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Lecture 6: Least Squares Revisited

e Part I: regularization

e Part Il: sparsity
— Yo minimization
— greedy pursuit, £1 minimization, and variations
— majorization-minimization for £5—¢; minimization

— dictionary learning

e Part Ill: LS with errors in A

— total LS

— robust LS, and its equivalence to regularization
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Part |I: Regularization
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Sensitivity to Noise

e Question: how sensitive is the LS solution when there is noise?

e Model:
y = AX + v,
where X is the true result: A € R™*™ has full column rank: v is noise, modeled
as a random vector with mean zero and covariance 1.

e Mean square error (MSE) analysis: from x5 = Ay = x4+ ATv we get
Ellxs — [|3] = E[|ATv|3] = Eftr(ATvr’ (AT)T)] = tr(ATE[pr " |(AT)']

— 2tr(AT(ADT) = 12tr((ATA) )

"1
2
‘”éﬁ@)

e Observation: the MSE becomes very large if some o;(A)'s are close to zero.
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Toy Demonstration: Curve Fitting
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The same curve fitting example in Lecture 2. The “true” curve is the true f(x) with model order
n = 4. In practice, the model order may not be known and we may have to guess. The fitted curve

above is done by LS with a guessed model order n = 16.
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¢>-Regularized LS
e Intuition: replace x5 = (ATA)"tATy by
xrs = (ATA + M)Ay,

for some A > 0, where the term Al is added to improve the system conditioning,
thereby attempting to reduce noise sensitivity

e how may we make sense out of such a modification?

o /5-regularized LS: find an x that solves
min |Ax —y/|3 + Allx][3
xER™
for some pre-determined A > 0.

— the solution is uniquely given by xg s = (ATA + \I)" 1Aty

2
5, and

— the formulation says that we try to minimize both ||y — Ax]|3 and ||x|
A controls which one should be more emphasized in the minimization
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Toy Demonstration: Curve Fitting
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The fitted curve is done by #s-regularized LS with a guessed model order n = 18 and with
A= 0.1.
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Part Il: Sparsity
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The Sparse Recovery Problem

Problem: giveny € R™, A € R™*" m < n, find a sparsest x € R" such that

y = Ax.
y A X
- n
m N
measurements - L Sparse vector
- N with few nonzero entries

e by sparsest, we mean that x should have as many zero elements as possible.
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A Sparsity Optimization Formulation
o let

Ixllo =) 1{x; # 0}
=1

denote the cardinality function

— commonly called the “/g-norm”, though it is not a norm.

e Minimum £y-norm formulation:

min ||x||g
xeR”™
s.t. y = Ax.

e Question: suppose that y = AX, where X is the vector we seek to recover. Can
the min. /y-norm problem recover X in an exact and unique fashion?

— an answer lies in the notion of spark, which may be seen as a strong definition
of rank
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Spark

Spark: the spark of A, denoted by spark(A), is the smallest number of linearly
dependent columns of A.

e let spark(A) = k. Then, k is the smallest number such that there exists a linearly
dependent {a;,,...,a; } for some {iy,...,ix} C{1,...,n}"

o let spark(A) = r+ 1. Then, {a;,...,a;.} is linearly independent for any
{iv,...,i-} CH{1,...,n}

— any collection of r» columns of A is linearly independent, simply stated

e Comparison with rank: Let rank(A) = r (not the same r above). Then, there
exists a linearly independent {a;,,...,a;, } for some {i1,...,%.} C{1,...,n}.

e Kruskal rank: this is an alternative definition of rank. The Kruskal rank of A,
denoted by krank(A ), has its definition equivalent to krank(A) = spark(A) — 1.

1We leave it implicit that 4, # 4, for any k # j.
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Spark

e if any collection of m vectors in {ai,...,a,} C R™, with n > m, is linearly
independent, then

spark(A) =m + 1, rank(A)=m.

— an example is Vandemonde matrices with distinct roots

— some specifically designed bases also have this property

e but there also exist instances in which rank and spark are very different
— let {vy,...,v,.} € R™ be linearly independent, and let A = [ vy,...,v,, vy |.

— we have rank(A) = r, but spark(A) = 2
e to conclude, spark may be seen as a stronger definition of rank, and

spark(A) — 1 < rank(A)
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Perfect Recovery Guarantee of the Min. /;-Norm Problem

Theorem 6.1. Suppose that y = AX. Then, X is the unique solution to the
minimum {y-norm problem if

_ 1
1x]|0 < ispark(A).

e Implication: if x is sufficiently sparse, then the minimum £y-norm problem
perfectly recovers x

e Proof sketch:
1. let x* be a solution to the min. £y-norm problem. Let e = X — x*.
2. 0=Ax — Ax* = Ae; [lefjo < [IX[jo + [[x*[lo < 2][%]]o.
3. suppose e # 0. Then, Ae =0, ||e|lp < 2||x|lo = spark(A) < 2||x||o
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Perfect Recovery Guarantee of the Min. /;-Norm Problem

e coherence: the coherence of A is defined as

\ajTak|

u(A) = max -
i#k ||a|2]lak]|2

— measures how similar the columns of A are in the worst-case sense.
e a weak version of Theorem 6.1:

Corollary 6.1. Suppose that y = AX. Then, X is the unique solution to the
minimum {p-norm problem if

I%llo < 5(1+u(A) ).

— Implication: perfect recovery may depend on how incoherent A is.

— proof idea: show that spark(A) > 1+ u(A)™!
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On Solving the Minimum /;-Norm Problem

Question: How should we solve the minimum £p-norm problem
min ||x||o
X
s.t. y = Ax,
or can it be efficiently solved?

e /p-norm minimization does not lead to a simple solution as in 2-norm min.

e the minimum £g-norm problem is NP-hard in general
— what does that mean?

x given any y, A, the problem is unlikely to be exactly solvable in polynomial
time (i.e., in a complexity of O(n?) for any p > 0)
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Brute Force Search for the Minimum ¢;-Norm Problem

e notation: A7 denotes a submatrix of A obtained by keeping the columns indicated
by Z

e we may solve the £3-norm minimization problem via brute force search:

input: A,y
forall Z C {1,2,...,n} do
if y = Azx has a solution for some x € RIZ|
record (X,Z) as one of candidate solutions
end
output: a candidate solution (X,Z) whose |Z| is the smallest

e example: for n = 3, we test Z = {1},7 = {2},7 = {3},Z = {1,2},7 =
(2,3}, 7 = {1,3},7 = {1,2,3}

e manageable for very small n, too expensive even for moderate n

e how about a greedy search that searches less?
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Greedy Pursuit

e consider a greedy search called the orthogonal matching pursuit (OMP)

Algorithm: OMP
input: A.y
set Z=0,x=0
repeat
r=y— Ax
k=arg max a;r|/[|ayl2
T :=TU{k}
o : 2
TS ern, mim0 VigT Iy = Axl
until a stopping rule is satisfied, e.g., ||y — Ax]|2 is sufficiently small
output: x

e note: there are many other greedy search strategies
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Perfect Recovery Guarantee of Greedy Pursuit

e again, a key question is conditions under which OMP admits perfect recovery

e there are many such theoretical conditions, not only for OMP but also for other
greedy algorithms

e one such result is as follows:

Theorem 6.2. Suppose that y = Ax. Then, OMP recovers x if

%[0 < 51+ u(A) ™).

— proof idea: show that OMP is guaranteed to pick a correct column at every
stage.
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Convex Relexation

Another approximation approach is to replace ||x||o by a convex function:
min ||x||1
X
s.t. y = Ax.
e also known as basis pursuit in the literature
e convex, a linear program

e no closed-form solution (while the minimum 2-norm problem has)

e but the success of this minimum 1-norm problem, both in theory and practice,
has motivated a large body of work on computationally efficient algorithms for it
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lllustration of 1-Norm Geometry

ASEQ ALUQ

X H={x|ly=Ax}

(A) (B)

e Fig. A shows the 1-norm ball of radius r in R?. Note that the 1-norm ball ball is
“pointy” along the axes.

e Fig. B shows the 1-norm recovery solution. The point X is a “sparse” vector; the
line H is the set of all x that satisfy y = Ax.
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lllustration of 1-Norm Geometry
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e The 1-norm recovery problem is to pick out a point in ‘H that has the minimum
1-norm. We can see that X is such a point.

e Fig. C shows the geometry when 2-norm is used. We can see that the solution x
may not be sparse.
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Perfect Recovery Guarantee of the Min. 1-Norm Problem

e again, researchers studied conditions under which the minimum 1-norm problem
admits perfect recovery

e this has been an exciting topic, with many provable conditions such as the
restricted isometry property (RIP), the nullspace property (NSP), ...

— see the literature for details, and here is one: [Yin’13]

e a simple one is as follows:

Theorem 6.3. Suppose that y = AX. Then, X is the unique solution to the
minimum 1-norm problem if

I%ll0 < 51+ u(A) ™).
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Toy Demonstration: Sparse Signal Reconstruction

e Sparse vector x € R™ with n = 2000 and ||x||g = 50.

e m = 400 noise-free observations of y = Ax, a;; is randomly generated.
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(c) Sparse source signal (d) Recovery by 2-norm minimization
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Application: Compressive sensing (CS)

e Consider a signal x € R"” that has a sparse representation x € R™ in the domain
of ¥ € R™*" (e.g. DCT or wavelet), i.e.,

x = Ux,

where x is sparse.

Left: the original image x. Right: the corresponding coefficient x in the wavelet domain, which
is sparse. Source: [Romberg-Wakin’07]
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Application: CS

e To acquire x, we use a sensing matrix ® € R™*"™ to observe x
y = Px = PUPx.
Here, we have m < n, i1.e., much few observations than the no. of unknowns
e Such a y will be good for compression, transmission and storage.
e X is recovered by recovering x:

min ||x||o

s.t. y = Ax,
where A = W

e how to choose @7 CS research suggests that i.i.d. random ® will work well!
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Application: CS

Y1

Y2

Y3

(a) measurements via i.i.d. random ®

Source: [Romberg-Wakin’07]

original (25k wavelets)

(b) original image

perfect recovery

(c) 41 recovery
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Variations

e when y is contaminated by noise, or when y = Ax does not exactly hold, some
variants of the previous min. 1-norm formulation may be considered:

— basis pursuit denoising: given € > 0, solve

min [|x[l1 st |y — Ax[l; <e

— /(q1-regularized LS: given XA > 0, solve

min [ly — Ax|f3 + Allx],

— Lasso: given 7 > 0, solve
: 2
min |y — Ax|]5 st ||x]i <7
e when outliers exist in y (i.e., some elements of y are badly corrupted), we also
want the residual r = y — AXx to be sparse; so,

min [y — Ax||s + Allx].
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Toy Demonstration: Noisy Sparse Signal Reconstruction

e Sparse signal x € R™ with n = 2000 and ||x||o = 20.

e m = 400 noisy observations of y = Ax + v, both a;; and v; are randomly
generated.

e 1-norm regularized LS miny ||y — Ax||3 + A||x]|1 is used. X = 0.1.

12

10

]

12

- 10F

L.

N

-

T

-6+

() "'[IIL
} i

0

1
200

1
400

1 1 1 1 1 1 1
-8
600 800 1000 1200 1400 1600 1800 2000 O

(a) Sparse source signal

1 1 1 1 1 1 1 1 1
200 400 600 800 1000 1200 1400 1600 1800 2000

(b) 1-norm regularized LS estimate

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024-25 First Term.

28



12

10

]

|

(L

12

101

1
200

1
400

1 1 1 1 1 1 1
600 800 1000 1200 1400 1600 1800

(c) Sparse source signal

-8
2000 O

1
200

1
400

1
600

1 1 1
800 1000 1200

(d) LS estimate

1
1400

1
1600

1
1800

2000

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024-25 First Term.

29



Toy Demonstration: Curve Fitting
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The same curve fitting problem in Lecture 2. The guessed model order is n = 18.
ly-£> min: min |ly — Ax]||3 + A|x|3
¢1-¢1 min.: min |ly — Ax|[}; + Al|x][x
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e Scenario:

Total Variation (TV) Denoising

— estimate x € R” from a noisy measurement X.o, = X + V.

— x is known to be piecewise linear, i.e., for most ¢ we have

Ty — Ti—1 = Tijg1 — T < —Tjqp1 + 20, — Ti41 = 0.

— equivalently, Dx is sparse, where

e [V denoising:

-1 2 1 0
p_|0 “1 21
] -1 2 1]

estimate x by solving

min [[Xcor — X2 + Al Dx]|1
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r with A = 0.1
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r with A = 0.1
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TV denoised signals via /5 regularization and for various \'s.
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Application: Magnetic Resonance Imaging (MRI)

Problem: MRI image reconstruction.

(a)

Fig. a shows the original test image. Fig. b shows the sampling region in the frequency domain. Fourier
coefficients are sampled along 22 approximately radial lines. Source: [Candés-Romberg-Tao’06]
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Application: MRI

(d)

Fig. c is the recovery by filling the unobserved Fourier coefficients to zero. Fig. d is the recovery by a
TV minimization problem. Source: [Candés-Romberg-Tao’06]
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Efficient Computations of the /5, — /; Minimization Solution

e consider the /5 — /1 minimization problem

1
min Z[ly — Ax|[3 + Allx]ls.

e as mentioned, the problem is convex and there are many optimization algorithms
custom-designed for it

— some keywords for such algorithms: majorization-minimization (MM), ADMM,
fast proximal gradient (or the so-called FISTA), Frank-Wolfe,...

e Aim: get some flavor of one particular algorithm, namely, MM, that is sufficiently
“matrix” and is suitable for large-scale problems
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MM for /5 — /1 Minimization: LS as an Example

e to see the insight of MM, we start with the plain old LS

min |ly — Ax3

e observe that for a given X, one has

ly — Ax|l; =

<

y — Ax — A(x - %)|3
y — Ax[3 - 2(x - %)" AT (y — A%) + [|[A(x — %)]|3
y — Ax[3 - 2(x — %) " AT (y — Ax) + cflx — x]|3

for any x € R™ and for any ¢ > 02, (A)
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MM for /5 — /1 Minimization: LS as an Example

o let c>02_  (A), and let
g(x,%) = [ly — Ax[3 — 2(x = x)" AT (y — A%) + cf|]x — x]|3
e we have
ly — Ax||3 < g(x,x), for any x,x € R"
ly — Ax|]3 = g(x,x), forany x € R"
also, , _ _ _
’ arg min g(x,x) = 1A' (y — Ax) +x
xER™ ¢
e Idea: given an initial point x(?), do
xF D) — arg mIiRn g(x, xR = AT (y - Ax®)y 4 x®) =12 ..
xcR™
— note: not very interesting at this moment as the above iteration is the same
as gradient descent with step size 1/c
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MM for /5 — /1 Minimization: General MM Principle

e the example shown above is an instance of MM

e general MM principle:

— consider a general optimization problem

min f(x)

and suppose that f is hard to minimize directly

— let g(x,X) be a surrogate function that is easy to minimize and satisfies
f(x) < g(x,x) for all x, X, f(x) = g(x,x) for all x

— MM algorithm: x**1) = arg mingee g(x,x%), k=1,2,...
— as a basic result, f(x(9) > f(x()) > f(x@)...

— suppose that f is convex and C is convex. MM is guaranteed to converge to
an optimal solution under some mild assumption [Razaviyayn-Hong-Luo’13]
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MM for /5 — /1 Minimization: General MM Principle

X (2 (1) (0) x
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MM for /5 — /1 Minimization
e now consider applying MM to the /5 — 1 minimization problem

min 4y — Ax|f3 + Allx].

o let¢c>02_  (A), and let

max
(x,%) = 5 ([ly — A%[3 = 2(x = %)" A" (y — A%) + ¢[[x — %[3) + A[)x]|
g\X, 5 Y 2 Yy 2 1
— simply plug the same surrogate for ||y — Ax||5 we saw previously
e it can be shown that

xF+1D) = goft (%AT(y — AxW) 4 x®), )\/C)

where soft is called the soft-thresholding operator and is defined as follows: if
z = soft(x,d) then z; = sign(x;) max{|z;| — §,0}
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Dictionary Learning

e previously A is assumed to be given
e how about learning a fat A from data, as in matrix factorization?

e Dictionary learning (DL): given 7 > 0 and Y € R™*"™, solve

n
min Z ly; — Ab;l|5
=1

AERka,BEkan
i—

S.t. HbZHQST, izl,...,n

— DL considers kK > m, and A is called an overcomplete dictionary

— DL is handled by alternating optimization—the same approach in matrix fac.
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Dictionary Learning
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A collection of 500 random image blocks. Source: [Aharon-Elad-Bruckstein’06].
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Dictionary Learning
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The learned dictionary. Source: [Aharon-Elad-Bruckstein’06].
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Part Ill: LS with Errors in A
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LS with Errors in A

e Scenario: errors exist in the system matrix A
e Aim: mitigate the effects of the system matrix errors on the LS solution

e there are many ways to do so, and we look at two

e Total LS (TLS):

min ly — (A +A)x[; + [|AllE
XER”, AGRan

— minimally perturb the system matrix for best fitting in the Euclidean sense

e Robust LS :

j — (A + A)x]3
min max |y — (A + A)x|3

for some pre-determined uncertainty set Y C R™*"

— robustify the LS via a worst-case means
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Total LS

min (A + A)x|Z + ||Al2
xER™, AcRMX*n Hy ( ) H2 H HF

e does not seem to have a closed-form solution at first sight
e turns out to have a closed-form solution under some mild assumptions
e assume A to be of full column rank with m >n +1

e let C=| A y] and let v,11 be the (n 4 1)th right singular value of C. If
rank(C) =n + 1, Un+1,n+1 7 0,

then

1 /Ulﬂ.”b—i—l

XTLS = —
Un—l—l,n—l—l

_Un,n—|—1_
is a TLS solution

— see [Golub-Van Loan’12] for further discussion on issues like vy, 41 pt1 7 0O
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Proof Sketch of the TLS Solution

e idea: turn the TLS problem to a low-rank matrix approximation problem

e by a change of variables
C=[Ay]eR™0+)  D=][A (A+A)x]ecRm*Mn+D

the TLS problem can be formulated as
m%1 |C — D% s.t. D [—Xll =0 (1)

e the constraint in (1), together with m > n 4 1, implies rank(D) < n

e or, we can equivalently rewrite () as

min |[C - D[} st rank(D) <n, D [X] =0
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Proof Sketch of the TLS Solution

e consider a relaxation of (7):

i ~DJ? t. <
min |C — D||% s.t. rank(D) < n, (1)
where we drop the constraint D [_XJ =0

e let D* be a solution to (I). If there exists an x such that D* [X] =0, D" is

—1
also a solution to (1) and x is a TLS solution

o let C=>"""5,u;v! be the SVD
e by the Eckart-Young-Mirsky theorem, a solution to (1) is D* = >_"  o;u,;vy.
e as a basic fact of SVD, we have D*v,,,1 = 0.

o thus, if v,41 n+1 7 0, we have the desired TLS solution

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024-25 First Term. 50



Robust LS

i ~(A+A
min max |y — (A + A)x|;

e consider the case of Y = {A € R™*" | ||Al|2 < A} for some A > 0

e the robust LS problem can be shown to be equivalent to

in |y — A
min [ly — Ax||z + Aflx||2

e Observations and Implications:

— the equivalent form of the robust LS is very similar to (but not exactly the
same as) the previous /o-regularized LS

— robustification is equivalent to regularization

e it can be shown that the same equivalence holds if we replace the uncertainty set
by U = {A e R™*™ | ||A||lp < A}
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Proof Sketch of the Robust LS Equivalence Result

e by the definition of induced norms, we have

Al <A <= ||Ax]|s < A||x||2 for all x € R"

e then, for any x € R” and for any A € U,
Iy = (A + A)x|[2 < |ly — Ax|l2 + [[Ax]|;
< lly — Ax[2 + Allx]]2, (*)
and note that the 1st equality above holds if y — Ax = —aAx for some a > 0,
and the 2nd equality above holds if x is the 1st right singular vector of A
e consider the case of x # 0, y — Ax # 0. It can be verified that

A

A=—
ly — Ax|2]x]|2

(y — Ax)x"

attains the equalities in () and lies in U

e the other cases of x are handled in a similar fashion
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More Robust LS Equivalences

e denote U, , = {A € R™*" | |Ax|], < A||x]||; Vx}, where p,q > 1. We have

}]{fg]%Arg%p ly — (A + A)x||, un |y x|lp + Allxllq

e proof: almost the same as the previous case

e some interesting special cases:

min max Iy — (A +A)x|z = min [y — Axz + Al

min max -y~ (A+A)x| = min |y - x| + Alx],
18i[[1<A Vi

e |Implication: /7 regularization may also be seen as an act of robustification

e suggested reading: [Bertsimas-Copenhaver’17], including extension to PCA
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