
ENGG 5781: Matrix Analysis and Computations 2022-23 First Term

Lecture 7: Linear Systems

Instructor: Wing-Kin Ma

This note shows the proof of the properties and theorems in the main lecture slides.

1 Proof of Properties 7.1–7.3

Recall Properties 7.1–7.3 in the main lecture slides:

Property 7.1 Let A,B ∈ Rn×n be lower triangular. Then, AB is lower triangular. Also, if A,
B have unit diagonal entries, then AB has unit diagonal entries.

Property 7.2 If A ∈ Rn×n is lower triangular, then det(A) =
∏n

i=1 aii.

Property 7.3 Let A ∈ Rn×n be nonsingular lower triangular. Then, A−1 is lower triangular with
[A−1]ii = 1/aii.

Their proofs are shown as follows.

1.1 Proof of Property 7.1

Property 7.1 can be shown by examining the matrix product AB in an element-by-element fashion.
I also show you an alternative proof using unit vector representations. For convenience, let C = AT ,
and D = AB = CTB. The (k, l)th entry of D is

dkl = cTk bl.

Since B is lower triangular, its columns can be represented by

bl =
n∑
j=l

bjlej , l = 1, . . . , n,

where we recall that ek’s are unit vectors. Also, since C = AT is upper triangular, we can employ
a similar representation

ck =

k∑
i=1

akiei, i = 1, . . . , n.

Using the above representations, dkl can be expressed as

dkl =

(
k∑

i=1

akiei

)T
 n∑

j=l

bjlej


=

k∑
i=1

n∑
j=l

akibjle
T
i ej
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By noting that eTi ej = 0 for all i 6= j, and eTi ei = 1, the above expression can be simplified to

dkl =


0, k < l
l∑

i=k

akibil, k ≥ l

It follows that D is lower triangular. The above formula also indicates that if akk = bkk = 1 for all
1 ≤ k ≤ n, then dkk = akkbkk = 1 for all 1 ≤ k ≤ n.

1.2 Proof of Property 7.2

Recall the cofactor expansion formula for the determinant of a general A ∈ Rn×n:

det(A) =

n∑
i=1

aijcij , cij = (−1)i+jdet(Aij),

for any i = 1, . . . , n, where Aij is a submatrix obtained by deleting the ith row and jth column
of A. Now, consider a lower triangular A. Let us choose i = 1 for the above cofactor expansion
formula

det(A) =

n∑
i=1

a1jc1j = a11det(A11).

By repeatedly applying the same cofactor expansion on the cofactors, we obtain det(A) = a11a22 · · · ann.

1.3 Proof of Property 7.3

Consider the following system
Ax = ek,

where 1 ≤ k ≤ n, and A is lower triangular. Let us examine the first k equations of the system:

a11x1 = 0, (1a)

a21x1 + a22x2 = 0, (1b)

... (1c)

ak−1,1x1 + . . . + ak−1,k−1xk−1 = 0, (1d)

ak,1x1 + . . . + akkxk = 1. (1e)

By applying forward substitution w.r.t. (1a)–(1e), we obtain

x1 = . . . = xk−1 = 0, xk =
1

akk
.

Here, we make an assumption that akk 6= 0. This assumption is satisfied if A is nonsingular; cf.
Property 7.2

Now, we show that the inverse of a lower triangular A is also lower triangular. Let B be the
inverse of A. The identity AB = I can be decomposed into n linear systems:

Abk = ek, k = 1, . . . , n.

Using the previously proven result, the solution bk has [bk]l = 0 for l = 1, . . . , k− 1. Consequently,
B takes a lower triangular structure. In addition, we have [bk]k = 1/akk.

2



2 Proof of Theorem 7.1

Let us recapitulate the theorem:

Theorem 7.1 A matrix A ∈ Rn×n has an LU decomposition if every principal submatrix A{1,...,k}
satisfies

det(A{1,...,k}) 6= 0,

for k = 1, 2, . . . , n − 1. If the LU decomposition of A exists and A is nonsingular, then (L,U) is
unique.

From the development of Gauss elimination shown in the main slides, we see that the LU

decomposition of a given A exists (or can be constructed) if the pivots a
(k−1)
kk ’s are all nonzero. In

the following, we show that if every principal submatrix A{1,...,k}, 1 ≤ k ≤ n − 1, is nonsingular,

then a
(k−1)
kk is nonzero. Consider the matrix equation

A(k−1) = Mk−1 · · ·M2M1A

for any 1 ≤ k ≤ n− 1. For convenience, let W = Mk−1 · · ·M2M1. By Properties 7.1 and 7.3, W
is lower triangular with unit diagonal elements. By denoting Ai:j,k:l be a submatrix of A obtained
by keeping i, i + 1, . . . , j rows and k, k + 1, . . . , l columns of A, we can expand A(k−1) = WA as[

A
(k−1)
1:k,1:k A

(k−1)
1:k,k+1:n

A
(k−1)
k+1:n,1:k A

(k−1)
k+1:n,k+1:n

]
=

[
W1:k,1:k 0

Wk+1:n,1:k Wk+1:n,k+1:n

] [
A1:k,1:k A1:k,k+1:n

Ak+1:n,1:k Ak+1:n,k+1:n

]
From the above equation, we see that

A
(k−1)
1:k,1:k = W1:k,1:kA1:k,1:k.

Consequently, we have

det(A
(k−1)
1:k,1:k) = det(W1:k,1:k)det(A1:k,1:k).

Note that A
(k−1)
1:k,1:k is upper triangular, and W1:k,1:k is lower triangular with unit diagonal elements.

Thus, by Property 7.2, their determinants are

det(A
(k−1)
1:k,1:k) =

k∏
i=1

a
(k−1)
ii , det(W1:k,1:k) = 1,

respectively. It follows that if A1:k,1:k is nonsingular, then a
(k−1)
kk 6= 0.

We are also interested in proving the uniqueness of the LU decomposition. Suppose that A =
L1U1 and A = L2U2 are two LU decompositions of A. Also, assume that A is nonsingular. Then,
we claim that L1, L2, U1 and U2 are all nonsingular, and thus invertible: the nonsingularity of L1

and L2 follows from Property 7.2, as well as the fact that L1 and L2 are lower triangular with unit
diagonal elements; the nonsingularity of U1 and U2 can be deduced from the nonsingularity of L1

and L2 and the nonsingularity of A (how?). From A = L1U1 = L2U2, we can write

L−12 L1 = U2U
−1
1 . (2)
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Note that the left-hand side of the above equation is a lower triangular matrix, while the right-hand
side a upper triangular matrix (see Properties 7.1 and 7.3). Hence, (2) can only be satisfied when
L−12 L1 and U2U

−1
1 are diagonal. Also, since L−12 L1 has unit diagonal elements, we further obtain

L−2L1 = I, and consequently, L1 = L2. Moreover, from the above result, we also have U−2U1 = I,
and then U1 = U2. Thus, we have shown that the LU decomposition of a nonsingular A, if exists,
has to be unique.

3 Proof of Theorem 7.2

Theorem 7.2 If A = LDMT is the LDM decomposition of a nonsingular symmetric A, then
L = M.

Let A = LDMT be the LDM decomposition of A, and consider

M−1AM−T = M−1LD;

(note that any lower triangular M (or L) with unit diagonal elements is invertible, as we have
discussed in the proof of Theorem 7.2). Since A is symmetric, M−1AM−T is also symmetric. It
follows that M−1LD is symmetric. By noting that M−1L is lower triangular with unit diagonal
elements, the only possibility for M−1LD to be symmetric is that M−1LD is diagonal. Also, if A
is nonsingular, then it can be verified from A = LDMT that the diagonal matrix D is nonsingular.
As a result, M−1L must be diagonal. Since M−1L has unit diagonal elements, we further conclude
that M−1L = I, or equivalently, L = M.

4 Proof of Theorem 7.3

Theorem 7.3 If A ∈ Sn is PD, then there exists a unique lower triangular G ∈ Rn×n with positive
diagonal elements such that A = GGT .

If A is PD, then any principal submatrix of A is PD—and nonsingular; see Lecture 4, page
15. Hence, by Theorem 7.1, the LU or LDM decomposition of a PD A always exists in a unique
sense. Also, by Theorem 7.2, the LDM decomposition can be simplified to the LDL decomposition
A = LDLT , where L,D is unique. It can be verified that for a PD A, we have di > 0 for all i (I

leave this as an exercise for you). By constructing G = LD
1
2 , we get A = GGT .
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