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Lecture 5: Singular Value Decomposition
e singular value decomposition
e matrix norms
e linear systems
e LS, pseudo-inverse, orthogonal projections
e |low-rank matrix approximation
e singular value inequalities

e computing the SVD via the power method
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Main Results

e any matrix A € R"*™ admits a singular value decomposition
A =UxVT,

where U € R™*™ and V € R™*™ are orthogonal, and ¥ € R"™*"™ has [X];; =0
for all ¢ #] and [2]“ = 0; for all 1, with o1 >092>...2 Omin{m,n}-

e matrix 2-norm: ||Alls = o4

e let r be the number of nonzero o;'s, partition U = | U; Uy |, V = | V; V3 |,
and let 3 = Diag(o1,...,0,)

— pseudo-inverse: AT = Vlf]_lUf
— LS solution: x5 = ATy 4+ 1 for any n € R(V>)

— orthogonal projection: P, = U, U7Y
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Main Results

e low-rank matrix approximation: given A € R™*" and k € {1,...,min{m,n}},
the problem
min A — B||%
BeR™X"  rank(B)<k

T

)

has a solution given by B* = Z,’f:l oiu; Vv
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Singular Value Decomposition

Theorem 5.1. Given any A € R™*", there exists a 3-tuple (U, 3, V) € R™*™ x
R™>*™ x R™ ™ such that

A =UxV’,
U and V are orthogonal, and X takes the form
i, 7’:] :
[Z]ij:{o Pt g1 > 02> ...20,2>0, p=min{m,n}.

e the above decomposition is called the singular value decomposition (SVD)
e 0; Is called the 2th singular value

e u; and v; are called the ith left and right singular vectors, resp.

e the following notations may be used to denote singular values of a given A

Omax(A) = 01(A) > 02(A) > ... > 0p(A) = omin(A)
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Different Ways of Writing out SVD

e partitioned form: let r be the number of nonzero singular values, and note
01> ...00>0,0041=...=0p,=0. Then,
B > o] [VT
A= il |5 gl [V
where
— > = Diag(o4,...,0,),
- U; = [ ui,..., U, ] c R™*" Uqg = [ Uyyl,...,Um ] ERmX(m_T),
-V, = [ Vi,...,Vp ] € R"™7" Vy = [ ViyglyeeoyVp ] < R x(n—=7),

e thin SVD: A =U,;XV7

e outer-product form: A = ZO‘ZU.Z ZcfzuZ

1=1
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SVD and Eigendecomposition

From the SVD A = UXV?T, we see that

AAT =UD,U", D;=2%X" = Diag(o},...,02, 0,...,0) (%)

m — P zeros

ATA =VD,V", D,=3%"%=Diag(of,...,0.,0,...,0) (%)

n — P Zeros

Observations:

e (x) and (*x) are the eigendecompositions of AA’ and AT A, resp.
e the left singular matrix U of A is the eigenvector matrix of AA’

e the right singular matrix V of A is the eigenvector matrix of AT A

2

’r"

e the squares of nonzero singular values of A, 0%,...,0
ues of both AAT and ATA.

are the nonzero eigenval-
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Insights of the Proof of SVD

e the proof of SVD is constructive
e to see the insights, consider the special case of square nonsingular A

e AA' is PD, and denote its eigendecomposition by

AAT = UAUT, with Ay > ... >\, > 0.

o let ¥ = Diag(v/A1,...,vVAm), V=ATUZ™!
e it can be verified that UXV?T = A VIV =1

e see the accompanying note for the proof of SVD in the general case
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SVD and Subspace

Property 5.1. The following properties hold:
(a) R(A) = R(Uy), R(A)+ = R(Uy);
(b) R(AT) =R(V1), R(AT)" =N(A) =R(Va);

(c) rank(A) = r (the number of nonzero singular values).

Note:

e in practice, SVD can be used a numerical tool for computing bases of R(A),
R(A)", R(AT), N(A)

e we have previously learnt the following properties
— rank(AT) = rank(A)
— dim N (A) = n — rank(A)

By SVD, the above properties are easily seen to be true
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Matrix Norms

e the definition of a norm of a matrix is the same as that of a vector:

— [ R™™ 5 Risanorm if (i) f(A) >0 for all A; (ii) f(A) =0 if and only if
A = 0; (iil) f(A+B) < f(A) + f(B) for any A, B; (iv) f(aA) = |a|f(A)
for any a, A

ai;|? = [tr(ATA)]/2 is a norm

e naturally, the Frobenius norm ||A||r = \/Z”

e there are many other matrix norms

e induced norm or operator norm: the function

f(A) = max [|Ax||,

Ix[[g<1

where || - ||o, || - || denote any vector norms, can be shown be to a norm
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Matrix Norms

e matrix norms induced by the vector p-norm (p > 1):

IAllp = max [[Ax]|,

[x[lp<1

e it is known that

— [|A|lL = maxi<j<n Y, |aij]

— ||A||OO = MaxX1<i<m 2?21 ’aij|

e how about p = 27
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Matrix 2-Norm

e matrix 2-norm or spectral norm:
|A[l2 = omax(A).

e proof:
— for any x with ||x|[» <1,
|Ax[l; = [[USV x|; = |2V x|

< o1V x[l; = ofllx|z < o7

— ||Ax||2 = o7 if we choose x = v;

e implication to linear systems: let y = Ax be a linear system. Under the input
energy constraint ||x|[2 < 1, the system output energy ||y||3 is maximized when x
is chosen as the 1st right singular vector

e corollary: Hn|f|11n |AX||2 = omin(A) if m >n
X|[o=1
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Matrix 2-Norm

Properties for the matrix 2-norm:

e [AB|2 < [|A]2Bll

— in fact, ||[AB||, < ||A[,||B]||, forany p > 1

o [|Ax[[z < [[All2ffx]l2

— a special case of the 1st property

e |QAW||; = ||A||2 for any orthogonal Q, W
— we also have |QAW||r = ||A||F for any orthogonal Q, W

o |All2 < [|AllF < /Dl[All2 (here p = min{m,n})

= proof: [|Allp = [|Z[lr = />3, 07, and of < 370, 0 < po?
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Schatten p-Norm
e the function

min{m,n} 1/p

fA) =1 Y o] , p=x1
i=1
is known to be a norm and is called the Schatten p-norm

e nuclear norm:
min{m,n}

A=) oiA)

i=1
— a special case of the Schatten p-norm

— a way to prove that the nuclear norm is a norm:
+ show that f(A) = maxg|,<1 tr(B*A) is a norm

« show that f(A) = S mintmnt 4,

— finds applications in rank approximation, e.g., for compressive sensing and
matrix completion [Recht-Fazel-Parrilo’10]
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Schatten p-Norm

e rank(A) is nonconvex in A and is arguably hard to do optimization with it

e |dea: the rank function can be expressed as

min{m,n}

rank(A) = Z 1{o;(A) # 0},

i=1
and why not approximate it by
f(A) =2 p(ai(A))
for some friendly function 7

e nuclear norm

A = S o (A)
— uses p(z) =z

— Is convex in A
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Linear Systems: Sensitivity Analysis

e Scenario:

— let A € R"*"™ be nonsingular, and y € R". Let x be the solution to
y = Ax.

— consider a perturbed version of the above system: A=A+AA, y =y + Ay,
where AA and Ay are errors. Let X be a solution to the perturbed system

e Problem: analyze how the solution error ||x — x||2 scales with AA and Ay

e remark: AA and Ay may be floating point errors, measurement errors, etc
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Linear Systems: Sensitivity Analysis

e the condition number of a given matrix A is defined as

Tmax(A)
O min (A> 7

k(A) =

e K(A)>1, and k(A) =1 if A is orthogonal

e A is said to be ill-conditioned if kK(A) is very large; that refers to cases where A
is close to singular
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Linear Systems: Sensitivity Analysis

Theorem 5.2. Let £ > 0 be a constant such that

|AA], <. |Ay||2 <e
A2 y]l2

If ¢ is sufficiently small such that ex(A) < 1, then

[% = x]la _ 2en(A)
X[l — 1 —er(A)

e Implications:

— for small errors and in the worst-case sense, the relative error ||X — x||2/]|x]|2
tends to increase with the condition number

— in particular, for ex(A) < 3, the error bound can be simplified to

A

I — x|l

< 4er(A)
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Linear Systems: Interpretation under SVD

e consider the linear system
y = Ax
where A € R™*"™ is the system matrix; x € R" is the system input; y € R™ is
the system output

e by SVD we can write

y = Uy, y = XX, x=V'x

e Implication: all linear systems work by performing three processes in cascade,
namely,

— rotate/reflect the system input x to form an intermediate system input x

— form an intermediate system output y by element-wise rescaling x w.r.t. og;'s
and by either removing some entires of x or adding some zeros

— rotate/reflect y to form the system output y
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Linear Systems: Interpretation under SVD

A >
X Yy
(a) linear system
vi by
X X

(b) equivalent system

vV
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Linear Systems: Solution via SVD

e Problem: given general A € R™*™ and y € R™, determine

— whether y = Ax has a solution (more precisely, whether there exists an x such
that y = Ax);

— what is the solution

e by SVD it can be shown that

y:UlﬁlVTx
Uly =3VvTx, Uly

y = Ax

~ —

\flx_23 UlY? Ugy:

[

x—VlE U y + 1, for any n € R(Vy) = N(A),
Uy
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Linear Systems: Solution via SVD

e let us consider specific cases of the linear system solution characterization

X = Vlfl_lUfy +m, forany n € R(Va) = N(A),

— Ax <+—
Y Uly =0

e Case (a): full-columnrank A, ie, r=n<m
— there is no V3, and Uly = 0 is equivalent to y € R(U;) = R(A)

— Result:  the linear system has a solution if and only if y € R(A), and the
: : : : : : =—1
solution, if exists, is uniquely given by x = VX Uly

e Case (b): full-row rank A, ie., r=m <n
— there is no Uj

— Result: the linear system always has a solution, and the solution is given by
~ —1
x=V1X Uly+nforanyne N(A)
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Least Squares via SVD

e consider the LS problem

A
min [ly — Ax|;

for general A € R™*"

e we have, for any x € R",

ly — Ax|z = lly - UE\\)SHQ | Uy —2%]);

_y
— Z:—l |y2 0-7,337,|2 T Zz r+1 |y'1,’2
> iy [0:°

e the equality above is attained if x satisfies y; = o;x; fori =1,...

be shown that such a x corresponds to (try)

~ —1
x=VX Uly+Vyky, foranyx,ecR""

which is the desired LS solution

,7, and it can
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Pseudo-Inverse

The pseudo-inverse of a matrix A is defined as

AT=v,z 'UT.

From the above def. we can show that

e X5 = Aly + 1 for any n € R(V3); the same applies to linear sys. y = Ax

e AT satisfies the Moore-Penrose conditions: (i) AATA = A; (i) ATAAT = AT

(iii) AAT is symmetric; (iv) ATA is symmetric

e when A has full column rank
— the pseudo-inverse also equals AT = (ATA)"1AT
- ATA=1

e when A has full row rank
— the pseudo-inverse also equals AT = AT(AAT)~!
- AAT=1
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Orthogonal Projections

e with SVD, the orthogonal projections of y onto R(A) and R(A)>L are, resp.,
r(a)(y) = Axis = AATy = U, UTy
Hpa(y) =y — Axis = (I—- AAT)y = U,Uzy

e the orthogonal projector and orthogonal complement projector of A are resp.

defined as
P, =U, U/, Py=1U,Ul

e properties (easy to show):
— P4 is idempotent, i.e., PAPA = Pa
— P Is symmetric
— the eigenvalues of P are either 0 or 1
- R(Pa) =R(A)
— the same properties above apply to Px, and I = P, + Py
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Minimum 2-Norm Solution to Underdetermined Linear Systems

consider solving the linear system y = Ax when A is fat

this i1s an underdetermined problem: we have more unknowns n than the number
of equations m

assume that A has full row rank. By now we know that any
x=Aly+n, neR(Vy)

is a solution to y = Ax, but we may want to grab one solution only

ldea: discard 1 and take x = ATy as our solution

Question: does discarding 1 make sense?

Answer: it makes sense under the minimum 2-norm problem formulation

- 2
ty=A
min [x[z sty =Ax

It can be shown that the solution is uniquely given by x = ATy (try the proof)
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Low-Rank Matrix Approximation

Aim: given a matrix A € R™*” and an integer k with 1 < k < rank(A), find a
matrix B € R"™*™ such that rank(B) < k and B best approximates A

e it is somehow unclear about what a best approximation means, and we will specify
one later

e closely related to the matrix factorization problem considered in Lecture 2

e applications: PCA, dimensionality reduction,...—the same kind of applications in
matrix factorization

e truncated SVD: denote .
T
Ak = ZO‘@U@VZ- .

i=1

Perform the aforementioned approximation by choosing B = A}
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Toy Application Example: Image Compression

o let A € R™*™ be a matrix whose (7, j)th entry a;; stores the (¢, j)th pixel of an
image.

e memory size for storing A: mn

e truncated SVD: store {u;,o;v; le instead of the full A, and recover the image

e memory size for truncated SVD: (m + n)k

— much less than mn if K < min{m,n}
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Toy Application Example: Image Compression

(a) original image, size= 102 x 1347

ENGG 5781 Matrix Analysis and Computations

(b) truncated SVD, k=5

ENGG 5781 Matrix Ananlveis nnd Computntions

(c) truncated SVD, k= 10

ENGG 5781 Matrix Analvsis and Computations

(d) truncated SVD, k= 20

ENGG 5781 Matrix Analysis and Computations
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Low-Rank Matrix Approximation

e truncated SVD provides the best approximation in the LS sense:
Theorem 5.3 (Eckart-Young-Mirsky). Consider the following problem

min |A — B||%
BeR™X"  rank(B)<k

where A € R™*™ and k € {1,...,p} are given. The truncated SVD Ay is an
optimal solution to the above problem.

e also note the matrix 2-norm version of the Eckart-Young-Mirsky theorem:
Theorem 5.4. Consider the following problem

min |A — B2
BeR™*" | rank(B)<k

where A € R™*™ and k € {1,...,p} are given. The truncated SVD Ay is an
optimal solution to the above problem.
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Low-Rank Matrix Approximation

e recall the matrix factorization problem in Lecture 2:

min 1Y — AB||%
AERka,BEkan

where k < min{m,n}; A denotes a basis matrix; B is the coefficient matrix

e the matrix factorizaton problem may be reformulated as (verify)

min 1Y - Z|%,
ZeRMXn rank(Z)<k

and the truncated SVD Y, = Z,’f:l o, vy, where Y = UXV?' denotes the

17

SVD of Y, is an optimal solution by Theorem 5.4

e thus, an optimal solution to the matrix factorization problem is

A:[ul,...,uk], B:[lela--'70kvk]T
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Toy Demo: Dimensionality Reduction of a Face Image Dataset

A face image dataset. Image size = 112 X 92, number of face images = 400. Each x; is the
vectorization of one face image, leading to m = 112 x 92 = 10304, n = 400.
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Toy Demo: Dimensionality Reduction of a Face Image Dataset

d 0

Mean face 1st principal left 2nd principal left 3rd principal left 400th left singu-
singular vector singular vector singular vector lar vector

L L L L L L L
0 50 100 150 200 250 300 350 400
Rank

Energy Concentration
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Singular Value Inequalities

Similar to variational characterization of eigenvalues of real symmetric matrices, we
can derive various variational characterization results for singular values, e.g.,

e Courant-Fischer characterization:

or(A) = min max | Ax||2
dim S,,_p11CR" x€8, k41, [[x[[2=1

e Weyl's inequality: given A, B € R™*",
or1i—1(A 4+ B) < or(A) 4+ 01(B), k,le{l,....p}, k+1—-1<np.
Note the special case

ok(A) —01(B) < 0x(A + B) < 0% (A) + 01(B), ked{l,...,p}.

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024-25 First Term. 33



Singular Value Inequalities

e Von Neumann trace inequality: given A, B € R™*",
p

Zai(A)Un—z+1(B) < tr ATB ) < i

1=1

e and many more...
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Proof of the Eckart-Young-Mirsky Thm. by Weyl’s Inequality
An application of singular value inequalities is that of proving Theorem 5.4:

e for any B with rank(B) < k, we have

—o(B)=0forl >k
— (Weyl) 0i4k(A) <0iy(A=B) +0p11(B) =0;(A—-B) fori=1,....p—k

— and consequently

P p—k P
JA-B|7 =) 0i(A-B)>>> 0i(A-B)>> ) 0;(A)
i=1 =1 1=k-+1

e the equality above is attained if we choose B = A,
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Computing the SVD via the Power Method
The power method can be used to compute the thin SVD, and the idea is as follows.

e assumem >nand oy > 09 > ...0, >0
e apply the power method to A” A to obtain v,
e obtain u; = AV1/||AV1H2,0'1 = HAV1||2 (Why Is this true?)

e do deflation A := A — 0'1111V,'1T, and repeat the above steps until all singular
components are found
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