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Lecture 6: Least Squares Revisited

• Part I: regularization

• Part II: sparsity

– `0 minimization

– greedy pursuit, `1 minimization, and variations

– majorization-minimization for `2–`1 minimization

– dictionary learning

• Part III: LS with errors in A

– total LS

– robust LS, and its equivalence to regularization
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Part I: Regularization
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Sensitivity to Noise

• Question: how sensitive is the LS solution when there is noise?

• Model:
y = Ax̄ + ν,

where x̄ is the true result; A ∈ Rm×n has full column rank; ν is noise, modeled
as a random vector with mean zero and covariance γ2I.

• Mean square error (MSE) analysis: from xLS = A†y = x̄ + A†ν we get

E[‖xLS − x̄‖22] = E[‖A†ν‖22] = E[tr(A†ννT (A†)T )] = tr(A†E[ννT ](A†)T ]

= γ2tr(A†(A†)T ) = γ2tr((ATA)−1)

= γ2
n∑
i=1

1

σ2
i (A)

• Observation: the MSE becomes very large if some σi(A)’s are close to zero.
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Toy Demonstration: Curve Fitting

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−6

−5

−4

−3

−2

−1

0

1

2

3

4

x

y

 

 

"True" Curve
Samples
Fitted Curve

The same curve fitting example in Lecture 2. The “true” curve is the true f(x) with model order

n = 4. In practice, the model order may not be known and we may have to guess. The fitted curve

above is done by LS with a guessed model order n = 16.
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`2-Regularized LS

• Intuition: replace xLS = (ATA)−1ATy by

xRLS = (ATA + λI)−1ATy,

for some λ > 0, where the term λI is added to improve the system conditioning,
thereby attempting to reduce noise sensitivity

• how may we make sense out of such a modification?

• `2-regularized LS: find an x that solves

min
x∈Rn

‖Ax− y‖22 + λ‖x‖22

for some pre-determined λ > 0.

– the solution is uniquely given by xRLS = (ATA + λI)−1ATy

– the formulation says that we try to minimize both ‖y −Ax‖22 and ‖x‖22, and
λ controls which one should be more emphasized in the minimization
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Toy Demonstration: Curve Fitting
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The fitted curve is done by `2-regularized LS with a guessed model order n = 18 and with

λ = 0.1.
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Part II: Sparsity
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The Sparse Recovery Problem

Problem: given y ∈ Rm, A ∈ Rm×n, m < n, find a sparsest x ∈ Rn such that

y = Ax.

measurements sparse vector
with few nonzero entries

• by sparsest, we mean that x should have as many zero elements as possible.
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A Sparsity Optimization Formulation

• let

‖x‖0 =

n∑
i=1

1{xi 6= 0}

denote the cardinality function

– commonly called the “`0-norm”, though it is not a norm.

• Minimum `0-norm formulation:

min
x∈Rn

‖x‖0

s.t. y = Ax.

• Question: suppose that y = Ax̄, where x̄ is the vector we seek to recover. Can
the min. `0-norm problem recover x̄ in an exact and unique fashion?

– an answer lies in the notion of spark, which may be seen as a strong definition
of rank
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Spark

Spark: the spark of A, denoted by spark(A), is the smallest number of linearly
dependent columns of A.

• let spark(A) = k. Then, k is the smallest number such that there exists a linearly
dependent {ai1, . . . ,aik} for some {i1, . . . , ik} ⊆ {1, . . . , n}1.

• let spark(A) = r + 1. Then, {ai1, . . . ,air} is linearly independent for any
{i1, . . . , ir} ⊆ {1, . . . , n}
– any collection of r columns of A is linearly independent, simply stated

• Comparison with rank: Let rank(A) = r (not the same r above). Then, there
exists a linearly independent {ai1, . . . ,air} for some {i1, . . . , ir} ⊆ {1, . . . , n}.

• Kruskal rank: this is an alternative definition of rank. The Kruskal rank of A,
denoted by krank(A), has its definition equivalent to krank(A) = spark(A)− 1.

1We leave it implicit that ik 6= ij for any k 6= j.
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Spark

• if any collection of m vectors in {a1, . . . ,an} ⊆ Rm, with n > m, is linearly
independent, then

spark(A) = m+ 1, rank(A) = m.

– an example is Vandemonde matrices with distinct roots

– some specifically designed bases also have this property

• but there also exist instances in which rank and spark are very different

– let {v1, . . . ,vr} ∈ Rm be linearly independent, and let A = [ v1, . . . ,vr,v1 ].

– we have rank(A) = r, but spark(A) = 2

• to conclude, spark may be seen as a stronger definition of rank, and

spark(A)− 1 ≤ rank(A)
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Perfect Recovery Guarantee of the Min. `0-Norm Problem

Theorem 6.1. Suppose that y = Ax̄. Then, x̄ is the unique solution to the
minimum `0-norm problem if

‖x̄‖0 <
1

2
spark(A).

• Implication: if x̄ is sufficiently sparse, then the minimum `0-norm problem
perfectly recovers x̄

• Proof sketch:

1. let x? be a solution to the min. `0-norm problem. Let e = x̄− x?.

2. 0 = Ax̄−Ax? = Ae; ‖e‖0 ≤ ‖x̄‖0 + ‖x?‖0 ≤ 2‖x̄‖0.

3. suppose e 6= 0. Then, Ae = 0, ‖e‖0 ≤ 2‖x̄‖0 =⇒ spark(A) ≤ 2‖x̄‖0
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Perfect Recovery Guarantee of the Min. `0-Norm Problem

• coherence: the coherence of A is defined as

µ(A) = max
j 6=k

|aTj ak|
‖aj‖2‖ak‖2

.

– measures how similar the columns of A are in the worst-case sense.

• a weak version of Theorem 6.1:

Corollary 6.1. Suppose that y = Ax̄. Then, x̄ is the unique solution to the
minimum `0-norm problem if

‖x̄‖0 <
1

2
(1 + µ(A)−1).

– Implication: perfect recovery may depend on how incoherent A is.

– proof idea: show that spark(A) ≥ 1 + µ(A)−1
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On Solving the Minimum `0-Norm Problem

Question: How should we solve the minimum `0-norm problem

min
x
‖x‖0

s.t. y = Ax,

or can it be efficiently solved?

• `0-norm minimization does not lead to a simple solution as in 2-norm min.

• the minimum `0-norm problem is NP-hard in general

– what does that mean?

∗ given any y,A, the problem is unlikely to be exactly solvable in polynomial
time (i.e., in a complexity of O(np) for any p > 0)
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Brute Force Search for the Minimum `0-Norm Problem

• notation: AI denotes a submatrix of A obtained by keeping the columns indicated
by I
• we may solve the `0-norm minimization problem via brute force search:

input: A,y
for all I ⊆ {1, 2, . . . , n} do
why if y = AIx̃ has a solution for some x̃ ∈ R|I|
why why record (x̃, I) as one of candidate solutions
end
output: a candidate solution (x̃, I) whose |I| is the smallest

• example: for n = 3, we test I = {1}, I = {2}, I = {3}, I = {1, 2}, I =
{2, 3}, I = {1, 3}, I = {1, 2, 3}
• manageable for very small n, too expensive even for moderate n

• how about a greedy search that searches less?
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Greedy Pursuit

• consider a greedy search called the orthogonal matching pursuit (OMP)

Algorithm: OMP
input: A,y
set I = ∅, x̂ = 0
repeat
why r = y −Ax̂
why k = arg max

j∈{1,...,n}
|aTj r|/‖aj‖2

why I := I ∪ {k}
why x̂ := arg min

x∈Rn, xi=0 ∀i/∈I
‖y −Ax‖22

until a stopping rule is satisfied, e.g., ‖y −Ax‖2 is sufficiently small
output: x̂

• note: there are many other greedy search strategies
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Perfect Recovery Guarantee of Greedy Pursuit

• again, a key question is conditions under which OMP admits perfect recovery

• there are many such theoretical conditions, not only for OMP but also for other
greedy algorithms

• one such result is as follows:

Theorem 6.2. Suppose that y = Ax̄. Then, OMP recovers x̄ if

‖x̄‖0 <
1

2
(1 + µ(A)−1).

– proof idea: show that OMP is guaranteed to pick a correct column at every
stage.
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Convex Relexation

Another approximation approach is to replace ‖x‖0 by a convex function:

min
x
‖x‖1

s.t. y = Ax.

• also known as basis pursuit in the literature

• convex, a linear program

• no closed-form solution (while the minimum 2-norm problem has)

• but the success of this minimum 1-norm problem, both in theory and practice,
has motivated a large body of work on computationally efficient algorithms for it
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Illustration of 1-Norm Geometry

(A) (B)

• Fig. A shows the 1-norm ball of radius r in R2. Note that the 1-norm ball ball is
“pointy” along the axes.

• Fig. B shows the 1-norm recovery solution. The point x̄ is a “sparse” vector; the
line H is the set of all x that satisfy y = Ax.
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Illustration of 1-Norm Geometry

(C)(B)

• The 1-norm recovery problem is to pick out a point in H that has the minimum
1-norm. We can see that x̄ is such a point.

• Fig. C shows the geometry when 2-norm is used. We can see that the solution x̂
may not be sparse.
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Perfect Recovery Guarantee of the Min. 1-Norm Problem

• again, researchers studied conditions under which the minimum 1-norm problem
admits perfect recovery

• this has been an exciting topic, with many provable conditions such as the
restricted isometry property (RIP), the nullspace property (NSP), ...

– see the literature for details, and here is one: [Yin’13]

• a simple one is as follows:

Theorem 6.3. Suppose that y = Ax̄. Then, x̄ is the unique solution to the
minimum 1-norm problem if

‖x̄‖0 <
1

2
(1 + µ(A)−1).
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Toy Demonstration: Sparse Signal Reconstruction

• Sparse vector x ∈ Rn with n = 2000 and ‖x‖0 = 50.

• m = 400 noise-free observations of y = Ax, aij is randomly generated.
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(b) Recovery by 1-norm minimization
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(c) Sparse source signal
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(d) Recovery by 2-norm minimization
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Application: Compressive sensing (CS)
• Consider a signal x̃ ∈ Rn that has a sparse representation x ∈ Rn in the domain

of Ψ ∈ Rn×n (e.g. DCT or wavelet), i.e.,

x̃ = Ψx,

where x is sparse.
Modern Image Representation: 2D Wavelets

• Sparse structure: few large coeffs, many small coeffs

• Basis for JPEG2000 image compression standard

• Wavelet approximations: smooths regions great, edges much sharper

• Fundamentally better than DCT for images with edges

Left: the original image x̃. Right: the corresponding coefficient x in the wavelet domain, which

is sparse. Source: [Romberg-Wakin’07]
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Application: CS

• To acquire x, we use a sensing matrix Φ ∈ Rm×n to observe x

y = Φx̃ = ΦΨx.

Here, we have m� n, i.e., much few observations than the no. of unknowns

• Such a y will be good for compression, transmission and storage.

• x̃ is recovered by recovering x:

min ‖x‖0
s.t. y = Ax,

where A = ΦΨ

• how to choose Φ? CS research suggests that i.i.d. random Φ will work well!
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Application: CS

y1 = 〈
,

〉
y2 = 〈

,

〉
y3 = 〈

,

〉
...

yM = 〈
,

〉
(a) measurements via i.i.d. random Φ

Example: Sparse Image

• Take M = 100, 000 incoherent measurements y = Φfa

• fa = wavelet approximation (perfectly sparse)

• Solve
min ‖α‖`1 subject to ΦΨα = y

Ψ = wavelet transform

original (25k wavelets) perfect recovery

(b) original image

Example: Sparse Image

• Take M = 100, 000 incoherent measurements y = Φfa

• fa = wavelet approximation (perfectly sparse)

• Solve
min ‖α‖`1 subject to ΦΨα = y

Ψ = wavelet transform

original (25k wavelets) perfect recovery

(c) `1 recovery

Source: [Romberg-Wakin’07]
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Variations

• when y is contaminated by noise, or when y = Ax does not exactly hold, some
variants of the previous min. 1-norm formulation may be considered:

– basis pursuit denoising: given ε > 0, solve

min
x
‖x‖1 s.t. ‖y −Ax‖22 ≤ ε

– `1-regularized LS: given λ > 0, solve

min
x
‖y −Ax‖22 + λ‖x‖1

– Lasso: given τ > 0, solve

min
x
‖y −Ax‖22 s.t. ‖x‖1 ≤ τ

• when outliers exist in y (i.e., some elements of y are badly corrupted), we also
want the residual r = y −Ax to be sparse; so,

min
x
‖y −Ax‖1 + λ‖x‖1.
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Toy Demonstration: Noisy Sparse Signal Reconstruction

• Sparse signal x ∈ Rn with n = 2000 and ‖x‖0 = 20.

• m = 400 noisy observations of y = Ax + ν, both aij and νi are randomly
generated.

• 1-norm regularized LS minx ‖y −Ax‖22 + λ‖x‖1 is used. λ = 0.1.
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(a) Sparse source signal
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(b) 1-norm regularized LS estimate
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(c) Sparse source signal
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(d) LS estimate
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Toy Demonstration: Curve Fitting
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”True” Curve
Samples

`1-`1 min.

`2-`2 min.

The same curve fitting problem in Lecture 2. The guessed model order is n = 18.

`2-`2 min.: min ‖y − Ax‖22 + λ‖x‖22
`1-`1 min.: min ‖y − Ax‖1 + λ‖x‖1
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Total Variation (TV) Denoising

• Scenario:

– estimate x ∈ Rn from a noisy measurement xcor = x + ν.

– x is known to be piecewise linear, i.e., for most i we have

xi − xi−1 = xi+1 − xi ⇐⇒ −xi+1 + 2xi − xi+1 = 0.

– equivalently, Dx is sparse, where

D =


−1 2 1 0 . . .
0 −1 2 1 . . .
... ... ... ... ...
. . . . . . −1 2 1

 .
• TV denoising: estimate x by solving

min
x
‖xcor − x‖22 + λ‖Dx‖1
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TV denoised signals for various λ’s.

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 33



0 200 400 600 800 1000 1200 1400 1600
−5

0

5

0 200 400 600 800 1000 1200 1400 1600
−5

0

5

0 200 400 600 800 1000 1200 1400 1600
−5

0

5

x̂ with λ = 0.1

x̂ with λ = 1

x̂ with λ = 10

TV denoised signals via `2 regularization and for various λ’s.
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Application: Magnetic Resonance Imaging (MRI)

Problem: MRI image reconstruction.

(a) (b)

Fig. a shows the original test image. Fig. b shows the sampling region in the frequency domain. Fourier

coefficients are sampled along 22 approximately radial lines. Source: [Candès-Romberg-Tao’06]
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Application: MRI

Problem: MRI image reconstruction.

(c) (d)

Fig. c is the recovery by filling the unobserved Fourier coefficients to zero. Fig. d is the recovery by a

TV minimization problem. Source: [Candès-Romberg-Tao’06]
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Efficient Computations of the `2 − `1 Minimization Solution

• consider the `2 − `1 minimization problem

min
x

1

2
‖y −Ax‖22 + λ‖x‖1.

• as mentioned, the problem is convex and there are many optimization algorithms
custom-designed for it

– some keywords for such algorithms: majorization-minimization (MM), ADMM,
fast proximal gradient (or the so-called FISTA), Frank-Wolfe,...

• Aim: get some flavor of one particular algorithm, namely, MM, that is sufficiently
“matrix” and is suitable for large-scale problems
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MM for `2 − `1 Minimization: LS as an Example

• to see the insight of MM, we start with the plain old LS

min
x
‖y −Ax‖22.

• observe that for a given x̄, one has

‖y −Ax‖22 = ‖y −Ax̄−A(x− x̄)‖22
= ‖y −Ax̄‖22 − 2(x− x̄)TAT (y −Ax̄) + ‖A(x− x̄)‖22
≤ ‖y −Ax̄‖22 − 2(x− x̄)TAT (y −Ax̄) + c‖x− x̄‖22

for any x ∈ Rn and for any c ≥ σ2
max(A)
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MM for `2 − `1 Minimization: LS as an Example

• let c ≥ σ2
max(A), and let

g(x, x̄) = ‖y −Ax̄‖22 − 2(x− x̄)TAT (y −Ax̄) + c‖x− x̄‖22
• we have

‖y −Ax‖22 ≤ g(x, x̄), for any x, x̄ ∈ Rn

‖y −Ax‖22 = g(x,x), for any x ∈ Rn

• also,
arg min

x∈Rn
g(x, x̄) = 1

cA
T (y −Ax̄) + x̄

• Idea: given an initial point x(0), do

x(k+1) = arg min
x∈Rn

g(x,x(k)) = 1
cA

T (y −Ax(k)) + x(k), k = 1, 2, . . .

– note: not very interesting at this moment as the above iteration is the same
as gradient descent with step size 1/c
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MM for `2 − `1 Minimization: General MM Principle

• the example shown above is an instance of MM

• general MM principle:

– consider a general optimization problem

min
x∈C

f(x)

and suppose that f is hard to minimize directly

– let g(x, x̄) be a surrogate function that is easy to minimize and satisfies

f(x) ≤ g(x, x̄) for all x, x̄, f(x) = g(x,x) for all x

– MM algorithm: x(k+1) = arg minx∈C g(x,x(k)), k = 1, 2, . . .

– as a basic result, f(x(0)) ≥ f(x(1)) ≥ f(x(2)) . . .

– suppose that f is convex and C is convex. MM is guaranteed to converge to
an optimal solution under some mild assumption [Razaviyayn-Hong-Luo’13]
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MM for `2 − `1 Minimization: General MM Principle

x(0)¢ ¢ ¢

¢¢
¢

f(x)

g(x;x(0))

g(x;x(1))

x

f(x)

x(1)x(2)x?
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MM for `2 − `1 Minimization

• now consider applying MM to the `2 − `1 minimization problem

min
x

1
2‖y −Ax‖22 + λ‖x‖1.

• let c ≥ σ2
max(A), and let

g(x, x̄) = 1
2

(
‖y −Ax̄‖22 − 2(x− x̄)TAT (y −Ax̄) + c‖x− x̄‖22

)
+ λ‖x‖1

– simply plug the same surrogate for ‖y −Ax‖22 we saw previously

• it can be shown that

x(k+1) = soft
(
1
cA

T (y −Ax(k)) + x(k), λ/c
)

where soft is called the soft-thresholding operator and is defined as follows: if
z = soft(x, δ) then zi = sign(xi) max{|xi| − δ, 0}
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Dictionary Learning

• previously A is assumed to be given

• how about learning a fat A from data, as in matrix factorization?

• Dictionary learning (DL): given τ > 0 and Y ∈ Rm×n, solve

min
A∈Rm×k,B∈Rk×n

n∑
i=1

‖yi −Abi‖22

s.t. ‖bi‖0 ≤ τ, i = 1, . . . , n

– DL considers k ≥ m, and A is called an overcomplete dictionary

– DL is handled by alternating optimization—the same approach in matrix fac.
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Dictionary Learning

A collection of 500 random image blocks. Source: [Aharon-Elad-Bruckstein’06].
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Dictionary Learning

The learned dictionary. Source: [Aharon-Elad-Bruckstein’06].
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Part III: LS with Errors in A
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LS with Errors in A

• Scenario: errors exist in the system matrix A

• Aim: mitigate the effects of the system matrix errors on the LS solution

• there are many ways to do so, and we look at two

• Total LS (TLS):

min
x∈Rn, ∆∈Rm×n

‖y − (A + ∆)x‖22 + ‖∆‖2F

– minimally perturb the system matrix for best fitting in the Euclidean sense

• Robust LS :
min
x∈Rn

max
∆∈U

‖y − (A + ∆)x‖22
for some pre-determined uncertainty set U ⊂ Rm×n

– robustify the LS via a worst-case means
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Total LS

min
x∈Rn, ∆∈Rm×n

‖y − (A + ∆)x‖22 + ‖∆‖2F

• does not seem to have a closed-form solution at first sight

• turns out to have a closed-form solution under some mild assumptions

• assume A to be of full column rank with m ≥ n+ 1

• let C = [ A y ], and let vn+1 be the (n+ 1)th right singular value of C. If

rank(C) = n+ 1, vn+1,n+1 6= 0,

then

xTLS = − 1

vn+1,n+1

v1,n+1
...

vn,n+1


is a TLS solution

– see [Golub-Van Loan’12] for further discussion on issues like vn+1,n+1 6= 0
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Proof Sketch of the TLS Solution

• idea: turn the TLS problem to a low-rank matrix approximation problem

• by a change of variables

C = [ A y ] ∈ Rm×(n+1), D = [ ∆ (A + ∆)x ] ∈ Rm×(n+1),

the TLS problem can be formulated as

min
x,D
‖C−D‖2F s.t. D

[
x
−1

]
= 0 (†)

• the constraint in (†), together with m ≥ n+ 1, implies rank(D) ≤ n

• or, we can equivalently rewrite (†) as

min
x,D
‖C−D‖2F s.t. rank(D) ≤ n, D

[
x
−1

]
= 0
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Proof Sketch of the TLS Solution

• consider a relaxation of (†):

min
D
‖C−D‖2F s.t. rank(D) ≤ n, (‡)

where we drop the constraint D

[
x
−1

]
= 0

• let D? be a solution to (‡). If there exists an x such that D?

[
x
−1

]
= 0, D? is

also a solution to (†) and x is a TLS solution

• let C =
∑n+1
i=1 σiuiv

T
i be the SVD

• by the Eckart-Young-Mirsky theorem, a solution to (‡) is D? =
∑n
i=1 σiuiv

T
i .

• as a basic fact of SVD, we have D?vn+1 = 0.

• thus, if vn+1,n+1 6= 0, we have the desired TLS solution
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Robust LS

min
x∈Rn

max
∆∈U

‖y − (A + ∆)x‖2

• consider the case of U = {∆ ∈ Rm×n | ‖∆‖2 ≤ λ} for some λ > 0

• the robust LS problem can be shown to be equivalent to

min
x∈Rn

‖y −Ax‖2 + λ‖x‖2

• Observations and Implications:

– the equivalent form of the robust LS is very similar to (but not exactly the
same as) the previous `2-regularized LS

– robustification is equivalent to regularization

• it can be shown that the same equivalence holds if we replace the uncertainty set
by U = {∆ ∈ Rm×n | ‖∆‖F ≤ λ}
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Proof Sketch of the Robust LS Equivalence Result
• by the definition of induced norms, we have

‖∆‖2 ≤ λ ⇐⇒ ‖∆x‖2 ≤ λ‖x‖2 for all x ∈ Rn

• then, for any x ∈ Rn and for any ∆ ∈ U ,

‖y − (A + ∆)x‖2 ≤ ‖y −Ax‖2 + ‖∆x‖2
≤ ‖y −Ax‖2 + λ‖x‖2, (∗)

and note that the 1st equality above holds if y −Ax = −α∆x for some α ≥ 0,
and the 2nd equality above holds if x is the 1st right singular vector of ∆

• consider the case of x 6= 0, y −Ax 6= 0. It can be verified that

∆ = − λ

‖y −Ax‖2‖x‖2
(y −Ax)xT

attains the equalities in (∗) and lies in U
• the other cases of x are handled in a similar fashion
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More Robust LS Equivalences

• denote Uq,p = {∆ ∈ Rm×n | ‖∆x‖p ≤ λ‖x‖q ∀x}, where p, q ≥ 1. We have

min
x∈Rn

max
∆∈Uq,p

‖y − (A + ∆)x‖p = min
x∈Rn

‖y −Ax‖p + λ‖x‖q

• proof: almost the same as the previous case

• some interesting special cases:

min
x∈Rn

max
∆∈U2,1

‖y − (A + ∆)x‖2 = min
x∈Rn

‖y −Ax‖2 + λ‖x‖1

min
x∈Rn

max
∆∈Rm×n
‖δi‖1≤λ ∀i

‖y − (A + ∆)x‖1 = min
x∈Rn

‖y −Ax‖1 + λ‖x‖1

• Implication: `1 regularization may also be seen as an act of robustification

• suggested reading: [Bertsimas-Copenhaver’17], including extension to PCA
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