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Lecture 7: Linear Systems
e triangular systems and LU decomposition
e | DM decomposition, LDL decomposition and Cholesky factorization

e iterative methods for linear systems
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Main Results

e a matrix A € R™*" is said to have an LU decomposition if it can be factored as
A =LU,

where L € R™"*"™ is lower triangular; U € R™*"™ is upper triangular
— does not always exist

— pivoting: there exists a permutation matrix P € R"*™ such that PA = LU
o if A € S™" has an LU decomposition, then U = DL’ where D is diagonal
e Cholesky factorization: if A € S"*™ is PD, it can always be factored as
A =GG',

where G is lower triangular.
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The System of Linear Equations

Consider the system of linear equations
Ax = b,
where A € R"*™ and b € R" are given, and x € R" is the solution to the system.

e A will be assumed to be nonsingular (unless specified)

e we consider the real case for convenience; extension to the complex case is simple
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Solving the Linear System

Problem: compute the solution to Ax = b in a numerically efficient manner.

e the problem is easy if A~! is known
— but computing A~! also costs computations...
— do you know how to compute A~! efficiently?
e here, A is assumed to be a general nonsingular matrix.

— the problem may become easy in some special cases, e.g., orthogonal A,
circulant A.
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LU Decomposition

LU decomposition: given A € R"*"”, find two matrices L, U € R"*™ such that
A =LU,

where
L € R™™ ™ is lower triangular with unit diagonal elements (i.e., ¢;; = 1 for all 7);
U € R™™™ is upper triangular.

Idea: Suppose that A has an LU decomposition. Then, solving Ax = b can be
recast as two linear system problems:

1. solve Lz = b for z, and then
2. solve Ux = z for x.

Questions:
1. how to solve Lz = b, and then Ux = z?

2. how to perform A = LU? Does LU decomposition exist?
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Backward Substitution

Example: a 3 x 3 upper triangular system

Uiz U2 U3 L1 21
0 w92 wuaz| [x2] = |22
0 0 Uuss I3 23

If w11, w29, us3 # 0, then x1, 2, x3 can be solved by, in sequence,

r3 = 23/U33
Lo = (2«’2 — U23$3)/U22

L1 = (21 — U12L2 — U13$3)/U11
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Backward Substitution

Backward substitution for solving Ux = z:

n
r; = Zi — E Uij T 4 /Um‘, fori:n,n—l,...

j=i+1

Backward substitution in MATLAB form:

function x= back_subs(U,z)
n= length(z);
x= zeros(n,1);
x(n)= z(n)/U(n,n);
for i= n-1:-1:1,
x(i)= ( z(i)- U@,i+1:n)*x(i+1:n) )/U(i,i);
end;

e complexity: O(n?)
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Forward Substitution

Example: a 3 x 3 lower triangular system

611 0 0 21 bl
by log 0| [22] = |2
_531 32 533_ | 23 ] _b3_

|f 511,6227633 # 0, then 21, 29, z3 can be solved by

£l = b1/€11
2 = (b2 — 52121)/522

<3 = (b3 — {3121 — 53222)/533
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Forward Substitution

Forward substitution for solving Lz = b:

1—1
Z; = bi_zgijzj /fu, for 1 = 1,2,...
71=1

Forward substitution in MATLAB form:

function z= for_subs(L,b)
n= length(b);
z= zeros(n,1);
z(1)= b(1)/L(1,1);
for 1i=2:1:n
z(i)= (b(i)-L(i,1:i-1)*z(1:i-1))/L(i,1i);
end;

e complexity: O(n?)
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Gauss Transformations: the Key Building Block for LU

Observation: given x € R™ that has 2, # 0, 1 < k < n,

1 i I ] —5131_
1 T T
Th+1 — O
Ty xk)—l—l
_Tn
] . 1_ | X | 0]

The above M also satisfies

MyZY7 foranyy:[yla"'vyk—la())"')()]T) yZER

Characterization of M:

M=1I-re;, T=[0,...,0,Tts1/Thy- -, Tn/ T |
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Finding U by Gauss Elimination
Problem: find Gauss transformations My, ..., M,,_1 € R®*"™ such that

M, _1---MsM;A =U, U being upper triangular.

Step 1: choose M such that Ma; = [ a;1,0,...,0 |

e if a1 # 0, then we can choose

M1:I—T(1)e?, 7'(1):[O,agl/all,...,anl/all ]T
o result: _ i}
a1 X ... X
0 X X
M;A = |
0 X X |
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Finding U by Gauss Elimination

Step 2: let A(M) = M;A. Choose M, such that M5 a( ) —

o if a22) # 0, then we can choose

M,=1—-7®el, 7™ =10,0,al)/a'},...
e result: - o
17 dp2
0 a%) X
M, A = | 0 X
I 0 0 X

= |

1) W o

A9 5,099 ,

(1)/a(1) ] .

L0
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Finding U by Gauss Elimination

Let A(F) = M ,AF-D A0 = A Note A¥) = M, --- M;M;A.

Step k: Choose M, such that My a(/IC D = | agl,z 1), e agz_l), 0,...,0]7.

o if a,({],i_l) # 0, then

k—1 k—1 k—1) , (k—1
M, =1—r+W®el, 7'(k>:[O,...,(),ajl,(ﬁl,,)€ al(wlc ),..., glk )/( )]

e result: - 1) ) _
aiq % X X

O . .

AF) = ML AFD = : 2’2 Y

; 0 X X
0 0 X e X

— A(™=1D = U is upper triangular
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Where is L?

We have seen that under the assumption of a,gz_m # 0 for all k,
U=M,_1---MsM;A is upper triangular.

But where is L7

Property 7.1. Let A,B € R"*" be lower triangular. Then, AB is lower triangular.
Also, if A, B have unit diagonal entries, then AB has unit diagonal entries.

n

Property 7.2. If A € R"*" is lower triangular, then det(A) = []._; ai;.

Property 7.3. Let A € R™*" be nonsingular lower triangular. Then, A™! is lower
triangular with [A™1];; = 1/a;;.

Suppose that every My, is invertible. Then,

satisfies A = LU, and is lower triangular with unit diagonal entries.
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A Naive Implementation of LU (Don’t Use It)

function [L,U]l= my_naive_lu(A)
n= size(A,1);
L= eye(n); t= zeros(n,1); U= A;
for k=1:1:n-1,
rows= k+1:n;
t (rows)= U(rows,k)/U(k,k);
M= eye(n); M(rows,k)= -t(rows);

U= MxU; % compute A(F) = M, A k=D
L= L*inv(M); % to eventually obtain L = 1\/11_11\/12_1 E M;il
end;
Weaknesses:

e the above code treats each A(%) = M, A*~1) as a general matrix multiplication
process, which takes O(n?) flops. It does not utilize structures of M.

e (more serious) to compute L, the above code calls inverse n — 1 times. If the
problem is to solve Ax = b, then why not just call inverse once for A?
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Computing L

Fact: M,:l =T1+4 7el.

Verification: by noting [T(*)], = 0,

I+ 7®elYM), = I+ 7PFel) (I - +Wel)

=1+ 7Wel —rRel — 7B lr(k) el — 1

=0

By the same spirit, it can be verified that

n—1
L=M;"'.. M} =1+) vW™ef
k=1

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024-25 First Term.

16



A More Mature LU Code (Still Not the LU inside MATLAB)

function [L,U]l= my_lu(A)
n= size(A,1);
L= eye(n); t= zeros(n,1); U= A;
for k=1:1:n-1,
rows= k+1:n;
t (rows)= U(rows,k)/U(k,k);
U(rows,rows)= U(rows,rows)- t(rows)*U(k,rows);
U(rows,k)= 0;
L(rows,k)= t(rows);

end;

e complexity: O(2n3/3)

k—1 :
e works as long as a,,(gk )—the so-called pivots—are all nonzero
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Existence of LU Decomposition

Theorem 7.1. A matrix A € R™"*™ has an LU decomposition if every principal
submatrix Ayq . ) satisfies

det(A{l’._.’k}) # 0,

for k=1,2,...,n— 1. If the LU decomposition of A exists and A is nonsingular,
then (L, U) is unique.

e the proof is essentially about when a,(jﬂ_l) # 0.
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Discussion

e the LU algorithm described above requires nonzero pivots, a,glz_l) = ( for all k.

e Gauss elimination is known to be numerically unstable when a pivot is close to
Zero

e pivoting: at each Gauss elimination step, interchange the rows of A(*) to obtain
better pivots.

— when you call 1u(A) or A\b in MATLAB, it always perform pivoting

e besides solving Ax = b, LU decomposition can also be used to

— compute A1 let B=A"1.
AB=1 <« Ab;=e¢;, t=1,...,n (i.e, solve n linear systems).

— compute det(A): det(A) = det(L)det(U) = [];_, wi (cf. Property 7.2).
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LDM Decomposition

LDM decomposition: given A € R"*" find matrices L, D, M € R"*" such that
A =LDM7T,

where

L is lower triangular with unit diagonal elements;
D = Diag(dy,...,dy);
M is lower triangular with unit diagonal elements.

e a different way of writing the LU decomposition: if A = LU is the LU
decomposition, then the same L,

D = Diag(u11, ..., Unn), M=U'D,

form the LDM decomposition.

e the existence of LDM decomposition follows that of LU.
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Solving LDM Decomposition

Notation: A, ., denotes a submatrix of A obtained by keeping 7,2 +1,...,7
rows and k,k+1,...,] columns of A.

Idea: examine A = LDM? column by column:
Al:n,j — Aej — LV) (*)

where 1 < 5 < n,

v =DM"e;.
Observations:
1. vi =djmj;;

2. v, =0, =7+4+1,...,n;

3. (%) can be expanded as

Avjg | _ | Lugay 0 vig| _ | Lijagvy
Ajtiin,; Livini; Ljtinj+im| | O Ljtin1:5V1:
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Solving LDM Decomposition

Recall from the last page that

A =L1.1.5V1

Ajting = Ljt1n,1:5V1:

Problem: suppose that Lj., 1.;—1, the first j —1 columns of L, is known. Find
Li.n ;. the jth column of L.

1. Li.; 1.5 is known (why?)
2. solve Al:j,j — Ll:j,l:jvlzj for Vi:j
3. Litim,i = (Ajt1m, — Ljtimi1j-1V1-1)/0;.

4. (bOﬂUS) dj = V5, My; = Uz/dz for 1 = 1,. ,] — 1.
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An LDM Decomposition Code

function [L,D,M]= my_1ldm(A)
n= size(A,1);
L= eye(n); d= zeros(n,1); M= eye(n);
v= zeros(n,1);
for j=1:n,
% solve Aj.;; = Li.1.v1; by forward substitution
v(1:j)= for_subs(L(1:j,1:3),AC1:3,3));
d(j)= v(j);
for i=1:j-1,
M(j,1)= v(i)’/d(1);
end;
L(j+1:n,j)= (A(j+1l:n,j)-L(j+1:n,1:j-D*v(1:j-1))/v(j);
end;
D= diag(d);

o complexity: O(2n3/3) (same as the previous LU code)
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LDL Decomposition for Symmetric Matrices
If A is symmetric, then the LDM decomposition may be reduced to

A = LDLYT.

Theorem 7.2. If A = LDM? is the LDM decomposition of a nonsingular symmetric
A, then L = M.

Solving LDL:
e recall that in the previous LDM decomposition, the key is to find the unknown

vV = DMTej

by solving Al:j = lej,l:jvl:j via forward substitution.

e Now, since M = L,
V; — dzfﬂ
Finding v is much easier and there is no need to run forward substitution.
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An LDL Decomposition Code

function [L,D]= my_1d1(A)

n= size(A,1);

L= eye(n); d= zeros(n,l); M=—eyeln);
v= zeros(n,1);

for j=1:n,

v(1:j-1)= L(j,1:j-1)’.*%d(1:j-1); % replace for_subs.

v(j)= A(j,j)- L(j,1:j-1)*v(1:j-1); % replace for_subs.

d(G)= v(j);
or i=1:ioi.
; b b
L(j+1:n,j)= (A(j+1:n,j)-L(j+1:n,1:j-D*v(1:j-1))/v(j);
end;
D= diag(d);

o complexity: O(n?/3), half of LU or LDM
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Cholesky Factorization for PD Matrices

Cholesky factorization: given a PD A € S”, factorize A as
A =GG",
where G € R™*"™ is lower triangular with positive diagonal elements.

Theorem 7.3. If A € S" is PD, then there exists a unique lower triangular G € R™*"
with positive diagonal elements such that A = GG”.

e idea: if A is symmetric and PD, then its LDL decomposition
A =LDL?

has d; > 0 for all i = 1,...,n (as an exercise, verify this). Putting G = LD>
yields the Cholesky factorization.

e can be computed in O(n?/3) (similar to LDL and details skipped), no pivoting
required, numerically very stable
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Iterative Methods for Linear Systems

e solving linear systems via LU requires O(n?)
e O(n?) is too much for large-scale linear systems

e the motivation behind iterative methods is to seek less expensive ways to find an
(approximate) linear system solution

e note: see also Lecture 1 for ideas of handling large-scale LS problems, which is
relevant to the context here
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The Key Insight of lterative Methods

e assume a;; = 0 for all ¢

e observe

b=Ax <+— bi:aiixi—FZaijwj, 1=1,...,n
JFi

<— z;=|b;— Zaijwj /CLZ'Z', 1 =1,.

J71

e idea: find an x that fulfils the equations in ()

(1)
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Jacobi lterations

input: a starting point x(%)
for k=0,1,2,...
x(kﬂ) — (bi - Zj;éz' av:jl’(-k)> /aii, fori=1,...,n

? J

end

e complexity per iteration: O(n?) for dense A, O(nnz(A)) for sparse A
e the Jacobi update step can be computed in a parallel or distributed fashion
— same idea appeared in distributed power control in 2G or 3G wireless networks
e a natural idea, heuristic at first glance
e does the Jacobi iterations converge to the linear system solution?

— it does not, in general

— it does if the diagonal elements a;;'s are “dominant” compared to the off-
diagonal elements; see Theorem 10.1.1 in [Golub-van-Loan’12] for details
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Gauss-Seidel lterations

input: a starting point x(%)
fork=0,1,2,...
fori=1,2,...,n

1—1
a:z(.kﬂ): bi—Zaw (bt1) Z Wi T ; 2P /a;
71=1 J=14+1

end

end

e use the most recently available x to perform update
e sequential, cannot be computed in a distributed or parallel manner

e guaranteed to converge to the linear system solution if
— A has diagonally dominant characteristics (similar to the Jacobi iterations)

— A is symmetric PD; see see Theorem 10.1.2 in [Golub-van-Loan’12]
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