A ∈ Rn×n, find two matrices L,U ∈ Rn×n such that

A = LU,

where

L ∈ Rn×n is lower triangular with unit diagonal elements (i.e., `ii = 1 for all i);

U ∈ Rn×n is upper triangular.

Idea: Suppose that A has an LU decomposition. Then, solving Ax = b can be
recast as two linear system problems:

1. solve Lz = b for z, and then

2. solve Ux = z for x.

Questions:

1. how to solve Lz = b, and then Ux = z?

2. how to perform A = LU? Does LU decomposition exist?

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 5



Backward Substitution

Example: a 3× 3 upper triangular systemu11 u12 u13

0 u22 u23

0 0 u33

x1

x2

x3

 =

z1z2
z3

 .

If u11, u22, u33 6= 0, then x1, x2, x3 can be solved by, in sequence,

x3 = z3/u33

x2 = (z2 − u23x3)/u22

x1 = (z1 − u12x2 − u13x3)/u11

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 6



Backward Substitution

Backward substitution for solving Ux = z:

xi =

zi −
n∑

j=i+1

uijxj

/uii, for i = n, n− 1, . . . , 1.

Backward substitution in MATLAB form:

function x= back subs(U,z)

n= length(z);

x= zeros(n,1);

x(n)= z(n)/U(n,n);

for i= n-1:-1:1,

x(i)= ( z(i)- U(i,i+1:n)*x(i+1:n) )/U(i,i);

end;

• complexity: O(n2)
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Forward Substitution

Example: a 3× 3 lower triangular system`11 0 0
`21 `22 0
`31 `32 `33

z1z2
z3

 =

b1b2
b3

 .

If `11, `22, `33 6= 0, then z1, z2, z3 can be solved by

z1 = b1/`11

z2 = (b2 − `21z1)/`22

z3 = (b3 − `31z1 − `32z2)/`33
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Forward Substitution

Forward substitution for solving Lz = b:

zi =

bi −
i−1∑
j=1

`ijzj

/`ii, for i = 1, 2, . . . , n.

Forward substitution in MATLAB form:

function z= for subs(L,b)

n= length(b);

z= zeros(n,1);

z(1)= b(1)/L(1,1);

for i=2:1:n

z(i)= (b(i)-L(i,1:i-1)*z(1:i-1))/L(i,i);

end;

• complexity: O(n2)
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Gauss Transformations: the Key Building Block for LU

Observation: given x ∈ Rn that has xk 6= 0, 1 ≤ k ≤ n,

1
. . .

1
−xk+1

xk
1

... . . .
−xn

xk
1


︸ ︷︷ ︸

=M


x1
...
xk

xk+1
...
xn

 =


x1
...
xk

0
...
0

 .

The above M also satisfies

My = y, for any y = [ y1, . . . , yk−1, 0, . . . , 0 ]T , yi ∈ R.

Characterization of M:

M = I− τeTk , τ = [ 0, . . . , 0, xk+1/xk, . . . , xn/xk ]T .
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Finding U by Gauss Elimination

Problem: find Gauss transformations M1, . . . ,Mn−1 ∈ Rn×n such that

Mn−1 · · ·M2M1A = U, U being upper triangular.

Step 1: choose M1 such that M1a1 = [ a11, 0, . . . , 0 ]T

• if a11 6= 0, then we can choose

M1 = I− τ (1)eT1 , τ (1) = [ 0, a21/a11, . . . , an1/a11 ]T .

• result:

M1A =


a11 × . . . ×
0 × . . . ×
... ... ...
0 × . . . ×


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Finding U by Gauss Elimination

Step 2: let A(1) = M1A. Choose M2 such that M2a
(1)
2 = [ a

(1)
12 , a

(1)
22 , 0, . . . , 0 ]T .

• if a
(1)
22 6= 0, then we can choose

M2 = I− τ (2)eT2 , τ (2) = [ 0, 0, a
(1)
32 /a

(1)
22 , . . . , a

(1)
n,2/a

(1)
22 ]T .

• result:

M2A
(1) =


a
(1)
11 a

(1)
12 × . . . ×

0 a
(1)
22 × . . . ×

... 0 × ×

... ... ... ...
0 0 × . . . ×


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Finding U by Gauss Elimination

Let A(k) = MkA
(k−1), A(0) = A. Note A(k) = Mk · · ·M2M1A.

Step k: Choose Mk such that Mka
(k−1)
k = [ a

(k−1)
1k , . . . , a

(k−1)
kk , 0, . . . , 0 ]T .

• if a
(k−1)
kk 6= 0, then

Mk = I− τ (k)eTk , τ (k) = [ 0, . . . , 0, a
(k−1)
k+1,k/a

(k−1)
kk , . . . , a

(k−1)
n,k /a

(k−1)
kk ]T ,

• result:

A(k) = MkA
(k−1) =



a
(k−1)
11 · · · a

(k−1)
1k × . . . ×

0 . . . ... ... ...
... a

(k−1)
kk

... ...
... 0 × ×
... ... ... ...
0 · · · 0 × · · · ×


– A(n−1) = U is upper triangular
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Where is L?

We have seen that under the assumption of a
(k−1)
kk 6= 0 for all k,

U = Mn−1 · · ·M2M1A is upper triangular.

But where is L?

Property 7.1. Let A,B ∈ Rn×n be lower triangular. Then, AB is lower triangular.
Also, if A, B have unit diagonal entries, then AB has unit diagonal entries.

Property 7.2. If A ∈ Rn×n is lower triangular, then det(A) =
∏n

i=1 aii.

Property 7.3. Let A ∈ Rn×n be nonsingular lower triangular. Then, A−1 is lower
triangular with [A−1]ii = 1/aii.

Suppose that every Mk is invertible. Then,

L = M−11 M−12 · · ·M
−1
n−1

satisfies A = LU, and is lower triangular with unit diagonal entries.
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A Naive Implementation of LU (Don’t Use It)

function [L,U]= my naive lu(A)

n= size(A,1);

L= eye(n); t= zeros(n,1); U= A;

for k=1:1:n-1,

rows= k+1:n;

t(rows)= U(rows,k)/U(k,k);

M= eye(n); M(rows,k)= -t(rows);

U= M*U; % compute A(k) = MkA
(k−1)

L= L*inv(M); % to eventually obtain L = M−11 M−12 · · ·M
−1
n−1

end;

Weaknesses:

• the above code treats each A(k) = MkA
(k−1) as a general matrix multiplication

process, which takes O(n3) flops. It does not utilize structures of Mk.

• (more serious) to compute L, the above code calls inverse n − 1 times. If the
problem is to solve Ax = b, then why not just call inverse once for A?
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Computing L

Fact: M−1k = I+ τ (k)eTk .

Verification: by noting [τ (k)]k = 0,

(I+ τ (k)eTk )Mk = (I+ τ (k)eTk )(I− τ (k)eTk )

= I+ τ (k)eTk − τ (k)eTk − τ (k) eTk τ
(k)︸ ︷︷ ︸

=0

eTk = I.

By the same spirit, it can be verified that

L = M−11 . . .M−1n−1 = I+

n−1∑
k=1

τ (k)eTk

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 16



A More Mature LU Code (Still Not the LU inside MATLAB)

function [L,U]= my lu(A)

n= size(A,1);

L= eye(n); t= zeros(n,1); U= A;

for k=1:1:n-1,

rows= k+1:n;

t(rows)= U(rows,k)/U(k,k);

U(rows,rows)= U(rows,rows)- t(rows)*U(k,rows);

U(rows,k)= 0;

L(rows,k)= t(rows);

end;

• complexity: O(2n3/3)

• works as long as a
(k−1)
kk —the so-called pivots—are all nonzero
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Existence of LU Decomposition

Theorem 7.1. A matrix A ∈ Rn×n has an LU decomposition if every principal
submatrix A{1,...,k} satisfies

det(A{1,...,k}) 6= 0,

for k = 1, 2, . . . , n − 1. If the LU decomposition of A exists and A is nonsingular,
then (L,U) is unique.

• the proof is essentially about when a
(k−1)
kk 6= 0.

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 18



Discussion

• the LU algorithm described above requires nonzero pivots, a
(k−1)
kk 6= 0 for all k.

• Gauss elimination is known to be numerically unstable when a pivot is close to
zero

• pivoting: at each Gauss elimination step, interchange the rows of A(k) to obtain
better pivots.

– when you call lu(A) or A\b in MATLAB, it always perform pivoting

• besides solving Ax = b, LU decomposition can also be used to

– compute A−1: let B = A−1.

AB = I ⇐⇒ Abi = ei, i = 1, . . . , n (i.e., solve n linear systems).

– compute det(A): det(A) = det(L)det(U) =
∏n

i=1 uii (cf. Property 7.2).
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LDM Decomposition

LDM decomposition: given A ∈ Rn×n, find matrices L,D,M ∈ Rn×n such that

A = LDMT ,

where

L is lower triangular with unit diagonal elements;

D = Diag(d1, . . . , dn);

M is lower triangular with unit diagonal elements.

• a different way of writing the LU decomposition: if A = LU is the LU
decomposition, then the same L,

D = Diag(u11, . . . , unn), M = UTD−1,

form the LDM decomposition.

• the existence of LDM decomposition follows that of LU.
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Solving LDM Decomposition

Notation: Ai:j,k:l denotes a submatrix of A obtained by keeping i, i + 1, . . . , j
rows and k, k + 1, . . . , l columns of A.

Idea: examine A = LDMT column by column:

A1:n,j = Aej = Lv, (?)

where 1 ≤ j ≤ n,
v = DMTej.

Observations:

1. vi = djmji;

2. vi = 0, i = j + 1, . . . , n;

3. (?) can be expanded as[
A1:j,j

Aj+1:n,j

]
=

[
L1:j,1:j 0

Lj+1:n,1:j Lj+1:n,j+1:n

] [
v1:j

0

]
=

[
L1:j,1:jv1:j

Lj+1:n,1:jv1:j

]
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Solving LDM Decomposition

Recall from the last page that

A1:j,j = L1:j,1:jv1:j

Aj+1:n,j = Lj+1:n,1:jv1:j

Problem: suppose that L1:n,1:j−1, the first j − 1 columns of L, is known. Find
L1:n,j, the jth column of L.

1. L1:j,1:j is known (why?)

2. solve A1:j,j = L1:j,1:jv1:j for v1:j

3. Lj+1:n,j = (Aj+1:n,j − Lj+1:n,1:j−1v1:j−1)/vj.

4. (bonus) dj = vj, mji = vi/di for i = 1, . . . , j − 1.
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An LDM Decomposition Code

function [L,D,M]= my ldm(A)

n= size(A,1);

L= eye(n); d= zeros(n,1); M= eye(n);

v= zeros(n,1);

for j=1:n,

% solve A1:j,j = L1:j,1:jv1:j by forward substitution

v(1:j)= for subs(L(1:j,1:j),A(1:j,j));

d(j)= v(j);

for i=1:j-1,

M(j,i)= v(i)’/d(i);

end;

L(j+1:n,j)= (A(j+1:n,j)-L(j+1:n,1:j-1)*v(1:j-1))/v(j);

end;

D= diag(d);

• complexity: O(2n3/3) (same as the previous LU code)
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LDL Decomposition for Symmetric Matrices

If A is symmetric, then the LDM decomposition may be reduced to

A = LDLT .

Theorem 7.2. If A = LDMT is the LDM decomposition of a nonsingular symmetric
A, then L = M.

Solving LDL:

• recall that in the previous LDM decomposition, the key is to find the unknown

v = DMTej

by solving A1:j = L1:j,1:jv1:j via forward substitution.

• Now, since M = L,
vi = di`ji.

Finding v is much easier and there is no need to run forward substitution.
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An LDL Decomposition Code

function [L,D]= my ldl(A)

n= size(A,1);

L= eye(n); d= zeros(n,1); M= eye(n);

v= zeros(n,1);

for j=1:n,

v(1:j)= for subs(L(1:j,1:j),A(1:j,j));

v(1:j-1)= L(j,1:j-1)’.*d(1:j-1); % replace for subs.

v(j)= A(j,j)- L(j,1:j-1)*v(1:j-1); % replace for subs.

d(j)= v(j);

for i=1:j-1,

M(j,i)= v(i)’/d(i);

end;

L(j+1:n,j)= (A(j+1:n,j)-L(j+1:n,1:j-1)*v(1:j-1))/v(j);

end;

D= diag(d);

• complexity: O(n3/3), half of LU or LDM
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Cholesky Factorization for PD Matrices

Cholesky factorization: given a PD A ∈ Sn, factorize A as

A = GGT ,

where G ∈ Rn×n is lower triangular with positive diagonal elements.

Theorem 7.3. If A ∈ Sn is PD, then there exists a unique lower triangular G ∈ Rn×n

with positive diagonal elements such that A = GGT .

• idea: if A is symmetric and PD, then its LDL decomposition

A = LDLT

has di > 0 for all i = 1, . . . , n (as an exercise, verify this). Putting G = LD
1
2

yields the Cholesky factorization.

• can be computed in O(n3/3) (similar to LDL and details skipped), no pivoting
required, numerically very stable
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Iterative Methods for Linear Systems

• solving linear systems via LU requires O(n3)

• O(n3) is too much for large-scale linear systems

• the motivation behind iterative methods is to seek less expensive ways to find an
(approximate) linear system solution

• note: see also Lecture 1 for ideas of handling large-scale LS problems, which is
relevant to the context here

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 27



The Key Insight of Iterative Methods

• assume aii 6= 0 for all i

• observe

b = Ax ⇐⇒ bi = aiixi +
∑
j 6=i

aijxj, i = 1, . . . , n

⇐⇒ xi =

bi −
∑
j 6=i

aijxj

 /aii, i = 1, . . . , n (†)

• idea: find an x that fulfils the equations in (†)
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Jacobi Iterations

input: a starting point x(0)

for k = 0, 1, 2, . . .

why x
(k+1)
i =

(
bi −

∑
j 6=i aijx

(k)
j

)
/aii, for i = 1, . . . , n

end

• complexity per iteration: O(n2) for dense A, O(nnz(A)) for sparse A

• the Jacobi update step can be computed in a parallel or distributed fashion

– same idea appeared in distributed power control in 2G or 3G wireless networks

• a natural idea, heuristic at first glance

• does the Jacobi iterations converge to the linear system solution?

– it does not, in general

– it does if the diagonal elements aii’s are “dominant” compared to the off-
diagonal elements; see Theorem 10.1.1 in [Golub-van-Loan’12] for details
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Gauss-Seidel Iterations

input: a starting point x(0)

for k = 0, 1, 2, . . .
why for i = 1, 2, . . . , n

whywhy x
(k+1)
i =

bi −
i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 /aii

why end
end

• use the most recently available x to perform update

• sequential, cannot be computed in a distributed or parallel manner

• guaranteed to converge to the linear system solution if

– A has diagonally dominant characteristics (similar to the Jacobi iterations)

– A is symmetric PD; see see Theorem 10.1.2 in [Golub-van-Loan’12]
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