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Lecture 5: Singular Value Decomposition

• singular value decomposition

• matrix norms

• linear systems

• LS, pseudo-inverse, orthogonal projections

• low-rank matrix approximation

• singular value inequalities

• computing the SVD via the power method
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Main Results

• any matrix A ∈ Rm×n admits a singular value decomposition

A = UΣVT ,

where U ∈ Rm×m and V ∈ Rm×m are orthogonal, and Σ ∈ Rm×n has [Σ]ij = 0
for all i 6= j and [Σ]ii = σi for all i, with σ1 ≥ σ2 ≥ . . . ≥ σmin{m,n}.

• matrix 2-norm: ‖A‖2 = σ1

• let r be the number of nonzero σi’s, partition U = [ U1 U2 ], V = [ V1 V2 ],
and let Σ̃ = Diag(σ1, . . . , σr)

– pseudo-inverse: A† = V1Σ̃
−1

UT
1

– LS solution: xLS = A†y + η for any η ∈ R(V2)

– orthogonal projection: PA = U1U
T
1

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 2



Main Results

• low-rank matrix approximation: given A ∈ Rm×n and k ∈ {1, . . . ,min{m,n}},
the problem

min
B∈Rm×n, rank(B)≤k

‖A−B‖2F

has a solution given by B? =
∑k
i=1 σiuiv

T
i
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Singular Value Decomposition

Theorem 5.1. Given any A ∈ Rm×n, there exists a 3-tuple (U,Σ,V) ∈ Rm×m ×
Rm×n × Rn×n such that

A = UΣVT ,

U and V are orthogonal, and Σ takes the form

[Σ]ij =

{
σi, i = j
0, i 6= j

, σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0, p = min{m,n}.

• the above decomposition is called the singular value decomposition (SVD)

• σi is called the ith singular value

• ui and vi are called the ith left and right singular vectors, resp.

• the following notations may be used to denote singular values of a given A

σmax(A) = σ1(A) ≥ σ2(A) ≥ . . . ≥ σp(A) = σmin(A)
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Different Ways of Writing out SVD

• partitioned form: let r be the number of nonzero singular values, and note
σ1 ≥ . . . σr > 0, σr+1 = . . . = σp = 0. Then,

A =
[
U1 U2

] [Σ̃ 0
0 0

] [
VT

1

VT
2

]
,

where

– Σ̃ = Diag(σ1, . . . , σr),
– U1 = [ u1, . . . ,ur ] ∈ Rm×r, U2 = [ ur+1, . . . ,um ] ∈ Rm×(m−r),
– V1 = [ v1, . . . ,vr ] ∈ Rn×r, V2 = [ vr+1, . . . ,vn ] ∈ Rn×(n−r).

• thin SVD: A = U1Σ̃VT
1

• outer-product form: A =

p∑
i=1

σiuiv
T
i =

r∑
i=1

σiuiv
T
i
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SVD and Eigendecomposition

From the SVD A = UΣVT , we see that

AAT = UD1U
T , D1 = ΣΣT = Diag(σ2

1, . . . , σ
2
p, 0, . . . , 0︸ ︷︷ ︸
m− p zeros

) (∗)

ATA = VD2V
T , D2 = ΣTΣ = Diag(σ2

1, . . . , σ
2
p, 0, . . . , 0︸ ︷︷ ︸
n− p zeros

) (∗∗)

Observations:

• (∗) and (∗∗) are the eigendecompositions of AAT and ATA, resp.

• the left singular matrix U of A is the eigenvector matrix of AAT

• the right singular matrix V of A is the eigenvector matrix of ATA

• the squares of nonzero singular values of A, σ2
1, . . . , σ

2
r , are the nonzero eigenval-

ues of both AAT and ATA.
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Insights of the Proof of SVD

• the proof of SVD is constructive

• to see the insights, consider the special case of square nonsingular A

• AAT is PD, and denote its eigendecomposition by

AAT = UΛUT , with λ1 ≥ . . . ≥ λn > 0.

• let Σ = Diag(
√
λ1, . . . ,

√
λm), V = ATUΣ−1

• it can be verified that UΣVT = A, VTV = I

• see the accompanying note for the proof of SVD in the general case
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SVD and Subspace

Property 5.1. The following properties hold:

(a) R(A) = R(U1), R(A)⊥ = R(U2);

(b) R(AT ) = R(V1), R(AT )⊥ = N (A) = R(V2);

(c) rank(A) = r (the number of nonzero singular values).

Note:

• in practice, SVD can be used a numerical tool for computing bases of R(A),
R(A)⊥, R(AT ), N (A)

• we have previously learnt the following properties

– rank(AT ) = rank(A)

– dimN (A) = n− rank(A)

By SVD, the above properties are easily seen to be true
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Matrix Norms

• the definition of a norm of a matrix is the same as that of a vector:

– f : Rm×n → R is a norm if (i) f(A) ≥ 0 for all A; (ii) f(A) = 0 if and only if
A = 0; (iii) f(A + B) ≤ f(A) + f(B) for any A,B; (iv) f(αA) = |α|f(A)
for any α,A

• naturally, the Frobenius norm ‖A‖F =
√∑

i,j |aij|2 = [tr(ATA)]1/2 is a norm

• there are many other matrix norms

• induced norm or operator norm: the function

f(A) = max
‖x‖β≤1

‖Ax‖α

where ‖ · ‖α, ‖ · ‖β denote any vector norms, can be shown be to a norm
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Matrix Norms

• matrix norms induced by the vector p-norm (p ≥ 1):

‖A‖p = max
‖x‖p≤1

‖Ax‖p

• it is known that

– ‖A‖1 = max1≤j≤n
∑m
i=1 |aij|

– ‖A‖∞ = max1≤i≤m
∑n
j=1 |aij|

• how about p = 2?
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Matrix 2-Norm

• matrix 2-norm or spectral norm:

‖A‖2 = σmax(A).

• proof:

– for any x with ‖x‖2 ≤ 1,

‖Ax‖22 = ‖UΣVTx‖22 = ‖ΣVTx‖22
≤ σ2

1‖VTx‖22 = σ2
1‖x‖22 ≤ σ2

1

– ‖Ax‖2 = σ1 if we choose x = v1

• implication to linear systems: let y = Ax be a linear system. Under the input
energy constraint ‖x‖2 ≤ 1, the system output energy ‖y‖22 is maximized when x
is chosen as the 1st right singular vector

• corollary: min
‖x‖2=1

‖Ax‖2 = σmin(A) if m ≥ n
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Matrix 2-Norm

Properties for the matrix 2-norm:

• ‖AB‖2 ≤ ‖A‖2‖B‖2

– in fact, ‖AB‖p ≤ ‖A‖p‖B‖p for any p ≥ 1

• ‖Ax‖2 ≤ ‖A‖2‖x‖2

– a special case of the 1st property

• ‖QAW‖2 = ‖A‖2 for any orthogonal Q,W

– we also have ‖QAW‖F = ‖A‖F for any orthogonal Q,W

• ‖A‖2 ≤ ‖A‖F ≤
√
p‖A‖2 (here p = min{m,n})

– proof: ‖A‖F = ‖Σ‖F =
√∑p

i=1 σ
2
i , and σ2

1 ≤
∑p
i=1 σ

2
i ≤ pσ2

1
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Schatten p-Norm

• the function

f(A) =

min{m,n}∑
i=1

σi(A)p

1/p

, p ≥ 1,

is known to be a norm and is called the Schatten p-norm

• nuclear norm:

‖A‖∗ =

min{m,n}∑
i=1

σi(A)

– a special case of the Schatten p-norm

– a way to prove that the nuclear norm is a norm:

∗ show that f(A) = max‖B‖2≤1 tr(BTA) is a norm

∗ show that f(A) =
∑min{m,n}
i=1 σi

– finds applications in rank approximation, e.g., for compressive sensing and
matrix completion [Recht-Fazel-Parrilo’10]
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Schatten p-Norm

• rank(A) is nonconvex in A and is arguably hard to do optimization with it

• Idea: the rank function can be expressed as

rank(A) =

min{m,n}∑
i=1

1{σi(A) 6= 0},

and why not approximate it by

f(A) =
∑min{m,n}
i=1 ϕ(σi(A))

for some friendly function ϕ?

• nuclear norm
‖A‖∗ =

∑min{m,n}
i=1 σi(A)

– uses ϕ(z) = z

– is convex in A
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Linear Systems: Sensitivity Analysis

• Scenario:

– let A ∈ Rn×n be nonsingular, and y ∈ Rn. Let x be the solution to

y = Ax.

– consider a perturbed version of the above system: Â = A + ∆A, ŷ = y + ∆y,
where ∆A and ∆y are errors. Let x̂ be a solution to the perturbed system

ŷ = Âx̂.

• Problem: analyze how the solution error ‖x̂− x‖2 scales with ∆A and ∆y

• remark: ∆A and ∆y may be floating point errors, measurement errors, etc
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Linear Systems: Sensitivity Analysis

• the condition number of a given matrix A is defined as

κ(A) =
σmax(A)

σmin(A)
,

• κ(A) ≥ 1, and κ(A) = 1 if A is orthogonal

• A is said to be ill-conditioned if κ(A) is very large; that refers to cases where A
is close to singular
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Linear Systems: Sensitivity Analysis

Theorem 5.2. Let ε > 0 be a constant such that

‖∆A‖2
‖A‖2

≤ ε, ‖∆y‖2
‖y‖2

≤ ε.

If ε is sufficiently small such that εκ(A) < 1, then

‖x̂− x‖2
‖x‖2

≤ 2εκ(A)

1− εκ(A)
.

• Implications:

– for small errors and in the worst-case sense, the relative error ‖x̂ − x‖2/‖x‖2
tends to increase with the condition number

– in particular, for εκ(A) ≤ 1
2, the error bound can be simplified to

‖x̂− x‖2
‖x‖2

≤ 4εκ(A)
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Linear Systems: Interpretation under SVD

• consider the linear system
y = Ax

where A ∈ Rm×n is the system matrix; x ∈ Rn is the system input; y ∈ Rm is
the system output

• by SVD we can write

y = Uỹ, ỹ = Σx̃, x̃ = VTx

• Implication: all linear systems work by performing three processes in cascade,
namely,

– rotate/reflect the system input x to form an intermediate system input x̃

– form an intermediate system output ỹ by element-wise rescaling x̃ w.r.t. σi’s
and by either removing some entires of x̃ or adding some zeros

– rotate/reflect ỹ to form the system output y
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Linear Systems: Interpretation under SVD
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Linear Systems: Solution via SVD

• Problem: given general A ∈ Rm×n and y ∈ Rm, determine

– whether y = Ax has a solution (more precisely, whether there exists an x such
that y = Ax);

– what is the solution

• by SVD it can be shown that

y = Ax ⇐⇒ y = U1Σ̃VT
1 x

⇐⇒ UT
1 y = Σ̃VT

1 x, UT
2 y = 0

⇐⇒ VT
1 x = Σ̃

−1
UT

1 y, UT
2 y = 0

⇐⇒ x = V1Σ̃
−1

UT
1 y + η, for any η ∈ R(V2) = N (A),

UT
2 y = 0
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Linear Systems: Solution via SVD

• let us consider specific cases of the linear system solution characterization

y = Ax ⇐⇒ x = V1Σ̃
−1

UT
1 y + η, for any η ∈ R(V2) = N (A),

UT
2 y = 0

• Case (a): full-column rank A, i.e., r = n ≤ m

– there is no V2, and UT
2 y = 0 is equivalent to y ∈ R(U1) = R(A)

– Result: the linear system has a solution if and only if y ∈ R(A), and the

solution, if exists, is uniquely given by x = VΣ̃
−1

UT
1 y

• Case (b): full-row rank A, i.e., r = m ≤ n

– there is no U2

– Result: the linear system always has a solution, and the solution is given by

x = V1Σ̃
−1

UTy + η for any η ∈ N (A)
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Least Squares via SVD

• consider the LS problem
min
x∈Rn

‖y −Ax‖22
for general A ∈ Rm×n

• we have, for any x ∈ Rn,

‖y −Ax‖22 = ‖y −UΣ VTx︸ ︷︷ ︸
=x̃

‖22 = ‖UTy︸ ︷︷ ︸
=ỹ

−Σx̃‖22

=
∑r
i=1 |ỹi − σix̃i|2 +

∑p
i=r+1 |ỹi|2

≥
∑p
i=r+1 |ỹi|2

• the equality above is attained if x̃ satisfies ỹi = σix̃i for i = 1, . . . , r, and it can
be shown that such a x̃ corresponds to (try)

x = V1Σ̃
−1

UT
1 y + V2x̃2, for any x̃2 ∈ Rn−r

which is the desired LS solution
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Pseudo-Inverse

The pseudo-inverse of a matrix A is defined as

A† = V1Σ̃
−1

UT
1 .

From the above def. we can show that

• xLS = A†y + η for any η ∈ R(V2); the same applies to linear sys. y = Ax

• A† satisfies the Moore-Penrose conditions: (i) AA†A = A; (ii) A†AA† = A†;
(iii) AA† is symmetric; (iv) A†A is symmetric

• when A has full column rank

– the pseudo-inverse also equals A† = (ATA)−1AT

– A†A = I

• when A has full row rank

– the pseudo-inverse also equals A† = AT (AAT )−1

– AA† = I
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Orthogonal Projections

• with SVD, the orthogonal projections of y onto R(A) and R(A)⊥ are, resp.,

ΠR(A)(y) = AxLS = AA†y = U1U
T
1 y

ΠR(A)⊥(y) = y −AxLS = (I−AA†)y = U2U
T
2 y

• the orthogonal projector and orthogonal complement projector of A are resp.
defined as

PA = U1U
T
1 , P⊥A = U2U

T
2

• properties (easy to show):

– PA is idempotent, i.e., PAPA = PA

– PA is symmetric

– the eigenvalues of PA are either 0 or 1

– R(PA) = R(A)

– the same properties above apply to P⊥A, and I = PA + P⊥A
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Minimum 2-Norm Solution to Underdetermined Linear Systems

• consider solving the linear system y = Ax when A is fat

• this is an underdetermined problem: we have more unknowns n than the number
of equations m

• assume that A has full row rank. By now we know that any

x = A†y + η, η ∈ R(V2)

is a solution to y = Ax, but we may want to grab one solution only

• Idea: discard η and take x = A†y as our solution

• Question: does discarding η make sense?

• Answer: it makes sense under the minimum 2-norm problem formulation

min
x∈Rn

‖x‖22 s.t. y = Ax

It can be shown that the solution is uniquely given by x = A†y (try the proof)
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Low-Rank Matrix Approximation

Aim: given a matrix A ∈ Rm×n and an integer k with 1 ≤ k < rank(A), find a
matrix B ∈ Rm×n such that rank(B) ≤ k and B best approximates A

• it is somehow unclear about what a best approximation means, and we will specify
one later

• closely related to the matrix factorization problem considered in Lecture 2

• applications: PCA, dimensionality reduction,...—the same kind of applications in
matrix factorization

• truncated SVD: denote

Ak =

k∑
i=1

σiuiv
T
i .

Perform the aforementioned approximation by choosing B = Ak
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Toy Application Example: Image Compression

• let A ∈ Rm×n be a matrix whose (i, j)th entry aij stores the (i, j)th pixel of an
image.

• memory size for storing A: mn

• truncated SVD: store {ui, σivi}ki=1 instead of the full A, and recover the image
by B = Ak

• memory size for truncated SVD: (m+ n)k

– much less than mn if k � min{m,n}
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Toy Application Example: Image Compression

(a) original image, size= 102 × 1347

(b) truncated SVD, k= 5

(c) truncated SVD, k= 10

(d) truncated SVD, k= 20
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Low-Rank Matrix Approximation

• truncated SVD provides the best approximation in the LS sense:

Theorem 5.3 (Eckart-Young-Mirsky). Consider the following problem

min
B∈Rm×n, rank(B)≤k

‖A−B‖2F

where A ∈ Rm×n and k ∈ {1, . . . , p} are given. The truncated SVD Ak is an
optimal solution to the above problem.

• also note the matrix 2-norm version of the Eckart-Young-Mirsky theorem:

Theorem 5.4. Consider the following problem

min
B∈Rm×n, rank(B)≤k

‖A−B‖2

where A ∈ Rm×n and k ∈ {1, . . . , p} are given. The truncated SVD Ak is an
optimal solution to the above problem.

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 29



Low-Rank Matrix Approximation

• recall the matrix factorization problem in Lecture 2:

min
A∈Rm×k,B∈Rk×n

‖Y −AB‖2F

where k ≤ min{m,n}; A denotes a basis matrix; B is the coefficient matrix

• the matrix factorizaton problem may be reformulated as (verify)

min
Z∈Rm×n,rank(Z)≤k

‖Y − Z‖2F ,

and the truncated SVD Yk =
∑k
i=1 σiuiv

T
i , where Y = UΣVT denotes the

SVD of Y, is an optimal solution by Theorem 5.4

• thus, an optimal solution to the matrix factorization problem is

A = [ u1, . . . ,uk ], B = [ σ1v1, . . . , σkvk ]T
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Toy Demo: Dimensionality Reduction of a Face Image Dataset

A face image dataset. Image size = 112 × 92, number of face images = 400. Each xi is the

vectorization of one face image, leading to m = 112× 92 = 10304, n = 400.
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Toy Demo: Dimensionality Reduction of a Face Image Dataset
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singular vector
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Singular Value Inequalities

Similar to variational characterization of eigenvalues of real symmetric matrices, we
can derive various variational characterization results for singular values, e.g.,

• Courant-Fischer characterization:

σk(A) = min
dimSn−k+1⊆Rn

max
x∈Sn−k+1, ‖x‖2=1

‖Ax‖2

• Weyl’s inequality: given A,B ∈ Rm×n,

σk+l−1(A + B) ≤ σk(A) + σl(B), k, l ∈ {1, . . . , p}, k + l − 1 ≤ p.

Note the special case

σk(A)− σ1(B) ≤ σk(A + B) ≤ σk(A) + σ1(B), k ∈ {1, . . . , p}.
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Singular Value Inequalities

• Von Neumann trace inequality: given A,B ∈ Rm×n,

p∑
i=1

σi(A)σn−i+1(B) ≤ tr(ATB) ≤
p∑
i=1

σi(A)σi(B)

• and many more...
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Proof of the Eckart-Young-Mirsky Thm. by Weyl’s Inequality

An application of singular value inequalities is that of proving Theorem 5.4:

• for any B with rank(B) ≤ k, we have

– σl(B) = 0 for l > k

– (Weyl) σi+k(A) ≤ σi(A−B) + σk+1(B) = σi(A−B) for i = 1, . . . , p− k
– and consequently

‖A−B‖2F =

p∑
i=1

σi(A−B)2 ≥
p−k∑
i=1

σi(A−B)2 ≥
p∑

i=k+1

σi(A)2

• the equality above is attained if we choose B = Ak
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Computing the SVD via the Power Method

The power method can be used to compute the thin SVD, and the idea is as follows.

• assume m ≥ n and σ1 > σ2 > . . . σn > 0

• apply the power method to ATA to obtain v1

• obtain u1 = Av1/‖Av1‖2, σ1 = ‖Av1‖2 (why is this true?)

• do deflation A := A − σ1u1v
T
1 , and repeat the above steps until all singular

components are found
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