ENGG 5781: Matrix Analysis and Computations 2024—25 First Term

Lecture 7: Linear Systems

Instructor: Wing-Kin Ma

This note shows the proof of the properties and theorems in the main lecture slides.

1 Proof of Properties 7.1-7.3

Recall Properties 7.1-7.3 in the main lecture slides:

Property 7.1 Let A,B € R™ "™ be lower triangular. Then, AB is lower triangular. Also, if A,
B have unit diagonal entries, then AB has unit diagonal entries.

Property 7.2 If A € R™" is lower triangular, then det(A) = [T ai.

Property 7.3 Let A € R™" be nonsingular lower triangular. Then, A1 is lower triangular with
[A_l]ii = 1/0,“

Their proofs are shown as follows.

1.1 Proof of Property 7.1

Property 7.1 can be shown by examining the matrix product AB in an element-by-element fashion.
I also show you an alternative proof using unit vector representations. For convenience, let C = AT
and D = AB = CTB. The (k,l)th entry of D is

T
dk:l = Cj bl.

Since B is lower triangular, its columns can be represented by
n
by =) biej;, l=1,...,n,
j=l

where we recall that e;’s are unit vectors. Also, since C = AT is upper triangular, we can employ
a similar representation

k
ckzg agi€;, 1=1,...,n.
i=1

Using the above representations, di; can be expressed as

k T n
diy = <Z alciei) > bie;
=1

=1

2 :2 : T
= akibﬂei ej



By noting that eiTej =0 for all ¢ # j, and e;frei =1, the above expression can be simplified to

0 k<l

!
At = Zakibih k>1
i—k

It follows that D is lower triangular. The above formula also indicates that if agr = bgr = 1 for all
1 <k <n,then dpr = appbpr =1 for all 1 < k < n.

1.2 Proof of Property 7.2

Recall the cofactor expansion formula for the determinant of a general A € R™*"™:
n
det(A) = Z(Iijcij, Cij = (—1)i+jdet(Aij),
i=1

for any @ = 1,...,n, where A;; is a submatrix obtained by deleting the ith row and jth column
of A. Now, consider a lower triangular A. Let us choose i = 1 for the above cofactor expansion
formula

n
det(A) = Z a1;5C15 = alldet(All).
i=1
By repeatedly applying the same cofactor expansion on the cofactors, we obtain det(A) = aj1a22 « - - app.-

1.3 Proof of Property 7.3

Consider the following system
Ax = e,

where 1 < k < n, and A is lower triangular. Let us examine the first k equations of the system:

ailry = 0, (13‘)

a2171 + agwe = 0, (1b)

(1c)

ap—1,121 + ...+ ap_1x—1Tk—1 = 0, (1d)
Q,1T1 + ...+ agpTr = 1. (16)

By applying forward substitution w.r.t. (1a)—(1le), we obtain

$1:...:$k_1:(), .CUk;:L
Ak
Here, we make an assumption that agr # 0. This assumption is satisfied if A is nonsingular; cf.
Property 7.2
Now, we show that the inverse of a lower triangular A is also lower triangular. Let B be the

inverse of A. The identity AB = I can be decomposed into n linear systems:
Abk:ek, kzl,...,n.

Using the previously proven result, the solution by has [bg]; =0 for I = 1,...,k — 1. Consequently,
B takes a lower triangular structure. In addition, we have [by|r = 1/ak.



2 Proof of Theorem 7.1

Let us recapitulate the theorem:

Theorem 7.1 A matriz A € R"™" has an LU decomposition if every principal submatriz Aqy 1y
satisfies
det(Aq,.. k) # 0,

fork=1,2,....,n— 1. If the LU decomposition of A exists and A is nonsingular, then (L, U) is
Unique.

From the development of Gauss elimination shown in the main slides, we see that the LU
decomposition of a given A exists (or can be constructed) if the pivots agz_l)’s are all nonzero. In
the following, we show that if every principal submatrix Ag 1y, 1 < k < n — 1, is nonsingular,

k—1) . . . .
then a,(ck ) is nonzero. Consider the matrix equation

Ak=1) M, _1---MoM;A

for any 1 < k < n — 1. For convenience, let W = Mj,_q ---MsM;. By Properties 7.1 and 7.3, W
is lower triangular with unit diagonal elements. By denoting A;.; ;. be a submatrix of A obtained
by keeping ¢, + 1,...,j rows and k,k+ 1,...,l columns of A, we can expand A= — WA as

k—1 k—1
Ag:k 1:)k Ag:k,kllzn ] — |: Wl:k,l:k 0 :| |: Al:k,l:k Al:k,k+1:n

(k—1) (k=1) Wit 1k Wieton btton | |Arstm 1k Akt ton kot
Ak+1:n,l:k AkH:n’ka k+1:n,1:k k4+1:nk+1:n k+1:n,1:k k+1:mnk+1mn

From the above equation, we see that
k—1
Ag;k,l;)k = Wi 10ALk 1k

Consequently, we have
det(Aﬁ’f,;i’w = det(Wig 1:k)det(Aqg 1)

Note that Agkk_ 11:),6 is upper triangular, and Wy, 1. is lower triangular with unit diagonal elements.
Thus, by Property 7.2, their determinants are

k
det(Aglf,;i)k) = Ha(kfl), det(Wip 1) = 1,

)
=1

respectively. It follows that if Aq.; .5 is nonsingular, then ag;_l) #0.

We are also interested in proving the uniqueness of the LU decomposition. Suppose that A =
LU, and A = LyUs are two LU decompositions of A. Also, assume that A is nonsingular. Then,
we claim that Lq, Lo, U; and Us are all nonsingular, and thus invertible: the nonsingularity of Ly
and Ls follows from Property 7.2, as well as the fact that L1 and Loy are lower triangular with unit
diagonal elements; the nonsingularity of U; and Uy can be deduced from the nonsingularity of L
and Lo and the nonsingularity of A (how?). From A = L;U; = LyUsy, we can write

L,'L; = U UL (2)



Note that the left-hand side of the above equation is a lower triangular matrix, while the right-hand
side a upper triangular matrix (see Properties 7.1 and 7.3). Hence, (2) can only be satisfied when
Ly 1L1 and UQUl_l are diagonal. Also, since Ly, 1L1 has unit diagonal elements, we further obtain
L—2L; =1, and consequently, L; = Ly. Moreover, from the above result, we also have U™2U; =1,
and then U; = U,. Thus, we have shown that the LU decomposition of a nonsingular A, if exists,
has to be unique.

3 Proof of Theorem 7.2

Theorem 7.2 If A = LDM? is the LDM decomposition of a nonsingular symmetric A, then
L =M.

Let A = LDMT be the LDM decomposition of A, and consider
M 'AM~T = M~!LD;

(note that any lower triangular M (or L) with unit diagonal elements is invertible, as we have
discussed in the proof of Theorem 7.2). Since A is symmetric, M—'AM ™7 is also symmetric. It
follows that M~!LD is symmetric. By noting that M~'L is lower triangular with unit diagonal
elements, the only possibility for M™ILD to be symmetric is that M~'LD is diagonal. Also, if A
is nonsingular, then it can be verified from A = LDMT that the diagonal matrix D is nonsingular.
As a result, M~'L must be diagonal. Since M~'L has unit diagonal elements, we further conclude
that M~!'L = I, or equivalently, L. = M.

4 Proof of Theorem 7.3

Theorem 7.3 If A € S" is PD, then there exists a unique lower triangular G € R™*"™ with positive
diagonal elements such that A = GGT.

If A is PD, then any principal submatrix of A is PD—and nonsingular; see Lecture 4, page
15. Hence, by Theorem 7.1, the LU or LDM decomposition of a PD A always exists in a unique
sense. Also, by Theorem 7.2, the LDM decomposition can be simplified to the LDL decomposition
A = LDL”, where L, D is unique. It can be verified that for a PD A, we have d; > 0 for all i (I

leave this as an exercise for you). By constructing G = LD%, we get A = GGT.



