ENGG5781 Matrix Analysis and Computations Lecture 6: Least Squares Revisited

Wing-Kin (Ken) Ma

2022-23 First Term
Department of Electronic Engineering
The Chinese University of Hong Kong

Lecture 6: Least Squares Revisited

- Part I: regularization
- Part II: sparsity
- ℓ_{0} minimization
- greedy pursuit, ℓ_{1} minimization, and variations
- majorization-minimization for $\ell_{2}-\ell_{1}$ minimization
- dictionary learning
- Part III: LS with errors in A
- total LS
- robust LS, and its equivalence to regularization

Part I: Regularization

Sensitivity to Noise

- Question: how sensitive is the LS solution when there is noise?
- Model:

$$
\mathbf{y}=\mathbf{A} \overline{\mathbf{x}}+\boldsymbol{\nu}
$$

where $\overline{\mathbf{x}}$ is the true result; $\mathbf{A} \in \mathbb{R}^{m \times n}$ has full column rank; $\boldsymbol{\nu}$ is noise, modeled as a random vector with mean zero and covariance $\gamma^{2} \mathbf{I}$.

- Mean square error (MSE) analysis: from $\mathbf{x}_{L S}=\mathbf{A}^{\dagger} \mathbf{y}=\overline{\mathbf{x}}+\mathbf{A}^{\dagger} \boldsymbol{\nu}$ we get

$$
\begin{aligned}
\mathrm{E}\left[\left\|\mathbf{x}_{\mathrm{LS}}-\overline{\mathbf{x}}\right\|_{2}^{2}\right] & =\mathrm{E}\left[\left\|\mathbf{A}^{\dagger} \boldsymbol{\nu}\right\|_{2}^{2}\right]=\mathrm{E}\left[\operatorname{tr}\left(\mathbf{A}^{\dagger} \boldsymbol{\nu} \boldsymbol{\nu}^{T}\left(\mathbf{A}^{\dagger}\right)^{T}\right)\right]=\operatorname{tr}\left(\mathbf{A}^{\dagger} \mathrm{E}\left[\boldsymbol{\nu} \boldsymbol{\nu}^{T}\right]\left(\mathbf{A}^{\dagger}\right)^{T}\right] \\
& =\gamma^{2} \operatorname{tr}\left(\mathbf{A}^{\dagger}\left(\mathbf{A}^{\dagger}\right)^{T}\right)=\gamma^{2} \operatorname{tr}\left(\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1}\right) \\
& =\gamma^{2} \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}(\mathbf{A})}
\end{aligned}
$$

- Observation: the MSE becomes very large if some $\sigma_{i}(\mathbf{A})$'s are close to zero.

Toy Demonstration: Curve Fitting

The same curve fitting example in Lecture 2. The "true" curve is the true $f(x)$ with model order $n=4$. In practice, the model order may not be known and we may have to guess. The fitted curve above is done by LS with a guessed model order $n=16$.

ℓ_{2}-Regularized LS

- Intuition: replace $\mathbf{x}_{\mathrm{LS}}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{y}$ by

$$
\mathbf{x}_{\mathrm{RLS}}=\left(\mathbf{A}^{T} \mathbf{A}+\lambda \mathbf{I}\right)^{-1} \mathbf{A}^{T} \mathbf{y}
$$

for some $\lambda>0$, where the term $\lambda \mathbf{I}$ is added to improve the system conditioning, thereby attempting to reduce noise sensitivity

- how may we make sense out of such a modification?
- ℓ_{2}-regularized LS: find an \mathbf{x} that solves

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{A x}-\mathbf{y}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{2}^{2}
$$

for some pre-determined $\lambda>0$.

- the solution is uniquely given by $\mathbf{x}_{\text {RLS }}=\left(\mathbf{A}^{T} \mathbf{A}+\lambda \mathbf{I}\right)^{-1} \mathbf{A}^{T} \mathbf{y}$
- the formulation says that we try to minimize both $\|\mathbf{y}-\mathbf{A x}\|_{2}^{2}$ and $\|\mathbf{x}\|_{2}^{2}$, and λ controls which one should be more emphasized in the minimization

Toy Demonstration: Curve Fitting

The fitted curve is done by ℓ_{2}-regularized LS with a guessed model order $n=18$ and with $\lambda=0.1$.

Part II: Sparsity

The Sparse Recovery Problem

Problem: given $\mathbf{y} \in \mathbb{R}^{m}, \mathbf{A} \in \mathbb{R}^{m \times n}, m<n$, find a sparsest $\mathbf{x} \in \mathbb{R}^{n}$ such that

$$
\mathbf{y}=\mathbf{A x}
$$

- by sparsest, we mean that \mathbf{x} should have as many zero elements as possible.

A Sparsity Optimization Formulation

- let

$$
\|\mathbf{x}\|_{0}=\sum_{i=1}^{n} \mathbb{1}\left\{x_{i} \neq 0\right\}
$$

denote the cardinality function

- commonly called the " ℓ_{0}-norm", though it is not a norm.
- Minimum ℓ_{0}-norm formulation:

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{x}\|_{0} \\
& \text { s.t. } \mathbf{y}=\mathbf{A x}
\end{aligned}
$$

- Question: suppose that $\mathbf{y}=\mathbf{A} \overline{\mathbf{x}}$, where $\overline{\mathbf{x}}$ is the vector we seek to recover. Can the min. ℓ_{0}-norm problem recover $\overline{\mathbf{x}}$ in an exact and unique fashion?
- an answer lies in the notion of spark, which may be seen as a strong definition of rank

Spark

Spark: the spark of \mathbf{A}, denoted by $\operatorname{spark}(\mathbf{A})$, is the smallest number of linearly dependent columns of \mathbf{A}.

- let $\operatorname{spark}(\mathbf{A})=k$. Then, k is the smallest number such that there exists a linearly dependent $\left\{\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{k}}\right\}$ for some $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, n\}^{1}$.
- let $\operatorname{spark}(\mathbf{A})=r+1$. Then, $\left\{\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{r}}\right\}$ is linearly independent for any $\left\{i_{1}, \ldots, i_{r}\right\} \subseteq\{1, \ldots, n\}$
- any collection of r columns of \mathbf{A} is linearly independent, simply stated
- Comparison with rank: Let $\operatorname{rank}(\mathbf{A})=r$ (not the same r above). Then, there exists a linearly independent $\left\{\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{r}}\right\}$ for some $\left\{i_{1}, \ldots, i_{r}\right\} \subseteq\{1, \ldots, n\}$.
- Kruskal rank: this is an alternative definition of rank. The Kruskal rank of A, denoted by $\operatorname{krank}(\mathbf{A})$, has its definition equivalent to $\operatorname{krank}(\mathbf{A})=\operatorname{spark}(\mathbf{A})-1$.

[^0]
Spark

- if any collection of m vectors in $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\} \subseteq \mathbb{R}^{m}$, with $n>m$, is linearly independent, then

$$
\operatorname{spark}(\mathbf{A})=m+1, \quad \operatorname{rank}(\mathbf{A})=m
$$

- an example is Vandemonde matrices with distinct roots
- some specifically designed bases also have this property
- but there also exist instances in which rank and spark are very different
- let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\} \in \mathbb{R}^{m}$ be linearly independent, and let $\mathbf{A}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}, \mathbf{v}_{1}\right]$.
- we have $\operatorname{rank}(\mathbf{A})=r$, but $\operatorname{spark}(\mathbf{A})=2$
- to conclude, spark may be seen as a stronger definition of rank, and

$$
\operatorname{spark}(\mathbf{A})-1 \leq \operatorname{rank}(\mathbf{A})
$$

Perfect Recovery Guarantee of the Min. ℓ_{0}-Norm Problem

Theorem 6.1. Suppose that $\mathbf{y}=\mathbf{A} \overline{\mathbf{x}}$. Then, $\overline{\mathbf{x}}$ is the unique solution to the minimum ℓ_{0}-norm problem if

$$
\|\overline{\mathbf{x}}\|_{0}<\frac{1}{2} \operatorname{spark}(\mathbf{A})
$$

- Implication: if $\overline{\mathbf{x}}$ is sufficiently sparse, then the minimum ℓ_{0}-norm problem perfectly recovers $\overline{\mathbf{x}}$
- Proof sketch:

1. let \mathbf{x}^{\star} be a solution to the \min. ℓ_{0}-norm problem. Let $\mathbf{e}=\overline{\mathbf{x}}-\mathbf{x}^{\star}$.
2. $\mathbf{0}=\mathbf{A} \overline{\mathbf{x}}-\mathbf{A} \mathbf{x}^{\star}=\mathbf{A e} ;\|\mathbf{e}\|_{0} \leq\|\overline{\mathbf{x}}\|_{0}+\left\|\mathbf{x}^{\star}\right\|_{0} \leq 2\|\overline{\mathbf{x}}\|_{0}$.
3. suppose $\mathbf{e} \neq \mathbf{0}$. Then, $\mathbf{A e}=\mathbf{0},\|\mathbf{e}\|_{0} \leq 2\|\overline{\mathbf{x}}\|_{0} \Longrightarrow \operatorname{spark}(\mathbf{A}) \leq 2\|\overline{\mathbf{x}}\|_{0}$

Perfect Recovery Guarantee of the Min. ℓ_{0}-Norm Problem

- coherence: the coherence of \mathbf{A} is defined as

$$
\mu(\mathbf{A})=\max _{j \neq k} \frac{\left|\mathbf{a}_{j}^{T} \mathbf{a}_{k}\right|}{\left\|\mathbf{a}_{j}\right\|_{2}\left\|\mathbf{a}_{k}\right\|_{2}}
$$

- measures how similar the columns of \mathbf{A} are in the worst-case sense.
- a weak version of Theorem 6.1:

Corollary 6.1. Suppose that $\mathbf{y}=\mathbf{A} \overline{\mathbf{x}}$. Then, $\overline{\mathbf{x}}$ is the unique solution to the minimum ℓ_{0}-norm problem if

$$
\|\overline{\mathbf{x}}\|_{0}<\frac{1}{2}\left(1+\mu(\mathbf{A})^{-1}\right)
$$

- Implication: perfect recovery may depend on how incoherent \mathbf{A} is.
- proof idea: show that $\operatorname{spark}(\mathbf{A}) \geq 1+\mu(\mathbf{A})^{-1}$

On Solving the Minimum ℓ_{0}-Norm Problem

Question: How should we solve the minimum ℓ_{0}-norm problem

$$
\begin{aligned}
& \min _{\mathbf{x}}\|\mathbf{x}\|_{0} \\
& \text { s.t. } \mathbf{y}=\mathbf{A x}
\end{aligned}
$$

or can it be efficiently solved?

- ℓ_{0}-norm minimization does not lead to a simple solution as in 2 -norm min.
- the minimum ℓ_{0}-norm problem is NP-hard in general
- what does that mean?
* given any \mathbf{y}, \mathbf{A}, the problem is unlikely to be exactly solvable in polynomial time (i.e., in a complexity of $\mathcal{O}\left(n^{p}\right)$ for any $p>0$)

Brute Force Search for the Minimum ℓ_{0}-Norm Problem

- notation: $\mathbf{A}_{\mathcal{I}}$ denotes a submatrix of \mathbf{A} obtained by keeping the columns indicated by \mathcal{I}
- we may solve the ℓ_{0}-norm minimization problem via brute force search:

```
input: A,y
for all I \subseteq{1,2,\ldots,n} do
    if \mathbf{y}=\mp@subsup{\mathbf{A}}{\mathcal{I}}{}\tilde{\mathbf{x}}}\mathrm{ has a solution for some }\tilde{\mathbf{x}}\in\mp@subsup{\mathbb{R}}{}{|\mathcal{I}|
    record (\tilde{\mathbf{x}},\mathcal{I}) as one of candidate solutions
end
output: a candidate solution (\tilde{\mathbf{x}},\mathcal{I})\mathrm{ whose }|\mathcal{I}|\mathrm{ is the smallest}
```

- example: for $n=3$, we test $\mathcal{I}=\{1\}, \mathcal{I}=\{2\}, \mathcal{I}=\{3\}, \mathcal{I}=\{1,2\}, \mathcal{I}=$ $\{2,3\}, \mathcal{I}=\{1,3\}, \mathcal{I}=\{1,2,3\}$
- manageable for very small n, too expensive even for moderate n
- how about a greedy search that searches less?

Greedy Pursuit

- consider a greedy search called the orthogonal matching pursuit (OMP)

```
Algorithm: OMP
input: A,y
set \(\mathcal{I}=\emptyset, \hat{\mathbf{x}}=\mathbf{0}\)
repeat
    \(\mathbf{r}=\mathbf{y}-\mathbf{A} \hat{\mathbf{x}}\)
    \(k=\arg \max _{j \in\{1, \ldots, n\}}\left|\mathbf{a}_{j}^{T} \mathbf{r}\right| /\left\|\mathbf{a}_{j}\right\|_{2}\)
    \(\mathcal{I}:=\mathcal{I} \cup\{k\}\)
    \(\hat{\mathbf{x}}:=\arg \min _{\mathbf{x} \in \mathbb{R}^{n}, x_{i}=0} \forall i \notin \mathcal{I}\left(\mathbf{y}-\mathbf{A x} \|_{2}^{2}\right.\)
```

until a stopping rule is satisfied, e.g., $\|\mathbf{y}-\mathbf{A x}\|_{2}$ is sufficiently small
output: $\hat{\mathbf{x}}$

- note: there are many other greedy search strategies

Perfect Recovery Guarantee of Greedy Pursuit

- again, a key question is conditions under which OMP admits perfect recovery
- there are many such theoretical conditions, not only for OMP but also for other greedy algorithms
- one such result is as follows:

Theorem 6.2. Suppose that $\mathbf{y}=\mathbf{A} \overline{\mathbf{x}}$. Then, OMP recovers $\overline{\mathbf{x}}$ if

$$
\|\overline{\mathbf{x}}\|_{0}<\frac{1}{2}\left(1+\mu(\mathbf{A})^{-1}\right)
$$

- proof idea: show that OMP is guaranteed to pick a correct column at every stage.

Convex Relexation

Another approximation approach is to replace $\|\mathbf{x}\|_{0}$ by a convex function:

$$
\begin{aligned}
& \min _{\mathbf{x}}\|\mathbf{x}\|_{1} \\
& \text { s.t. } \mathbf{y}=\mathbf{A x} .
\end{aligned}
$$

- also known as basis pursuit in the literature
- convex, a linear program
- no closed-form solution (while the minimum 2-norm problem has)
- but the success of this minimum 1-norm problem, both in theory and practice, has motivated a large body of work on computationally efficient algorithms for it

Illustration of 1-Norm Geometry

- Fig. A shows the 1 -norm ball of radius r in \mathbb{R}^{2}. Note that the 1 -norm ball ball is "pointy" along the axes.
- Fig. B shows the 1-norm recovery solution. The point $\overline{\mathbf{x}}$ is a "sparse" vector; the line \mathcal{H} is the set of all \mathbf{x} that satisfy $\mathbf{y}=\mathbf{A x}$.

Illustration of 1-Norm Geometry

- The 1-norm recovery problem is to pick out a point in \mathcal{H} that has the minimum 1 -norm. We can see that $\overline{\mathbf{x}}$ is such a point.
- Fig. C shows the geometry when 2 -norm is used. We can see that the solution $\hat{\mathbf{x}}$ may not be sparse.

Perfect Recovery Guarantee of the Min. 1-Norm Problem

- again, researchers studied conditions under which the minimum 1-norm problem admits perfect recovery
- this has been an exciting topic, with many provable conditions such as the restricted isometry property (RIP), the nullspace property (NSP), ...
- see the literature for details, and here is one: [Yin'13]
- a simple one is as follows:

Theorem 6.3. Suppose that $\mathbf{y}=\mathbf{A} \overline{\mathbf{x}}$. Then, $\overline{\mathbf{x}}$ is the unique solution to the minimum 1-norm problem if

$$
\|\overline{\mathbf{x}}\|_{0}<\frac{1}{2}\left(1+\mu(\mathbf{A})^{-1}\right)
$$

Toy Demonstration: Sparse Signal Reconstruction

- Sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ with $n=2000$ and $\|\mathbf{x}\|_{0}=50$.
- $m=400$ noise-free observations of $\mathbf{y}=\mathbf{A x}, a_{i j}$ is randomly generated.

(a) Sparse source signal

(b) Recovery by 1-norm minimization

(c) Sparse source signal

(d) Recovery by 2-norm minimization

Application: Compressive sensing (CS)

- Consider a signal $\tilde{\mathbf{x}} \in \mathbb{R}^{n}$ that has a sparse representation $\mathbf{x} \in \mathbb{R}^{n}$ in the domain of $\Psi \in \mathbb{R}^{n \times n}$ (e.g. DCT or wavelet), i.e.,

$$
\tilde{\mathbf{x}}=\boldsymbol{\Psi} \mathbf{x}
$$

where x is sparse.

Left: the original image $\tilde{\mathbf{x}}$. Right: the corresponding coefficient x in the wavelet domain, which is sparse. Source: [Romberg-Wakin'07]

Application: CS

- To acquire \mathbf{x}, we use a sensing matrix $\mathbf{\Phi} \in \mathbb{R}^{m \times n}$ to observe \mathbf{x}

$$
\mathbf{y}=\boldsymbol{\Phi} \tilde{\mathbf{x}}=\boldsymbol{\Phi} \boldsymbol{\Psi} \mathbf{x}
$$

Here, we have $m \ll n$, i.e., much few observations than the no. of unknowns

- Such a y will be good for compression, transmission and storage.
- $\tilde{\mathbf{x}}$ is recovered by recovering \mathbf{x} :

$$
\begin{aligned}
& \min \|\mathbf{x}\|_{0} \\
& \text { s.t. } \mathbf{y}=\mathbf{A x},
\end{aligned}
$$

where $\mathbf{A}=\boldsymbol{\Phi} \boldsymbol{\Psi}$

- how to choose $\boldsymbol{\Phi}$? CS research suggests that i.i.d. random $\boldsymbol{\Phi}$ will work well!

Application: CS

Source: [Romberg-Wakin'07]

Variations

- when \mathbf{y} is contaminated by noise, or when $\mathbf{y}=\mathbf{A x}$ does not exactly hold, some variants of the previous min. 1-norm formulation may be considered:
- basis pursuit denoising: given $\epsilon>0$, solve

$$
\min _{\mathbf{x}}\|\mathbf{x}\|_{1} \quad \text { s.t. }\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2} \leq \epsilon
$$

- ℓ_{1}-regularized LS: given $\lambda>0$, solve

$$
\min _{\mathbf{x}}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}
$$

- Lasso: given $\tau>0$, solve

$$
\min _{\mathbf{x}}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2} \quad \text { s.t. }\|\mathbf{x}\|_{1} \leq \tau
$$

- when outliers exist in \mathbf{y} (i.e., some elements of \mathbf{y} are badly corrupted), we also want the residual $\mathbf{r}=\mathbf{y}-\mathbf{A x}$ to be sparse; so,

$$
\min _{\mathbf{x}}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{1}+\lambda\|\mathbf{x}\|_{1}
$$

Toy Demonstration: Noisy Sparse Signal Reconstruction

- Sparse signal $\mathbf{x} \in \mathbb{R}^{n}$ with $n=2000$ and $\|\mathbf{x}\|_{0}=20$.
- $m=400$ noisy observations of $\mathbf{y}=\mathbf{A x}+\boldsymbol{\nu}$, both $a_{i j}$ and ν_{i} are randomly generated.
- 1-norm regularized LS $\min _{\mathbf{x}}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}$ is used. $\lambda=0.1$.

Toy Demonstration: Curve Fitting

The same curve fitting problem in Lecture 2. The guessed model order is $n=18$.
$\ell_{2}-\ell_{2} \min .: \min \|\mathbf{y}-\mathbf{A x}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{2}^{2}$
$\ell_{1}-\ell_{1} \min .: \min \|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{1}+\lambda\|\mathbf{x}\|_{1}$

Total Variation (TV) Denoising

- Scenario:
- estimate $\mathbf{x} \in \mathbb{R}^{n}$ from a noisy measurement $\mathbf{x}_{\text {cor }}=\mathbf{x}+\boldsymbol{\nu}$.
$-\mathbf{x}$ is known to be piecewise linear, i.e., for most i we have

$$
x_{i}-x_{i-1}=x_{i+1}-x_{i} \Longleftrightarrow-x_{i+1}+2 x_{i}-x_{i+1}=0 .
$$

- equivalently, $\mathbf{D x}$ is sparse, where

$$
\mathbf{D}=\left[\begin{array}{ccccc}
-1 & 2 & 1 & 0 & \ldots \\
0 & -1 & 2 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\cdots & \cdots & -1 & 2 & 1
\end{array}\right]
$$

- TV denoising: estimate \mathbf{x} by solving

$$
\min _{\mathbf{x}}\left\|\mathbf{x}_{\text {cor }}-\mathbf{x}\right\|_{2}^{2}+\lambda\|\mathbf{D} \mathbf{x}\|_{1}
$$

Source

Corrupted by noise

TV denoised signals for various λ 's.

TV denoised signals via ℓ_{2} regularization and for various λ 's.

Application: Magnetic Resonance Imaging (MRI)

Problem: MRI image reconstruction.

(a)

(b)

Fig. a shows the original test image. Fig. b shows the sampling region in the frequency domain. Fourier coefficients are sampled along 22 approximately radial lines. Source: [Candès-Romberg-Tao’06]

Application: MRI

Fig. c is the recovery by filling the unobserved Fourier coefficients to zero. Fig. d is the recovery by a TV minimization problem. Source: [Candès-Romberg-Tao'06]

Efficient Computations of the $\ell_{2}-\ell_{1}$ Minimization Solution

- consider the $\ell_{2}-\ell_{1}$ minimization problem

$$
\min _{\mathbf{x}} \frac{1}{2}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}
$$

- as mentioned, the problem is convex and there are many optimization algorithms custom-designed for it
- some keywords for such algorithms: majorization-minimization (MM), ADMM, fast proximal gradient (or the so-called FISTA), Frank-Wolfe,...
- Aim: get some flavor of one particular algorithm, namely, MM, that is sufficiently "matrix" and is suitable for large-scale problems

MM for $\ell_{2}-\ell_{1}$ Minimization: LS as an Example

- to see the insight of MM, we start with the plain old LS

$$
\min _{\mathbf{x}}\|\mathbf{y}-\mathbf{A x}\|_{2}^{2}
$$

- observe that for a given $\overline{\mathbf{x}}$, one has

$$
\begin{aligned}
\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2} & =\|\mathbf{y}-\mathbf{A} \overline{\mathbf{x}}-\mathbf{A}(\mathbf{x}-\overline{\mathbf{x}})\|_{2}^{2} \\
& =\|\mathbf{y}-\mathbf{A} \overline{\mathbf{x}}\|_{2}^{2}-2(\mathbf{x}-\overline{\mathbf{x}})^{T} \mathbf{A}^{T}(\mathbf{y}-\mathbf{A} \overline{\mathbf{x}})+\|\mathbf{A}(\mathbf{x}-\overline{\mathbf{x}})\|_{2}^{2} \\
& \leq\|\mathbf{y}-\mathbf{A} \overline{\mathbf{x}}\|_{2}^{2}-2(\mathbf{x}-\overline{\mathbf{x}})^{T} \mathbf{A}^{T}(\mathbf{y}-\mathbf{A} \overline{\mathbf{x}})+c\|\mathbf{x}-\overline{\mathbf{x}}\|_{2}^{2}
\end{aligned}
$$

for any $\mathbf{x} \in \mathbb{R}^{n}$ and for any $c \geq \sigma_{\text {max }}^{2}(\mathbf{A})$

MM for $\ell_{2}-\ell_{1}$ Minimization: LS as an Example

- let $c \geq \sigma_{\text {max }}^{2}(\mathbf{A})$, and let

$$
g(\mathbf{x}, \overline{\mathbf{x}})=\|\mathbf{y}-\mathbf{A} \overline{\mathbf{x}}\|_{2}^{2}-2(\mathbf{x}-\overline{\mathbf{x}})^{T} \mathbf{A}^{T}(\mathbf{y}-\mathbf{A} \overline{\mathbf{x}})+c\|\mathbf{x}-\overline{\mathbf{x}}\|_{2}^{2}
$$

- we have

$$
\begin{array}{ll}
\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2} \leq g(\mathbf{x}, \overline{\mathbf{x}}), & \text { for any } \mathbf{x}, \overline{\mathbf{x}} \in \mathbb{R}^{n} \\
\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2}=g(\mathbf{x}, \mathbf{x}), & \text { for any } \mathbf{x} \in \mathbb{R}^{n}
\end{array}
$$

- also,

$$
\arg \min _{\mathbf{x} \in \mathbb{R}^{n}} g(\mathbf{x}, \overline{\mathbf{x}})=\frac{1}{c} \mathbf{A}^{T}(\mathbf{y}-\mathbf{A} \overline{\mathbf{x}})+\overline{\mathbf{x}}
$$

- Idea: given an initial point $\mathbf{x}^{(0)}$, do

$$
\mathbf{x}^{(k+1)}=\arg \min _{\mathbf{x} \in \mathbb{R}^{n}} g\left(\mathbf{x}, \mathbf{x}^{(k)}\right)=\frac{1}{c} \mathbf{A}^{T}\left(\mathbf{y}-\mathbf{A} \mathbf{x}^{(k)}\right)+\mathbf{x}^{(k)}, \quad k=1,2, \ldots
$$

- note: not very interesting at this moment as the above iteration is the same as gradient descent with step size $1 / c$

MM for $\ell_{2}-\ell_{1}$ Minimization: General MM Principle

- the example shown above is an instance of MM
- general MM principle:
- consider a general optimization problem

$$
\min _{\mathbf{x} \in \mathcal{C}} f(\mathbf{x})
$$

and suppose that f is hard to minimize directly

- let $g(\mathbf{x}, \overline{\mathbf{x}})$ be a surrogate function that is easy to minimize and satisfies

$$
f(\mathbf{x}) \leq g(\mathbf{x}, \overline{\mathbf{x}}) \text { for all } \mathbf{x}, \overline{\mathbf{x}}, \quad f(\mathbf{x})=g(\mathbf{x}, \mathbf{x}) \text { for all } \mathbf{x}
$$

- MM algorithm: $\mathbf{x}^{(k+1)}=\arg \min _{\mathbf{x} \in \mathcal{C}} g\left(\mathbf{x}, \mathbf{x}^{(k)}\right), k=1,2, \ldots$
- as a basic result, $f\left(\mathbf{x}^{(0)}\right) \geq f\left(\mathbf{x}^{(1)}\right) \geq f\left(\mathbf{x}^{(2)}\right) \ldots$
- suppose that f is convex and \mathcal{C} is convex. MM is guaranteed to converge to an optimal solution under some mild assumption [Razaviyayn-Hong-Luo'13]

MM for $\ell_{2}-\ell_{1}$ Minimization: General MM Principle

MM for $\ell_{2}-\ell_{1}$ Minimization

- now consider applying MM to the $\ell_{2}-\ell_{1}$ minimization problem

$$
\min _{\mathbf{x}} \frac{1}{2}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1} .
$$

- let $c \geq \sigma_{\max }^{2}(\mathbf{A})$, and let

$$
g(\mathbf{x}, \overline{\mathbf{x}})=\frac{1}{2}\left(\|\mathbf{y}-\mathbf{A} \overline{\mathbf{x}}\|_{2}^{2}-2(\mathbf{x}-\overline{\mathbf{x}})^{T} \mathbf{A}^{T}(\mathbf{y}-\mathbf{A} \overline{\mathbf{x}})+c\|\mathbf{x}-\overline{\mathbf{x}}\|_{2}^{2}\right)+\lambda\|\mathbf{x}\|_{1}
$$

- simply plug the same surrogate for $\|\mathbf{y}-\mathbf{A x}\|_{2}^{2}$ we saw previously
- it can be shown that

$$
\mathbf{x}^{(k+1)}=\operatorname{soft}\left(\frac{1}{c} \mathbf{A}^{T}\left(\mathbf{y}-\mathbf{A} \mathbf{x}^{(k)}\right)+\mathbf{x}^{(k)}, \lambda / c\right)
$$

where soft is called the soft-thresholding operator and is defined as follows: if $\mathbf{z}=\operatorname{soft}(\mathbf{x}, \delta)$ then $z_{i}=\operatorname{sign}\left(x_{i}\right) \max \left\{\left|x_{i}\right|-\delta, 0\right\}$

Dictionary Learning

- previously \mathbf{A} is assumed to be given
- how about learning a fat \mathbf{A} from data, as in matrix factorization?
- Dictionary learning (DL): given $\tau>0$ and $\mathbf{Y} \in \mathbb{R}^{m \times n}$, solve

$$
\begin{aligned}
\min _{\mathbf{A} \in \mathbb{R}^{m \times k}, \mathbf{B} \in \mathbb{R}^{k \times n}} & \sum_{i=1}^{n}\left\|\mathbf{y}_{i}-\mathbf{A} \mathbf{b}_{i}\right\|_{2}^{2} \\
\text { s.t. } & \left\|\mathbf{b}_{i}\right\|_{0} \leq \tau, \quad i=1, \ldots, n
\end{aligned}
$$

- DL considers $k \geq m$, and \mathbf{A} is called an overcomplete dictionary
- DL is handled by alternating optimization-the same approach in matrix fac.

Dictionary Learning

A collection of 500 random image blocks. Source: [Aharon-Elad-Bruckstein'06].

Dictionary Learning

The learned dictionary. Source: [Aharon-Elad-Bruckstein'06].

Part III: LS with Errors in A

LS with Errors in A

- Scenario: errors exist in the system matrix \mathbf{A}
- Aim: mitigate the effects of the system matrix errors on the LS solution
- there are many ways to do so, and we look at two
- Total LS (TLS):

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}, \Delta \in \mathbb{R}^{m \times n}}\|\mathbf{y}-(\mathbf{A}+\boldsymbol{\Delta}) \mathbf{x}\|_{2}^{2}+\|\boldsymbol{\Delta}\|_{F}^{2}
$$

- minimally perturb the system matrix for best fitting in the Euclidean sense
- Robust LS :

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \max _{\Delta \in \mathcal{U}}\|\mathbf{y}-(\mathbf{A}+\boldsymbol{\Delta}) \mathbf{x}\|_{2}^{2}
$$

for some pre-determined uncertainty set $\mathcal{U} \subset \mathbb{R}^{m \times n}$

- robustify the LS via a worst-case means

Total LS

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}, \Delta \in \mathbb{R}^{m \times n}}\|\mathbf{y}-(\mathbf{A}+\boldsymbol{\Delta}) \mathbf{x}\|_{2}^{2}+\|\boldsymbol{\Delta}\|_{F}^{2}
$$

- does not seem to have a closed-form solution at first sight
- turns out to have a closed-form solution under some mild assumptions
- assume \mathbf{A} to be of full column rank with $m \geq n+1$
- let $\mathbf{C}=[\mathbf{A} \mathbf{y}]$, and let \mathbf{v}_{n+1} be the $(n+1)$ th right singular value of \mathbf{C}. If

$$
\operatorname{rank}(\mathbf{C})=n+1, \quad v_{n+1, n+1} \neq 0
$$

then

$$
\mathbf{x}_{\mathrm{TLS}}=-\frac{1}{v_{n+1, n+1}}\left[\begin{array}{c}
v_{1, n+1} \\
\vdots \\
v_{n, n+1}
\end{array}\right]
$$

is a TLS solution

- see [Golub-Van Loan'12] for further discussion on issues like $v_{n+1, n+1} \neq 0$

Proof Sketch of the TLS Solution

- idea: turn the TLS problem to a low-rank matrix approximation problem
- by a change of variables

$$
\mathbf{C}=[\mathbf{A} \mathbf{y}] \in \mathbb{R}^{m \times(n+1)}, \quad \mathbf{D}=[\boldsymbol{\Delta}(\mathbf{A}+\boldsymbol{\Delta}) \mathbf{x}] \in \mathbb{R}^{m \times(n+1)}
$$

the TLS problem can be formulated as

$$
\min _{\mathbf{x}, \mathbf{D}}\|\mathbf{C}-\mathbf{D}\|_{F}^{2} \quad \text { s.t. } \mathbf{D}\left[\begin{array}{c}
\mathbf{x} \\
-1
\end{array}\right]=\mathbf{0}
$$

- the constraint in (\dagger), together with $m \geq n+1$, implies $\operatorname{rank}(\mathbf{D}) \leq n$
- or, we can equivalently rewrite (\dagger) as

$$
\min _{\mathbf{x}, \mathbf{D}}\|\mathbf{C}-\mathbf{D}\|_{F}^{2} \quad \text { s.t. } \operatorname{rank}(\mathbf{D}) \leq n, \mathbf{D}\left[\begin{array}{c}
\mathbf{x} \\
-1
\end{array}\right]=\mathbf{0}
$$

Proof Sketch of the TLS Solution

- consider a relaxation of (\dagger) :

$$
\min _{\mathbf{D}}\|\mathbf{C}-\mathbf{D}\|_{F}^{2} \quad \text { s.t. } \operatorname{rank}(\mathbf{D}) \leq n
$$

where we drop the constraint $\mathbf{D}\left[\begin{array}{c}\mathbf{x} \\ -1\end{array}\right]=\mathbf{0}$

- let \mathbf{D}^{\star} be a solution to (\ddagger). If there exists an \mathbf{x} such that $\mathbf{D}^{\star}\left[\begin{array}{c}\mathbf{x} \\ -1\end{array}\right]=\mathbf{0}, \mathbf{D}^{\star}$ is also a solution to (\dagger) and x is a TLS solution
- let $\mathbf{C}=\sum_{i=1}^{n+1} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$ be the SVD
- by the Eckart-Young-Mirsky theorem, a solution to (\ddagger) is $\mathbf{D}^{\star}=\sum_{i=1}^{n} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$.
- as a basic fact of SVD, we have $\mathbf{D}^{\star} \mathbf{v}_{n+1}=\mathbf{0}$.
- thus, if $v_{n+1, n+1} \neq 0$, we have the desired TLS solution

Robust LS

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \max _{\boldsymbol{\Delta} \in \mathcal{U}}\|\mathbf{y}-(\mathbf{A}+\boldsymbol{\Delta}) \mathbf{x}\|_{2}
$$

- consider the case of $\mathcal{U}=\left\{\boldsymbol{\Delta} \in \mathbb{R}^{m \times n} \mid\|\boldsymbol{\Delta}\|_{2} \leq \lambda\right\}$ for some $\lambda>0$
- the robust LS problem can be shown to be equivalent to

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{y}-\mathbf{A x}\|_{2}+\lambda\|\mathbf{x}\|_{2}
$$

- Observations and Implications:
- the equivalent form of the robust LS is very similar to (but not exactly the same as) the previous ℓ_{2}-regularized LS
- robustification is equivalent to regularization
- it can be shown that the same equivalence holds if we replace the uncertainty set by $\mathcal{U}=\left\{\boldsymbol{\Delta} \in \mathbb{R}^{m \times n} \mid\|\boldsymbol{\Delta}\|_{F} \leq \lambda\right\}$

Proof Sketch of the Robust LS Equivalence Result

- by the definition of induced norms, we have

$$
\|\boldsymbol{\Delta}\|_{2} \leq \lambda \quad \Longleftrightarrow \quad\|\boldsymbol{\Delta} \mathbf{x}\|_{2} \leq \lambda\|\mathbf{x}\|_{2} \quad \text { for all } \mathbf{x} \in \mathbb{R}^{n}
$$

- then, for any $\mathbf{x} \in \mathbb{R}^{n}$ and for any $\boldsymbol{\Delta} \in \mathcal{U}$,

$$
\begin{align*}
\|\mathbf{y}-(\mathbf{A}+\boldsymbol{\Delta}) \mathbf{x}\|_{2} & \leq\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}+\|\boldsymbol{\Delta} \mathbf{x}\|_{2} \\
& \leq\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}+\lambda\|\mathbf{x}\|_{2} \tag{*}
\end{align*}
$$

and note that the 1st equality above holds if $\mathbf{y}-\mathbf{A x}=-\alpha \boldsymbol{\Delta} \mathbf{x}$ for some $\alpha \geq 0$, and the 2 nd equality above holds if \mathbf{x} is the 1st right singular vector of $\boldsymbol{\Delta}$

- consider the case of $\mathbf{x} \neq \mathbf{0}, \mathbf{y}-\mathbf{A x} \neq \mathbf{0}$. It can be verified that

$$
\boldsymbol{\Delta}=-\frac{\lambda}{\|\mathbf{y}-\mathbf{A x}\|_{2}\|\mathbf{x}\|_{2}}(\mathbf{y}-\mathbf{A} \mathbf{x}) \mathbf{x}^{T}
$$

attains the equalities in $(*)$ and lies in \mathcal{U}

- the other cases of \mathbf{x} are handled in a similar fashion

More Robust LS Equivalences

- denote $\mathcal{U}_{q, p}=\left\{\boldsymbol{\Delta} \in \mathbb{R}^{m \times n} \mid\|\Delta \mathbf{x}\|_{p} \leq \lambda\|\mathbf{x}\|_{q} \forall \mathbf{x}\right\}$, where $p, q \geq 1$. We have

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \max _{\Delta \in \mathcal{U}_{q, p}}\|\mathbf{y}-(\mathbf{A}+\boldsymbol{\Delta}) \mathbf{x}\|_{p}=\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{p}+\lambda\|\mathbf{x}\|_{q}
$$

- proof: almost the same as the previous case
- some interesting special cases:

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathbb{R}^{n}} \max _{\Delta \in \mathcal{U}_{2,1}}\|\mathbf{y}-(\mathbf{A}+\boldsymbol{\Delta}) \mathbf{x}\|_{2}=\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}+\lambda\|\mathbf{x}\|_{1} \\
& \min _{\mathbf{x} \in \mathbb{R}^{n}} \max _{\substack{\Delta \in \mathbb{R}^{m \times n} \\
\left\|\boldsymbol{\delta}_{i}\right\|_{1} \leq \lambda \forall i}}\|\mathbf{y}-(\mathbf{A}+\boldsymbol{\Delta}) \mathbf{x}\|_{1}=\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{1}+\lambda\|\mathbf{x}\|_{1}
\end{aligned}
$$

- Implication: ℓ_{1} regularization may also be seen as an act of robustification
- suggested reading: [Bertsimas-Copenhaver'17], including extension to PCA

References

[Yin'13], W. Yin, Sparse Optimization Lecture: Sparse Recovery Guarantees, 2013. Available online at http://www.math.ucla.edu/~wotaoyin/summer2013/slides/Lec03_ SparseRecoveryGuarantees.pdf
[Romberg-Wakin'07] J. Romberg and M. Walkin, Compressed Sensing: A tutorial, in IEEE SSP Workshop, 2017. Available online at http://web.yonsei.ac.kr/nipi/lectureNote/ Compressed\%20Sensing\%20by\%20Romberg\%20and\%20Wakin.pdf
[Candès-Romberg-Tao'06] E. J. Candès, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Information Theory, vol. 52, no. 2, pp. 489-509, 2006.
[Aharon-Elad-Bruckstein'06] M. Aharon, M.I Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Trans. Image Process., vol. 54, no. 11, pp. 4311-4322, 2006.
[Razaviyayn-Hong-Luo'13] M. Razaviyayn, M. Hong, and Z.-Q. Luo, "A unified convergence analysis of block successive minimization methods for nonsmooth optimization," SIAM Journal on Optimization, vol. 23, no. 2, pp. 1126-1153, 2013.
[Golub-Van Loan'12] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd edition, JHU Press, 2012.
[Bertsimas-Copenhaver'17] D. Bertsimas and M. S. Copenhaver, "Characterization of the equivalence of robustification and regularization in linear and matrix regression," European Journal of Operational Research, 2017.

[^0]: ${ }^{1}$ We leave it implicit that $i_{k} \neq i_{j}$ for any $k \neq j$.

