Lecture 7: Linear Systems

Instructor: Wing-Kin Ma

This note shows the proof of the properties and theorems in the main lecture slides.

1 Proof of Properties 7.1-7.3

Recall Properties 7.1-7.3 in the main lecture slides:
Property 7.1 Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ be lower triangular. Then, $\mathbf{A B}$ is lower triangular. Also, if \mathbf{A}, \mathbf{B} have unit diagonal entries, then $\mathbf{A B}$ has unit diagonal entries.

Property 7.2 If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is lower triangular, then $\operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} a_{i i}$.
Property 7.3 Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be nonsingular lower triangular. Then, \mathbf{A}^{-1} is lower triangular with $\left[\mathbf{A}^{-1}\right]_{i i}=1 / a_{i i}$.

Their proofs are shown as follows.

1.1 Proof of Property 7.1

Property 7.1 can be shown by examining the matrix product $\mathbf{A B}$ in an element-by-element fashion. I also show you an alternative proof using unit vector representations. For convenience, let $\mathbf{C}=\mathbf{A}^{T}$, and $\mathbf{D}=\mathbf{A B}=\mathbf{C}^{T} \mathbf{B}$. The (k, l) th entry of \mathbf{D} is

$$
d_{k l}=\mathbf{c}_{k}^{T} \mathbf{b}_{l}
$$

Since B is lower triangular, its columns can be represented by

$$
\mathbf{b}_{l}=\sum_{j=l}^{n} b_{j l} \mathbf{e}_{j}, \quad l=1, \ldots, n
$$

where we recall that \mathbf{e}_{k} 's are unit vectors. Also, since $\mathbf{C}=\mathbf{A}^{T}$ is upper triangular, we can employ a similar representation

$$
\mathbf{c}_{k}=\sum_{i=1}^{k} a_{k i} \mathbf{e}_{i}, \quad i=1, \ldots, n
$$

Using the above representations, $d_{k l}$ can be expressed as

$$
\begin{aligned}
d_{k l} & =\left(\sum_{i=1}^{k} a_{k i} \mathbf{e}_{i}\right)^{T}\left(\sum_{j=l}^{n} b_{j l} \mathbf{e}_{j}\right) \\
& =\sum_{i=1}^{k} \sum_{j=l}^{n} a_{k i} b_{j l} \mathbf{e}_{i}^{T} \mathbf{e}_{j}
\end{aligned}
$$

By noting that $\mathbf{e}_{i}^{T} \mathbf{e}_{j}=0$ for all $i \neq j$, and $\mathbf{e}_{i}^{T} \mathbf{e}_{i}=1$, the above expression can be simplified to

$$
d_{k l}= \begin{cases}0, & k<l \\ \sum_{i=k}^{l} a_{k i} b_{i l}, & k \geq l\end{cases}
$$

It follows that \mathbf{D} is lower triangular. The above formula also indicates that if $a_{k k}=b_{k k}=1$ for all $1 \leq k \leq n$, then $d_{k k}=a_{k k} b_{k k}=1$ for all $1 \leq k \leq n$.

1.2 Proof of Property 7.2

Recall the cofactor expansion formula for the determinant of a general $\mathbf{A} \in \mathbb{R}^{n \times n}$:

$$
\operatorname{det}(\mathbf{A})=\sum_{i=1}^{n} a_{i j} c_{i j}, \quad c_{i j}=(-1)^{i+j} \operatorname{det}\left(\mathbf{A}_{i j}\right)
$$

for any $i=1, \ldots, n$, where $\mathbf{A}_{i j}$ is a submatrix obtained by deleting the i th row and j th column of A. Now, consider a lower triangular A. Let us choose $i=1$ for the above cofactor expansion formula

$$
\operatorname{det}(\mathbf{A})=\sum_{i=1}^{n} a_{1 j} c_{1 j}=a_{11} \operatorname{det}\left(\mathbf{A}_{11}\right)
$$

By repeatedly applying the same cofactor expansion on the cofactors, we obtain $\operatorname{det}(\mathbf{A})=a_{11} a_{22} \cdots a_{n n}$.

1.3 Proof of Property 7.3

Consider the following system

$$
\mathbf{A x}=\mathbf{e}_{k}
$$

where $1 \leq k \leq n$, and \mathbf{A} is lower triangular. Let us examine the first k equations of the system:

$$
\begin{align*}
& a_{11} x_{1}=0, \tag{1a}\\
& a_{21} x_{1}+a_{22} x_{2}=0, \tag{1b}\\
& \vdots \tag{1c}\\
& a_{k-1,1} x_{1}+\ldots+a_{k-1, k-1} x_{k-1}=0, \tag{1d}\\
& a_{k, 1} x_{1}+\ldots+a_{k k} x_{k}=1 . \tag{1e}
\end{align*}
$$

By applying forward substitution w.r.t. (1a)-(1e), we obtain

$$
x_{1}=\ldots=x_{k-1}=0, \quad x_{k}=\frac{1}{a_{k k}}
$$

Here, we make an assumption that $a_{k k} \neq 0$. This assumption is satisfied if \mathbf{A} is nonsingular; cf. Property 7.2

Now, we show that the inverse of a lower triangular \mathbf{A} is also lower triangular. Let \mathbf{B} be the inverse of \mathbf{A}. The identity $\mathbf{A B}=\mathbf{I}$ can be decomposed into n linear systems:

$$
\mathbf{A} \mathbf{b}_{k}=\mathbf{e}_{k}, \quad k=1, \ldots, n
$$

Using the previously proven result, the solution \mathbf{b}_{k} has $\left[\mathbf{b}_{k}\right]_{l}=0$ for $l=1, \ldots, k-1$. Consequently, B takes a lower triangular structure. In addition, we have $\left[\mathbf{b}_{k}\right]_{k}=1 / a_{k k}$.

2 Proof of Theorem 7.1

Let us recapitulate the theorem:
Theorem 7.1 A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has an LU decomposition if every principal submatrix $\mathbf{A}_{\{1, \ldots, k\}}$ satisfies

$$
\operatorname{det}\left(\mathbf{A}_{\{1, \ldots, k\}}\right) \neq 0,
$$

for $k=1,2, \ldots, n-1$. If the $L U$ decomposition of \mathbf{A} exists and \mathbf{A} is nonsingular, then (\mathbf{L}, \mathbf{U}) is unique.

From the development of Gauss elimination shown in the main slides, we see that the LU decomposition of a given \mathbf{A} exists (or can be constructed) if the pivots $a_{k k}^{(k-1)}$, s are all nonzero. In the following, we show that if every principal submatrix $\mathbf{A}_{\{1, \ldots, k\}}, 1 \leq k \leq n-1$, is nonsingular, then $a_{k k}^{(k-1)}$ is nonzero. Consider the matrix equation

$$
\mathbf{A}^{(k-1)}=\mathbf{M}_{k-1} \cdots \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{A}
$$

for any $1 \leq k \leq n-1$. For convenience, let $\mathbf{W}=\mathbf{M}_{k-1} \cdots \mathbf{M}_{2} \mathbf{M}_{1}$. By Properties 7.1 and $7.3, \mathbf{W}$ is lower triangular with unit diagonal elements. By denoting $\mathbf{A}_{i: j, k: l}$ be a submatrix of \mathbf{A} obtained by keeping $i, i+1, \ldots, j$ rows and $k, k+1, \ldots, l$ columns of \mathbf{A}, we can expand $\mathbf{A}^{(k-1)}=\mathbf{W A}$ as

$$
\left[\begin{array}{cc}
\mathbf{A}_{1: k, 1: k}^{(k-1)} & \mathbf{A}_{1: k, k+1: n}^{(k-1)} \\
\mathbf{A}_{k+1: n, 1: k}^{(k-1)} & \mathbf{A}_{k+1: n, k+1: n}^{(k-1)}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{W}_{1: k, 1: k} & \mathbf{0} \\
\mathbf{W}_{k+1: n, 1: k} & \mathbf{W}_{k+1: n, k+1: n}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A}_{1: k, 1: k} & \mathbf{A}_{1: k, k+1: n} \\
\mathbf{A}_{k+1: n, 1: k} & \mathbf{A}_{k+1: n, k+1: n}
\end{array}\right]
$$

From the above equation, we see that

$$
\mathbf{A}_{1: k, 1: k}^{(k-1)}=\mathbf{W}_{1: k, 1: k} \mathbf{A}_{1: k, 1: k} .
$$

Consequently, we have

$$
\operatorname{det}\left(\mathbf{A}_{1: k, 1: k}^{(k-1)}\right)=\operatorname{det}\left(\mathbf{W}_{1: k, 1: k}\right) \operatorname{det}\left(\mathbf{A}_{1: k, 1: k}\right) .
$$

Note that $\mathbf{A}_{1: k, 1: k}^{(k-1)}$ is upper triangular, and $\mathbf{W}_{1: k, 1: k}$ is lower triangular with unit diagonal elements. Thus, by Property 7.2 , their determinants are

$$
\operatorname{det}\left(\mathbf{A}_{1: k, 1: k}^{(k-1)}\right)=\prod_{i=1}^{k} a_{i i}^{(k-1)}, \quad \operatorname{det}\left(\mathbf{W}_{1: k, 1: k}\right)=1
$$

respectively. It follows that if $\mathbf{A}_{1: k, 1: k}$ is nonsingular, then $a_{k k}^{(k-1)} \neq 0$.
We are also interested in proving the uniqueness of the LU decomposition. Suppose that $\mathbf{A}=$ $\mathbf{L}_{1} \mathbf{U}_{1}$ and $\mathbf{A}=\mathbf{L}_{2} \mathbf{U}_{2}$ are two $L U$ decompositions of \mathbf{A}. Also, assume that \mathbf{A} is nonsingular. Then, we claim that $\mathbf{L}_{1}, \mathbf{L}_{2}, \mathbf{U}_{1}$ and \mathbf{U}_{2} are all nonsingular, and thus invertible: the nonsingularity of \mathbf{L}_{1} and \mathbf{L}_{2} follows from Property 7.2, as well as the fact that \mathbf{L}_{1} and \mathbf{L}_{2} are lower triangular with unit diagonal elements; the nonsingularity of \mathbf{U}_{1} and \mathbf{U}_{2} can be deduced from the nonsingularity of \mathbf{L}_{1} and \mathbf{L}_{2} and the nonsingularity of \mathbf{A} (how?). From $\mathbf{A}=\mathbf{L}_{1} \mathbf{U}_{1}=\mathbf{L}_{2} \mathbf{U}_{2}$, we can write

$$
\begin{equation*}
\mathbf{L}_{2}^{-1} \mathbf{L}_{1}=\mathbf{U}_{2} \mathbf{U}_{1}^{-1} \tag{2}
\end{equation*}
$$

Note that the left-hand side of the above equation is a lower triangular matrix, while the right-hand side a upper triangular matrix (see Properties 7.1 and 7.3). Hence, (2) can only be satisfied when $\mathbf{L}_{2}^{-1} \mathbf{L}_{1}$ and $\mathbf{U}_{2} \mathbf{U}_{1}^{-1}$ are diagonal. Also, since $\mathbf{L}_{2}^{-1} \mathbf{L}_{1}$ has unit diagonal elements, we further obtain $\mathbf{L}^{-2} \mathbf{L}_{1}=\mathbf{I}$, and consequently, $\mathbf{L}_{1}=\mathbf{L}_{2}$. Moreover, from the above result, we also have $\mathbf{U}^{-2} \mathbf{U}_{1}=\mathbf{I}$, and then $\mathbf{U}_{1}=\mathbf{U}_{2}$. Thus, we have shown that the LU decomposition of a nonsingular \mathbf{A}, if exists, has to be unique.

3 Proof of Theorem 7.2

Theorem 7.2 If $\mathbf{A}=\mathbf{L D M}^{T}$ is the LDM decomposition of a nonsingular symmetric \mathbf{A}, then $\mathbf{L}=\mathbf{M}$.

Let $\mathbf{A}=\mathbf{L D M}^{T}$ be the LDM decomposition of \mathbf{A}, and consider

$$
\mathbf{M}^{-1} \mathbf{A M}^{-T}=\mathbf{M}^{-1} \mathbf{L} \mathbf{D}
$$

(note that any lower triangular \mathbf{M} (or \mathbf{L}) with unit diagonal elements is invertible, as we have discussed in the proof of Theorem 7.2). Since \mathbf{A} is symmetric, $\mathbf{M}^{-1} \mathbf{A} \mathbf{M}^{-T}$ is also symmetric. It follows that $\mathbf{M}^{-1} \mathbf{L} \mathbf{D}$ is symmetric. By noting that $\mathbf{M}^{-1} \mathbf{L}$ is lower triangular with unit diagonal elements, the only possibility for $\mathbf{M}^{-1} \mathbf{L D}$ to be symmetric is that $\mathbf{M}^{-1} \mathbf{L D}$ is diagonal. Also, if \mathbf{A} is nonsingular, then it can be verified from $\mathbf{A}=\mathbf{L D M}^{T}$ that the diagonal matrix \mathbf{D} is nonsingular. As a result, $\mathbf{M}^{-1} \mathbf{L}$ must be diagonal. Since $\mathbf{M}^{-1} \mathbf{L}$ has unit diagonal elements, we further conclude that $\mathbf{M}^{-1} \mathbf{L}=\mathbf{I}$, or equivalently, $\mathbf{L}=\mathbf{M}$.

4 Proof of Theorem 7.3

Theorem 7.3 If $\mathbf{A} \in \mathbb{S}^{n}$ is $P D$, then there exists a unique lower triangular $\mathbf{G} \in \mathbb{R}^{n \times n}$ with positive diagonal elements such that $\mathbf{A}=\mathbf{G G}^{T}$.

If \mathbf{A} is PD , then any principal submatrix of \mathbf{A} is PD - and nonsingular; see Lecture 4, page 15. Hence, by Theorem 7.1, the LU or LDM decomposition of a PD A always exists in a unique sense. Also, by Theorem 7.2, the LDM decomposition can be simplified to the LDL decomposition $\mathbf{A}=\mathbf{L D L}^{T}$, where \mathbf{L}, \mathbf{D} is unique. It can be verified that for a $\mathrm{PD} \mathbf{A}$, we have $d_{i}>0$ for all i (I leave this as an exercise for you). By constructing $\mathbf{G}=\mathbf{L} \mathbf{D}^{\frac{1}{2}}$, we get $\mathbf{A}=\mathbf{G G}^{T}$.

